The Poincaré and Geometrization Conjectures after R. Hamilton and G. Perelman

Gérard Besson

Institut Fourier
Université Grenoble I and C.N.R.S.
http://www-fourier.ujf-grenoble.fr/~besson

Granada, June 28th, 2007

 M^2 , compact, connected, orientable

 M^2 , compact, connected, orientable \rightsquigarrow boundary of a bretzel

 M^2 , compact, connected, orientable \rightsquigarrow boundary of a bretzel

Question: How can we distinguish the Sphere?

 M^2 , compact, connected, orientable \rightsquigarrow boundary of a bretzel

Question: How can we distinguish the Sphere? **Answer**: It is the only simply connected surface.

 M^2 , compact, connected, orientable \rightsquigarrow boundary of a bretzel

Question: How can we distinguish the Sphere? **Answer:** It is the only simply connected surface.

What about dimension 3?

What about dimension 3? M^3 , compact, connected, orientable.

What about dimension 3? M^3 , compact, connected, orientable. **Question**: How can we distinguish the Sphere?

What about dimension 3? M^3 , compact, connected, orientable. **Question**: How can we distinguish the Sphere?

Conjecture (Poincaré, 1904): if M^3 is simply connected then M is homeomorphic (diffeo) to the 3-Sphere S^3 .

What about dimension 3? M^3 , compact, connected, orientable. Question: How can we distinguish the Sphere?

Conjecture (Poincaré, 1904): if M^3 is simply connected then M is homeomorphic (diffeo) to the 3-Sphere S^3 . (published in Rendiconti di Palermo)

What about dimension 3? M^3 , compact, connected, orientable. Question: How can we distinguish the Sphere?

Conjecture (Poincaré, 1904): if M^3 is simply connected then M is homeomorphic (diffeo) to the 3-Sphere S^3 . (published in Rendiconti di Palermo)

Conjecture (Thurston, 1970): M^3 can be cut open into geometric pieces.

```
What about dimension 3? M^3, compact, connected, orientable. Question : How can we distinguish the Sphere?
```

Conjecture (Poincaré, 1904): if M^3 is simply connected then M is homeomorphic (diffeo) to the 3-Sphere S^3 . (published in Rendiconti di Palermo)

Conjecture (Thurston, 1970): M^3 can be cut open into geometric pieces.

8 geometries : three of constant curvature (-1,0,+1) and five others (Nil, Sol, ...).

What about dimension 3? M^3 , compact, connected, orientable. **Question :** How can we distinguish the Sphere?

Conjecture (Poincaré, 1904): if M^3 is simply connected then M is homeomorphic (diffeo) to the 3-Sphere S^3 . (published in Rendiconti di Palermo)

Conjecture (Thurston, 1970): M^3 can be cut open into geometric pieces.

8 geometries : three of constant curvature (-1,0,+1) and five others (Nil, Sol, ...).

Thurston puts Poincaré in a geometric setting.

Idea (R. Hamilton): deform the "shape" to let the geometric pieces appear.

● "shape" = Riemannian metric = Euclidean scalar product $T_m(M)$, for all $m \in M$.

- "shape" = Riemannian metric = Euclidean scalar product $T_m(M)$, for all $m \in M$.
- ② Defect to being Euclidean = curvature,

- "shape" = Riemannian metric = Euclidean scalar product $T_m(M)$, for all $m \in M$.
- Defect to being Euclidean = curvature,
 - surfaces → Gauß curvature,

- "shape" = Riemannian metric = Euclidean scalar product $T_m(M)$, for all $m \in M$.
- Defect to being Euclidean = curvature,
 - surfaces → Gauß curvature,
 - $P \subset T_m(M)$, 2-plane $\rightsquigarrow K(P)$ = sectional curvature.

- ③ "shape" = Riemannian metric = Euclidean scalar product $T_m(M)$, for all $m \in M$.
- Defect to being Euclidean = curvature,
 - surfaces → Gauß curvature,
 - $P \subset T_m(M)$, 2-plane $\rightsquigarrow K(P)$ = sectional curvature.

Idea (R. Hamilton): deform the "shape" to let the geometric pieces appear.

