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Abstract 
 
In this paper we explore the influence of adaptive memory in the performance of heuristic methods when 
solving a hard combinatorial optimization problem.  Specifically, we tackle the adaptation of tabu search 
and scatter search to the bandwidth minimization problem.  It consists of finding a permutation of the 
rows and columns of a given matrix which keeps the non-zero elements in a band that is as close as 
possible to the main diagonal.  This is a classic problem, introduced in the late sixties, that also has a 
well-known formulation in terms of graphs.  Different exact and heuristic approaches have been proposed 
for the bandwidth problem.  Our contribution consists of two new algorithms, one based on the tabu 
search methodology and the other based on the scatter search framework.  We also present a hybrid 
method combining both for improved outcomes.  Extensive computational testing shows the influence of 
the different elements in heuristic search, such as neighbourhood definition, local search, combination 
methods and the use of memory.  We compare our proposals with the most recent and advanced methods 
for this problem, concluding that our new methods can compete with them in speed and running time. 
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1. Introduction 
When solving a combinatorial optimization problem, the degree to which memory is exploited varies 
according to the type of procedure.  Virtually all metaheuristics induce a pattern whose present state 
depends on the sequence of past states and therefore incorporate an implicit form of memory. Such a 
memory, however, does not necessarily take the form of an intelligent memory construction since it does 
not use explicit designs for recording past elements but uses this information in a strategic way.  Based on 
the explicit use of memory, algorithms can be classified as memory-based or memory-less methods.  
Approaches such as Tabu Search (TS) or Scatter Search (SS) are memory oriented methods in which 
records about past choices and decisions determine future strategies.  On the other hand, methods such as 
Simulated Annealing (SA) or Genetic Algorithms (GA) do not incorporate the explicit use of memory 
structures and are based on other strategies, mostly relying on randomization for decision making in the 
search process. 
 
TS (Glover and Laguna, 1997) incorporates adaptive memory which allows the implementation of 
procedures that are capable of searching the solution space in an efficient way.  The memory used in tabu 
search is both explicit and attributive.  Explicit memory records complete solutions, typically consisting 
of elite solutions visited during the search, while attributive memory is mainly used for guiding purposes.  
This latter type of memory records information about solution attributes that change in moving from one 
solution to another.  Short and long-term memory structures are responsible for the specific composition 
of the solution neighborhood.  In other words, the neighborhood in a given iteration is the result of 
maintaining a selective history of the states encountered during the search.  In this sense TS can be 
viewed as a dynamic neighborhood method. 
 
SS (Laguna and Martí, 2003) maintains a set of solutions throughout the search (the Reference Set) and 
combines these solutions to generate new ones.  GA operate on a population of solutions and the 
“survivable of the fittest” philosophy translates into an implicit use of memory.  In SS however, from one 
iteration to the next, the method keeps track of the subsets of reference solutions that have already been 
combined.  When new solutions enter the reference set, the method generates only those subsets that are 
admissible for combination in the current iteration, using a memory structure that allows it to identify the 
subsets that contain new reference solutions.  There is no equivalent use of memory in genetic algorithms, 
since they select solutions for combination purposes using a random scheme.  
 
TS and SS have a common history as their basic principles were suggested by Glover (1977).  They are 
probably the metaheuristic procedures that employ memory in the most strategic and direct way, 
constituting the core of what has been coined as Adaptive Memory Programming in recent years.  In this 
paper we study the adaptation of both methodologies to solve the matrix bandwidth minimization 
problem. 
 
Let G=(V,E) be a graph with vertex set V (|V|=n) and edge set E (|E|=m).  A labeling or linear layout f of 
G assigns the integers 1, 2, …, n to the vertices of G.  Let f(v) be the label of vertex v, where each vertex 
has a different label.  The bandwidth of a vertex v, Bf(v), is the maximum of the differences between f(v) 
and the labels of its adjacent vertices.  That is: 

( ) ( ) ( ) ( ){ }vNuufvfvB f ∈−= :max  

where N(v) is the set of vertices adjacent to v.  The bandwidth of a graph G with respect to a labeling f is 
then: 

( ) ( ){ }VvvBGB ff ∈= :max  

The bandwidth B(G) of graph G is thus the minimum Bf(G) value over all possible labelings f.  In other 
words, the matrix bandwidth minimization problem consists of finding a labeling f that minimizes Bf(G).  
If we consider the incidence matrix of graph G, the problem can be formulated in terms of matrices as 
finding a permutation of the rows and the columns of this matrix that keeps all the non-zero elements in a 
band that is as close as possible to the main diagonal.  For that reason this problem is known as the Matrix 
Bandwidth Minimization Problem (MBMP). 
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The main application of this problem is to solve non-singular systems of linear algebraic equations.  The 
preprocessing of the coefficient matrix to reduce its bandwidth results in substantial savings in the 
computational effort associated with solving the system of equations.  The context of these applications 
includes aircraft structures, liquid nitrogen gas tanks, propel blades and submarines.  The MBMP is 
known to be NP-hard (Papadimitriou 1976). 
 
