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Abstract — In this article we develop a greedy randomized adaptive search procedure 
(GRASP) for the problem of reducing the bandwidth of a matrix.  This problem consists 
of finding a permutation of the rows and columns of a given matrix, which keeps the 
nonzero elements in a band that is as close as possible to the main diagonal.  The 
proposed method may be coupled with a Path Relinking strategy to search for 
improved outcomes.  Empirical results indicate that the proposed GRASP 
implementation compares favourably to classical heuristics.  GRASP with Path 
Relinking is also found to be competitive with a recently published tabu search 
algorithm that is considered one of the best currently available for bandwidth 
minimization. 
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1.  Introduction 
The matrix bandwidth minimization problem (MBMP) has been the subject of study for 
at least 32 years, beginning with the Cuthill - McKee algorithm in 1969.  The problem 
consists of finding a permutation of the rows and the columns of a matrix that keeps 
all the non-zero elements in a band that is as close as possible to the main diagonal.  
This problem has generated considerable interest over the years because of its 
practical relevance for a significant range of global optimization applications.  They 
include preprocessing the coefficient matrix for solving the system of equations, finite 
element methods for approximating solutions of partial differential equations, large-
scale power transmission systems, circuit design, hypertext layout, chemical kinetics 
and numerical geophysics. 
 
Given a matrix A={aij}nxn the problem can be stated in terms of graphs considering a 
vertex for each row (column) and an edge in E as long as either aij ≠0 or aji ≠0.  The 
problem consists of finding a labeling f of the vertices that minimizes the maximum 
difference between labels of adjacent vertices.  In mathematical terms, given a graph 
G=(V,E) with vertex set V (|V|=n) and edge set E, we seek to minimize: 
 

( ) ( ){ }VvvBGB ff ∈= :max   where  ( ) ( ) ( ) ( ){ }vNuufvfvB f ∈−= :max . 

 
In this expression, N(v) is the set of vertices adjacent to v, f(v) is the label of vertex v 
and Bf(v) is the bandwidth of vertex v.  A labeling f of G assigns the integers {1, 2, …, n} 
to the vertices of G; thus, it is simply a renumbering of these vertices.  Then, the 
bandwidth of a graph is B(G), the minimum Bf(G) value over all possible labelings f.  
The MBMP consists of finding a labeling f that minimizes Bf(G).  Table 1 summarizes 
some of the relevant work in the area to the present. 
 

Table 1  Summary of relevant literature. 
Reference Procedure Comments 

Cuthill and McKee (1969) Reverse Method First known method 
Gibbs, Poole and  
Stockmeyer (1976) 

GPS Takes advantage of the 
graph structure 

Luo (1992) GPS variant Special structured 
graphs 

Dueck and Jeffs (1995) Simulated Annealing Long CPU time 
Martí et al. (2001) Tabu search Includes a comparative 

study of heuristic 
approaches 

 
The main application of this problem is to solve nonsingular systems of linear 
algebraic equations of the form Ax = b.  The preprocessing of A to reduce its 
bandwidth results in substantial savings in the computational effort associated with 
solving the system of equations.  For many years researchers were only interested in 
designing relatively simple heuristic procedures and sacrificed solution quality for 
speed.  This is the case of the Reverse Method and the GPS procedure.  These two 
methods yield similar results in terms of solution quality, however GPS is considerably 
faster, with an average speed that is about 8 times faster than the reverse Cuthill-
McKee procedure. 
 
Luo (1992) proposes an algorithm to reduce both, the bandwidth and the profile of a 
sparse matrix.  The method is based on some refinements of GPS and it is more 
complex.  Computational results are given over a set of special structured graphs; 
these results however, are difficult to extend to general graphs. 
 
Recently, metaheuristic methods have been applied to the MBMP.  A Simulated 
Annealing (SA) procedure was first introduced by Dueck and Jeffs (1995).  It is based 
on an insertion mechanism and does not take advantage of the graph structure as the 
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GPS method does.  The experimentation shows that this SA implementation is inferior 
to GPS on “grid”, “path”, circle”, “windmill” and “st” graphs.  However, SA outperforms 
GPS in terms of solution quality on ternary trees, binary trees and random graphs. It 
should be noted that, although SA finds better labelings than GPS in some graphs, it 
does so by taking up to 2000 times longer. 
 
