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1 Introduction

Welcome to the PAST! This program is designed as a follow-up to PALSTAT, an
extensive package written by P.D. Ryan, D.A.T. Harper and J.S. Whalley (Ryan et
al. 1995). It includes a number of functions which are commonly used in palaeon-
tology and palaeoecology.

These days, a number of large and very good statistics systems exist, including
SPSS and Excel. Why yet another statistics program?

e PAST is free.

e PAST is tailor-made for palaeontology. This means both that it includes
functions which are not found in off-the-shelf programs (for example cladis-
tics, ordination and geometrical analysis), and that it does not include func-
tions which are of little use to palaeontologists and that only make the user
interface more confusing.

e PAST is easy to use, and therefore well suited for introductory courses in
quantitative palaeontology.

e PAST comes with a number of example data sets, case studies and exercises,
making it a complete educational package.

Further explanations of many of the techniques implemented together with case
histories are located in Harper (1999).

If you have questions, bug reports, suggestions for improvements or other com-
ments, we would be happy to hear from you. Contact us at ohanmer @ oyen. ui 0. no.
The PAST home page is

http://ww. t oyen. ui 0. no/ ~ohanmer / past



2 Installation

The basic installation of PAST is easy: Just download the file *Past.exe’ and put it
anywhere on your harddisk. Double-clicking the file will start the program. The
data files for the case studies can be downloaded separately, or together in the
packed file ’casefiles.zip®. This file must be unpacked with a program such as
WinZip.

We suggest you make a folder called "past” anywhere on your hard disk, and
put all the files in this folder.

Please note: Problems have been reported for some combinations of screen
resolution and default font size in Windows - the layout gets ugly and it may be
necessary for the user to increase the sizes of windows in order to see all the text
and buttons. If this happens, please set the font size to *Small fonts’ in the Screen
control panel in Windows. We are working on solving this problem.

PAST also seems to have problems with some printers. Postscript printers from
HP and Tektronix work fine.



3 Entering and manipulating data

PAST has a spreadsheet-like user interface. Data are entered in an array of cells,
organized in rows (horizontally) and columns (vertically).

Entering data

To input data in a cell, click on the cell with the mouse and type in the data. This
can only be done when the program is in the *Edit mode’. To select edit mode, tick
the box above the array. When edit mode is off, the array is locked and the data
can not be changed. The cells can also be navigated using the arrow keys.

Any text can be entered in the cells, but almost all functions will expect num-
bers. Please note the decimal point convention which has been chosen by Windows
depending upon your nationality: A comma (,) or a dot (full stop). ’Dotted” data
can be ’commatized’ from the Edit menu. Absence/presence data are coded as 0 or
1, respectively. Any other positive number will be interpreted as presence.

The convention in PAST is that items occupy rows, and variables columns.
Three brachiopod individuals might therefore occupy rows 1, 2 and 3, with their
lengths and widths in columns A and B. Cluster analysis will always cluster items,
that is rows. For Q-mode analysis of associations, samples (sites) should there-
fore be entered in rows, while taxa (species) are in columns. For switching be-
tween Q-mode and R-mode, rows and columns can easily be interchanged using
the Transpose operation.

Commatize

Converts all full stops (*.”) in the data matrix to commas (’,”). This may be neces-
sary for the program to read decimal points correctly, depending on your national-

ity.

Selecting areas

Most operations in PAST are carried only out on the area of the array which you
have selected (marked). If you try to run a function which expects data, and no
area has been selected, you will get an error message.

e Arow is selected by clicking on the row label (leftmost column).
e A column is selected by clicking on the column label (top row).

e Multiple rows are selected by selecting the first row label, then shift-clicking
(clicking with the Shift key down) on the additional row labels. Note that
you can not ’drag out” multiple rows - this will instead move the first row
(see below).



e Multiple columns are similarly marked by shift-clicking the additional col-
umn labels.

e The whole array can be selected by clicking the upper left corner of the array
(the empty grey cell) or by choosing *Select all” in the Edit menu.

e Smaller areas within the array can be selected by ’dragging out’ the area, but
this only works when *Edit mode’ is off.

Renaming rows and columns

When PAST starts, rows are numbered from 1 to 99 and columns are labelled A to
Z. For your own reference, and for proper labelling of graphs, you should give the
rows and columns more descriptive but short names. Choose *Rename columns’
or ’Rename rows’ in the Edit menu. You must have selected the whole array, or a
smaller area as appropriate.

Increasing the size of the array

By default, PAST has 99 rows and 26 columns. If you should need more, you
can add rows or columns by choosing *More rows’ or ’More columns’ in the Edit
menu. When loading large data files, rows and/or columns are added automatically
as needed.

Moving a row or a column

A row or a column (including its label) can be moved simply by clicking on the
label and dragging to the new position.

Cut, copy, paste

The cut, copy and paste functions are found in the Edit menu. Note that you can
cut/copy data from the PAST spreadsheet and paste into other programs, for ex-
ample Word and Excel. Likewise, data from other programs can be pasted into
PAST.

Remember that local blocks of data (not all rows or columns) can only be
marked when *Edit mode’ is off.

All modules giving graphic output has a *Copy graphic’ button. This will place
the graphical image in the paste buffer for pasting into e.g. Word or Corel Draw.

Remove

The remove function (Edit menu) allows you to remove selected row(s) or col-
umn(s) from the spreadsheet. The removed area is not copied to the paste buffer.



Grouping (coloring) rows

Selected rows (data points) can be tagged with one of seven attractive colors using
the *Tag rows’ option in the Edit menu. Each group is also associated with a symbol
(dot, cross, square, diamond, plus, circle, triangle). This is useful for showing
different groups of data in e.g. ternary and scatter plots and dendrograms.