For many years researchers were only interested in designing relatively simple heuristic procedures and 
sacrificed solution quality for speed.  This is the case of the Reverse Method (Cuthill and McKee, 1969) 
and the GPS procedure (Gibbs et al. 1976).  These two methods yield similar results in terms of solution 
quality; however, GPS is considerably faster, with an average speed that is about 8 times faster than the 
reverse Cuthill-McKee procedure.  Recently, metaheuristics have been adapted to this problem.  An SA 
procedure was introduced by Dueck and Jeffs (1995), which is based on an insertion mechanism and does 
not take advantage of the graph structure as the GPS method does.  Martí et al. (2001) propose a TS 
method for this problem, which is likewise based on swap moves that exchange the labels of a pair of 
vertices; however, it incorporates memory structures that prove to be remarkably effective.  Piñana et al. 
(2004) proposed a GRASP method for the MBMP.  The constructive step is based on GPS and the local 
search is based on exchanges.  The GRASP method is coupled with a path relinking phase for improved 
outcomes.  This algorithm clearly outperforms all the previous heuristic approaches.  More recently, Lim 
et al. (2005) introduce the node-shift heuristic which computes the desired label of each vertex according 
to the label of its adjacent vertices and then orders all the vertices in the graph with respect to these 
desired labels, finally all the vertices are re-labeled following this ordering.  This innovative method is 
repeated until no vertex changes its label and it is coupled with a local search hill climbing.  These 
authors also propose a GA that generates the solutions in the initial population with a level structure 
procedure (as the GPS does) and implements a classic mid-point crossover as a combination operator.  
Rodríguez-Tello et al. (2006) propose a simulated annealing method based on a new neighborhood 
definition.  Instead of swapping the labels of two vertices, they introduce a more elaborated move 
definition that leads to an efficient search as shown in their computational results.  Finally, Martí et al. 
(2006) introduce an exact branch and bound method to compute the optimal solution for medium size 
instances, as well as a lower bound for large instances. 
 
This paper is organized as follows.  The next section discusses our new TS adaptation to this problem, 
and describes its differences with the previous TS approach mentioned above.  Section 3 introduces a SS 
algorithm for this problem as well as a hybrid method combining it with the TS approach.  Section 4 
presents extensive computational experimentation with the Harwell-Boeing Sparse Matrix Collection 
which has been used as a benchmark for comparison in most of the papers above.  We compare our 
proposals with the recently developed methods as well as with the lower bounds.  Moreover, our 
extensive computational testing shows the influence of the different elements in heuristic search, such as 
neighbourhood definition, local search, combination methods and the use of memory.  As far as we know, 
this is the first time that the value of heuristic solutions is compared with a lower bound for this problem.  
Finally, we outline our conclusions. 
 
2. Tabu Search 
Although exchanges are used as the primary mechanism to move from one solution to another in our 
implementation, we have also considered two additional moves to escape from local optima and perform 
a more robust search.  In this section we first describe these three moves and then explain the other 
elements, such as the memory structures, of our TS method. 
 
2.1 Short-Term Memory 
Move 1: exchanges 
The operator move1(u,v) assigns the label f(u) to vertex v and the label f(v) to vertex u. 
 
Move 2: double exchanges 
The operator move2(u,v,w) first performs move1(u,v) and then performs move1(v,w).  Thus, if u, v and w 
initially have labels f(u), f(v) and f(w) respectively, after performing move1(u,v) the labels are f(v), f(u) 
and f(w) for u, v and w respectively.  Then when we apply move1(v,w), the labels are f(v), f(w) and f(u) for 
u, v and w respectively. 
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Move 3: multiple shifts 
The operator move3(u,v) assigns the label f(v) to vertex u.  For the other assignments in this move we 
distinguish two cases.  If f(u) < f(v), let u1, u2, …, uk, uk+1=v be the intermediate vertices with consecutive 
labels f(u)+1, f(u)+2, … f(u)+k, f(u)+k+1 respectively, then this move assigns label f(u) to u1, f(u)+1 to 
u2, …. f(u) + k-1 to uk, and f(u)+k to v.  Alternatively, if f(u) > f(v), let u1, u2, …, uk, uk+1=v be the vertices 
with labels f(u)-1, f(u)-2, … f(u)-k, f(u)-k-1 respectively, then this move assigns label f(u) to u1, f(u)-1 to 
u2, …. f(u) - k+1 to uk, and f(u)-k to v. 
 
Glover and Laguna (1997) introduced compound moves, often called variable depth methods, constructed 
from a series of simpler components.  As is well-known, one of the pioneering contributions to this kind 
of moves was Lin and Kernighan (1973).  Within the class of variable depth procedures, a special 
subclass called ejection chain procedures has recently proved useful. An ejection chain is an embedded 
neighborhood construction that compounds the neighborhoods of simple moves to create more complex 
and powerful moves.  It is initiated by selecting a set of elements to undergo a change of state (e.g. to 
occupy new positions or receive new values).  The result of this change leads to identifying a collection of 
other sets, with the property that the elements of at least one must be “ejected from” their current states.  
State-change steps and ejection steps typically alternate, and the options for each depend on the 
cumulative effect of previous steps (usually, but not necessarily, being influenced by the immediately 
preceding step).  In some cases, a cascading sequence of operations may be triggered, representing a 
domino effect. 
 
Since our focus is to change the labels in order to reduce the current value of Bf(G), we consider the set of 
critical vertices, where a vertex v is critical if Bf(v)=Bf(G).  Note that it is necessary to reduce the value 
Bf(v) for all the critical vertices in order to improve the bandwidth of the graph G.  Moreover, we define a 
near-critical vertex v as one for which Bf(v)≥ α Bf(G) with 0<α <1.  Near-critical vertices do not 
determine the value of the objective function Bf(G) in the current labeling, but they are considered likely 
to do so in subsequent iterations.  We then construct the candidate list C(f) of critical and near-critical 
vertices at each iteration.  In order to construct the set of associated moves to each vertex v in C(f), we 
define the following two quantities: 
 
 ( ) ( ) ( ){ }vNuufmaxvmax ∈= :  
 ( ) ( ) ( ){ }vNuufminvmin ∈= :  
 
Note that the "best label" for v in the current labeling f is 
 

( ) ⎥⎦
⎥

⎢⎣
⎢ +

=
2

min(v)max(v)vmid . 

