Escuela Avanzada:

La Conjetura de Poincaré

Esther Cabezas Rivas

Granada, 28 junio – 7 julio de 2007

I.3 Clasificación modelos singulares

1

Clasificación de las κ -soluciones

- I.4 Clasificación de las sol. singulares
 I.4.1 Clasificación local. ⇐ Tma del entorno canónico
 I.4.2 Clasificación global.
- Fase II. Flujo de Ricci con cirugía
- II.1 Proceso de cirugía bien def (descripción)
- II.2 Conjunto de instantes singulares discreto
- Fase III. Extinción en tiempo finito

Demostración de Hamilton-Perelman de la CP

<u>Fase 0</u>. Inicio del flujo hasta $1^{\underline{a}}$ singularidad * Resultados técnicos del RF de Hamilton.

Fase I. Análisis de las singularidades

- I.1 Sucesión de dilataciones de la sol. singular
- I.2 Existencia de una subsucesión convergente
 - I.2.1 Condiciones para \exists (tma de compacidad de Hamilton)
 - (A) Mayoración de la curvatura.
 - (B) Minoración del radio de inyectividad
 - I.2.2 Verificación de las condiciones de I.2.1
- De (B): Tma de no-colapso local

Herramienta: monotonía del volumen reducido

Geometría de comparación para el Flujo de Ricci y resultados de no-colapso

Objetivos

- Introducción del concepto de volumen reducido (VR).
- Prerrequisitos: Desarrollo de una geometría e-t.
 - * Reconstrucción de la teoría de geodésicas y campos de Jacobi.
- Objetivo fundamental: demostrar la monotonía del VR.
- Importancia (en el análisis de las sing del FR):
 - ★ Demostración del tma. de no colapso.
 - \star Fundamental para entender la estructura de las κ -soluciones.

Hipótesis de partida

 ${h(\tau)}_{\tau\in I}\subset\mathfrak{M}(M^n)$

• $h(\cdot)$ solución del FR retrógrado (FRR):

$$\frac{\partial h}{\partial \tau}(\tau) = 2 \operatorname{Ric}_{h(\tau)}, \quad \tau \in I$$

- Solución completa.
- $|Rm(x,\tau)| \le C_0 < +\infty$ $\forall (x,\tau) \in M \times I$

* Obtención práctica del FR retrógrado:

 $\begin{cases} (M^n, g(t)) \ \mathsf{RF} \\ \mathsf{Fijar} \ t_0 \end{cases} \right\} \Rightarrow \quad \tau := t_0 - t, \quad h(\tau) = g(t_0 - t) \ \mathsf{FRR} \end{cases}$

Motivación "heurística"

- $\gamma : [\tau_1, \tau_2] \to M$ curva C^{∞} (con $\tau_1 \ge 0$).
- Grafo e-t de γ . $\tilde{\gamma} : [\tau_1, \tau_2] \to M \times [\tau_1, \tau_2] / \tilde{\gamma}(\tau) = (\gamma(\tau), \tau)$.

Cambio: $\sigma = 2\sqrt{\tau}$, $\beta(\sigma) = \gamma(\sigma^2/4)$.

- Métrica e-t: $\tilde{h} = h + R_h d\tau^2$.
- \tilde{h} -Energía de $\tilde{\beta}$. ($\sigma_i = 2\sqrt{\tau_i}$)

$$E_{\tilde{h}}(\tilde{\beta}) = \int_{\sigma_1}^{\sigma_2} \left| \tilde{\beta}'(\sigma) \right|_{\tilde{h}}^2 d\sigma = \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left| \tilde{\gamma}'(\tau) \right|_{\tilde{h}}^2 d\tau$$
$$= \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left(\left| \gamma'(\tau) \right|_{h_\tau}^2 + R(\gamma(\tau), \tau) \right) d\tau$$

L-longitud y L-distancia

•
$$\mathcal{L}$$
-longitud de $\gamma : [\tau_1, \tau_2] \to M$ curva C^{∞} (con $\tau_1 \ge 0$).

$$\mathcal{L}_h(\gamma) := \int_{\tau_1}^{\tau_2} \sqrt{\tau} \left(R(\gamma(\tau), \tau) + |\gamma'(\tau)|_{h_\tau}^2 \right) d\tau$$

(Fijamos $p \in M$, tomaremos $\tau_1 = 0$ y llamaremos $\overline{\tau} = \tau_2$).

* Consecuencias inmediatas
$$\begin{cases} * [\tau_1, \tau_2] \subset I. \\ * \mathcal{L} \text{ puede ser } < 0. \end{cases}$$

• L-distancia (a $p \in M$ fijo). $L: M \times \mathbb{R}^+ \longrightarrow \mathbb{R}$

$$L(q,\tau) := L^h_{(p,0)}(q,\tau)$$

= $\inf \{ \mathcal{L}(\gamma) / \gamma : [0,\tau] \to M \operatorname{con} \gamma(0) = p \ y \ \gamma(\tau) = q \}.$

Motivación "rigurosa" (Perelman)

• Métrica e-t en dim potencialmente infinita:

Dado $N \in \mathbb{N}$

$$\widetilde{M} = M^n \times S^N \times (0,T)$$
 $\widetilde{h} = h + \tau \sigma + \left(\frac{N}{2\tau} + R_h\right) d\tau^2,$

donde $\sigma\in\mathfrak{M}(S^N)$ / $\operatorname{Sec}(\sigma)=(2N)^{-1}.$

* Tomar
$$N \ / \ \frac{N}{2\tau} + R_h > 0 \Rightarrow \tilde{h} \in \mathfrak{M}(\widetilde{M}).$$