Transpose

The Transpose function, in the Edit menu, will interchange rows and columns. This
is used for switching between R mode and Q mode in cluster analysis, principal
components analysis and seriation.

Loading and saving data

The "Load’ function is found in the File menu. PAST uses an ASCI|I file format, for
easy importing from other programs (e.g. Word) and easy editing in a text editor.

The format is as follows:
columnlabel columnlabel columnlabel

rowlabel data data data

rowlabel data data data
rowlabel data data data

Empty cells (like the top left cell) are coded with a full stop (.). Cells are
separated by white space, which means that you must never use spaces in row or
column labels. *Oxford Clay’ is thus an illegal column label which would confuse
the program.

If any rows have been assigned a color other than black, the row labels in
the file will start with an underscore, a number from 0 to 6 identifying the color
(symbol), and another underscore.

The "Insert from file’ function is useful for concatenating data sets. The loaded
file will be inserted into your existing spreadsheet at the selected position (upper
left). Other data sets can thus be inserted both to the right of and below your
existing data.

Reading and writing Nexus files

The Nexus file format is used by many cladistics programs. PAST can read and
write the Data (character matrix) block of the Nexus format. Interleaved data are
not supported. Also, if you have performed a parsimony analysis and the ’Parsi-
mony analysis’ window is open, all shortest trees will be written to the Nexus file
for further processing in other programs (e.g. MacClade or Paup).



4 Massaging your data

These routines subject your data to mathematical operations. This can be useful for
bringing out features in your data, or as a necessary preprocessing step for some
types of analysis.
Logarithm
The Log function in the Massage menu log-transforms your data using the natural
logarithm (base e):

y=In(z+1)

This is useful, for example, to compare your sample to a log-normal distribu-
tion or for fitting to an exponential model. Also, abundance data with a few very
dominant taxa may be log-transformed in order to downweight those taxa.

Subtract mean
This function subtracts the column mean from each of the selected columns. The
means can not be computed row-wise.

Remove trend

This function removes any linear trend from a data set (two columns with X-Y
pairs). This is done by subtraction of a linear regression line from the Y values.
Removing the trend can sometimes be a useful operation prior to spectral analysis.



5 Plotting functions

Graph

Plots one or more columns as separate graphs. The x coordinates are set auto-
matically to 1,2,3,... There are three plot styles available: Graph (lines), bars and
points. The *X labels’ options sets the x axis labels to the appropriate row names.

XY graph

Plots two columns containing x/y coordinate pairs.

Histogram

Plots histograms (frequency distributions) for one or more columns. The number
of bins is 10 by default, but can be changed by the user.

Ternary

Ternary plot for three columns of data, normally containing proportions of compo-
sitions.

Survivorship

Survivorship curves for one or more columns of data. The data will normally con-
sist of age or size values. A survivorship plot shows the number of individuals
which survived to different ages. Assuming exponential growth (highly question-
able!), size should be log-transformed to age. This can be done either in the Mas-
sage menu, or directly in the Survivorship dialogue.



6 Simplestatistics

Univariate statistics

| Typical application

| Assumptions

| Data needed

Quick statistical description
of a univariate sample

None, but variance and
standard deviation are most
meaningful for normally

distributed data

Single column of measured
or counted data

Displays the following statistics: Number of entries (N), smallest value (Min),
largest value (Max), mean value (Mean), population variance (that is, the variance
of the population estimated from the sample), sample variance (actual variance
of just the sample), population and sample standard deviations (square roots of
variance), median, skewness (positive for a tail to the right) and kurtosis (positive

for a peaked distribution).

Diversity statistics

| Typical application

| Assumptions

| Data needed

Quantifying taxonomical di-
versity in samples

Representative samples

One or more columns, each
containing counts of individ-
uals of different taxa down
the rows

These statistics apply to association data, where number of individuals are tab-
ulated in rows (taxa) and possibly several columns (associations). The available
statistics are as follows, for each association:

e Number of taxa

e Total number of individuals

e Dominance=1-Simpson index. Ranges from 0 (all taxa are equally present)
to 1 (one taxon dominates the community completely).

e Simpson index=1-dominance. Measures "evenness’ of the community from
0to 1. Note the confusion in the literature: Dominance and Simpson indices
are often interchanged!

e Shannon index (entropy). A diversity index, taking into account the number
of individuals as well as number of taxa. Varies from 0 for communities with
only a single taxon to high values for communities with many taxa, each with

few individuals.

e Menhinick’s richness index - the ratio of the number of taxa to the square

root of sample size.



e Margalef’s richness index: (S — 1)/In(n), where S is the number of taxa,
and n is the number of individuals.

e Equitability. Shannon diversity divided by the logarithm of number of taxa.
This measures the evenness with which individuals are divided among the

taxa present.

e Fisher’s alpha - a diversity index, defined implicitly by the formula S =
aln(1 + n/a) where S is number of taxa, » is number of individuals and «

is the Fisher’s alpha.

Most of these indices are explained in Harper (1999).

Rarefaction

| Typical application

| Assumptions

| Data needed

Comparing taxonomical di-
versity in samples of differ-
ent sizes

Samples are taken from the
same population (1)

Single column of counts of
individuals of different taxa

Given a column of abundance data for a number of taxa, this module estimates
how many taxa you would expect to find in a sample with a smaller total number of
individuals. With this method, you can compare the number of taxa in samples of
different size. Using rarefaction analysis on your largest sample, you can read out
the number of expected taxa for any smaller sample size. The algorithm is from
Krebs (1989). An example application in paleontology can be found in Adrain et

al. (2000).