 
The neighborhood of a solution is defined from the set C(f), their best labels and the moves introduced 
above.  Let v be a critical or near critical vertex in C(f) and mid(v) its "best label", we then consider the 
three following neighborhoods: 
 
Neighborhood 1: exchanges 
This neighborhood (proposed by Martí et al., 2001) consists of the set of solutions obtained by applying 
move1(v,u) to all vertices u with labels f(u) that are "closer" to mid(v) than f(v).  In mathematical terms, 
we consider the moves move1(v,u) for all u in N'(v):  
 

( ) ( ) ( ) ( ) ( ){ }vfvmidufvmiduvN −<−=′ :  
 
Neighborhood 2: double exchange 
This neighborhood consists of the set of solutions obtained by applying move2(v,u,w) to the vertex u with 
f(u)=mid(v) and to all vertices w∈N'(u).  This compound move, in which we first perform move1(v,u) and 
then move1(u,w), is in fact an implementation of an ejection chain of depth 2.  It is initiated by the critical 
or near critical vertex v, which "seeks" the vertex u with the best label for v, and then vertex u "seeks" the 
vertices w with a good label for u.  Note that in order to reduce the size of this neighborhood, we restrict 
the search to the vertex u in N'(v) with the best label for v. 
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Neighborhood 3: multiple shifts 
This is the most elaborate neighborhood in our method (proposed by Rodríguez-Tello et al. 2006), since it 
implies the change of the label in a relatively large number of vertices.  It consists of the set of solutions 
that can be obtained applying move3(v,u).  Note that this move implements an ejection chain since it 
involves the change of label of the intermediate vertices  u1, u2, …, uk, uk+1=v.  Specifically, move3(v,u) is 
in fact the result of the consecutive movements move1(v, uk), move1(uk, uk-1), …, move1(u2, u1) and 
move1(u1, u).  This move could result in a re-labeling of a large number of vertices.  To limit this number 
and reduce the computational effort, we have restricted its application to those cases in which k≤n/5. 
 
Regardless of the neighborhood that we are using, given a vertex v in C(f), Bf(v) will decrease after 
performing the corresponding move; but we must also consider the change in the bandwidth value of all 
the vertices involved in the move.  For example, in neighborhood 1, when we exchange the labels of v 
and u, we need to consider the change in Bf(v), Bf(u) and Bf(z) for all z∈N(v)∪N(u), and likewise in the 
other two neighborhoods (in which we need to check the change in the Bf value of a larger number of 
vertices compared with move 1). 
 
In the computational study in Section 4 we compare the performance of these three neighborhoods.  
Specifically, we consider three TS algorithms, each one based on each of the neighborhoods above.  
Moreover, we also study the combination of the three moves into a single method. 
 
One of the key elements in heuristic search is the definition of the value of a move.  The most common 
practice is to define the move value as the change in the objective function value.  However, in the 
context of the MBMP, the change in the objective function value provides little or no information during 
the search whenever the current labeling has more than one critical vertex.  Additionally, the calculation 
of Bf(G) after a move is computationally expensive since the new value of the bandwidth of the graph can 
be achieved in one or several vertices not involved in the move.  Therefore to update Bf(G) we have to 
examine all the vertices in the graph. 
 
Given a critical or near critical vertex v, the value of an associated move (in any of the neighbourhoods) is 
the difference between the number of vertices in C(f) before and after the move.  In mathematical terms: 

 
MoveValue(v) = |C(f)| - |C(f ’)| 

 
where f ’ is the labeling obtained when applying the move to the current labeling f.  A positive MoveValue 
indicates that the solution “improves” since the number of critical vertices decreases, although the 
objective value may or may not be reduced.  This is an extension of the move value definition introduced 
in Piñana et al. (2004) which differs from the move value proposed in Martí et al. (2001).  In addition, we 
modified this evaluation which takes the value -K (the penalization K being a huge number) when the 
application of the move leads to a bandwidth of the vertex v, Bf'(v) which is larger than the current 
bandwidth of the graph Bf(G). 
 
Each step of the TS method consists of computing the set of vertices C(f) and exploring them in search of 
improving moves.  First we scan all the vertices in the graph to determine Bf(G) and compute C(f).  Since 
this is a time-consuming operation we do not re-compute Bf(G) until all the vertices in C(f) have been 
examined and the selected moves performed.  Then we consider each critical vertex v in C(f) and 
implement a first strategy to explore the set M(v) of its associated moves.  As opposed to the best strategy 
that selects the move with the largest move value in M(v), the first strategy scans M(v) in search of the 
first movement with a strictly positive value. (If no move in M(v) is positive, then the one with the largest 
value is selected)  The superiority of the first strategy in the context of different combinatorial 
optimization problems has been well documented (see for example Laguna et al. 1999). 
 
In the short-term memory design, the identity of a vertex whose label has been changed is the attribute 
used to impose a tabu restriction.  Specifically, after a move in M(v) is executed, the labels of the vertex v 
and the other vertices involved are not allowed to change until the tabu tenure expires.  This is a 
straightforward memory structure implementation introduced in Martí et al. (2001), which basically 
employs a one-dimensional array to store the iteration number each time vertex v gains its tabu status, and 
compares its value with tenure (the number of iterations in which a vertex is not allowed to change its 
label). 
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We have considered a more elaborate memory structure that implements a different tenure value for 
vertex v from the other vertices involved in the move.  In such a design, regarding neighborhood 1 (when 
move1(v,u) is performed) the tenure value for vertex v is larger than the tenure value for vertex u, because 
v is a critical or near critical vertex and u is a vertex that simply happens to have a label that makes the 
move attractive.  The same situation appears in neighborhood 2 when move2(v,u,w) is performed.  On the 
other hand, since move3(v,u) could modify the labels of a large number of vertices (u, u1, u2, …, uk, v), we 
only set the tabu status for the "extreme vertices" v, u to avoid an excessive reduction in the search space.  
We define c-tenure as the tabu tenure of the critical or near critical vertex v and nc-tenure as the tabu 
tenure of the non-critical vertices in the move.  We have also implemented an aspiration criteria that 
permits changing the label of a tabu vertex u if its current label f(u) is the best label for a vertex v in C(f), 
i.e. mid(v)=f(u), and the associated move has a positive value. 
 