Martí et al. (2001) propose a tabu search method for this problem.  It is likewise based 
on swap moves that exchange the labels of a pair of vertices.  The operator ( )uvmove ,  

assigns the label ( )uf  to vertex v and the label ( )vf  to vertex u.  Since the objective is 

to change the labels in order to reduce the current value of ( )GBf , a candidate list of 

moves based on a set ( )fC  of critical and near-critical vertices is constructed: 
 

( ) ( ) ( ){ }GBvBvfC ff *: α≥=  

 
where 1 > α > 0.  In order to construct a candidate list of moves based on the vertices 
in ( )fC , a set of suitable swapping vertices for each vertex in ( )fC  must be found.  
The following two quantities for a vertex v and a labeling f are introduced: 
 

( ) ( ) ( ){ }vNuufvmax ∈= :max   ( ) ( ) ( ){ }vNuufvmin ∈= :min  
 
A suitable label for v in the current labeling f is given by mid(v), then the set of 
suitable swapping vertices for v is defined as N’(v) which considers all vertices u with 
labels ( )uf  that are “closer” to ( )vmid  than ( )vf . 

( ) ( ) ( ) ( ) ( ){ }vfvmidufvmiduvN −<−=′ :   where  ( ) ⎥⎦
⎥

⎢⎣
⎢ +

=
2

)min()max( vv
vmid  

 
Let ( ) ( ) ( ){ }vNuuvmovevCL ′∈= :,  be the candidate list of moves associated with a 

vertex v ∈ C(f).  The value of a ( )uvmove ,  is defined as the number of vertices adjacent 
to v or u (including u) whose bandwidth increases due to the move.  The authors 
propose a flexible implementation of this criterion, and if a vertex increases its 
bandwidth marginally with respect to the bandwidth of the graph, it is considered that 
this increment has no influence on the solution’s value.  Specifically, it is said that the 
bandwidth of vertex z has experienced more than just a marginal increase, and is 
considered in the move value computation, if )()(' GBzB ff β> .  After experimentation, α 

and β were set to 0.2 and 0.8, respectively. 
 
The basic tabu search implementation consists of a short-term memory design in 
which the identity of a vertex whose label has been changed is the attribute used to 
impose a tabu restriction.  Specifically, after a ( )uvmove ,  is executed, the labels of 
vertices v and u are not allowed to change until the tabu tenure expires.  A longer-
term diversification based on frequency information is added to this basic 
implementation.  The method incorporates a memory structure to record information 
about previously found solutions.  This information is used to re-start the search with 
a new labeling f, which is built considering both diversity and quality criteria. 
 

Martí et al. (2001) present a computational comparison of the GPS procedure, the SA 
method and two variants of the TS algorithm (with and without the restarting 
mechanism).  The experiments are performed over 113 instances from the Harwell-
Boeing Sparse Matrix Collection, which consists of a set of standard test matrices from 
a wide variety of scientific and engineering disciplines.  It is shown that SA yields 
inferior solutions compared to TS and it takes much more running time than TS.  The 
basic implementation of TS is superior to GPS in terms of solution quality and 
competitive in terms of speed in the small instances.  However, in the large instances, 
TS cannot compete with GPS in terms of time.  The TS version with restarting is 
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robust in terms of solution quality, with an average deviation from the best-known 
solutions of 5% for the longer runs.  On the other hand, GPS is capable of generating 
good solutions at a speed that is hard to match by a metaheuristic.  Nevertheless, 
tabu search finds increasingly high-quality solutions when the search is allowed to go 
beyond a few (approximately 5) CPU seconds.  It should also be mentioned that GPS 
performs best on instances with structured graphs.  That is, the more structure in the 
graph the better the performance of GPS. 
 
Our paper presents the results of applying a Greedy Randomized Adaptive Search 
Procedure (GRASP, Feo and Resende 1995) to the MBMP.  Each GRASP iteration 
consists of constructing a trial solution and then applying an improvement procedure, 
typically a local search method, to find a local optimum (i.e., the final solution for that 
iteration).  Performing multiple GRASP iterations may be interpreted as a means of 
strategically sampling the solution space.  We also present a search procedure that 
combines GRASP with Path Relinking as a form of intensification (Laguna and Martí, 
1999) to search for improved outcomes.  This approach generates new solutions by 
exploring trajectories that connect high-quality solutions previously found with the 
GRASP method. 
 