* Propiedades de \tilde{h} : $\begin{cases}
\text{Una geodésica } \tilde{h} \text{-minimal debe minimizar } \mathcal{L}_h. \\
|\widetilde{\text{Ric}}|_{\tilde{h}} = O(N^{-1}).
\end{cases}$

$\begin{array}{c} \textbf{Motivación para el volumen reducido} \\ \textbf{Sea} \ p = (x_0, y_0, 0), \quad \bar{\tau} \in (0, T), \quad \partial B_{\tilde{h}} \left(p, r = \sqrt{2N\bar{\tau}} \right) \subset \widetilde{M} \\ \underbrace{Vol \left(\partial B_{\tilde{h}}(p, r) \right)}_{Vol \left(\partial B_{\mathbb{R}^{n+N+1}}(\bar{p}, r) \right)} \approx CN^{-n/2} \int_{M} \bar{\tau}^{-n/2} e^{-\frac{1}{2\sqrt{\bar{\tau}L(q,\bar{\tau})}}} \, dV_{h(\bar{\tau})}(q) \\ \underbrace{\tilde{V}(\bar{\tau}) \searrow \text{ en } \bar{\tau}}_{\bar{V}(\bar{\tau}) \searrow \text{ en } \bar{\tau}} \end{array}$

- Objetivo: demostración de la monotonía del volumen reducido.
- Estrategia: (1) Escribir $\widetilde{V}(\tau)$ como una integral sobre T_pM

$$\widetilde{V}(\tau) = \int_{T_p M} \tau^{-n/2} e^{-\frac{1}{2\sqrt{\tau}}L(*,\tau)} J(*,\tau) \chi_{\tau} \, dx.$$

(2)
$$\widetilde{V}(\tau) \searrow \operatorname{en} \tau \iff \tau^{-n/2} e^{-\ell(*,\tau)} J(*,\tau) \searrow \operatorname{en} \tau$$

 $\Leftrightarrow -\frac{n}{2} \ln \tau - \ell(*,\tau) + \ln J(*,\tau) \searrow \operatorname{en} \tau$

\mathcal{L} -geodésicas

• Fórmula de la primera variación:

$$\delta_{Y} \mathcal{L} = \frac{d}{ds} \Big|_{s=0} \mathcal{L}_{h}(\alpha_{s}) = \left(2\sqrt{\tau} \langle X, Y \rangle\right) \Big|_{\tau_{1}}^{\tau_{2}} \\ + \int_{\tau_{1}}^{\tau_{2}} \sqrt{\tau} \left\langle Y, \nabla R - 2\nabla_{X} X - 4\operatorname{Ric}(X, \cdot) - \frac{1}{\tau} X \right\rangle d\tau,$$

- \mathcal{L} -geodésica: curva punto crítico del funcional \mathcal{L} .
- Ecuación de las las *L*-geodésicas:

$$\nabla_X X - \frac{1}{2}\nabla R + \frac{1}{2\tau}X + 2\operatorname{Ric}(X, \cdot)^{\sharp} = 0$$

- La definición de \mathcal{L} -geodésica se extiende a $\tau_1 = 0$.
- Vector inicial de una \mathcal{L} -geodésica $\gamma : [0, \overline{\tau}] \longrightarrow M$ es $v := \lim_{\tau \longrightarrow 0} \sqrt{\tau} \gamma'(\tau) \in T_p M$

\mathcal{L} -geodésicas

- Teorema de existencia de \mathcal{L} -geodésicas $\forall v \in T_p M \quad \exists ! \mathcal{L}$ -geodésica $\gamma : [0, \overline{\tau}] \to M / \begin{cases} \gamma(0) = p \\ \lim_{\tau \to 0} \sqrt{\tau} \gamma'(\tau) = v \end{cases}$
 - * Notación: $\gamma \equiv \gamma_v$.

• Teorema de existencia de \mathcal{L} -geodésicas minimales $\forall p, q \in M \quad \exists \text{ una } \mathcal{L}$ -geodésica $\gamma : [0, \overline{\tau}] \to M / \begin{cases} \gamma(0) = p \\ \gamma(\overline{\tau}) = q \end{cases}$ y $\mathcal{L}(\gamma) = L(q, \overline{\tau}).$

• Las *L*-geodésicas "cortas"son minimales

 $\forall \, v \in T_p M \quad \exists \, \tau_v > 0 \; / \; \gamma_v \big|_{[0,\tau_s]} \text{ es una } \mathcal{L}\text{-geodésica minimal.}$

L-distancia: gradiente y derivada temporal

• Gradiente de L:

$$(\nabla L)_{(q,\bar{\tau})} = 2\sqrt{\bar{\tau}}X(\bar{\tau}),$$

siendo $X = \gamma', \operatorname{con} \gamma \mathcal{L}$ -geodésica minimal uniendo p y q.

• Derivada temporal de *L*:

$$\frac{\partial L}{\partial \tau}(q,\bar{\tau}) = 2\sqrt{\bar{\tau}}R - \frac{1}{2\bar{\tau}}L(q,\bar{\tau}) + \frac{1}{\bar{\tau}}K$$

donde

$$K \equiv K(\gamma, \bar{\tau}) := \int_0^\tau u^{3/2} H_u(X) \, du,$$

 $H_{\tau}(X) := -\frac{\partial R}{\partial \tau} - \frac{R}{\tau} - 2 \langle X, \nabla R \rangle + 2 \operatorname{Ric}(X, X).$ expressión traza de la desigualdad de Harnack con $\begin{array}{c} t = -\tau \\ X \leftrightarrow -X \end{array}$