- "shape" = Riemannian metric = Euclidean scalar product $T_m(M)$, for all $m \in M$.
- Defect to being Euclidean = curvature,
 - surfaces → Gauß curvature,
 - $P \subset T_m(M)$, 2-plane $\rightsquigarrow K(P)$ = sectional curvature.

K(P) = Gauß curvature at m of the sheet of geodesics.

$$\mathrm{Ricci}_m(u,u) = \sum_{u \in P} K(P) = \sum_{i=2}^n K(u,e_i)\,, \quad (u,e_2,e_3) \quad \text{ONB at } m.$$

$$\mathrm{Ricci}_m(u,u) = \sum_{u \in P} K(P) = \sum_{i=2}^n K(u,e_i)\,, \quad (u,e_2,e_3) \quad \mathrm{ONB} \ \mathrm{at} \ m.$$

$$\mathrm{Ricci}_m(u,u) = \sum_{u \in P} K(P) = \sum_{i=2}^n K(u,e_i)\,, \quad (u,e_2,e_3)$$
 ONB at m

$$d\text{vol} = \left(1 - \frac{r^2}{6} \text{Ricci}_m(u, u) + o(r^2)\right) d\text{vol}_{\text{eucl}}$$

Ricci curvature

$$\mathrm{Ricci}_m(u,u) = \sum_{u \in P} K(P) = \sum_{i=2}^n K(u,e_i)\,, \quad (u,e_2,e_3)$$
 ONB at $m.$

$$d\text{vol} = \left(1 - \frac{r^2}{6} \text{Ricci}_m(u, u) + o(r^2)\right) d\text{vol}_{\text{eucl}}$$

Bilinear form on $T_m(M)$.

 (M, g_0) Riemannian manifold,

$$\frac{dg}{dt} = -2\operatorname{Ricci}_{g(t)}.$$

 (M, g_0) Riemannian manifold,

$$\frac{dg}{dt} = -2\operatorname{Ricci}_{g(t)}.$$

Same type of objects

 (M, g_0) Riemannian manifold,

$$\frac{dg}{dt} = -2\operatorname{Ricci}_{g(t)}.$$

Same type of objects
In local coordinates → non-linear heat equation,

$$\frac{\partial}{\partial t} = \Delta + Q$$

where Q is quadratic.

 (M, g_0) Riemannian manifold,

$$\frac{dg}{dt} = -2\operatorname{Ricci}_{g(t)}.$$

Same type of objects
In local coordinates → non-linear heat equation,

$$\frac{\partial}{\partial t} = \Delta + Q$$

where Q is quadratic. reaction-diffusion equation,

 (M, g_0) Riemannian manifold,

$$\frac{dg}{dt} = -2\operatorname{Ricci}_{g(t)}.$$

Same type of objects
In local coordinates ↔ non-linear heat equation,

$$\frac{\partial}{\partial t} = \Delta + Q$$

where Q is quadratic. reaction-diffusion equation,

• $\Delta \rightsquigarrow diffusion$

 (M, g_0) Riemannian manifold,

$$\frac{dg}{dt} = -2\operatorname{Ricci}_{g(t)}.$$

Same type of objects
In local coordinates → non-linear heat equation,

$$\frac{\partial}{\partial t} = \Delta + Q$$

where Q is quadratic. reaction-diffusion equation,

- Δ → diffusion
- $Q \rightsquigarrow \text{reaction}$.

 (M, g_0) Riemannian manifold,

$$\frac{dg}{dt} = -2\operatorname{Ricci}_{g(t)}.$$

Same type of objects
In local coordinates → non-linear heat equation,

$$\frac{\partial}{\partial t} = \Delta + Q$$

where Q is quadratic. reaction-diffusion equation,

- Δ → diffusion
- $Q \rightsquigarrow \text{reaction}$.

Who wins?

Recall: the solutions of the heat equation converge towards constant or harmonic functions.

Recall: the solutions of the heat equation converge towards constant or harmonic functions.

Hope: the metric evolves towards a "canonical" one.

Recall: the solutions of the heat equation converge towards constant or harmonic functions.

Hope: the metric evolves towards a "canonical" one.

True in dimension 2 → the diffusion wins!

The Ricci flow (R. Hamilton)

Recall: the solutions of the heat equation converge towards constant or harmonic functions.