This paper is organized as follows.  The following section discusses the constructive 
method of our GRASP implementation.  We have developed and tested five different 
constructive methods with the goal of selecting the best one that balances 
intensification and diversification in the search.  Section 3 is devoted to the local 
search phase of the GRASP algorithm.  Section 4 presents the path relinking method 
that finds a path between two “good” solutions previously generated by GRASP, in 
order to discover new potentially better ones.  Finally, Section 5 presents extensive 
computational experimentation with the Harwell-Boeing Sparse Matrix Collection.  This 
section also introduces an integer linear formulation of the MBMP that allows us to 
compute the optimum solution for limited size instances.  Finally, we outline our 
conclusions and directions for future research. 
 
2.  GRASP Construction Phase 
The GRASP construction phase is iterative, greedy, and adaptive.  It is iterative 
because the initial solution is built considering one element at a time.  It is greedy 
because the addition of each element is guided by a greedy function.  It is adaptive 
because the element chosen at any iteration in a construction is a function of those 
previously chosen.  That is, the method is adaptive in the sense of updating relevant 
information from one construction step to the next.   
 
This phase of the GRASP methodology is particularly important, given the goal of 
developing a method that balances diversification and intensification in the search.  
For this purpose we have developed and tested five different constructive methods.  
We first describe constructive method C1: 
 
This phase starts by creating a list of unlabeled vertices U, which at the beginning 
consists of all the vertices in the graph (i.e., initially U=V).  The first vertex v is 
randomly selected from all those vertices in U.  We assign a random label to v  and 
delete it from U.  In subsequent construction steps, the candidate list CL consists of 
all the vertices in U that are adjacent to at least one labeled vertex.  The restricted 
candidate list RCL is formed from those vertices in CL with a maximum number of 
adjacent labeled vertices.  A vertex v is randomly selected from RCL in order to be 
labeled.   
 
Once v is selected it is labeled with the best available label according to the vertices 
already labeled.  In mathematical terms, the best label for vertex v is mid(v,U): 

( ) ( ) ( ){ })(:max, UVvNuufUv −∩∈=max , 
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( ) ( ) ( ){ })(:min, UVvNuufUv −∩∈=min , 

( ) ⎥⎦
⎥

⎢⎣
⎢ +=

2
),min(),max(, UvUvUvmid . 

 
Vertex v is labeled with the closest available label to mid(v,U) (i.e., the closest number 
not yet assigned to a previously selected vertex).  Then U, CL and RCL are updated for 
the next step.  The construction phase terminates after n steps, when all vertices have 
been selected and labeled (i.e., when U= ∅). 
 
Constructive methods C2 and C3 are the same as C1 except for the definition of the 
RCL.  The restricted candidate list RCL is formed, at each step of C2, with those 
vertices that have been in CL for a maximum number of construction steps.  C3 
combines both criteria by considering the attractiveness of a vertex u as the sum of 
both measures: the number of adjacent labeled vertices to u, and the number of steps 
that u has been in CL.  Both measures are scaled in order to add them up, and the 
vertices with maximum attractiveness are included, at each step, in the RCL. 
 
Constructive methods C4 and C5 are partially based on the construction of a level 
structure of V proposed in the GPS method.  A level structure is a partition of V into 
sets L1, L2, …, Lk, called levels, with the following characteristics: 

• Vertices adjacent to a vertex in level L1 are in either L1 or L2 
• Vertices adjacent to a vertex in Lk are in either Lk or Lk-1 
• Vertices adjacent to a vertex in Li (for 1 < i < k) are in either Li-1, Li or Li+1 

 
The constructive procedure C4 consists of the following two phases: 
 

1. Finding a level structure: This procedure starts by randomly selecting a 
vertex (root) from those vertices of low degree.  L1 consists only of this root.  
Then, the algorithm constructs a level structure from this starting vertex.  
As in the GPS method, once all the vertices have been assigned to levels, a 
backward step constructs a second level structure, beginning with a vertex 
in the last level with minimum degree.  The procedure now combines these 
two level structures into one new structure whose width is usually less 
than that of either of the original ones.  This first phase can be considered 
a pre-processing of the GRASP construction. 