7 Comparing data sets

There are many different standard tests available for comparing two distributions.
Here is the standard disclaimer: You can never prove that two distributions are
the same. A high probability value is only consistent with a similar distribution,
but does of course give an indication of the similarity between the two sample
distributions. On the other hand, a very low probability value does show, to the
given level of significance, that the distributions are different.

Chi-square (one sample v. normal)

| Typical application

| Assumptions

| Data needed

Testing for normal distribu-
tion of a sample

Large sample (N>30)

Single column of measured
or counted data

Tests whether a single distribution (one selected column) is normal, by binning
the numbers in four compartments. Thistest should only be used for relatively large
populations (N>30). See Brown & Rothery (1993) or Davis (1986) for details.

Shapiro-Wilk (one sample v. normal)

| Typical application

| Assumptions

| Data needed

Testing for normal distribu-
tion of a sample

Small sample (N<50)

Single column of measured
or counted data

Tests whether a single distribution (one selected column) is normal. This test
is designed for relatively small populations (N<50).

F and T tests (two samples)

| Typical application

| Assumptions

| Data needed

Testing for equality of the
variances and means of two
samples

Normal or almost normal
distribution

Two columns of measured
or counted data

Two columns must be selected. The F test compares the variances of two dis-
tributions, while the t test compares their means. The F and t statistics, and the
probabilities that the variances and means of the parent populations are the same,
are given. The F and t tests should only be used if you have reason to believe that
the parent populations are close to normally distributed. The Chi-square test for
one distribution against a normal distribution can give you an idea about this.

Also, the T test is really only applicable when the variances are the same. So
if the F test says otherwise, you should be cautious about the T test. An unequal
variance T statistic is also given, which should be used in this case.
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Sometimes publications give not the data, but values for sample size, mean and
variance for two populations. These can be entered manually using the ’F and T
from parameters’ option in the menu.

See Brown & Rothery (1993) or Davis (1986) for details.

How do | test lognormal distributions?

All of the above tests apply to lognormal distributions as well. All you need to do
is to transform your data first, by taking the log transform in the Massage menu.
You might want to *backup’ your data column first, using Copy, and then get your
original column back using Paste.

Chi-square (two samples)

| Typical application | Assumptions | Data needed |
Testing for equal distribu- | Each compartment contain- | Two columns of counted
tion of compartmentalized, | ing at least five individuals data in different compart-
counted data ments (rows)

The Chi-square test is the one to use if your data consist of the numbers of
elements in different bins (compartments). For example, this test can be used to
compare two associations (columns) with the number of individuals in each taxon
organized in the rows. You should be a little cautious about such comparisons if
any of the bins contain less than five individuals.

See Brown & Rothery (1993) or Davis (1986) for details.

Mann-Whitney (two samples)

| Typical application | Assumptions | Data needed |
Comparing the medians of | None Two columns of measured
two samples or counted data

Two columns must be selected. The (Wilcoxon) Mann-Whitney U test can
be used to test whether the medians of two independent distributions are different.
This test is non-parametric, which means that the distributions can be of any shape.

See Brown & Rothery (1993) or Davis (1986) for details.

Kolmogorov-Smirnov (two samples)

| Typical application | Assumptions | Data needed |
Comparing the distributions | None Two columns of measured
of two samples data
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Two columns must be selected. The K-S test can be used to test whether two in-
dependent distributions of continuous, unbinned numerical data are different. The
K-S test is non-parametric, which means that the distributions can be of any shape.
If you want to test just the locations of the distribution (medians), you should rather
use the Mann-Whitney U test.

See Davis (1986) for details.

Spearman’s rho and Kendall’s tau (two samples)

| Typical application
Testing whether two vari-
ables are correlated

| Assumptions
None

| Data needed |
Two columns of measured
or counted paired data (such
as x/y pairs)

These non-parametric rank-order tests are used to test for correlation between
two variables.

Dice and Jaccard similarity indices

| Typical application

| Assumptions

| Data needed

Comparing two or more
presence/absence samples

Equal sampling conditions

Two or more columns of
presence/absence (1/0) data

with taxa down the rows

The Dice and Jaccard similarity indices are used to compare associations, lim-
ited to absence/presence data (any positive number is interpreted as presence).
When comparing two columns (associations), a match is counted for all taxa with
presences in both columns. Using M’ for the number of matches and *N’ for the
the total number of taxa with presences in just one column, we have

Dice similarity = 2M / (2M+N)

Jaccard similarity = M / (M+N)

Both these indices range from 0 (no similarity) to 1 (identity). A matrix is
presented with the comparisons between all pairs of associations. Dice indices are
given in the upper triangle of the matrix (above and to the right of the diagonal),
and Jaccard indices are given in the lower.

See Harper (1999) for details.

Raup-Crick similarity index

| Typical application
Comparing two or more
presence/absence samples

| Assumptions
Equal sampling conditions

| Data needed |
Two or more columns of
presence/absence (1/0) data
with taxa down the rows
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The Raup-Crick similarity index is used to compare associations, limited to
absence/presence data (any positive number is interpreted as presence). This in-
dex ranges from O (no similarity) to 1 (identity). A matrix is presented with the
comparisons between all pairs of associations.

The Raup-Crick index (Raup & Crick 1979) uses a randomization ("Monte
Carlo™) procedure, comparing the observed number of species ocurring in both
associations with the distribution of co-occurrences from 200 random replicates.

Correlation matrix

| Typical application | Assumptions | Data needed |
Quantifying correlation be- | Normal distribution Two or more columns of
tween two or more variables measured or counted vari-
ables

A matrix is presented with the correlations between all pairs of columns. Cor-
relation values (Pearson’s r) are given in the upper triangle of the matrix, and the
probabilities that the columns are uncorrelated are given in the lower.