2.2 Long Term Memory 
In the long term memory we re-start the search from a new solution after a number of consecutive 
iterations without improvement.  The new solution is generated using a level structure initiated in a vertex 
which has been randomly selected according to the frequencies collected during the application of the 
short term memory phase.  Let CFreq(i) be the number of times that vertex i has been included in the set 
C(f).  We consider that the vertices with a large CFreq-value usually receive a label that determines the 
bandwidth of the graph, and thus they are good candidates for initiating a label assignation. 
 
A level structure is a partition of V into sets L1, L2, …, Lk, called levels, in which vertices adjacent to a 
vertex in Li are either in Li-1, Li or Li+1 (if i=1 or k, we do not consider Li-1 or Li+1 respectively).  The re-
starting mechanism first finds a level structure initiated in a vertex (root) with a high CFreq value.  L1 
consists only of this root and the procedure constructs a level structure from this starting vertex as in the 
GPS method (Gibbs et al. 1976).  A second level structure is built with its root in one vertex in Lk, and 
both structures are merged into a single one as in the GPS method.  Then the re-starting mechanism 
assigns, level-by-level, consecutive labels to the vertices V of G, beginning with label 1.  At each iteration 
of the construction phase, the candidate list CL is formed with those vertices in the current level.  
Therefore, initially CL=L1, and when all the vertices in L1 have been labeled, CL=L2 and so on, until all 
the vertices in Lk have been labeled. 
 
We adapt the following constructive method C5 introduced in Piñana et al. (2004), which presents a good 
balance between quality and diversity compared with the other four proposed constructions.  Given a 
label l to be assigned (labels 1,2,.., l-1, have been previously assigned), and a vertex v in level Li, we 
define LeftB(v,l) as the difference between l and the minimum label of its adjacent vertices in Li-1.  We 
also define RightB(v,l) as the difference between the maximum label of its adjacent vertices in Li+1 and l.  
If label l is assigned to vertex v, then Bf(v) would be the maximum between LeftB(v,l) and RightB(v,l).  
However, since the vertices in level Li+1 are not yet labeled, we cannot compute RightB(v,l) exactly.  We 
compute a lower bound of this value as the number of unlabeled vertices in Li (excluding v) plus the 
number of adjacent vertices of v in Li+1.  If we wait until the next step to label vertex v (with label l+1), 
LeftB(v,l) will increase by a unit, while RightB(v,l) will decrease by a unit.  Therefore, if LeftB(v,l) is 
greater than RightB(v,l) it is better to label vertex v as soon as possible in order to obtain a low Bf(v) 
value; on the other hand, if it is lower, there is no need to label it now (and thus we can wait until later 
steps).  The restricted candidate list of vertices RCL is then built with those vertices v in CL with 
LeftB(v,l) > RightB(v,l).  A vertex v is randomly selected from RCL and labeled with l.  The construction 
phase terminates after n steps, when all the vertices have been selected and labeled.  
 
Our TS algorithm for the MBMP executes the short-term memory component, computing the set of 
critical and near-critical vertices C(f) at each iteration and performing moves to re-label these vertices in 
order to reduce Bf(G).  After a number tabu_iter of consecutive iterations without reducing the value of 
Bf(G), the search is re-initiated by applying the long-term component.  Then, a new labeling (solution) is 
constructed, starting with the node with the largest Cfreq value (most of the times the critical one).  We 
have empirically found that an improved strategy alternates this criterion with the selection of the vertex 
with the lowest degree (for root selection in the construction of the level structure) for diversification 
purposes.  In the construction of a new solution, namely fk, we apply a filter to discard low quality 
solutions.  Let ci be the value of solution fi according to the expression: 
 

∑
∈

=
Vv

fi vB
n

c
i

)(1
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Then if the value ck of the new solution fk satisfies the inequality 
 

ikik cc
1,...,1

min)1(
−=

+≤ β  

 
the solution is considered for improvement and the short-term component is applied. Otherwise, it is 
discarded and a new solution is generated with the root in the next vertex according to the Cfreq value.  
The algorithm finishes after max_iter re-starts. In the computational section we study the influence of the 
three parameters in the short term component, α  (which defines the near critical vertices),  c-tenure and 
nc-tenure (which controls the tabu tenure); as well as the parameter β that defines the filter in the long-
term component. 
 
 
3. Scatter Search 
SS methodology is very flexible, since each of its elements can be implemented in a variety of ways and 
degrees of sophistication.  In this section we propose a SS algorithm for the MBMP based on the well-
known “five-method template” (Laguna and Martí 2003): 
 

1. Diversification Generation  
2. Improvement  
3. Reference Set Update  
4. Subset Generation  
5. Solution Combination  

 
The SS procedure starts with the creation of an initial reference set of solutions RefSet.  The 
Diversification Generation Method is used to build a set P of diverse solutions.  The size of P (PSize) is 
typically at least 10 times the size of RefSet (b).  The initial reference set is built according to the 
Reference Set Update Method.  It usually consists of selecting b/2 best solutions from P, as measured by 
the objective function value and b/2 distinct and maximally diverse solutions from P.  The solutions in 
RefSet are ordered according to quality, where the best solution is the first one in the list. 
 