Geometría de comparación para L

• Teorema de comparación del hessiano para L

Fijado $\bar{\tau} > 0$,

$$(\operatorname{Hess}_{(q,\bar{\tau})}L)(Y,Y) \le \frac{1}{\sqrt{\bar{\tau}}} - 2\sqrt{\bar{\tau}}\operatorname{Ric}(Y,Y) - \int_0^{\bar{\tau}} \sqrt{\tau}H_\tau(X,\widetilde{Y})\,d\tau,$$

donde $Y = Y(\bar{\tau}) \in T_q M$,

 \widetilde{Y} extensión adecuada de Y a lo largo de $\gamma \; / \; |\widetilde{Y}(\tau)|^2 = \tau / \bar{\tau}$

$$\begin{aligned} H_{\tau}(X,\widetilde{Y}) &:= -\nabla^2 R(\widetilde{Y},\widetilde{Y}) + 2R(X,\widetilde{Y},X,\widetilde{Y}) - 4\left[(\nabla_X \operatorname{Ric})(\widetilde{Y},\widetilde{Y}) - (\nabla_{\widetilde{Y}} \operatorname{Ric})(\widetilde{Y},X) \right] \\ &- 2\frac{\partial \operatorname{Ric}}{\partial \tau} (\widetilde{Y},\widetilde{Y}) + 2|\operatorname{Ric}(\widetilde{Y},\cdot)|^2 - \frac{1}{\tau} \operatorname{Ric}(\widetilde{Y},\widetilde{Y}) \end{aligned}$$

expresión matricial de Harnack

$$\boxed{\quad = \quad } \Leftrightarrow \widetilde{Y}(\tau), \tau \in [0, \overline{\tau}], \text{ campo de } \mathcal{L}\text{-Jacobi (a lo largo de } \gamma).}$$

• Teorema de comparación del laplaciano para L

$$\Delta L(q,\bar{\tau}) \le -2\sqrt{\tau}R + \frac{n}{\sqrt{\bar{\tau}}} - \frac{1}{\bar{\tau}}K$$

Distancia reducida

- Distancia reducida (a $p \in M$ fijo): $\ell(q,\tau) = \frac{1}{2\sqrt{\tau}}L(q,\tau)$
- Desigualdades para L y ℓ :

$$\begin{aligned} \frac{\partial L}{\partial \tau} &= 2\sqrt{\tau}R - \frac{L}{2\tau} + \frac{K}{\tau} \\ |\nabla L|^2 &= -4\tau R + \frac{2}{\sqrt{\tau}}L - \frac{4}{\sqrt{\tau}}K \\ \Delta L &\leq -2\sqrt{\tau}R + \frac{n}{\sqrt{\tau}} - \frac{K}{\tau} \end{aligned} \qquad \Rightarrow \qquad \begin{vmatrix} \frac{\partial \ell}{\partial \tau} &= R - \frac{\ell}{\tau} + \frac{K}{2\tau^{3/2}} \\ |\nabla \ell|^2 &= -R + \frac{\ell}{\tau} - \frac{K}{\tau^{3/2}} \\ \Delta \ell &\leq -R + \frac{n}{2\tau} - \frac{K}{2\tau^{3/2}} \end{vmatrix}$$

Consecuencias:

Estimación: min_M ℓ(·, τ) ≤ n/2 para todo τ.

(2) M compacta ⇒ V(τ) \ en τ.

Ejemplo: (\mathbb{R}^n, g_0)

• \mathcal{L} -longitud: $\sigma = 2\sqrt{\tau}$

$$\mathcal{L}(\gamma) = \int_0^{\bar{\tau}} \sqrt{\tau} |\gamma'(\tau)|_{g_0}^2 d\tau = \int_0^{2\sqrt{\bar{\tau}}} |\beta'(\sigma)|_{g_0}^2 d\sigma = E_{g_0}(\beta)$$

• L-distancia:

$$\begin{aligned} \frac{d^2(p,q)}{2\sqrt{\bar{\tau}}} &= \min\{E_{g_0}(\beta) \mid \beta : [0, 2\sqrt{\bar{\tau}}] \to M \operatorname{con} \beta(0) = p, \ \beta(2\sqrt{\bar{\tau}}) = q\} \\ &= \min\{\mathcal{L}(\gamma) \mid \gamma : [0, \bar{\tau}] \to M \operatorname{con} \gamma(0) = p, \ \gamma(\bar{\tau}) = q\} \\ &= L(q, \bar{\tau}) \end{aligned}$$

• Distancia reducida:

$$\ell(q,\bar{\tau}) = \frac{d^2(p,q)}{4\bar{\tau}}$$

Volumen reducido

• Volumen reducido:

$$\widetilde{V}: \mathbb{R}^+ \longrightarrow \mathbb{R}$$

$$\tau \longmapsto \widetilde{V}(\tau) := \int_M \tau^{-n/2} e^{-\ell(q,\tau)} \, dV_\tau(q)$$

donde $\begin{cases} dV_{\tau} = \text{elemento de volumen asociado a } h(\tau) \\ h(\tau) \text{ FR retrógrado} \end{cases}$

- Propiedad fundamental: $\widetilde{V}(\tau) \searrow \operatorname{en} \tau$.
- Objetivos:
 - \star \widetilde{V} está bien definido para M no compacta.
 - * Demostrar la monotonía en el caso no compacto.
- Cuestión técnica pendiente: dar sentido al cambio de variable para expresar \widetilde{V} como \int_{T_nM} .