 
2. Labeling: The labeling procedure assigns, level-by-level, consecutive labels 

to the vertices V of G beginning with label 1.  At each iteration of the 
construction phase, the candidate list CL is formed with those vertices in 
the current level.  Therefore, initially CL=L1, and when all the vertices in L1 
have been labeled, CL=L2 and so on, until all the vertices in Lk have been 
labeled 

 
Given a label l to be assigned (labels 1,2,.., l-1, have been previously 
assigned), and a vertex v in level Li, we define LeftB(v,l) as the difference 
between l and the minimum label of its adjacent vertices in Li-1.  We also 
define RightB(v,l) as the difference between the maximum label of its 
adjacent vertices in Li+1 and l.  If label l is assigned to vertex v, then Bf(v) 
would be the maximum between LeftB(v,l) and RightB(v,l).  However, since 
the vertices in level Li+1 are not yet labeled, we cannot compute RightB(v,l) 
exactly.  We compute a lower bound of this value as the number of 
unlabeled vertices in Li (excluding v) plus the number of adjacent vertices 
of v in Li+1.  If we wait until the next step to label vertex v (with label l+1), 
LeftB(v,l) will increase in a unit, while RightB(v,l) will decrease in a unit.  
Therefore, if LeftB(v,l) is greater than RightB(v,l) it is better to label vertex v 
as soon as possible in order to obtain a low Bf(v) value; on the other hand, 
if it is lower, there is no need to label it now (and thus we can wait until 
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later steps).  Then, the restricted candidate list of vertices RCL is built with 
those vertices v in CL with LeftB(v,l) > RightB(v,l).  A vertex v is randomly 
selected from RCL and labeled with l.  The construction phase terminates 
after n steps, when all vertices have been selected and labeled.  
 

The example in Figure 1 illustrates these computations in the construction of the 
RCL. 
 

 
Figure 1. Restricted Candidate List 

 
Figure 1 shows a partial representation of a graph where levels Li-1, Li and Li+1 are 
depicted.  Consider that all the vertices in level Li-1 have been labeled (the number of 
each vertex represents its label).  Therefore, at this iteration CL={u, v, w } and we have 
to select a vertex to assign label 17.  Following the above calculations: 
 

LeftB(u,17) = 5  RightB(u,17) ≥ 2 + 2 = 4 
LeftB(v,17) = 4  RightB(v,17) ≥ 2 + 1 = 3 
LeftB(w,17) = 4 RightB(w,17) ≥ 2 + 2 = 4 

 
Then, RCL = {u,v} and we randomly select a vertex from this set to assign label 17. 
 
If vertex v does not have any adjacent vertex in level Li-1 we do not compute LeftB(v,l) 
as before, but we assign LeftB(v,l) a value of 0, forcing the method to not label v until 
later steps.  Similarly, if vertex v does not have any adjacent vertex in level Li+ 1, we 
compute RightB(v,l) as the number of unlabeled adjacent vertices to v in Li.  If no 
vertex in CL satisfies the condition LeftB(v,l) > RightB(v,l), then RCL = CL. 
 
Constructive method C5 is equal to C4 except for the criteria to build RCL from CL.  
Specifically, those vertices in CL with a minimum value of RightB(v,l)-LeftB(v,l) are 
included in RCL.  In the example given in Figure 1, u and v also meet this criteria, 
thus RCL = {u,v} in this case. 
 
2.1 Quality and Diversity 
We now propose a measure of diversity and a measure of quality to compare the 
performance of the 5 competing constructive methods.  A “good” GRASP constructive 
algorithm should provide solutions with a good objective function value as well as 
being sufficiently scattered in the solution space to allow the local search phase to 
reach different local optima.  We have selected 10 representative instances of different 
sizes and densities from the Harwell-Boeing Sparse Matrix Collection to compare the 5 
methods.  We have generated 100 different solutions with each method on each 
instance. 
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A measure of the quality of a method is the average objective function from among the 
100 generated solutions.  A measure of the diversity of a method is the average 
distance of all the pairs of the 100 labelings (solutions) generated by the method.  We 
define the distance between two labelings (permutations) p = (p1, p2, ..., pn) and q = (q1, 
q2, ..., qn) as: 

 ∑
=

−=
n

i
ii qpqpd

1

),( . 