Hope: the metric evolves towards a "canonical" one.

True in dimension 2 → the diffusion wins!

(Almost) uniformization of surfaces.

• Flat tori, $g(t) = g_0$; (eternal solution).

- Flat tori, $g(t) = g_0$; (eternal solution).
- 2 Round sphere $g(t) = (1 4t)g_0$; (ancient solution).

$$t = 1/4$$

- Flat tori, $g(t) = g_0$; (eternal solution).
- 2 Round sphere $g(t) = (1 4t)g_0$; (ancient solution).

3 Hyperbolic space $g(t) = (1 + 4t)g_0$; (immortal solution).

- Flat tori, $g(t) = g_0$; (eternal solution).
- 2 Round sphere $g(t) = (1 4t)g_0$; (ancient solution).

3 Hyperbolic space $g(t) = (1 + 4t)g_0$; (immortal solution).

O Cylinder $g(t) = (1 - 2t)g_{S^2} \oplus g_R$.

On M^3 compact, connected, orientable and simply connected choose a "form" (metric) and flow it.

On M^3 compact, connected, orientable and simply connected choose a "form" (metric) and flow it.

Hope: the solution contracts to a point \leadsto becomes "rounder" $\Rightarrow M$ carries a constant curvature metric $\Rightarrow M \stackrel{diff}{\simeq} S^3$.

On M^3 compact, connected, orientable and simply connected choose a "form" (metric) and flow it.

Hope: the solution contracts to a point \leadsto becomes "rounder" $\Rightarrow M$ carries a constant curvature metric $\Rightarrow M \stackrel{diff}{\simeq} S^3$.

Theorem (Hamilton, 1982): True if g_0 has positive Ricci curvature.

On M^3 compact, connected, orientable and simply connected choose a "form" (metric) and flow it.

Hope: the solution contracts to a point \leadsto becomes "rounder" $\Rightarrow M$ carries a constant curvature metric $\Rightarrow M \stackrel{diff}{\simeq} S^3$.

Theorem (Hamilton, 1982): True if g_0 has positive Ricci curvature.

What if g_0 is random?

On M^3 compact, connected, orientable and simply connected choose a "form" (metric) and flow it.

Hope: the solution contracts to a point \leadsto becomes "rounder" $\Rightarrow M$ carries a constant curvature metric $\Rightarrow M \stackrel{diff}{\simeq} S^3$.

Theorem (Hamilton, 1982): True if g_0 has positive Ricci curvature.

What if g_0 is random?

The flow can become singular on subsets of M.

On M^3 compact, connected, orientable and simply connected choose a "form" (metric) and flow it.

Hope: the solution contracts to a point \leadsto becomes "rounder" $\Rightarrow M$ carries a constant curvature metric $\Rightarrow M \stackrel{diff}{\simeq} S^3$.

Theorem (Hamilton, 1982): True if g_0 has positive Ricci curvature.

What if g_0 is random? The flow can become singular on subsets of M.

Example: the neckpinch

or worse!

or worse!

or worse!

What can be done?

or worse!

What can be done?

R. Hamilton's idea: do surgeries in necks and restart the flow up to the next singularity.

or worse!

What can be done?

R. Hamilton's idea: do surgeries in necks and restart the flow up to the next singularity.

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

The neighborhood is,

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

The neighborhood is,

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

The neighborhood is,

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

The neighborhood is,

or

$$S^3/\Gamma$$

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

The neighborhood is,

 B^3 ou $P^3(\mathbb{R}) \setminus \bar{B}^3$

or

$$S^3/\Gamma$$

singularities = spheres which are pinched in necks, or caps = some curvature is $+\infty$.

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

The neighborhood is,

or

$$S^3/\Gamma$$

singularities = spheres which are pinched in necks, or caps = some curvature is $+\infty$.

 M^3 compact (simply connected, finite fundamental group or random) .

G. Perelman (Canonical neighborhood thm., PI 12.1) \leadsto describes some neighborhood of the points of high curvature,

 \exists universal r_0 , s.t. if (scalar) curvature $\geq r_0^{-2} \rightsquigarrow$ can. neighborhood.