Most of the SS approaches are based on combinations of two elements (subsets of size 2) from the RefSet.  
Although this is a straightforward implementation of the Subset Generation Method, it has proved to be 
very effective (Campos et al. 2001).  According to this, the search is initiated by generating all pairs of 
reference solutions (resulting in (b2-b)/2 pairs).  These pairs are selected one at a time in lexicographical 
order and the Solution Combination Method is applied to generate one or more trial solutions.  These trial 
solutions are subjected to the Improvement Method.  The Reference Set Update Method is now applied to 
build the new RefSet with the best solutions, according to the objective function value, from the current 
RefSet and the set of trial solutions.  If RefSet changes after the application of the reference set update 
method, the search continues by applying the subset generation method again.  However, now we only 
consider those pairs in which at least one solution has not been combined in the past (in other words, we 
do not combine pairs already combined in previous iterations).  If RefSet does not change after the 
application of the Reference Set Update Method, the search finishes. 
 
It should be noted that the advanced features of SS are related to the way these five methods are 
implemented.  That is, the sophistication comes from the implementation of the SS methods instead of the 
decision to include or exclude certain elements (as in the case of TS mentioned above). Three of these 
Methods, the Diversification Generation, the Improvement and the Combination, are problem dependent 
and should be designed specifically for the problem at hand (although it is possible to design “generic” 
procedures, it is more effective to base the design on the specific characteristics of the problem setting).  
The other two, the Reference Set Update and the Subset Generation Methods, are context independent, 
and usually have the standard implementation described above (as is the case with our procedure).  Our 
three methods follow: 
 
The Diversification Generation Method generates a collection of diverse trial solutions with good quality 
and diversity among them.  Piñana et al. (2004) proposed five constructive algorithms for the MBMP 
within the GRASP methodology.  C1, C2 and C3 are based on a node assignment, while C4 and C5 are 
based on a level structure.  We have considered the methods C2 and C5 (the best one in each class) to 
obtain solutions with different structures.  Moreover, we propose a new method, C6, to increase diversity 
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in the set P.  Therefore, in this phase of the SS method, we generate |P|/3 solutions with C2, |P|/3 
solutions with C5 and |P|/3 solutions with C6. 
 
The method C5 was introduced in the previous section.  A description of C2 follows.  This method starts 
by creating a list of unlabeled vertices U, which at the beginning consists of all the vertices in the graph 
(i.e. initially U=V).  The first vertex v is randomly selected from all those vertices in U.  We assign a 
random label to v and delete it from U.  In subsequent construction steps, the candidate list CL consists of 
all the vertices in U that are adjacent to at least one labeled vertex.  The restricted candidate list RCL is 
formed from those vertices that have been in CL for a maximum number of construction steps.  A vertex v 
is randomly selected from RCL in order to be labeled.  Once v is selected it is labeled with the best 
available label according to the vertices already labeled (we compute mid(v) considering only the vertices 
already labeled).  Then U, CL and RCL are updated for the next step.  The construction C2 terminates 
after n steps, when all vertices have been selected and labeled (i.e. when U= ∅). 
 
Construction C6 implements a deterministic version of C5.  It assigns, level-by-level, consecutive labels 
to the vertices V of G beginning with label 1.  Given a label l to be assigned (labels 1,2,.., l-1, have been 
previously assigned), we compute as in C5 for each vertex v in level Li, LeftB(v,l) and RightB(v,l).  
However, instead of generating a list of candidate vertices based on these values, we directly assign label 
l to the vertex v with the minimum difference LeftB(v,l) - RightB(v,l).  The algorithm first builds a level 
structure with its root on a vertex with minimum degree.  As in C5, the construction of the level structure 
to be labeled consists of the construction of two different structures that are merged into a single one.  
Then it selects one vertex in L1 to receive label 1, and finishes after n steps according to the values 
computed above.  Further constructions start with the creation of a level structure in another root vertex 
with minimum degree from those not used and proceed in the same way. 
 
The Improvement Method transforms a trial solution into one or more enhanced trial solutions.  (If no 
improvement of the input trial solution results, the “enhanced” solution is considered to be the same as 
the input solution.) 
 
Each step in our improvement method consists of selecting a vertex v in C(f) to be considered for a move.  
M(v) is computed, and a vertex u is selected in M(v) to perform move1(v,u).  We implement the first 
strategy that scans M(v) in search for the first vertex u whose movement results in a strictly positive move 
value.  The local search phase terminates when improvement is no longer possible (i.e. when there is no 
move that reduces the number of vertices in C(f)). 
 
The Solution Combination Method transforms a given subset of solutions produced by the Subset 
Generation Method into one or more combined solution vectors.  As in most SS implementations, we 
restrict our attention to pairs of solutions.  Specifically, we have considered four different combination 
methods to obtain a new solution from two given solutions f and g. 
 
Combination Method 1 is based on computing the "average label" of each vertex according to the labels 
in two given solutions.  Let f and g be two labelings, then we compute for each vertex v the "average 
label" Avg(v) as  
 

Avg(v) = (1/2) (f(v)+g(v)) 
 
Note that Avg(v) is not necessarily an integer number and, moreover, two different vertices could have the 
same value.  Then, in order to obtain a new labeling, we order the vertices according to their Avg-values 
(the first being the vertex with the lowest value) and assign consecutive labels to them from 1 to n. 
 
Combination Method 2 generalizes the previous method.  Given two solutions f and g, it computes the 
"convex combination label" Conv(v) for each vertex v with the value 
 

Conv(v)= f(v)+λ(g(v)-f(v)) 
 
As in the previous method, vertices are ordered according to these values and consecutive labeling.  We 
will study the influence of the parameter λ (in (0,1)) in the solution quality. 
 
