

Adaptive Memory Programming for
Matrix Bandwidth Minimization*

Vicente Campos, Estefanía Piñana and Rafael Martí+

Departamento de Estadística e Investigación Operativa,
Facultad de Matemáticas, Universitat de València
Dr. Moliner 50, 46100 Burjassot (València), Spain.

Latest version: January 27, 2006

Abstract

In this paper we explore the influence of adaptive memory in the performance of heuristic methods when
solving a hard combinatorial optimization problem. Specifically, we tackle the adaptation of tabu search
and scatter search to the bandwidth minimization problem. It consists of finding a permutation of the
rows and columns of a given matrix which keeps the non-zero elements in a band that is as close as
possible to the main diagonal. This is a classic problem, introduced in the late sixties, that also has a
well-known formulation in terms of graphs. Different exact and heuristic approaches have been proposed
for the bandwidth problem. Our contribution consists of two new algorithms, one based on the tabu
search methodology and the other based on the scatter search framework. We also present a hybrid
method combining both for improved outcomes. Extensive computational testing shows the influence of
the different elements in heuristic search, such as neighbourhood definition, local search, combination
methods and the use of memory. We compare our proposals with the most recent and advanced methods
for this problem, concluding that our new methods can compete with them in speed and running time.

Key Words: Heuristic Search, Memory Programming, Tabu Search, Scatter Search.

* Research partially supported by the Ministerio de Educación y Ciencia (ref. TIC2003-C05-01) and by the Agencia

Valenciana de Ciencia y Tecnologia (ref. GRUPOS03/189).
+ Corresponding author: Rafael.Marti@uv.es

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 2

1. Introduction
When solving a combinatorial optimization problem, the degree to which memory is exploited varies
according to the type of procedure. Virtually all metaheuristics induce a pattern whose present state
depends on the sequence of past states and therefore incorporate an implicit form of memory. Such a
memory, however, does not necessarily take the form of an intelligent memory construction since it does
not use explicit designs for recording past elements but uses this information in a strategic way. Based on
the explicit use of memory, algorithms can be classified as memory-based or memory-less methods.
Approaches such as Tabu Search (TS) or Scatter Search (SS) are memory oriented methods in which
records about past choices and decisions determine future strategies. On the other hand, methods such as
Simulated Annealing (SA) or Genetic Algorithms (GA) do not incorporate the explicit use of memory
structures and are based on other strategies, mostly relying on randomization for decision making in the
search process.

TS (Glover and Laguna, 1997) incorporates adaptive memory which allows the implementation of
procedures that are capable of searching the solution space in an efficient way. The memory used in tabu
search is both explicit and attributive. Explicit memory records complete solutions, typically consisting
of elite solutions visited during the search, while attributive memory is mainly used for guiding purposes.
This latter type of memory records information about solution attributes that change in moving from one
solution to another. Short and long-term memory structures are responsible for the specific composition
of the solution neighborhood. In other words, the neighborhood in a given iteration is the result of
maintaining a selective history of the states encountered during the search. In this sense TS can be
viewed as a dynamic neighborhood method.

SS (Laguna and Martí, 2003) maintains a set of solutions throughout the search (the Reference Set) and
combines these solutions to generate new ones. GA operate on a population of solutions and the
“survivable of the fittest” philosophy translates into an implicit use of memory. In SS however, from one
iteration to the next, the method keeps track of the subsets of reference solutions that have already been
combined. When new solutions enter the reference set, the method generates only those subsets that are
admissible for combination in the current iteration, using a memory structure that allows it to identify the
subsets that contain new reference solutions. There is no equivalent use of memory in genetic algorithms,
since they select solutions for combination purposes using a random scheme.

TS and SS have a common history as their basic principles were suggested by Glover (1977). They are
probably the metaheuristic procedures that employ memory in the most strategic and direct way,
constituting the core of what has been coined as Adaptive Memory Programming in recent years. In this
paper we study the adaptation of both methodologies to solve the matrix bandwidth minimization
problem.

Let G=(V,E) be a graph with vertex set V (|V|=n) and edge set E (|E|=m). A labeling or linear layout f of
G assigns the integers 1, 2, …, n to the vertices of G. Let f(v) be the label of vertex v, where each vertex
has a different label. The bandwidth of a vertex v, Bf(v), is the maximum of the differences between f(v)
and the labels of its adjacent vertices. That is:

() () () (){ }vNuufvfvB f ∈−= :max

where N(v) is the set of vertices adjacent to v. The bandwidth of a graph G with respect to a labeling f is
then:

() (){ }VvvBGB ff ∈= :max

The bandwidth B(G) of graph G is thus the minimum Bf(G) value over all possible labelings f. In other
words, the matrix bandwidth minimization problem consists of finding a labeling f that minimizes Bf(G).
If we consider the incidence matrix of graph G, the problem can be formulated in terms of matrices as
finding a permutation of the rows and the columns of this matrix that keeps all the non-zero elements in a
band that is as close as possible to the main diagonal. For that reason this problem is known as the Matrix
Bandwidth Minimization Problem (MBMP).