La aplicación *L*-exponencial

$$\begin{array}{cccc} \mathcal{L} \exp_{p,\bar{\tau}} : & T_p M & \longrightarrow & M \\ & v & \longmapsto & \gamma_v(\bar{\tau}), & \text{donde } \gamma_v \text{ es la } \mathcal{L} \text{-geodésica con} \\ & & \gamma_v(0) = p \text{ y } \lim_{\tau \to 0} \sqrt{\tau} \gamma'(\tau) = v \end{array}$$

• \mathcal{L} -Jacobiano $J(v, \tau)$: Jacobiano asociado a la \mathcal{L} -exponencial.

$$J(v,\tau) = \det \left(\mathcal{L} \exp_{\tau}\right)_{*v}$$
$$= \sqrt{\det \left\langle J_i(\tau), J_j(\tau) \right\rangle_{h(\tau)}},$$

donde
$$\begin{cases} \{J_i(\tau)\}_{i=1}^n \text{ base de } \mathcal{LJ}(\gamma_v), \\ J_i(\tau) := (\mathcal{L} \exp_\tau)_{*v} (E_i), \quad \{E_i\}_{i=1}^n \text{ base de } T_pM \ h(0)\text{-on} \end{cases}$$

* Estimación para $\ln J(v,\tau)$: $\left. \frac{d}{d\tau} \right|_{\tau=\bar{\tau}} \ln \mathcal{J}(v,\tau) \le \frac{n}{2\bar{\tau}} - \frac{1}{2} \bar{\tau}^{-3/2} K.$

$\mathcal{L}\text{-cut locus}$

 $\begin{cases} \gamma_v \ \mathcal{L}\text{-minimal, o bien} \\ \exists \text{ un primer } \tau_v > 0 \text{ a partir del cual } \gamma_v \text{ ya no minimiza } \mathcal{L}. \end{cases}$

•
$$\Omega(\bar{\tau}) = \Omega_{(p,0)}(\bar{\tau}) = \{ v \in T_pM / \gamma_v |_{[0,\bar{\tau}]} \text{ es minimal} \}$$

* $\begin{cases} \bullet \tau_1 < \tau_2 \Rightarrow \Omega(\tau_2) \subset \Omega(\tau_1). \\ \bullet \mathcal{L}exp_{\bar{\tau}} : \Omega(\bar{\tau}) \longrightarrow \mathcal{L}exp_{\bar{\tau}}(\Omega(\bar{\tau})) \text{ difeomorfismo,} \end{cases}$

donde $\mathcal{L}exp_{\bar{\tau}}(\Omega(\bar{\tau})) = M \setminus \mathcal{L}Cut(\bar{\tau}).$

- Propiedades de $\mathcal{L}Cut(\bar{\tau})$ (=: \mathcal{L} -cut locus de (p, 0) en tiempo $\bar{\tau}$) $\mathcal{L}Cut(\bar{\tau}) \subset \{q \in M \mid q = \gamma_1(\bar{\tau}) = \gamma_2(\bar{\tau}), \gamma_1 \neq \gamma_2 \mathcal{L}$ -geodésicas minimales $\}$ $\cup \{q \in M \mid q = \gamma_v(\bar{\tau}), \text{ donde } v \in T_pM \text{ punto crítico de } \mathcal{L}exp_{\bar{\tau}}\}$
- * $\mathcal{L}Cut(\bar{\tau})$ tiene medida nula en $(M, h(\bar{\tau}))$.
- $\star \operatorname{Si} q \notin \mathcal{L}Cut(\bar{\tau}) \Rightarrow L \neq \ell \text{ son } C^2 \text{-dif. en } (q, \bar{\tau}).$

Ejemplo:
$$(\mathbb{R}^n, g_0)$$

• L-distancia: $L(q, \bar{\tau}) = \frac{d^2(p,q)}{2\sqrt{\bar{\tau}}}$

• \mathcal{L} -Jacobiano: $\mathcal{L} \exp_{p,\bar{\tau}}: T_p \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $v \longmapsto \gamma_v(\bar{\tau}) = p + 2\sqrt{\bar{\tau}}v$

$$J(v,\bar{\tau}) = \det \left(\mathcal{L} \exp_{\tau}\right)_{*v} = \det \left(\frac{\partial \left(\mathcal{L} \exp_{p,\bar{\tau}}(v)\right)^{i}}{\partial v^{j}}\right)$$
$$= \det \left(2\sqrt{\bar{\tau}} \frac{\partial v^{i}}{\partial v^{j}}\right)$$
$$= 2^{n} \bar{\tau}^{n/2}$$

Concepto de κ -no colapso

• Notación: $\star g(\cdot)$ RF en $M^n \times [0,T), T \leq \infty$. $\star \kappa, \rho > 0$

\star Entorno parabólico centrado en (x_0, t_0) :

$$P(x_0, t_0, r) = B_{t_0}(x_0, r) \times [\max\{t_0 - r^2, 0\}, t_0]$$

• $g(\cdot)$ es κ -no colapsado a escala ρ si $\forall (x_0, t_0) \in M \times [0, T)$ y $\forall r < \rho$,

$$|Rm|(x,t) \le r^{-2} \quad \forall \ (x,t) \in P(x_0,t_0,r) \Rightarrow \frac{Vol_{t_0}\left(B_{t_0}(p,r)\right)}{r^n} \ge \kappa.$$

• $g(\cdot) \kappa$ -no colapsado a toda escala si es κ -no colapsado a escala $\rho, \forall \rho < \infty$

Ejemplos de κ -no colapso

- $(S^1 \times \mathbb{R}, g_0)$
 - \star $\forall \rho$ \exists $\kappa(\rho)$ / g_0 es $\kappa(\rho)\text{-no colapsada en la escala }\rho.$
 - ★ \nexists ningún κ / g_0 sea κ -no colapsado para toda escala.
- $(S^2 \times \mathbb{R}, (1-4t)\sigma + dt^2)$: κ -no colapsado para toda escala.
- Idem para $S^{n-1} \times \mathbb{R}$ $(n \ge 4)$ y S^{n-1} $(n \ge 3)$