The neighborhood is,

or

$$S^3/\Gamma$$

singularities = spheres which are pinched in necks, or caps = some curvature is $+\infty$.

- M^3 compact (simply connected, finite fundamental group or random) .
- 2 g_0 arbitrary metric \rightsquigarrow flow it up to first singular time :

a) the manifold disappears, *i.e* the curvature is big everywhere \leadsto the manifold is covered by canonical neighb. (locally canonical),

a) the manifold disappears, *i.e* the curvature is big everywhere → the manifold is covered by canonical neighb. (locally canonical),

Theorem (Perelman PII): If the manifold is locally canonical then it is,

- i) S^3/Γ , $(\Gamma \subset SO(4))$,
- ii) $S^1 \times S^2$ or $(S^1 \times S^2)/\mathbf{Z}^2 = \mathbf{P}^3(\mathbf{R}) \# \mathbf{P}^3(\mathbf{R})$.

a) the manifold disappears, *i.e* the curvature is big everywhere → the manifold is covered by canonical neighb. (locally canonical),

Theorem (Perelman PII): If the manifold is locally canonical then it is,

- i) S^3/Γ , $(\Gamma \subset SO(4))$,
- ii) $S^1 \times S^2$ or $(S^1 \times S^2)/\mathbf{Z}^2 = \mathbf{P}^3(\mathbf{R}) \# \mathbf{P}^3(\mathbf{R})$.
- b) The manifold does not completely disappear → simplified surgery by Bessières, B., Boileau, Maillot and Porti.

a) the manifold disappears, *i.e* the curvature is big everywhere \leadsto the manifold is covered by canonical neighb. (locally canonical),

Theorem (Perelman PII): If the manifold is locally canonical then it is,

- i) S^3/Γ , $(\Gamma \subset SO(4))$,
- ii) $S^1 \times S^2$ or $(S^1 \times S^2)/\mathbb{Z}^2 = \mathbb{P}^3(\mathbb{R}) \# \mathbb{P}^3(\mathbb{R})$.
- b) The manifold does not completely disappear → simplified surgery by Bessières, B., Boileau, Maillot and Porti.

Assumption: *M* is irreducible, *i.e.* every 2-sphere bounds a 3-ball.

a) the manifold disappears, *i.e* the curvature is big everywhere \leadsto the manifold is covered by canonical neighb. (locally canonical),

Theorem (Perelman PII): If the manifold is locally canonical then it is,

- i) S^3/Γ , $(\Gamma \subset SO(4))$,
- ii) $S^1 \times S^2$ or $(S^1 \times S^2)/\mathbf{Z}^2 = \mathbf{P}^3(\mathbf{R}) \# \mathbf{P}^3(\mathbf{R})$.
- b) The manifold does not completely disappear → simplified surgery by Bessières, B., Boileau, Maillot and Porti.

Assumption: *M* is irreducible, *i.e.* every 2-sphere bounds a 3-ball.

There are points with high curvature and points with "normal" curvature → between there is a long neck.

surgery time

The surgery

We change the metric in the balls

The surgery

We change the metric in the balls

The result

The new metric is

The result

The new metric is

Conclusion: no topological surgery, just a discontinuity in the metric.

The proof of the Poincaré conjecture

Claim (Perelman PII, 5): Ricci-flow-with-surgery exists. There is no accumulation of surgeries → finite number of surgeries in each finite interval.

Claim (Perelman PII, 5): Ricci-flow-with-surgery exists. There is no accumulation of surgeries → finite number of surgeries in each finite interval.

Claim (Perelman PIII, Colding-Minicozzi): If M is simply connected (finite fundamental group) and irreducible, the solution disappears in finite time. It becomes locally canonical.

Claim (Perelman PII, 5): Ricci-flow-with-surgery exists. There is no accumulation of surgeries → finite number of surgeries in each finite interval.

Claim (Perelman PIII, Colding-Minicozzi): If M is simply connected (finite fundamental group) and irreducible, the solution disappears in finite time. It becomes locally canonical.

idea: a positive function of the metric (the waist) decreases at a fixed speed.

Claim (Perelman PII, 5): Ricci-flow-with-surgery exists. There is no accumulation of surgeries → finite number of surgeries in each finite interval.