Combination Method 3 selects in step i (from i=1 to n) the label for vertex vi.  It scans (from left to right) 
each given solution f and g, and uses the rule that each labeling votes for its first label that has not yet 
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been included in the combined solution (referred to as the “incipient label”).  The voting determines the 
next label to be assigned to the first as yet unlabeled vertex of the combined solution.  This is a min-max 
rule in the sense that if any label of the solution is chosen other than the incipient label, then it would 
increase the deviation between the original and the combined permutations.  Similarly, if the incipient 
label were placed later, in the combined solution, than its next available position, this deviation would 
also increase.  Hence the rule attempts to minimize the maximum deviation of the combined solution 
from the original solutions.  This method was successfully applied to the linear ordering problem 
(Campos et al. 2001). 
 
Note that the MBMP is a problem in which relative positioning of the elements is more important than 
their absolute positioning.  Therefore, before combining two solutions with method 3, we rotate one of 
them to maximize the number of vertices with the same label in both solutions.  Figure 1 shows a 
representation of two solutions f and g of a graph with eight vertices in which the label of each vertex is 
depicted, and Figure 2 shows three consecutive rotations of solution g. 
 
 f 1 3 4 2 5 8 7 6 
 
 g 6 8 7 1 2 3 4 5 
 

Figure 1.  Representation of two solutions 
 
 
 g’ 1 2 3 4 5 6 8 7 
 
 g’’ 2 3 4 5 6 8 7 1 
 
 g’’’ 8 7 1 2 3 4 5 6 
 

Figure 2.  Rotations of a solution 
 
In Figure 1 we can see that, for example, the label of vertex 2 is 3 in solution f and 8 in solution g.  
Solutions g’, g’’ and g’’’ are obtained by rotating g (shifting all the labels the same number of positions in 
the permutation vector).  Figure 2 depicts in bold the labels that match with solution f, for example, vertex 
2 is labeled with 3 in f and in g’’.  We can see that g’ has two coincident labels with f, g’’ has four and 
g’’’ has two, then we would combine f with g’’. 
 
Combination Method 4 first constructs two level structures.  The first one is initiated (rooted) in the 
vertex that has label 1 in f and the procedure constructs a level structure from this starting vertex as in the 
GPS method (Gibbs et al. 1976). Then, from those vertices in the last level of this structure, we select the 
vertex with the largest label in g and the method constructs a second level structure rooted in it.  Both 
structures are then combined and within each level we assign the first labels to vertices with lower Avg-
value as computed in Combination Method 1. 
 
Different advanced designs have been proposed for the SS methodology (Laguna and Martí, 2003).  In 
this paper we focus on the use of memory.  We have considered the hybridization between SS and TS.  
Specifically, we propose a version in which we replace the local search procedure with the TS method 
introduced above.  Moreover, we study not only the inclusion of this advanced improvement method, but 
a simpler version with no improvement at all.  This way in the next section we study the contribution of a 
memory-less local search, as well as a memory-based local search in the SS procedure. 
 
 
4. Computational Results 
For our computational testing, we implemented, in C, our two solving methods, TS and SS, described in 
the previous sections.  We first study the contribution of their different elements and then compare their 
solutions with those obtained with the previous tabu search procedure of Martí et al. (2001), pTS, the 
GRASP method by Piñana et al. (2004), the Node Shift and the GA methods by Lim et al. (2005) and the 
SA method by Rodriguez-Tello et al. (2005).  Our codes were compiled with Microsoft Visual C++ 6.0, 
optimizing for maximum speed.  The experiments with the 113 previously reported instances were run on 
a Pentium IV at 3 GHz with 1GB of RAM.  These instances are from the public domain Harwell-Boeing 
Sparse Matrix Collection (http://math.nist.gov/MatrixMarket/data/Harwell-Boeing). 
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In Martí et al. (2005) we proposed a branch and bound algorithm to obtain lower bounds for the MBMP.  
In some cases we know that the bound matches the optimal solution, but in most large instances we do 
not know how far this value is with respect to the optimal solution.  We used these lower bounds in all the 
experiments in this section. 
 
We performed four sets of experiments with the following goals: 
 

1. A preliminary experimentation with 16 instances to find the best values for the key search 
parameters of our tabu search algorithm TS, α, β, c-tenure, nc-tenure and the neighborhood. 

 
2. A preliminary experimentation with 16 instances to study the different combination methods 

as well as the contribution of the improvement phase in the SS algorithm.  We also test the 
hybridization of the TS and the SS methods. 

 
3. An experiment with the entire set of 113 instances to compare the performance of our two 

proposals TS and SS, with the best known methods for this problem: pTS, GRASP, 
Node_Shift and SA. 

 
4. A final experiment to measure the robustness of the proposed procedures on the 16 instances 

used in experiments 1 and 2.  We replicated the methods over 20 independent runs and 
measure the variation across runs. 

 
The preliminary experimentation was performed on the following 16 representative problem instances (8 
medium-size problems and 8 large-size problems): will57, impcol_b, dwt__234, west0132, impcol_c, 
west0167, fs_183_1, will199, impcol_a, bcspwr04, gre__343, plskz362, bcspwr05, dwt__592, steam2, and 
662_bus. 
 
In our first experiments with the TS algorithm we tested values for α in the range [0.1, 0.7] and c-tenure, 
nc-tenure in the range [2, 10].  In these experiments we run the short-term component of the method.  
Following the recommendations in Martí et al. (2001) we perform it with tabu_iter=100 in all the 
experiments.  Table 1 shows the results for different α values (with c-tenure = nc-tenure=5) and Table 2 
shows the results for different tenure values (with α=0.1).  Both tables show the average value of the 
bandwidth in the 16 instances, the average percentage deviation from the lower bound and the running 
time in seconds. 
 