Teorema de no-colapso local

• Teorema de no-colapso local:
$$g(\cdot)$$
 RF en $M^n \times [0, T)$.
 $M \operatorname{compacta}_{T < \infty}$ $\Rightarrow \forall \rho > 0, \exists \kappa = \kappa(g_0, T, \rho) > 0 / g(\cdot) \operatorname{es} \kappa\operatorname{-no} \operatorname{colapsado} \operatorname{a} \operatorname{escala} \rho.$

Modelos singulares

• Modelo singular: $(M_{\infty}, g_{\infty}(\cdot), x_{\infty})$ FR obtenido como límite de una sucesión de dilataciones de una sol singular:

$$(M^n, g_t)$$
 RF en $[0, T)$ con $T < \infty$.

i.e.

$$(M_{\infty}, g_{\infty}(\cdot), x_{\infty}) := \lim_{i \to \infty} {}^{\operatorname{Ch-G}}(M_i, g_i(\cdot), x_i)$$
 (si existe)

donde $\{(M_i, g_i(\cdot), x_i)\}$ suc. de dilataciones parabólicas:

 $g_i(t) := Q_i g(t_i + t/Q_i)$

 $\operatorname{con}\left\{(x_i,t_i)\in M^n\times[0,T):t_i\to T\right\}/\quad Q_i:=|Rm(x_i,t_i)|\to\infty$

***** Hipótesis extra (HE):

$$\exists C < \infty \ |Rm| \le CQ_i \quad \text{en} \quad M \times [0, t_i].$$

Propiedades básicas

(1) Propiedad de reescalamiento del κ -no colapso

 $\begin{array}{c|c} g(\cdot) & \kappa \text{-no colapsado} \\ a \operatorname{escala} \rho \end{array} \end{array} \Rightarrow \ \forall \ \alpha > 0 \quad \alpha g(\cdot) \quad \begin{array}{c} \kappa \text{-no colapsado} \\ a \operatorname{escala} \sqrt{\alpha} \rho \end{array}$

(2) κ -no colapso se preserva por límites de Cheeger-Gromov con punto

$$\{ (M_i^n, g_i(\cdot), x_i) \} / \begin{array}{l} g_i \text{ es } \kappa \text{ -no colapsado a escala } \rho \ \forall i, \\ \text{para algún } \kappa \in (0, \infty) \text{ y } \rho \in (0, \infty] \\ \psi \\ M = a_i(\cdot) |x_i| := \lim_{k \to 0} \frac{\operatorname{Ch-G}(M, g_i(\cdot), x_i) \text{ es } \kappa \text{-no colapsado a} \end{array}$$

 $(M_\infty,g_\infty(\cdot),x_\infty):=\lim_{i\to\infty}{}^{\mathrm{Ch-G}}(M_i,g_i(\cdot),x_i)$ es $\kappa\text{-no}$ colapsado a escala ρ

Eliminación de posibles modelos singulares

Corolario 1. (R², g_Σ) no puede aparecer como modelo singular.
 Lo mismo pasa con (Σ, g).

• Corolario 2. [Ilmanen-Knopf, 2003] Sea h_t RF estándar para S^2 . Ningún cociente cociente compacto de $(S^2 \times \mathbb{R}, h_t + dr^2)$, se puede obtener como modelo singular de un RF 3-dim.

 $\star~S^1\times S^2$ y $\mathbb{R}P^3\sharp\mathbb{R}P^3$ no pueden aparecer como modelos singulares.

Estudio de los modelos singulares

(1) Modelos singulares y no-colapso

 $\exists \ \kappa > 0 \ / \ (M_\infty,g_\infty(\cdot),x_\infty) \ \text{(si existe)} es \ \kappa \text{-no colapsado a cualquier} escala.$

Sup (HE) $\exists C < \infty / |Rm| \le CQ_i$ en $M \times [0, t_i]$.

(2) Minoración del radio de inyectividad

$$\exists A \equiv A(C, n, g_0) / inj_{g_i(0)}(x_i) \ge A$$

(3) Existencia de modelos singulares

 $\{(M, g_i(t), x_i)\}$ subconverge a $(M_{\infty}, g_{\infty}(t), x_{\infty})$

RF completo, con $t \in (-\infty, 0]$ y siendo M_{∞} variedad posib. no compacta y topológicamente \neq , con $|Rm|_{\infty} \leq C$.

Teorema del entorno canónico o Tma de estructura local de las singularidades

Definiciones previas

• $q(\cdot)$ RF tiene condiciones iniciales normalizadas (c.i.n.) si

 \star está definido en $M \times [0,T),$ donde $\left\{ \begin{array}{l} M \text{ compacta y} \\ 0 < T \leq \infty \text{ tiempo maximal} \end{array} \right.$

 $\star |Rm|_{q_0} \le 1.$

 $\star \operatorname{Vol}\left(B_{g_0}(x,1)\right) \geq \frac{\omega_n}{2}.$

• Entorno parabólico centrado en (x_0, t_0) :

$$P(x_0, t_0, r) = B_{t_0}(x_0, r) \times [\max\{t_0 - r^2, 0\}, t_0]$$

Sobre las κ -soluciones

• Oscilaciones de R : $\exists \eta < \infty /$

$$\left| \frac{\partial R}{\partial t} \right| \leq \eta R^2$$
 y $|\nabla R| \leq \eta R^{3/2}$

Entornos canónicos:

 $\forall \varepsilon > 0$ suf. pequeño, $\exists C(\varepsilon) > 0$ pequeño t.g. todo punto (x, t) en una κ -solución admite un entorno B con diam $< C(\varepsilon)R(x,t)^{-1/2}$ /

- (a) $B \varepsilon$ -cuello
- (b) $B \varepsilon$ -gorro.
- (c) B var compacta Sec > 0.