Contingency table analysis

| Typical application | Assumptions | Data needed |
Testing for dependence be- | None Matrix of counted data in
tween two variables compartments

A contingency table is input to this routine. Rows represent the different states
of one nominal variable, columns represent the states of another nominal variable,
and cells contain the counts of occurrences of that specific state (row, column) of
the two variables. A measure and probability of association of the two variables
(based on Chi-square) is then given.

For example, rows may represent taxa and columns samples as usual (with
specimen counts in the cells). The contingency table analysis then gives informa-
tion on whether the two variables of taxon and locality are associated. If not, the
data matrix is not very informative. For details, see Press et al. (1992).

One-way ANOVA

| Typical application | Assumptions | Data needed |
Testing for equality of the | Normal distribution and | Two or more columns of
means of several univariate | similar ~ variances  and | measured or counted data

samples sample sizes

One-way ANOVA (analysis of variance) is a statistical procedure for testing the
null hypothesis that several univariate data sets (in columns) have the same mean.
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The data sets are required to be close to normally distributed.
See Brown & Rothery (1993) or Davis (1986) for details.
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8 Multivariate statistics

Principal components analysis

| Typical application | Assumptions | Data needed |
Reduction and interpretation | Debated Two or more rows of mea-
of large multivariate data sured data with three or
sets with some underlying more variables
linear structure

Principal components analysis (PCA) is a procedure for finding hypothetical
variables (components) which account for as much of the variance in your multi-
dimensional data as possible (Davis 1986, Harper 1999). These new variables are
linear combinations of the original variables. PCA has several applications, two of
them are:

e Simple reduction of the data set to only two variables (the two most impor-
tant components), for plotting and clustering purposes.

e More interestingly, you might try to hypothesize that the most important
components are correlated with some other underlying variables. For mor-
phometric data, this might be simply age, while for associations it might be
a faunal gradient (e.g. latitude or position across the shelf).

The PCA routine finds the eigenvalues and eigenvectors of the variance-covariance

matrix or the correlation matrix. Choose var-covar if all your variables are mea-
sured in the same unit (e.g. centimetres). Choose correlation (normalized var-
covar) if your variables are measured in different units; however, all variables will
be normalized. The eigenvalues, giving a measure of the variance accounted for
by the corresponding eigenvectors (components) are given for the first four most
important components (or fewer if there are fewer than four variables). The per-
centages of variance accounted for by these components are also given. If most of
the variance is accounted for by the first one or two components, you have scored
a success, but if the variance is spread more or less evenly among the components,
the PCA has in a sense not been very successful.

The ’View scatter’ option allows you to see all your data points (rows) plotted
in the coordinate system given by the two most important components. If you have
tagged (grouped) rows, the different groups will be shown using different symbols
and colours.

The *View loadings’ option shows to what degree your different original vari-
ables (given in the original order along the x axis) enter into the different compo-
nents (as chosen in the radio button panel). These component loadings are impor-
tant when you try to interpret the 'meaning’ of the components.

Bruton & Owen (1988) describe a typical morphometrical application of PCA.
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Principal coordinates

| Typical application | Assumptions | Data needed

of large multivariate data sured data with three
sets with some underlying more variables
linear structure

Reduction and interpretation | Unknown Two or more rows of mea-

or

Principal coordinates analysis (PCO) is another ordination method, somewhat
similar to PCA. The algorithm is taken from Davis (1986).

The PCO routine finds the eigenvalues and eigenvectors of a matrix containing
the distances between all data points. You can choose between the Gower distance
measure or the Euclidean distance. The Gower measure will normally be used -
Euclidean distance gives results similar to PCA. The eigenvalues, giving a measure
of the variance accounted for by the corresponding eigenvectors (coordinates) are
given for the first four most important coordinates (or fewer if there are fewer than
four data points). The percentages of variance accounted for by these components
are also given.

The ’View scatter’ option allows you to see all your data points (rows) plotted
in the coordinate system given by the PCO. If you have tagged (grouped) rows, the
different groups will be shown using different symbols and colours.

Correspondence analysis

| Typical application | Assumptions | Data needed

Reduction and interpretation | Unknown Two or more rows
of large multivariate ecolog- counted data in three
ical data sets with environ- more compartments

mental or other gradients

of
or

Correspondence analysis (CA) is yet another ordination method, somewhat
similar to PCA but for counted data. For comparing associations (columns) con-
taining counts of taxa, or counted taxa (rows) across associations, CA is the more
appropriate algorithm. The algorithm is taken from Davis (1986).

The CA routine finds the eigenvalues and eigenvectors of a matrix containing
the Chi-squared distances between all data points. The eigenvalues, giving a mea-
sure of the similarity accounted for by the corresponding eigenvectors, are given
for the first four most important eigenvectors (or fewer if there are fewer than four
variables). The percentages of similarity accounted for by these components are
also given.

The ’View scatter’ option allows you to see all your data points (rows) plotted
in the coordinate system given by the CA. If you have tagged (grouped) rows, the
different groups will be shown using different symbols and colours.

In addition, the variables (columns, associations) can be plotted in the same
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coordinate system (Q mode), optionally including the column labels. If your data
are "well behaved’, taxa typical for an association should plot in the vicinity of that
association.

Detrended correspondence analysis

| Typical application | Assumptions | Data needed |
Reduction and interpretation | Unknown Two or more rows of
of large multivariate ecolog- counted data in three or
ical data sets with environ- more compartments
mental or other gradients

The Detrended Correspondence (DCA) module uses the same algorithm as
Decorana (Hill & Gauch 1980). It is specialized for use on ’ecological’ data sets
with abundance data (taxa in rows, localities in columns). When the ’Detrending’
option is switched off, a basic Reciprocal Averaging will be carried out. The result
should be similar to Correspondence Analysis (see above) plotted on the second
and third axes.