To compare quality and diversity, we have scaled both measures in a such a way that 
they belong to the interval [0,1].  Moreover, we have computed the quality measure as 
1 minus the scaled value.  In this way, the greater the quality and diversity values, 
the better the method.  Figure 2 shows the average of both measures across the 10 
instances considered, on each constructive algorithm.  This figure also shows the 
results with a pure random generator and the GPS and Tabu solutions as well, as a 
baseline for comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.  Constructive methods 

 
As expected, the random generator produces the maximum diversity.  C1 and C3 
almost match the diversity of the random method using a systematic approach instead 
of randomness; however, they produce low quality solutions.  None of these 
constructive methods produce on average solutions which are as good as the GPS or 
Tabu methods.  We have selected C5 as the constructive method of our GRASP 
algorithm since it provides a good balance between diversity and quality. 
 
3.  GRASP Improvement Phase 
The GRASP improvement phase typically consists of a local search procedure.  Our 
local search method is partially based on the tabu search algorithm proposed in Martí 
et al. (2001).  We consider the set of critical vertices ( ) ( ) ( ){ }GBvBvfC ff == : .  Note that 

we do not consider the near-critical vertices in this set (as the tabu search method 
does) since we have computationally found that their inclusion does not add any value 
to the local search algorithm.  We have also considered the operator move(u,v), and the 
candidate list of moves CL(v) associated with a vertex v∈C(f) as described in Section 1.  
We propose a new move evaluation and study two different strategies for move 
selection. 
 
The value of a ( )uvmove ,  is the difference between the number of critical vertices 
before and after the move.  In mathematical terms: 
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MoveValue(v,u) = |C(f)| - |C(f’)| 

 
where f’ is the labeling obtained when applying move(v,u) to the current labeling f.  A 
positive MoveValue indicates that the solution “improves” although the objective value 
may or may not be reduced. 
 
Each step of the local search consists of selecting a vertex v in C(f) to be considered for 
a move.  CL(v) is computed, and a vertex u is selected in CL(v) to perform move(u,v).  
Two selection strategies were considered during preliminary experimentation.  Given a 
vertex v, the best strategy selects the move move(v,u) with the largest move value from 
among all the moves with u in CL(v).  The first strategy, on the other hand, scans CL(v) 
in search of the first vertex u whose movement results in a strictly positive move value.  
Section 5 contains the computational comparison of both strategies.  The local search 
phase terminates when improvement is no longer possible (i.e: when there is no move 
that reduces the number of vertices in C(f)). 
 
4.  Path Relinking 
Path relinking has been suggested as an approach to integrate intensification and 
diversification strategies in the context of tabu search (Glover and Laguna, 1997).  
This approach generates new solutions by exploring trajectories that connect high-
quality solutions, by starting from one of these solutions, called an initiating solution, 
and generating a path in the neighbourhood space that leads toward the other 
solutions, called guiding solutions.  This is accomplished by selecting moves that 
introduce attributes contained in the guiding solutions.  Path relinking in the context 
of GRASP, was first introduced by Laguna and Martí (2001) as a form of 
intensification.  
 
Our implementation of path relinking has two phases.  In the first one a set of elite 
solutions is generated with the GRASP method.  Instead of retaining only the best 
solution overall when running GRASP, this phase stores the 10 best solutions 
obtained with the method.  In the second phase we apply the relinking process to each 
pair of solutions in the elite set.  Given the pair (A,B), we consider two paths: from A to 
B (where A is the initiating solution and B the guiding one), and from B to A (where 
they interchange their roles). 
 
The relinking process implemented in our search may be summarized as follows: Let C 
be the candidate list of vertices to be examined.  At each step, a vertex v is chosen 
from C and labeled in the initiating solution with its label g(v) in the guiding solution.  
To do this, we look in the initiating solution for the vertex u with label g(v) and perform 
move(u,v), then vertex v is removed from C.  The candidate set C is initialized with a 
randomly selected vertex.  In subsequent iterations, each time a vertex is selected and 
removed from C, its adjacent vertices are included in C.   
 