Claim (Perelman PIII, Colding-Minicozzi): If M is simply connected (finite fundamental group) and irreducible, the solution disappears in finite time. It becomes locally canonical.

idea: a positive function of the metric (the waist) decreases at a fixed speed.

Reconstructing *M* irreducible?

Claim (Perelman PII, 5): Ricci-flow-with-surgery exists. There is no accumulation of surgeries → finite number of surgeries in each finite interval.

Claim (Perelman PIII, Colding-Minicozzi): If M is simply connected (finite fundamental group) and irreducible, the solution disappears in finite time. It becomes locally canonical.

idea: a positive function of the metric (the waist) decreases at a fixed speed.

Reconstructing M irreducible?

$$M=S^3/\Gamma$$
.

Claim (Perelman PII, 5): Ricci-flow-with-surgery exists. There is no accumulation of surgeries → finite number of surgeries in each finite interval.

Claim (Perelman PIII, Colding-Minicozzi): If M is simply connected (finite fundamental group) and irreducible, the solution disappears in finite time. It becomes locally canonical.

idea: a positive function of the metric (the waist) decreases at a fixed speed.

Reconstructing M irreducible?

$$M = S^3/\Gamma$$
.

If M is simply connected, then $M \simeq S^3$.

What if the starting manifold has infinite fundamental group?

What if the starting manifold has infinite fundamental group?

The solution g(t) could go on for all time t.

What if the starting manifold has infinite fundamental group?

The solution g(t) could go on for all time t.

Example: hyperbolic manifolds.

What if the starting manifold has infinite fundamental group?

The solution g(t) could go on for all time t.

Example: hyperbolic manifolds.

Claim (Perelman PII, 7,8): For large t, M decomposes into thick and thin pieces (possibly empty):

Properties:

Properties:

① The rescaled metric $\frac{1}{t}g(t)$ is close to constant sectional curvature $-\frac{1}{4}$ on M_{thick} .

Properties:

- ① The rescaled metric $\frac{1}{t}g(t)$ is close to constant sectional curvature $-\frac{1}{4}$ on M_{thick} .
- \bigcirc M_{thin} is a graph manifold.

Properties:

- ① The rescaled metric $\frac{1}{t}g(t)$ is close to constant sectional curvature $-\frac{1}{4}$ on M_{thick} .
- \bigcirc M_{thin} is a graph manifold.
- The gluing is done along incompressible tori (i.e. $\pi_1(T^2) \longrightarrow \pi_1(M)$ is 1-1).

Properties:

- ① The rescaled metric $\frac{1}{t}g(t)$ is close to constant sectional curvature $-\frac{1}{4}$ on M_{thick} .
- \bigcirc M_{thin} is a graph manifold.
- The gluing is done along incompressible tori (i.e. $\pi_1(T^2) \longrightarrow \pi_1(M)$ is 1-1).

This would prove the Geometrization conjecture.

Properties:

- ① The rescaled metric $\frac{1}{t}g(t)$ is close to constant sectional curvature $-\frac{1}{4}$ on M_{thick} .
- \bigcirc M_{thin} is a graph manifold.
- The gluing is done along incompressible tori (i.e. $\pi_1(T^2) \longrightarrow \pi_1(M)$ is 1-1).

This would prove the Geometrization conjecture.

Previous result obtained by R. Hamilton in 1999 when there are no singularities and $t \sup_{M} |K(g(t))|$ is bounded.

What is a graph manifold?

What is a graph manifold?

A bunch of Seifert manifolds glued along tori.

What is a graph manifold?

A bunch of Seifert manifolds glued along tori.

A Seifert manifold is a circle bundle with some singular fibers.

What is a graph manifold?

A bunch of Seifert manifolds glued along tori.

A Seifert manifold is a circle bundle with some singular fibers.

Important issues:

1 show that the thin part is fibered.

What is a graph manifold?

A bunch of Seifert manifolds glued along tori.

A Seifert manifold is a circle bundle with some singular fibers.

Important issues:

- 1 show that the thin part is fibered.
- 2 show that the tori are incompressible.

What is a graph manifold?

A bunch of Seifert manifolds glued along tori.

A Seifert manifold is a circle bundle with some singular fibers.

Important issues:

- show that the thin part is fibered.
- 2 show that the tori are incompressible.