Enunciado y observaciones

• Enunciado (§12.1): Dados $\begin{cases} \varepsilon > 0 \\ T < \infty \end{cases}$, $\exists \begin{cases} R_0 = R_0(\varepsilon, T) \\ \kappa = \kappa(T) \end{cases} \}$ /

 $\begin{array}{c|c} (M^3,g(\cdot)) \mbox{ RF con c.i.n.} \\ y \ R(x,t) \geq R_0 \end{array} \begin{array}{c|c} \mbox{el flujo punteado } (M,g(\cdot),(x,t)) \\ \mbox{tras un reescalam. parabólico por } R(x,t), \\ \mbox{está } \varepsilon\mbox{-próximo a una } \kappa\mbox{-solución punteada.} \end{array}$

- Observaciones:
 - ★ Afirmación local.
 - ★ Aplicable al análisis de las singularidades.
 - **\star** Cerca de (x, t) podemos aplicar los resultados sobre κ -soluciones.
 - * §12.1 se cumple para $\varepsilon \Rightarrow$ §12.1 se cumple para $\varepsilon' > \varepsilon$.

Demostración de §12.1

• Sup. §12.1 es falso para algún $t \leq t_{max}$, donde $\kappa = \kappa(t_{max})$ es la constante de no colapso.

• Sup. $\exists \varepsilon > 0$ y $\exists \{(M, g_i(\cdot), (x_i, t_i)\}$ suc. RF's 3-dim. punteados con c.i.n. /

 $\star t_i \leq t_{max}$ $\star Q_i = R(x_i, t_i) \xrightarrow[i \to \infty]{} \infty$

 \star Tras reescalar por $R(x_i, t_i)$ ninguno de los RF's resultantes $(M_i, h_i(\cdot), (x_i, 0))$ está ε -próximo a una κ -solución.

• Objetivo: Dem. que $(M_i, h_i(\cdot), (x_i, 0))$ subconverge a una κ solución.

Etapas de la dem de §12.1

• Paso 1. Selección puntual. Encontrar $\{(\hat{x}_i, \hat{t}_i)\}$ /

$$\begin{split} Q_i &= R(\hat{x}_i, \hat{t}_i) \to \infty \quad \text{y} \quad (\hat{x}_i, \hat{t}_i) \text{ no cumple §12.1, pero} \\ \forall \ (y,t) \in P(\hat{x}_i, \hat{t}_i, D_i Q_i^{-1/2}) \left\{ \begin{array}{l} R(y,t) < 2Q_i \\ R(y,t) \geq 2Q_i \text{ y §12.1 se cumple para} \ (y,t) \end{array} \right. \end{split}$$

- $(M_i, h_i(\cdot), (x_i, 0))$ RF reescalado por Q_i . $[(x_i, t_i) := (\hat{x}_i, \hat{t}_i)]$
- Paso 2. $(M_i, h_i(0), (x_i, 0))$ tienen curvatura unif acotada a distancias acotadas:

$$\forall \ \rho < \infty \quad \exists \ \mathcal{Q} = \mathcal{Q}(\rho) < \infty \ / \qquad R \leq \mathcal{Q} \quad \text{ en } B(x_i, 0, \rho).$$

- Paso 3. El lím $(M_{\infty}, h_{\infty}(0), (x_{\infty}, 0)) \exists y Rm_{M_{\infty}} \leq C.$
- Paso 4. \exists un RF límite $(M_{\infty}, h_{\infty}(\cdot), (x_{\infty}, 0)) \kappa$ -solución.

Paso 1 (dem §12.1) : Selección puntual

- Tomar $P(x_i, t_i, D_i Q_i^{-1/2}) =: \mathbb{P}_i \text{ con } D_i \to \infty / D_i Q_i^{-1/2} \le 1/10.$
- Para cada *i* fijo, puede suceder
 - (1) $R(y,t) < 2Q_i \ \forall (y,t) \in \mathbb{P}_i$
 - (2) $\forall (y,t) \in \mathbb{P}_i / R(y,t) \ge 2Q_i$, se cumple §12.1
 - (3) $\exists (y,t) \in \mathbb{P}_i / R(y,t) \ge 2Q_i$, pero no se cumple §12.1

★ Si (1) ó (2)
$$\Rightarrow$$
 $(\hat{x}_i, \hat{t}_i) := (x_i, t_i).$

$$\left[\begin{array}{ccc} (x_i,t_i) & \Leftrightarrow & (y,t) \\ & \mathbb{P}_i & \Leftrightarrow & P(y,t,D_iR(y,t)^{-1/2}/\sqrt{2}) \end{array}\right] \text{y repetir el proceso.}$$

Paso 1 (dem §12.1) : Selección puntual

•
$$(x_i, t_i) := (\hat{x}_i, \hat{t}_i)$$
 no cumple §12.1, pero $\forall (y, t) \in P(x_i, t_i, D_i Q_i^{-1/2})$

$$\begin{aligned} & (\textbf{C1}) \begin{cases} R(y,t) < 2Q_i, \text{ o bien} \\ (y,t) \in \mathcal{G}_i \end{cases}, \\ & \text{donde } \mathcal{G}_i := \{(y,t) \mid R(y,t) \geq 2Q_i \text{ y } \$12.1 \text{ se cumple para } (y,t) \}. \\ & (\textbf{C2}) \exists P(y,t,r) \text{ con } r \sim (Q_i + |R(y,t)|)^{-1/2} \text{ donde} \\ & R \lesssim Q_i + |R(y,t)| \end{aligned}$$

• Consecuencia: $\exists \eta < \infty$ (constante) / $\forall (y, t) \in \mathcal{G}_i$ se tiene

$$\left|\frac{\partial R}{\partial t}\right| \le \eta R^2$$
 y $|\nabla R| \le \eta R^{3/2}$ (1)