Detrending is a sort of normalization procedure in two steps. The first step
involves an attempt to “straighten out’ points lying in an arch, which is a common
occurrence. The second step involves *spreading out’ the points to avoid clustering
of the points at the edges of the plot. Detrending may seem an arbitrary procedure,
but can be a useful aid in interpretation.

Cluster analysis

| Typical application | Assumptions | Data needed |
Finding hierarchical group- | None Two or more rows of
ings in multivariate data sets counted, measured or pres-

ence/absence data in one or
more variables or categories

The hierarchical clustering routine produces a *dendrogram’ showing how data
points (rows) can be clustered. For 'R’ mode clustering, putting weight on group-
ings of taxa, taxa should go in rows. Itis also possible to find groupings of variables
or associations (Q mode), by entering taxa in columns. Switching between the two
is done by transposing the matrix (in the Edit menu).

Three different algorithms are available: Unweighted pair-group average (UP-
GMA), single linkage (nearest neighbour) and Ward’s method. One is not neces-
sarily better than the other, though single linkage is not recommended by some.
It can be useful to compare the dendrograms given by the different algorithms in
order to informally assess the robustness of the groupings. If a grouping is changed
when trying another algorithm, that grouping should perhaps not be trusted.
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For Ward’s method, a Euclidean distance measure is inherent to the algorithm.
For UPGMA and single linkage, the distance matrix can be computed using eight
different measures:

e The Euclidean distance (between rows) is a robust and widely applicable
measure.

e Correlation (of the variables along rows) using Pearson’s r. A little mean-
ingless if you have only two variables.

e Correlation using Spearman’s rho (basically the r value of the ranks). Will
often give the same result as correlation using r.

o Dice coefficient for absence-presence (coded as 0 or positive numbers). Puts
more weight on joint occurences than on mismatches.

e Jaccard coefficient for absence-presence data.

e Bray-Curtis measure for abundance data.

e Chord distance for abundance data. Recommended!
e Morisita’s index for abundance data. Recommended!

e Raup-Crick index for absence-presence data. Recommended!

See Harper (1999) or Davis (1986) for details.

Seriation

| Typical application | Assumptions | Data needed |
Stratigraphical or environ- | None Presence/absence (1/0) ma-
mental ordering of taxa and trix with taxa in rows
localities

Seriation of an absence-presence matrix using the algorithm described by Brower
and Kyle (1988). This method is typically applied to an association matrix with
taxa (species) in the rows and populations in the columns. For constrained seri-
ation (see below), columns should be ordered according to some criterion, normally
stratigraphic level or position along a presumed faunal gradient.

The seriation routines attempt to reorganize the data matrix such that the pres-
ences are concentrated along the diagonal. There are two algorithms: Constrained
and unconstrained optimization. In constrained optimization, only the rows (taxa)
are free to move. Given an ordering of the columns, this procedure finds the *op-
timal’ biozonation, that is, the ordering of taxa which gives the prettiest range
plot. Also, in the constrained mode, the program runs a *"Monte Carlo’ simulation,
generating and seriating 30 random matrices with the same number of occurences
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within each taxon, and compares these to the original matrix to see if it is more
informnative than a random one (this procedure is time-consuming for large data
sets).

In the unconstrained mode, both rows and columns are free to move.

Discriminant analysis

| Typical application | Assumptions | Data needed
Testing for separation of | Multivariate normality Two multivariate data sets of
multivariate data sets measured data, marked with

different colors

Given two sets of multivariate data, an axis is constructed which maximizes
the difference between the sets. The two sets are then plotted along this axis using
a histogram.

This module expects the rows in the two data sets to be tagged with dots (black)
and crosses (red), respectively. The histogram may not show the entire discriminant
axis, so the start and end values for the histogram may have to be set manually.

Equality of the two groups is tested by a multivariate analogue to the ¢ test,
called Hotelling' st-squared, and a p value for this test is given. Normal distribution
of the variables is required.

Discriminant analysis is a standard method for visually confirming or rejecting
the hypothesis that two species are morphologically distinct.

See Davis (1986) for details.
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9 Fitting datato functions

Linear

| Typical application | Assumptions | Data needed |
Fitting data to a straight | None Two columns of counted or
line, or exponential or power measured data
function

Two columns must be selected (x and y values). A straight line y = az + b is
fitted to the data. There are two different algorithms available: Standard regression
and Reduced Major Axis (the latter is selected by ticking the box). Standard re-
gression keeps the z values fixed, and finds the line which minimizes the squared
errors in the y values. Use this if your x values have very small errors associated
with them. Reduced Major Axis tries to minimize both the z and the y errors.

Also, both z and y values can be log-transformed, in effect fitting your data to
the "allometric’ function y = 10°z®. An a value around 1 indicates that a straight-
line (’isometric’) fit may be more applicable.

The values for ¢ and b, their errors, a Chi-square correlation value, Pearson’s r
correlation, and the probability that the columns are not correlated are given.

Exponential functions

Your data can be fitted to an exponential function y = e®e®® by first log-transforming
just your y column (in the Massage menu) and then performing a straight-line fit.