It has sectional curvature bounded below and injectivity radius going to zero → Shioya-Yamaguchi, Perelman?

What is a graph manifold?

A bunch of Seifert manifolds glued along tori.

A Seifert manifold is a circle bundle with some singular fibers.

Important issues:

- show that the thin part is fibered.
- 2 show that the tori are incompressible.

It has sectional curvature bounded below and injectivity radius going to zero → Shioya-Yamaguchi, Perelman?

For both issue → different approach by B3MP

Fact : The singularities appear when the curvatures blow up.

Fact: The singularities appear when the curvatures blow up.

Solution exists on [0, T) ($T < \infty$), maximal interval,

Fact: The singularities appear when the curvatures blow up.

Solution exists on [0, T) ($T < \infty$), maximal interval,

$$\lim_{t\to T^-}\sup_{M}|\mathrm{Riem}(g(t))|=+\infty\,,$$

where |Riem| =largest sectional curvature at a point (in absolute value).

Fact: The singularities appear when the curvatures blow up.

Solution exists on [0, T) ($T < \infty$), maximal interval,

$$\lim_{t\to T^-}\sup_{M}|\mathrm{Riem}(g(t))|=+\infty\,,$$

where |Riem| = largest sectional curvature at a point (in absolute value).

Describe the metric at a blow-up : the zoom

Fact: The singularities appear when the curvatures blow up.

Solution exists on [0, T) ($T < \infty$), maximal interval,

$$\lim_{t\to T^-}\sup_{M}|\mathrm{Riem}(g(t))|=+\infty\,,$$

where |Riem| =largest sectional curvature at a point (in absolute value).

Describe the metric at a blow-up: the zoom

$$(x_i, t_i), \quad Q_i = |\operatorname{Riem}(x_i, t_i)| \underset{i \to \infty}{\longrightarrow} +\infty$$

Fact: The singularities appear when the curvatures blow up.

Solution exists on [0, T) ($T < \infty$), maximal interval,

$$\lim_{t\to T^-}\sup_{M}|\mathrm{Riem}(g(t))|=+\infty\,,$$

where |Riem| =largest sectional curvature at a point (in absolute value).

Describe the metric at a blow-up: the zoom

$$(x_i, t_i), \quad Q_i = |\operatorname{Riem}(x_i, t_i)| \underset{i \to \infty}{\longrightarrow} +\infty$$

Zooming to be closer and slower,

Fact: The singularities appear when the curvatures blow up.

Solution exists on [0, T) ($T < \infty$), maximal interval,

$$\lim_{t\to T^-}\sup_{M}|\mathrm{Riem}(g(t))|=+\infty\,,$$

where |Riem| =largest sectional curvature at a point (in absolute value).

Describe the metric at a blow-up: the zoom

$$(x_i, t_i), \quad Q_i = |\mathrm{Riem}(x_i, t_i)| \underset{i \to \infty}{\longrightarrow} +\infty$$

Zooming to be closer and slower,

$$g_i(t) = Q_i g(t_i + t/Q_i)$$

Fact: The singularities appear when the curvatures blow up.

Solution exists on [0, T) ($T < \infty$), maximal interval,

$$\lim_{t\to T^-}\sup_{M}|\mathrm{Riem}(g(t))|=+\infty\,,$$

where |Riem| =largest sectional curvature at a point (in absolute value).

Describe the metric at a blow-up: the zoom

$$(x_i, t_i), \quad Q_i = |\operatorname{Riem}(x_i, t_i)| \underset{i \to \infty}{\longrightarrow} +\infty$$

Zooming to be closer and slower,

$$g_i(t) = Q_i g(t_i + t/Q_i)$$

this is a parabolic dilation.

Sequence of solutions $(M,g_i(t))$, defined on a backward interval getting larger ,

Sequence of solutions $(M,g_i(t))$, defined on a backward interval getting larger ,

+ compactness theorem \Longrightarrow convergence of a subsequence towards $(N_{\infty},g_{\infty}(t)).$

Sequence of solutions $(M,g_i(t))$, defined on a backward interval getting larger ,

+ compactness theorem \Longrightarrow convergence of a subsequence towards $(\mathit{N}_{\infty}, g_{\infty}(t)).$

It is a flow defined on $(-\infty, 0]$.