Paso 1 (dem §12.1) : Selección puntual

• $(x_i, t_i) := (\hat{x}_i, \hat{t}_i)$ no cumple §12.1, pero $\forall (y, t) \in P(x_i, t_i, D_i Q_i^{-1/2})$

(C1)
$$\begin{cases} R(y,t) < 2Q_i, \text{ o bien}\\ (y,t) \in \mathcal{G}_i \end{cases},$$

donde $\mathcal{G}_i := \{(y,t) / R(y,t) \ge 2Q_i \text{ y §12.1 se cumple para } (y,t)\}.$
(C2) $\exists P(y,t,r) \operatorname{con} r \sim (Q_i + |R(y,t)|)^{-1/2}$ donde
 $R \lesssim Q_i + |R(y,t)|$

• Dilatación (de factor Q_i): { $(M_i, h_i(\cdot), (x_i, 0))$ } sucesión de RF's / $R(x_i, 0) = 1$.

Paso 2 (dem §12.1): Hipótesis de partida

• Objetivo: $\forall \rho < \infty \exists Q = Q(\rho) < \infty$ constante /

$$R \leq \mathcal{Q}$$
 en $y \in B(x_i, 0, \rho) \subset (M_i, h_i(0), (x_i, 0)).$

 $\star \, \forall \; \rho > 0 \; \text{definitos}$

$$\mathcal{Q} = \mathcal{Q}(\rho) := \sup_{i} \sup \{ R(y, 0) \mid y \in B(x_i, 0, \rho) \} \in \mathbb{R} \cup \{ \infty \}$$

- * Ponemos $\rho_0 := \sup\{\rho \mid \mathcal{Q}(\rho) < \infty\}.$
- Buscamos probar $\rho_0 = \infty$.

• Suponemos $\begin{cases} \star \rho_0 < \infty \text{ y} \\ \star \lim_{i \to \infty} \sup\{R(y, 0) \mid (y, 0) \in B(x_i, 0, \rho_0)\} = \infty. \end{cases}$

(2.1) \exists un RF lím. incompleto $(M_{\infty}, h_{\infty}(\cdot), (x_{\infty}, 0))$.

```
Paso 2 (§12.1): propiedades de(M_\infty,h_\infty(\cdot),(x_\infty,0))
```

• $R(x_{\infty}, 0) = 1.$

- Por Ham-Ivey pinching: $Rm_{\infty} \ge 0$.
- $\sup\{R(y,0): (y,0) \in B(x_{\infty},0,\rho_0)\} = \infty.$
- Definido en $B(x_{\infty}, 0, \rho_0)$
- $\forall (y,0) \in B(x_{\infty},0,\rho_0)$
 - (C1) Si $R(y,0) \ge 2$, al reescalar por R(y,0), se obtiene un RF 2ε -próximo a una κ -solución.

(C2)
$$\exists P(y,0,r) \operatorname{con} r \sim (1 + |R(y,0)|)^{-1/2}$$
 donde

$$R \lesssim 1 + |R(y,0)|$$

Demostración de §12.1 (Paso 2)

(2.2) $(M_{\infty}, h_{\infty}(0), (x_{\infty}, 0))$ contiene una región difeo a $S^2 \times [0, 1)$ con $R \to \infty$ en el extremo $S^2 \times \{1\}$.

Todo punto suf. próximo al extremo es el centro de un 2ε -cuello.

Dem. Tomamos una geodésica minimal

$$\gamma: [0,1) \longrightarrow (M_{\infty}, h_{\infty}(0)) / \quad R(\gamma(s), 0) \xrightarrow[s \to 1]{} \infty$$

 $\star \exists \ s_0 \in (0,1) \ / \ \forall s \in [s_0,1) \quad R(\gamma(s),0) \geq 2$

 $\xrightarrow[Paso 1]{} \text{tras reescalar por } R(\gamma(s),0), \text{ el punto } (\gamma(s),0) \text{ con } s \in [s_0,1)$

tiene un entorno que es $\left\{\begin{array}{l} 2\varepsilon\text{-cuello,}\\ 2\varepsilon\text{-gorro,}\\ \cong S^3/\Gamma \end{array}\right\}$

 $\star \exists \ s_1 \in [s_0,1) \ / \ \forall \ s \in [s_1,1)$ el punto $(\gamma(s),0)$ es el centro de un 2\$\varepsilon\$-cuello.

Demostración de §12.1 (Paso 2)

(2.3) Consideramos la completación del e.m.

$$(M_{\infty}, d_{h_{\infty}(0)}) / \exists y_{\infty} := \lim_{s \to 1} (\gamma(s), 0)$$

Sea $\gamma_1 = \gamma|_{[s_1,1)}$ y

$$U = \bigcup_{q \in \gamma_1} B(q, cR(q)^{-1/2}) \subset (M_\infty, h_\infty(0))$$

• Propiedades:

(a) $\overline{U} = U \cup \{y_{\infty}\}$ espacio de Alexandrov de curvatura ≥ 0 .

(b) y_{∞} no puede ser punto interior de ninguna geodésica minimal.

(c) $\exists C_{y_{\infty}}\overline{U}$ cono métrico 3-dim de curvatura ≥ 0 sobre una 2-esfera métrica.

Demostración de §12.1 (Paso 2)

(2.4) Tomamos $s_k \to 1$ y reescalamos los RF's $(M_{\infty}, h_{\infty}(\cdot), (\gamma(s_k), 0))$ por $R(\gamma(s_k), 0)$.