Sinusoidal

| Typical application | Assumptions | Data needed
Fitting data to a set of peri- | None Two columns of counted or
odic, sinusoidal functions measured data

Two columns must be selected (= and y values). A sum of up to six sinusoids
with periods specified by the user, but with unknown amplitudes and phases, is
fitted to the data. This can be useful for modeling periodicities in time series, such
as annual growth cycles or climatic cycles, usually in combination with spectral
analysis. The algorithm is based on a least-squares criterion and singular value
decomposition (Press et al. 1992). By default, the periods are set to the range of
the = values, and harmonics (1/2, 1/3, 1/4, 1/5 and 1/6 of the fundamental period).
These values can be changed, and need not be in harmonic proportion.

With a little effort, frequencies can also be estimated by trial and error, by
adjusting the frequency so that amplitude is maximized (this procedure is difficult
with more than a single sinusoidal).

It is not meaningful to specify periodicities that are smaller than two times the
typical spacing of data points.
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Logistic

| Typical application | Assumptions | Data needed |
Fitting data to a logistic | None Two columns of counted or
or von Bertalanffy growth measured data
model

Attempts to fit the data to the logistic equation y = a/(1 + b x e ~°"). For
numerical reasons, the z axis is normalized. The algorithm is a little complicated.
The value of « is first estimated to be the maximal value of y. The values of b and
c are then estimated using a straight-line fit to a linearized model.

Though acceptable, this estimate can optionally be improved by using the esti-
mated values as an initial guess for a Levenberg-Marquardt nonlinear optimization
(tick the box). This procedure can sometimes improve the fit, but due to the nu-
merical instability of the logistic model it often fails with an error message.

The logistic equation can model growth with saturation, and was used by Sep-
koski (1984) to describe the proposed stabilization of marine diversity in the late
Palaeozoic.

\on Bertalanffy

An option in the "Logistic fit” window. Uses the same algorithm as above, but fits
to the von Bertalanffy equation y = a x (1 — b x e~“*). This equation is used for
modelling growth of multi-celled animals (in units of length or width, not volume).

B-splines
| Typical application | Assumptions | Data needed |
Smoothing noisy data None Two columns of counted or

measured data

Two columns must be selected (z and y values). The data are fitted with a
least-squares criterion to a B-spline, which is a sequence of third-order polyno-
mials, continuous up to the second derivative. A typical application of this is the
construction of a smooth curve going through a noisy data set.

A decimation factor is set by the user, and controls how many data points con-
tribute to each polynomial section. Larger decimation gives a smoother curve.

Note that sharp jumps in your data can give rise to oscillationsin the curve, and
that you can also get large excursions in regions with few data points.
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10 Timeseriesanalysis

Spectral analysis

| Typical application | Assumptions | Data needed

Finding periodicities in | Time series long enough to | One or two columns
counted or measured data contain at least four cycles counted or measured data

of

Two columns must be selected (= and y values). Since palaeontological data
are often unevenly sampled, the FFT algorithm can be difficult to use. PAST there-
fore includes the Lomb periodogram algorithm for unevenly sampled data, with
time values given in the first column.

The frequency axis is in units of 1/(x unit). If for example, your z values are
given in millions of years, a frequency of 0.1 corresponds to a period of 10 million
years. The power axis is in units proportional to the square of the amplitudes of the
sinusoids present in the data.

Also note that the frequency axis extends to very high values. If your data are
evenly sampled, the upper half of the spectrum is a mirror image of the lower half,
and is of little use. If some of your regions are closely sampled, the algorithm may
be able to find useful information even above the half-point (Nyquist frequency).

The highest peak in the spectrum is presented with its frequency and power
value, together with a probability that the peak could occur from random data.

You may want to remove any linear trend in the data (Edit menu) before ap-
plying the Lomb periodogram. Failing to do so can produce annoying peaks at low
frequencies.

Autocorrelation

| Typical application | Assumptions | Data needed

Finding periodicities in | Time series long enough to | One column of counted
counted or measured data contain at least two cycles. | measured data
Even spacing of data points.

or

Autocorrelation (Davis 1986) is carried out on separate column(s) of evenly
sampled temporal/stratigraphic data. Lag times up to N/2, where N is the num-
ber of values in the vector, are shown along the z axis (positive lag times only -
the autocorrelation function is symmetrical around zero). A predominantly zero
autocorrelation signifies random data - periodicities turn up as peaks.
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11 Geometrical analysis

Directional analysis

| Typical application

| Assumptions

| Data needed

Displaying and testing for
random distribution of di-
rectional data

See below

One column of directional
data in degrees (0-360)

Plots a rose diagram (polar histogram) of directions given in a column of degree
values (0 to 360). Used for plotting current-oriented specimens, orientations of
trackways, orientations of morphological features (e.g. terrace lines), etc.

By default, the 'mathematical’ angle convention of anticlockwise from east is
chosen. If you use the "geographical’ convention of clockwise from north, tick the

box.

You can also choose whether to have the abundances proportional to radius in
the rose diagram, or proportional to area (equal area).
The mean angle, together with the R value (Rayleigh’s spread), are given. R
is further tested against a random distribution using Rayleigh’s test for directional
data (Davis 1986). Note that this procedure assumes evenly or unimodally dis-
tributed data - the test is not appropriate for bidirectional data. Also, the test is not
accurate for N>50; it will then report a too high p value.
A four-bin chi-square test is also available, giving the probability that the di-
rections are randomly and evenly distributed.

Point distribution

| Typical application

| Assumptions

| Data needed

Testing for clustering or
overdispersion  of  two-
dimensional position values

Elements small compared to
their distances, mainly con-
vex domain, N>50.

Two columns of x/y posi-
tions

Point distribution statistics using nearest neighbour analysis (modified from
Davis 1986). The area is estimated using the convex hull, which is the smallest
convex polygon enclosing the points. This is inappropriate for points in very con-
cave domains. Also, there is no correction for boundary effects, meaning that the
statistics are reasonably valid only for large N (N >50).