 
Figure 3. Path Relinking Example 
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The example in Figure 3 illustrates the path relinking process.  Consider the following  
two solutions A and B and the path from A to B.  
 
Solution A  Solution B  
Node 1 2 3 4 5 6  1 2 3 4 5 6 
Label 4 2 6 1 3 5  3 1 5 6 2 4 

 
We start with vertex 1 in solution A (C={1}).  Since the label of this vertex is 4 in A and 
3 in B, we then exchange labels 3 and 4 in solution A corresponding to the vertices 5 
and 1, respectively.  So, solution A has changed to A1 (i.e. we have performed the move 
from A to A1). 
 
Solution A1   Solution A2 
Node 1 2 3 4 5 6  1 2 3 4 5 6 
Label 3 2 6 1 4 5  3 1 6 2 4 5 
 
Now, we remove vertex 1 from C and add the adjacent vertices of vertex 1: C={2, 3, 5, 
6}.  The label of vertex 2 in solution A1 is 2 and in solution B is 1.  Label 1 is assigned 
to vertex 4 in solution A1, and therefore we exchange labels 2 and 1 in solution A1, 
corresponding to vertices 2 and 4, respectively. We obtain solution A2.  In this way the 
relinking process continues up to matching solution B in 5 steps. 
 
The GRASP_PR procedure starts with the creation of an initial elite set of solutions.  
The GRASP method is used to build a large set of solutions from which the n_elite 
bests are included in the elite set.  The relinking process is then initiated by exploring 
all pairs of solutions in the elite set.  The pairs are selected one at a time in 
lexicographical order.  Each time the relinking process produces a solution that is 
better than the worst in the elite set, it is replaced.  The updating of the elite set is 
based on improving the quality of the worst solution and the GRASP_PR procedure 
terminates when no new solutions are admitted to the elite set.  We have considered 
two updating strategies for the elite set during preliminary experimentation.  The 
dynamic strategy adds a new solution to the elite set if it qualifies as soon as it is 
generated in a path.  The static strategy stores the new solutions in an intermediate 
set and updates the elite set once it has been fully explored.  The dynamic strategy is 
more aggressive while the static explores all the original solutions in the elite set.  
Comparisons of both strategies are reported in the next Section. 
 
We have experimentally found that in most cases this relinking process by itself does 
not produce better solutions than the initiating and guiding solutions.  It is convenient 
to add a local search exploration from some of the visited solutions in order to produce 
improved outcomes.  These results are in line with those reported in Laguna and Martí 
(1999) for the arc crossing problem.  Specifically, we have applied the local search 
method introduced in the previous section to some of the solutions generated in the 
path.  Note that two consecutive solutions after a relinking step differ only in the label 
of two vertices.  Therefore, it does not seem efficient to apply the local search 
exploration at every step of the relinking process.  We introduce the parameter 
n_improves to control the application of the exchange mechanism.  In particular, the 
exchange mechanism is applied n_improves times in the relinking process.  We report 
on the effectiveness of the procedure with different values of this parameter in the 
computational testing that follows. 
 
5.  Computational Experiments 
The procedures described in the previous section were implemented in C, and all 
experiments were performed on a K7-Athlon PC at 1200 MHz.  We have also 
considered the GPS and Tabu search implementations as they appear in Martí et al. 
(2001) as well as the set of 113 instances from the Harwell-Boeing Sparse Matrix 
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Collection.  The codes were compiled with Microsoft Visual C++ 6.0, optimising for 
maximum speed. 
 
Before testing the effectiveness of our procedures, we perform two preliminary 
experiments to compare move selection strategies and to explore the effect of changes 
in the path relinking parameters.  We consider 30 representative problem instances 
with the goal of finding appropriate values for the key search parameters. 
 