 \Rightarrow obtenemos una suc. de RF's loc. definidos / subconvergen a un RF loc. definido

(a) $Rm \ge 0$

- (b) En t = 0 es loc. isométrico a un cono Riemanniano (sobre S^2).
- Veamos que (b) lleva a una \sharp con (a):
 - ★ Denotamos (M_0, g_0) la hoja temporal 0 en el RF límite.
 - \star Tomamos $\{e_1,e_2,e_3\}$ base $g_0\text{-ortonormal para }T_pM_0$ /

 $Sec(e_1, e_i) = 0, \quad i = 2, 3;$ $Sec(e_2, e_3) > 0$

* Objetivo: Dem. que $\langle \partial_t Rm(e_1,e_2)e_1,e_2\rangle>0$ en t=0

Demostración de §12.1 (Paso 3)

• Objetivo: $\exists (M_{\infty}, h_{\infty}(0), (x_{\infty}, 0))$ var. C^{∞} con curvatura globalmente acotada.

★ Por el paso 2:
$$R(y,0) \leq Q(d(y,x_i)) \quad \forall y \in (M,h_i(0),x_i)$$

 $\xrightarrow[\text{previo}]{\text{lema}} R \leq \mathcal{Q} \text{ en un entorno parabólico.}$

 $\xrightarrow{\text{estimaciones}}_{\text{de Shi}} \xrightarrow{\text{acotación de las}}_{\text{de la curvatura}} \left\{ \begin{array}{l} (M_i, h_i(0), x_i) \text{ converge a} \\ (M_{\infty}, h_{\infty}(0), x_{\infty}) \text{ var. } C^{\infty} \ / \\ Rm_{M_{\infty}} \ge 0 (\text{Ham-Ivey}) \\ inj_{M_{\infty}} \ge a > 0 (\kappa\text{-no colapso}) \end{array} \right.$

 \star Además, M_{∞} tiene curvatura acotada globalmente.

Sup. NO $\xrightarrow{\text{Paso 2}}$ \exists una colección de cilindros $S^2 \times I /$ el radio de S^2 tiende a 0

 $\xrightarrow{\text{tma. retracción}}$

```
eso es imposible.
```

Demostración de §12.1 (Paso 4)

• Sup. (t', 0] intervalo maximal en que se puede aplicar el tma. de compacidad para obtener: $(M_{\infty}, h_{\infty}(t), (x_{\infty}, 0))$ RF límite en (t', 0].

• Objetivo: Probar $t' = -\infty$. Suppose t' finito.

★ Resultado previo:
$$\exists C / |d_0(\cdot, \cdot) - d_t(\cdot, \cdot)| \le C, \forall t \in (t', 0].$$

$$\left(\begin{array}{c} \text{Resultado auxiliar:}\\ \text{Ric} \leq Kg \text{ para algún } K > 0 \quad \Rightarrow \quad \frac{d}{dt} d_t(x_0, y_0) \geq -C(n)\sqrt{K} \end{array}\right)$$

* Caso 1. M_{∞} compacta $\xrightarrow{\text{result.}}_{\text{previo}} diam_{h_t}(M_{\infty})$ acotado en (t', 0]

$$\xrightarrow{\text{principio}}_{\text{de máx}} R_{\min}(t) \le R_{\min}(0), \ \forall \ t \in (t', 0].$$

$$\begin{bmatrix} \rho := 2 \operatorname{diam}_{h_t} M_{\infty} \\ p \in M_t / R(p) \le R_{\min}(0) \end{bmatrix} \xrightarrow{\operatorname{Paso 2}} R \text{ unif. acotada en } M_{\infty} \times (t', 0] \\ \xrightarrow{\operatorname{razonando}}_{\operatorname{cerca de } t'} R \text{ acotada para } \overline{t} < t'.$$

Demostración de §12.1 (Paso 4)

 $\begin{array}{l} \star \operatorname{Caso} 2. \ M_{\infty} \text{ no compacta} \\ \operatorname{Paso} 1.- \exists \ D > 0 \ / \ \operatorname{si} \ y \in M_{\infty} \setminus B(x_{\infty}, D) \ \Rightarrow \ \exists \ x \in M_{\infty} \ / \\ d_0(x_{\infty}, y) = d_0(x, y) \qquad d_0(x_{\infty}, x) \geq \frac{3}{2} d_0(x_{\infty}, y) \\ \quad \text{(Clave: las variedades con curvatura} \geq 0 \ \operatorname{son asintóticamente cónicas}). \\ \end{array}$ $\begin{array}{l} \xrightarrow{\operatorname{result.}} \\ \xrightarrow{\operatorname{previo}} \ (*) \ \operatorname{se \ cumple \ para} \ d_{g(t)} \ (\operatorname{salvo \ un \ error} \ \pm C) \ \forall \ t \in (t', 0]. \end{array}$

• Tomar $D \gg C$. Sup $\exists y \in M_{\infty} \setminus B(x_{\infty}, D) / R(y, t)$ no acotada.

 $\xrightarrow{\text{selección}}_{\text{puntual}} \exists U \text{ entorno de } y \text{ próximo a una } \kappa \text{-solución.}$

 $\longrightarrow U$ región cilíndrica de diámetro $\sim R(y,t)^{-1/2}$.

 $\xrightarrow{t^{a} \text{ variedades}}_{\text{curvatura} \ge 0} U \text{ separa } x_{\infty} \text{ de } x$

 \star Esto último se contradice con que (M, g_0) tenga geom. controlada.

Recapitulando...

- Hemos obtenido:
 - ★ $(M_{\infty}, h_{\infty}(t), (x_{\infty}, 0))$ RF límite definido en $(-\infty, 0]$.
 - ★ $Rm_{\infty} \ge 0$ (Ham-Ivey).
 - \star completo (tma compacidad).
 - \star $\kappa\text{-no}$ colapsado en toda escala.
 - $\star Rm_{\infty}$ acotado en cada hoja temporal

• Abreviando,

 $(M_\infty,h_\infty(t),(x_\infty,0))$ es una κ -solución