 α Value % LB Dev. Time 
 0.1 36.13 28.9% 0.60 
 0.3 36.81 30.5% 0.54 
 0.5 36.44 29.5% 0.41 
 0.7 37.19 32.5% 0.37 

Table 1. Preliminary experiment. TS with α 
 
 c-tenure nc-tenure Value % LB Dev. Time 
 5 5 36.13 28.9% 0.60 
 7 5 36.94 31.3% 0.56 
 10 5 37.44 32.7% 0.51 
 7 2 36.44 29.0% 0.58 
 10 2 36.75 30.1% 0.58 
 0 0 36.50 31.6% 0.62 
 5 7 36.63 29.9% 0.55 
 5 10 36.06 28.4% 0.60 
 2 7 36.63 30.0% 0.49 
 2 10 35.94 28.4% 0.59 

Table 2. Preliminary experiment. TS with tenure 
 
Table 1 shows that the best results are achieved with α=0.1 and Table 2 shows that, regarding the tabu 
tenure, the best solutions are obtained with c-tenure = 2 and nc-tenure=10.  This is an interesting result 
since the foundations of an asymmetric tenure given in Section 2 were based on the hypothesis that the 
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tenure of a critical vertex c-tenure is probably larger than the tenure of a non-critical vertex nc-tenure.  
Note that Table 2 also shows that the results of the local search method without memory structures        
(c-tenure =nc-tenure=0 ) are clearly inferior to those obtained with the selected version with memory, 
since the former obtains an average percentage deviation from the lower bound of 31.6% while the TS 
method with c-tenure = 2 and nc-tenure=10 presents a deviation value of 28.4%.  Hence, we use these 
values to perform the rest of our experimentation. 
 
In the next preliminary experiment we compare the three neighborhoods introduced in Section 2 for the 
TS method.  Table 3 shows the results of three algorithms, each one implementing the TS short-term 
component with a different neighborhood.  Moreover, we consider a fourth method, Mixed, in which the 
three neighborhoods are combined applying the three associated moves consecutively. 
 
 Neighb. Value % LB Dev. Time 
 1 35.94 28.4% 0.59 
 2 46.56 62.4% 1.16 
 3 59.44 114.1% 52.63 
 Mixed 35.94 28.4% 54.92 

Table 3. Preliminary experiment. TS with different neighborhoods 
 
Table 3 shows that the best solutions are obtained with neighborhood 1.  This is the simplest 
neighborhood in terms of the number of operations to perform a move and it explains its extremely low 
running times (0.59 seconds on average).  This experiment shows that within a tabu search framework 
this is the most effective neighborhood and even the combination of the three moves considered is unable 
to improve its results.  Hence, we use this neighborhood in the rest of our experimentation.  Note that 
these results differ in part with the experiments by Rodríguez-Tello et al. (2006) since their SA 
implementation based on neighborhood 3 produces remarkable results. 
 
Table 4 reports the results of the long-term TS method for different values of parameter β in the range 
[0.1, 0.5].  In this experiment we apply the short-term component with c-tenure = 2, nc-tenure=10, α=0.1, 
and the global number of iterations maxiter set to 25. 
 
 β Value % Dev. Time 
 0.1 33.50 16.8% 14.05 
 0.3 33.56 16.8% 14.06 
 0.5 33.69 17.4% 14.67 

Table 4. Preliminary experiment. TS with β 
 
Table 4 shows that there are no significant differences among the β values, with only a moderate 
improvement in low values.  We will use β=0.1 in the final experiments. 
 
In our second set of experiments we use the same 16 problem instances to study some key elements in the 
performance of our SS procedure.  Table 5 reports the results of four versions of the SS algorithm, each 
one with a different combination method (as described in Section 3).  Table 6 shows the results of four 
versions of the SS algorithm (all of them with Combination Method 1), the first one with no improvement 
method (No), in the second one the improvement is applied after the Combination Method (Post Combi.), 
the third one is the standard SS design in which the improvement is applied after the Solution Generation 
Method and also after the Combination Method (Standard), finally, in the fourth version, we apply the 
short-term memory TS as the improvement (Tabu), instead of the local search applied in the other 
versions. 
 
 
 Combination Value % Dev. Time 
 1 35.81 26.1% 1.06 
 2 36.06 26.8% 1.32 
 3 37.00 30.3% 2.30 
 4 38.06 33.8% 0.96 

Table 5. Preliminary experiment. SS with combination methods 
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 Improvement Value % Dev. Time 
 No 46.63 61.2% 0.16 
 Post Combi. 36.31 27.8% 0.65 
 Standard 35.81 26.1% 1.05 
 Tabu 33.56 17.0% 111.79 

Table 6. Preliminary experiment. SS with improvement methods 
 
Table 5 shows that the best results are obtained with Combination Method 1, which presents an average 
percent deviation of 26.1%, closely followed by Combination Method 2, which presents a deviation of 
26.8%.  Table 6 shows that the classic design of SS in which the local search is applied after both, 
solution generation and combination, obtains better results (26.1%) compared with the version with no 
local search at all (61.2%) or the version in which the local search is applied only after combination 
(27.8%).  As expected, the use of local search increases the running times (the version with no local 
search presents an average of 0.16 seconds and the classic SS design presents an average of 1.05 
seconds).  Finally, the version in which the TS method replaces the local search is the best one in terms of 
solution quality (17.0% deviation from lower bound) although it presents longer running times (111.79 
seconds on average). 
 