Preliminary Experiment I compares the best versus the first strategy for move selection 
in the construction phase of the GRASP method, as described in Section 2.  Table 2 
shows the average objective function value, Bf(G), the average percentage deviation 
from the best solution found with both strategies, the average running time and the 
number of best solutions that each strategy was able to find.  By comparing the 
results of Table 2, it is clear that the first strategy provides slightly better results than 
the best one in significant shorter CPU time.  Therefore, we select the first strategy for 
the rest of the experiments. 
 
Table 2. Preliminary Experiment I 
 Best First 
Bf (G) 82.17 81.80 
Deviation   0.3% 0.1% 
CPU seconds 81.1 59.4 
No. of minima 25 28 
 
Preliminary Experiment II has the goal of finding appropriate values for the three 
critical path relinking search parameters: Strategy (of updating the elite set), n_elite 
and n_improves.  For this purpose, we employ a full factorial design with the 
parameter values given in Table 3.  The 12 tests resulted in the best setting of 
Strategy=Static, n_elite=10, and n_improves=20. 
 
Table 3. Preliminary Experiment II 
Strategy Dynamic, Static 
n_elite  5, 10 
n_improves 10, 15, 20 
 
With the search parameters set as indicated above, we proceed to compare the relative 
merit of our GRASP variants.  The GRASP method is run for 200 iterations.  Table 4 
shows, for each method, the average bandwidth over the instances in each set along 
with the average CPU seconds.  This table also shows the average deviation from the 
best-known solutions.  The best-known solutions are the best solutions found by 
applying all the procedures to the same problem instance.  We cannot assess how 
close the best are to the optimal solutions, and we are only using these values as a 
way of comparing the methods. 
 
Table 4. Performance comparison according to problem size 
 GPS TS GRASP GRASP_PR 

33 instances with n=30. .... 199 
Bf(G) 31.42 23.33 23.58 22.52 
Deviation 32.39% 7.28% 4.17% 0.14% 
CPU seconds 0.003 4.99 0.33 4.03 
 

80 instances with n=200. .... 1000 
Bf(G) 156.38 100.78 107.56 99.43 
Deviation 41.98% 8.07% 11.20% 2.97% 
CPU seconds 0.11 263.97 128.47 339.97 
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Table 4 shows that the performance of the GPS approach is clearly inferior, with 
average deviations several orders of magnitude larger than those obtained with the 
other methods.  On the other hand, TS, GRASP and GRASP_PR cannot compete with 
GPS in terms of CPU time. 
 
The GRASP procedure outperforms the TS method in small instances.  The average 
deviation from the best known values is 4.17% for the GRASP, while TS obtains an 
average deviation of 7.28%, using much more running time (i.e., 0.3 seconds for 
GRASP versus 4.9 seconds for TS).  In large instances, the TS method obtains better 
solutions than the GRASP, although it employs longer running times.  Also note the 
remarkable improvement of GRASP when the path relinking is used (GRASP_PR), with 
the average deviation decreasing from 4.17% to 0.14% in small instances and from 
11.20% to 2.97% in large instances.  The best solution quality is obtained by the 
GRASP_PR method, which is able to match 81 out of the 113 best solutions known 
(which compares favorably with TS that is only able to find 41 best solutions). 
 
The next experiment has the goal of showing how the average solution obtained by TS, 
GRASP and GRASP_PR improves over the time.  The results of this experiment are 
shown in Figure 4 where the procedures were run for 255 seconds.  Note that in the 
first 100 seconds, GRASP is able to obtain better solutions than TS, which needs more 
than 175 seconds to obtain solutions of similar quality.  Comparing GRASP with 
GRASP_PR, it is clear that if more than 100 seconds are available, it is better to apply 
the path relinking process to the best solutions obtained (such as the GRASP_PR), 
instead of continuing to generate solutions as the GRASP method does. 