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 3

The main application of this problem is to solve non-singular systems of linear algebraic equations. The
preprocessing of the coefficient matrix to reduce its bandwidth results in substantial savings in the
computational effort associated with solving the system of equations. The context of these applications
includes aircraft structures, liquid nitrogen gas tanks, propel blades and submarines. The MBMP is
known to be NP-hard (Papadimitriou 1976).

For many years researchers were only interested in designing relatively simple heuristic procedures and
sacrificed solution quality for speed. This is the case of the Reverse Method (Cuthill and McKee, 1969)
and the GPS procedure (Gibbs et al. 1976). These two methods yield similar results in terms of solution
quality; however, GPS is considerably faster, with an average speed that is about 8 times faster than the
reverse Cuthill-McKee procedure. Recently, metaheuristics have been adapted to this problem. An SA
procedure was introduced by Dueck and Jeffs (1995), which is based on an insertion mechanism and does
not take advantage of the graph structure as the GPS method does. Martí et al. (2001) propose a TS
method for this problem, which is likewise based on swap moves that exchange the labels of a pair of
vertices; however, it incorporates memory structures that prove to be remarkably effective. Piñana et al.
(2004) proposed a GRASP method for the MBMP. The constructive step is based on GPS and the local
search is based on exchanges. The GRASP method is coupled with a path relinking phase for improved
outcomes. This algorithm clearly outperforms all the previous heuristic approaches. More recently, Lim
et al. (2005) introduce the node-shift heuristic which computes the desired label of each vertex according
to the label of its adjacent vertices and then orders all the vertices in the graph with respect to these
desired labels, finally all the vertices are re-labeled following this ordering. This innovative method is
repeated until no vertex changes its label and it is coupled with a local search hill climbing. These
authors also propose a GA that generates the solutions in the initial population with a level structure
procedure (as the GPS does) and implements a classic mid-point crossover as a combination operator.
Rodríguez-Tello et al. (2006) propose a simulated annealing method based on a new neighborhood
definition. Instead of swapping the labels of two vertices, they introduce a more elaborated move
definition that leads to an efficient search as shown in their computational results. Finally, Martí et al.
(2006) introduce an exact branch and bound method to compute the optimal solution for medium size
instances, as well as a lower bound for large instances.

This paper is organized as follows. The next section discusses our new TS adaptation to this problem,
and describes its differences with the previous TS approach mentioned above. Section 3 introduces a SS
algorithm for this problem as well as a hybrid method combining it with the TS approach. Section 4
presents extensive computational experimentation with the Harwell-Boeing Sparse Matrix Collection
which has been used as a benchmark for comparison in most of the papers above. We compare our
proposals with the recently developed methods as well as with the lower bounds. Moreover, our
extensive computational testing shows the influence of the different elements in heuristic search, such as
neighbourhood definition, local search, combination methods and the use of memory. As far as we know,
this is the first time that the value of heuristic solutions is compared with a lower bound for this problem.
Finally, we outline our conclusions.

2. Tabu Search
Although exchanges are used as the primary mechanism to move from one solution to another in our
implementation, we have also considered two additional moves to escape from local optima and perform
a more robust search. In this section we first describe these three moves and then explain the other
elements, such as the memory structures, of our TS method.

2.1 Short-Term Memory
Move 1: exchanges
The operator move1(u,v) assigns the label f(u) to vertex v and the label f(v) to vertex u.

Move 2: double exchanges
The operator move2(u,v,w) first performs move1(u,v) and then performs move1(v,w). Thus, if u, v and w
initially have labels f(u), f(v) and f(w) respectively, after performing move1(u,v) the labels are f(v), f(u)
and f(w) for u, v and w respectively. Then when we apply move1(v,w), the labels are f(v), f(w) and f(u) for
u, v and w respectively.

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 4

Move 3: multiple shifts
The operator move3(u,v) assigns the label f(v) to vertex u. For the other assignments in this move we
distinguish two cases. If f(u) < f(v), let u1, u2, …, uk, uk+1=v be the intermediate vertices with consecutive
labels f(u)+1, f(u)+2, … f(u)+k, f(u)+k+1 respectively, then this move assigns label f(u) to u1, f(u)+1 to
u2, …. f(u) + k-1 to uk, and f(u)+k to v. Alternatively, if f(u) > f(v), let u1, u2, …, uk, uk+1=v be the vertices
with labels f(u)-1, f(u)-2, … f(u)-k, f(u)-k-1 respectively, then this move assigns label f(u) to u1, f(u)-1 to
u2, …. f(u) - k+1 to uk, and f(u)-k to v.