The probability that the distribution is random (Poisson process, giving an ex-
ponential nearest neighbour distribution) is presented, together with the R value.
Clustered points give R<1, Poisson patterns give R 1, while overdispersed points

give R>1.

Applications of this module include spatial ecology (are in-situ brachiopods
clustered) and morphology (are trilobite tubercles overdispersed).
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Fourier shape analysis

| Typical application | Assumptions | Data needed |
Analysis of fossil outline | Shape expressible in polar | Two columns of digitized
shape coordinates, sufficient num- | x/y positions around an out-

ber of digitized points to | line
capture featues.

Accepts X — Y coordinates digitized around an outline. More than one shape
can be simultaneously analyzed by giving more than one pair of columns. Points
do not need to be totally evenly spaced. The shape must be expressible as a unique
function in polar co-ordinates, that is, any straight line radiating from the centre of
the shape must cross the outline only once.

The origin for the polar coordinate system is found by numerical approximation
to the centroid. 64 points are then produced at equal angular increments around
the outline, through linear interpolation. The centroid is then re-computed, and
the radii normalized (size is thus removed from the analysis). The cosine and sine
components are given for the first ten harmonics, but note that only N /2 harmonics
are ’valid’, where N is the number of digitized points. The coefficients can be
copied to the main spreadsheet for further analysis (e.g. by PCA).

The *Shape view’ window allows graphical viewing of the Fourier shape ap-
proximation(s).

Elliptic Fourier shape analysis

| Typical application | Assumptions | Data needed |
Analysis of fossil outline | Sufficient number of digi- | Two columns of digitized
shape tized points to capture feat- | x/y positions around an out-
ues. line

Elliptic Fourier shape analysis is in some respects superior to simple Fourier
shape analysis. One advantage is that the algorithm can handle complicated shapes
which may not be expressible as a unique function in polar co-ordinates. Elliptic
Fourier shapes is now a standard method of outline analysis. The algorithm used
in PAST is described in Ferson et al. (1985).

Cosine and sine components of = and y increments along the outline for the first
10 harmonics are given, but only the first N/2 harmonics should be used, where
N is the number of digitized points. Size and positional translation are normalized
away, and do not enter in the coefficients. The coefficients can be copied to the
main spreadsheet for further analysis (e.g. by PCA).

The *Shape view” window allows graphical viewing of the elliptic Fourier
shape approximation(s).
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12 Cladistics

| Typical application | Assumptions | Data needed
Semi-objective analysis of | Many! See Kitchin et al. | Character matrix with taxa
relationships between taxa | (1998) in rows, outgroup in first
from morphological or ge- row

netic evidence

The cladistics package in PAST is fully operational, but lacking in compre-
hensive functionality. For example, there is no character reconstruction (plotting
of steps on the cladogram). This means that PAST could be used for educational
purposes and for initial data exploration, but perhaps not for more ’serious’” work.
Maybe in a later version?

Algorithms are from Kitchin et al. (1998).

Parsimony analysis

Character states should be coded using integers in the range O to 255. The first
taxon is treated as the outgroup, and will be placed at the root of the tree.

Missing values are coded with a question mark (?) or the value -1. Please note
that PAST does not collapse zero-length branches. Because of this, missing values
can lead to a proliferation of equally shortest trees ad nauseam, many of which are
in fact equivalent.

There are three algorithms available for finding short trees:

Branch-and-bound

The branch-and-bound algorithm is guaranteed to find all shortest trees. The total
number of shortest trees is reported, but a maximum of 1000 trees are saved. You
should not use the branch-and-bound algorithm for data sets with more than 12
taxa.

Exhaustive

The exhaustive algorithm evaluates all possible trees. Like the branch-and-bound
algorithm it will necessarily find all shortest trees, but it is very slow. For 12 taxa,
more than 600 million trees are evaluated! The only advantage over branch-and-
bound is the plotting of tree length distribution. This histogram may indicate the
’quality” of your matrix, in the sense that there should be a tail to the left such that
few short trees are ’isolated” from the greater mass of longer trees (but see Kitchin
et al. 1998 for critical comments on this). For more than 8 taxa, the histogram is
based on a subset of tree lengths and may not be accurate.
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Heuristic, nearest neighbour interchange

This heuristic algorithm adds taxa sequentially in the order they are given in the
matrix, to the branch where they will give least increase in tree length. After each
taxon is added, all nearest neighbour trees are swapped to try to find an even shorter
tree.

Like all heuristic searches, this one is much faster than the algorithms above
and can be used for large numbers of taxa, but is not guaranteed to find all or any of
the most parsimonious trees. To decrease the likelihood of ending up on a subopti-
mal local minimum, a number of reorderings can be specified. For each reordering,
the order of input taxa will be randomly permutated and another heuristic search
attempted.

Heuristic, subtree pruning and regrafting

This algorithm (SPR) is similar to the one above (NNI), but with a more elaborate
branch swapping scheme: A subtree is cut off the tree, and regrafting onto all other
branches in the tree is attempted in order to find a shorter tree. This is done after
each taxon has been added, and for all possible subtrees. While slower than NN,
SPR will often find shorter trees.

Character optimization criteria

Three different optimality criteria are availiable:

Wagner

Characters are reversible and ordered, meaning that 0->2 costs more than 0->1, but
has the same cost as 2->0.

Fitch

Characters are reversible and unordered, meaning that all changes have equal cost.

Dollo

Characters are irreversible and ordered.