Figure 4. Performance graph for three procedures 
 
In our last experiment we compare the performance of the TS and GRASP_PR 
procedures on smaller graphs (as compared to those in the previous experiments).  In 
specific, we generate 98 additional sparse graphs with the number of vertices ranging 
from 15 to 24 and the number of edges ranging from 17 to 49 (a similar density to the 
instances of the previous experiments).  We target small instances in order to compute 
the optimal solutions by solving an integer programming problem.  We propose the 
following formulation for the MBMP: 
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In this formulation, xij =1 if label j is assigned to vertex i, and 0 otherwise.  Constraints 
(1) and (2) ensure that each vertex has a label and each label is assigned to a  vertex. 
Constraints (3) set the labels to the vertices according to the assignment variables xij; 
so if the variable xij =1, vertex i  takes the label li=j.  Constraints (4) guarantee that the 
bandwidth b is greater or equal to the absolute difference between the labels of all 
pairs of adjacent vertices.  Finally, the objective function is to minimize the bandwidth 
of the graph.  The problems were solved with CPLEX 7.0.  The time required ranged 
from a minimum of a few seconds to a maximum of more than 50 hours. 
 
In this experiment, TS is able to match 71 optima while GRASP_PR obtains 94 out of 
98 (both present similar running times).  We perform an additional experiment where 
both procedures run until the optimum is reached.  The TS method takes 2.92 
seconds on average while GRASP_PR takes 0.03 to obtain all the optimal solutions.  
However, if we remove one outlier instance where the TS presents an extraordinarily 
long running time, the average running time of the TS is reduced to 1.28, while that 
presented by the GRASP_PR remains the same. 
 
 
6.  Conclusions 
We have developed a heuristic procedure based on the GRASP methodology to provide 
high quality solutions to the problem of minimizing the bandwidth of a graph (matrix).  
We have explored the critical issue of which solution-generation-method proves 
effective to obtain a good set of solutions in terms of quality and diversity.  The GRASP 
procedure may be coupled with a path relinking strategy to search for improved 
outcomes.  Unlike other metaheuristics, path relinking has not yet been extensively 
studied.  In particular, we have undertaken to examine the adaptation of path 
relinking in the context of Multi-Start methods such as GRASP. 
 
Overall experiments with 211 instances were performed to assess the merit of the 
procedures developed here.  Our implementation was shown to be competitive in a set 
of instances previously reported in the literature.  The procedure has been shown to 
be robust in terms of solution quality within a reasonable computational effort.  The 
proposed method was compared with a recently developed tabu search procedure 
(Martí et al., 2001).  The comparison favours the proposed GRASP_PR implementation. 

References 

Cuthill, E. and J. McKee (1969) “Reducing the Bandwidth of Sparse Symmetric 
Matrices,” Proc. ACM National Conference, Association for Computing Machinery, New 
York, pp. 157-172. 
 



GRASP and Path Relinking for the Matrix Bandwidth Minimization / 13 

Dueck, G. H. and J. Jeffs (1995) “A Heuristic Bandwidth Reduction Algorithm,” J. of 
Combinatorial Math. And Comp., vol. 18, pp. 97-108. 
 
Duff, I. S., R. G. Grimes and J. G. Lewis (1992) “Users’ Guide for the Harwell-Boeing 
Sparse Matrix Collection,” Research and Technology Division, Boeing Computer 
Services. 
 
Feo, T. and M. G. C. Resende (1995) “Greedy Randomized Adaptive Search 
Procedures,” Journal of Global Optimization, vol. 2, pp. 1-27. 
 
Gibbs, N. E., W. G. Poole and P. K. Stockmeyer (1976a) “An Algorithm for Reducing 
the Bandwidth and Profile of Sparse Matrix,” SIAM Journal of Numerical Analysis, vol. 
13, no. 2, pp. 236-250. 
 
Gibbs, N. E., W. G. Poole and P. K. Stockmeyer (1976b) “A Comparison of Several 
Bandwidth and Profile Reduction Algorithms”, ACM Transactions on Mathematical 
Software, vol. 2, no. 4, pp. 322-330. 
 
Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston. 
 
Laguna, M. and Martí, R. (1999), GRASP and Path Relinking for 2-Layer straight line 
crossing minimization”, INFORMS Journal on Computing, vol. 11 (1), pp. 44 – 52. 
 
Luo, J.C. (1992) “Algorithms for Reducing the Bandwidth and Profile of a Sparse 
Matrix”, Computers and Structures, vol. 44, pp. 535-548. 
 
Martí, R., Laguna, M., Glover, F. and Campos, V. (2001) “Reducing the Bandwith of a 
Sparse Matrix with Tabu Search”, European Journal of Operational Research, 135(2), 
pp. 211-220. 