In our third set of experiments, we use the 113 Harwell Boeing problem instances to compare the 
performance of our proposed procedures TS and SS_TS (the hybrid version of SS with TS) with the best 
heuristics reported in the literature.  Specifically, we compare their solutions with those obtained with the 
previous TS procedure of Martí et al. (2001), pTS; the GRASP method with Path Relinking by Piñana et 
al. (2004), GRASP-PR; the genetic and node shift methods by Lim et al. (2005) with 100 restarts, GA and 
NS; and the simulated annealing method by Rodríguez-Tello et al. (2005), SA.  Tables 7 and 8 report the 
results on a single run of these seven methods when solving 33 medium (n<200) and 80 large (200 ≤ n 
≤1000) instances, respectively.  These tables show the average value of the best solution found in a single 
run, Bf(G), the average percentage deviation of the best solutions from the lower bounds, Dev.; the CPU 
time in seconds, CPU; and the number of best solutions and optima that each method is able to match.  
Note that we do not know how far the lower bound is with respect to the optimal solution, so the “true” 
number of optima achieved by each method could be higher than the numbers in the table, but we can 
only certify the optimality of the cases indicated (further research in exact methods is needed to make 
these values accurate). 
 

 pTS GRASP-PR TS GA NS SA SS_TS 
Bf(G) 23.21 22.52 22.52 22.48 22.36 22.61 22.67 
Dev. 15.98% 9.15% 9.26% 10.70% 8.21% 11.60% 9.80% 
CPU 3.378 2.854 4.499 2.543 2.177 12.002 22.501 
No. of best 11 22 19 16 21 26 21 
No. of optima 9 15 11 11 16 9 12 

Table 7. Comparison on 33 medium instances 
 
 

 pTS GRASP-PR TS GA NS SA SS_TS 
Bf(G) 99.86 99.09 96.16 97.01 97.61 96.59 96.72 
Dev. 35.91% 33.41% 27.77% 33.17% 28.38% 30.26% 25.20% 
CPU 156.890 151.161 139.417 85.219 240.642 210.255 456.216 
No. of best 4 12 27 39 15 34 39 
No. of optima 1 4 4 2 5 2 5 

Table 8. Comparison on 80 large instances 
 
 
This experiment clearly shows that the seven methods under comparison obtain solutions of similar 
values on average.  In medium instances, the average value of the best solutions found ranges from 22.36 
for the NS method to 23.21 for the pTS.  In large instances, this value ranges from 96.16 for the TS to 
99.86 for the pTS.  Comparing the best with the worst results it represents a variation range of 3.8% on 
average. 
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Regarding CPU time, the GRASP-PR, pTS, TS and SS_TS methods were run on a Pentium IV at 3GHz, 
the SA, as reported in Rodríguez-Tello et al. (2006) was run on a Pentium IV at 2.8GHz, and the GA and 
NS, as reported in Lim et al. (2005), were run on a Pentium IV at 1.6GHz.  The hybrid SS_TS is clearly 
the most time-consuming method, since it presents an average of 22.501 seconds on medium instances 
and 456.216 seconds on large instances.  The fastest one is surprisingly the GA in both medium and 
large-size instances. 
 
As mentioned, the NS method provides good results; especially in medium instances in which it is able to 
obtain the lowest average value (22.36) and the largest number of optima (16) of all the methods in 2.177 
seconds.  Moreover, as reported in Lim et al. (2005), if we run the NS heuristic for 200 restarts it is able 
to reduce the average value in medium instances to 22.18, although CPU time increases up to 16.69 
seconds on average. 
 
Our tabu search method, TS, provides a good balance between solution quality and speed since it presents 
an average percentage deviation of 9.26% achieved in 4.49 seconds in medium instances (only improved 
by the NS and GRASP-PR methods), and a deviation of 27.77% achieved in 139.41 seconds in large 
instances (no method presents a lower average percentage deviation).  Note that in large instances the TS 
method is closely followed by the NS method in terms of solution quality (27.77 % versus 28.38%); 
however, the NS needs 240.64 seconds compared with the 139.41 seconds of the TS. 
 
Rodríguez-Tello et al. (2006) replicated their SA method 20 times and report the best, the worst and the 
average value of the best solutions found in each run.  In our final experiment we will report these values 
on the 16 instances used in the preliminary experiments, collected after 20 replications of our TS and 
SS_TS methods, to measure their robustness and to compare them with the SA. 
 
 

  SA TS SS_TS 
 Min. Value 33.37 33.06 33.31 
 Max. Value 35.19 34.00 34.06 
 Avg. Value 34.13 33.60 33.58 
 Avg. Run time 66.11 57.95 182.07 

Table 9. Results on 20 independent runs 
 
Table 9 shows that the three methods under comparison are quite robust.  The SA presents a variation 
range between the average of the worst and the best value of the 16 instances in the 20 independent runs 
of 1.82, the TS 0.94 and the SS_TS 0.75 units.  This table also shows a marginal improvement in the 
SS_TS algorithm with respect to the other two methods, although it presents significantly longer running 
times (almost 3 times longer than the others). 
 
 
Conclusions 
In this paper we explore the adaptation of the memory programming paradigm to the matrix bandwidth 
minimization problem.  We propose two new methods, one based on TS and the other based on the SS 
methodology.  We study the contribution of some key elements in heuristic search to the final results of 
the method.  Specifically, we consider neighbourhood definition, local search, combination methods and 
the use of memory. 
 
Our extensive computational testing on a public domain set of previously reported instances show the 
effectiveness of the use of memory in heuristic search as well as the convenience of employing relatively 
simple neighbourhoods and combination methods when memory is present.  Moreover, the comparison 
with the best-known methods favours our TS implementation (although some memory-less methods such 
as simulated annealing or genetic algorithms also present very good results). 
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