Sequence of solutions $(M, g_i(t))$, defined on a backward interval getting larger,

+ compactness theorem \Longrightarrow convergence of a subsequence towards $(\mathit{N}_{\infty}, g_{\infty}(t)).$

It is a flow defined on $(-\infty, 0]$.

It is an **ancient solution** → infinitesimal models for singularities.

Recall : scalar curvature = $trace_g(Ricci)$ = R. It is a fonction.

Recall: scalar curvature = $trace_g(Ricci) = R$.

It is a fonction.

Properties: maximum principle, if g_0 is normalized,

$$R + 2\phi(R) \ge K \ge -\phi(R)$$

where ϕ is the inverse of $x \ln x - x$.

Recall: scalar curvature = $trace_g(Ricci) = R$.

It is a fonction.

Properties: maximum principle, if g_0 is normalized,

$$R + 2\phi(R) \ge K \ge -\phi(R)$$

where ϕ is the inverse of $x \ln x - x$.

In particular $\phi(y)/y \xrightarrow[y\to\infty]{} 0$.

$$\text{For } g_i \rightsquigarrow \quad K_i(P) = \frac{K(P)}{Q_i} \geq -\frac{\phi(R_i)}{Q_i} \underset{i \to \infty}{\longrightarrow} 0 \,.$$

Recall: scalar curvature = $trace_g(Ricci)$ = R. It is a fonction.

Properties: maximum principle, if g_0 is normalized,

$$R + 2\phi(R) \ge K \ge -\phi(R)$$

where ϕ is the inverse of $x \ln x - x$. In particular $\phi(y)/y \underset{v \to \infty}{\longrightarrow} 0$.

For
$$g_i \rightsquigarrow K_i(P) = \frac{K(P)}{Q_i} \ge -\frac{\phi(R_i)}{Q_i} \underset{i \to \infty}{\longrightarrow} 0$$
.

For the ancient solutions,

- Curvature operator ≥ 0 .
- Bounded sectional curvatures.
- + other properties \Rightarrow classification.

In dimension 3.

In dimension 3.

Complete solution, bounded and nonnegative sectional curvature, non flat and,

In dimension 3.

Complete solution, bounded and nonnegative sectional curvature, non flat and.

$$\exists \kappa > 0, \forall x \in M_{\infty}, \quad \text{vol}(B(x,r)) \geq \kappa r^3;$$

In dimension 3.

Complete solution, bounded and nonnegative sectional curvature, non flat and,

for r small enough,

$$\exists \kappa > 0, \forall x \in M_{\infty}, \quad \text{vol}(B(x, r)) \ge \kappa r^3;$$

• S^3/Γ where S^3 is the round sphere,

In dimension 3.

Complete solution, bounded and nonnegative sectional curvature, non flat and,

$$\exists \kappa > 0, \forall x \in M_{\infty}, \quad \text{vol}(B(x,r)) \geq \kappa r^3;$$

- S^3/Γ where S^3 is the round sphere,
- diffeomorphic to S^3 or $P^3(R)$,

In dimension 3.

Complete solution, bounded and nonnegative sectional curvature, non flat and,

$$\exists \kappa > 0, \forall x \in M_{\infty}, \quad \text{vol}(B(x,r)) \ge \kappa r^3;$$

- S^3/Γ where S^3 is the round sphere,
- diffeomorphic to S^3 or $P^3(R)$,
- $\mathbf{R} \times S^2$ or $(\mathbf{R} \times S^2)/\mathbf{Z}_2 = \mathbf{P^3(R)} \setminus B^3$, canonical

In dimension 3.

Complete solution, bounded and nonnegative sectional curvature, non flat and,

$$\exists \kappa > 0, \forall x \in M_{\infty}, \quad \text{vol}(B(x,r)) \ge \kappa r^3;$$

- S^3/Γ where S^3 is the round sphere,
- diffeomorphic to S^3 or $P^3(R)$,
- $\mathbf{R} \times S^2$ or $(\mathbf{R} \times S^2)/\mathbf{Z}_2 = \mathbf{P^3(R)} \setminus B^3$, canonical
- B^3 and curvature > 0.