Bootstrap

Bootstrapping is performed when the *Bootstrap replicates’ value is set to non-zero.
The specified number of replicates (typically 100 or even 1000) of your character
matrix are made, each with randomly weighted characters. The bootstrap value for
a group is the percentage of replicates supporting that group. A replicate supports
the group if the group exists in the majority rule consensus tree of the shortest trees
made from the replicate.
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Warning: Specifying 1000 bootstrap replicates will clearly give a thousand
times longer computation time than no bootstrap! Exhaustive search with boot-
strapping is unrealistic and is not allowed.

Cladogram plotting

All shortest (most parsimonious) trees can be viewed, up to a maximum of 1000
trees. If bootstrapping has been performed, a bootstrap value is given at the root of
the subtree specifying each group.

Consensus tree

The consensus tree of all shortest (most parsimonious) trees can also be viewed.
Two consensus rules are implemented: Strict (groups must be supported by all
trees) and majority (groups must be supported by more than 50 percent of the
trees).
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13 Unitary associations

| Typical application | Assumptions | Data needed |
Quantitative biostratigraphi- | None Presence/absence (1/0) ma-
cal correlation trix with horizons in rows,

taxa in columns

Unitary Associations analysis (Guex 1991) is a method for biostratigraphi-
cal correlation (See Angiolini & Bucher 1999 for an example application). The
data input consists of a presence/absence matrix with samples in rows and taxa
in columns. Samples belonging to the same section (locality) are tagged with the
same color, and ordered stratigraphically within each section such that the lower-
most sample enters in the lowest row. Colors can be re-used in data sets with large
numbers of sections (see alveolinid.dat for an example).

Overview of the method

The method of Unitary Associations is logical, but rather complicated, consisting
of a number of steps. For details, see Guex 1991. The implementation in PAST
does not include all the features found in the standard program, called BioGraph
(Savary & Guex 1999), and advanced users are referred to that package. The ba-
sic idea is to generate a number of assemblage zones (similar to ’Oppel zones’)
which are optimal in the sense that they give maximal stratigraphic resolution with
a minimum of superpositional contradictions. One example of such a contradiction
would be a section containing a species A above a species B, while assemblage 1
(containing species A) is placed below assemblage 2 (containing species B). PAST
(and BioGraph) carries out the following steps:

1. Residual maximal horizons

The method makes the range-through assumption, meaning that taxa are consid-
ered to have been present in all levels between the first and last appearance in any
section. Then, any samples with a set of taxa that is contained in some other sam-
ple are discarded. The remaining samples are called residual maximal horizons.
The idea behind this throwing away of data is that the absent taxa in the discarded
samples may simply not have been found even though they originally existed. Ab-
sences are therefore not as informative as presences.

2. Superposition and co-occur rence of taxa

Next, all pairs (A,B) of taxa are inspected for their superpositional relationship: A
below B, B below A, A together with B, or unknown. If A occurs below B in one
locality and B below A in another, they are considered to be co-occurring although
they have never actually been found together.
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The superpositions and co-occurrences of taxa can be viewed in the biostrati-
graphic graph. In this graph, taxa are coded as numbers. Co-occurrences between
pairs of taxa are shown as solid blue lines. Superpositions are shown as dashed red
lines, with long dashes from the above-occurring taxon and short dashes from the
below-occurring taxon.

3. Maximal cliques

Maximal cliques are groups of co-occurring taxa not contained in any larger group
of co-occurring taxa. The maximal cliques are candidates for the status of unitary
associations, but will be further processed below. In PAST, maximal cliques receive
a number and are also named after a maximal horizon in the original data set which
is identical to, or contained in (marked with asterisk), the maximal clique.

4. Super position of maximal cliques

The superpositional relationships between maximal cliques are decided by inspect-
ing the superpositional relationships between their constituent taxa, as computed
in step 2. Contradictions (some taxa in clique A occur below some taxa in clique
B, and vice versa) are resolved by a "majority vote’. The contradictions between
cliques can be viewed in PAST.

The superpositionsand co-occurrences of cliques can be viewed in the maximal
clique graph. In this graph, cliques are coded as numbers. Co-occurrences between
pairs of cliques are shown as solid blue lines. Superpositions are shown as dashed
red lines, with long dashes from the above-occurring clique and short dashes from
the below-occurring clique. Also, cycles between maximal cliques (see below) can
be viewed as green lines.

5. Resolving cycles

It will sometimes be the case that maximal cliques are now ordered in cycles: A is
below B, which is below C, which is below A again. This is clearly contradictory.
The "weakest link” (superpositional relationship supported by fewest taxa) in such
cycles is destroyed.

6. Reduction to unique path

At this stage, we should ideally have a single path (chain) of superpositional re-
lationships between maximal cliques, from bottom to top. This is however often
not the case, for example if A and B are below C, which is below D, or if we have
isolated paths without any relationships (A below B and C below D). To produce a
single path, it is necessary to merge cliques according to special rules.
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7. Post-processing of maximal cliques

Finally, a number of minor manipulations are carried out to ’polish’ the result:
Generation of the ’consecutive ones’ property, reinsertion of residual virtual co-
occurrences and superpositions, and compaction to remove any generated non-
maximal cliques. For details on these procedures, see Guex 1991. At last, we now
have the Unitary Associations, which can be viewed in PAST.

8. Correlation using the Unitary Associations

The original samples are now correlated using the unitary associations. A sample
may contain taxa which uniquely places it in a unitary association, or it may lack
key taxa which could differentiate between two or more unitary associations, in
which case only a range can be given. These correlations can be viewed in PAST.

9. Reproducibility matrix

Some unitary associations may be identified in only one or a few sections, in which
case one may consider to merge unitary associations to improve the geographi-
cal reproducibility (PAST does not carry out this procedure automatically in the
present version). The reproducibility matrix should be inspected to identify such
unitary associations.
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