Glover and Laguna (1997) introduced compound moves, often called variable depth methods, constructed
from a series of simpler components. As is well-known, one of the pioneering contributions to this kind
of moves was Lin and Kernighan (1973). Within the class of variable depth procedures, a special
subclass called ejection chain procedures has recently proved useful. An ejection chain is an embedded
neighborhood construction that compounds the neighborhoods of simple moves to create more complex
and powerful moves. It is initiated by selecting a set of elements to undergo a change of state (e.g. to
occupy new positions or receive new values). The result of this change leads to identifying a collection of
other sets, with the property that the elements of at least one must be “ejected from” their current states.
State-change steps and ejection steps typically alternate, and the options for each depend on the
cumulative effect of previous steps (usually, but not necessarily, being influenced by the immediately
preceding step). In some cases, a cascading sequence of operations may be triggered, representing a
domino effect.

Since our focus is to change the labels in order to reduce the current value of Bf(G), we consider the set of
critical vertices, where a vertex v is critical if Bf(v)=Bf(G). Note that it is necessary to reduce the value
Bf(v) for all the critical vertices in order to improve the bandwidth of the graph G. Moreover, we define a
near-critical vertex v as one for which Bf(v)≥ α Bf(G) with 0<α <1. Near-critical vertices do not
determine the value of the objective function Bf(G) in the current labeling, but they are considered likely
to do so in subsequent iterations. We then construct the candidate list C(f) of critical and near-critical
vertices at each iteration. In order to construct the set of associated moves to each vertex v in C(f), we
define the following two quantities:

 () () (){ }vNuufmaxvmax ∈= :
 () () (){ }vNuufminvmin ∈= :

Note that the "best label" for v in the current labeling f is

() ⎥⎦
⎥

⎢⎣
⎢ +

=
2

min(v)max(v)vmid .

The neighborhood of a solution is defined from the set C(f), their best labels and the moves introduced
above. Let v be a critical or near critical vertex in C(f) and mid(v) its "best label", we then consider the
three following neighborhoods:

Neighborhood 1: exchanges
This neighborhood (proposed by Martí et al., 2001) consists of the set of solutions obtained by applying
move1(v,u) to all vertices u with labels f(u) that are "closer" to mid(v) than f(v). In mathematical terms,
we consider the moves move1(v,u) for all u in N'(v):

() () () () (){ }vfvmidufvmiduvN −<−=′ :

Neighborhood 2: double exchange
This neighborhood consists of the set of solutions obtained by applying move2(v,u,w) to the vertex u with
f(u)=mid(v) and to all vertices w∈N'(u). This compound move, in which we first perform move1(v,u) and
then move1(u,w), is in fact an implementation of an ejection chain of depth 2. It is initiated by the critical
or near critical vertex v, which "seeks" the vertex u with the best label for v, and then vertex u "seeks" the
vertices w with a good label for u. Note that in order to reduce the size of this neighborhood, we restrict
the search to the vertex u in N'(v) with the best label for v.

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 5

Neighborhood 3: multiple shifts
This is the most elaborate neighborhood in our method (proposed by Rodríguez-Tello et al. 2006), since it
implies the change of the label in a relatively large number of vertices. It consists of the set of solutions
that can be obtained applying move3(v,u). Note that this move implements an ejection chain since it
involves the change of label of the intermediate vertices u1, u2, …, uk, uk+1=v. Specifically, move3(v,u) is
in fact the result of the consecutive movements move1(v, uk), move1(uk, uk-1), …, move1(u2, u1) and
move1(u1, u). This move could result in a re-labeling of a large number of vertices. To limit this number
and reduce the computational effort, we have restricted its application to those cases in which k≤n/5.

Regardless of the neighborhood that we are using, given a vertex v in C(f), Bf(v) will decrease after
performing the corresponding move; but we must also consider the change in the bandwidth value of all
the vertices involved in the move. For example, in neighborhood 1, when we exchange the labels of v
and u, we need to consider the change in Bf(v), Bf(u) and Bf(z) for all z∈N(v)∪N(u), and likewise in the
other two neighborhoods (in which we need to check the change in the Bf value of a larger number of
vertices compared with move 1).

In the computational study in Section 4 we compare the performance of these three neighborhoods.
Specifically, we consider three TS algorithms, each one based on each of the neighborhoods above.
Moreover, we also study the combination of the three moves into a single method.

One of the key elements in heuristic search is the definition of the value of a move. The most common
practice is to define the move value as the change in the objective function value. However, in the
context of the MBMP, the change in the objective function value provides little or no information during
the search whenever the current labeling has more than one critical vertex. Additionally, the calculation
of Bf(G) after a move is computationally expensive since the new value of the bandwidth of the graph can
be achieved in one or several vertices not involved in the move. Therefore to update Bf(G) we have to
examine all the vertices in the graph.

Given a critical or near critical vertex v, the value of an associated move (in any of the neighbourhoods) is
the difference between the number of vertices in C(f) before and after the move. In mathematical terms:

MoveValue(v) = |C(f)| - |C(f ’)|

where f ’ is the labeling obtained when applying the move to the current labeling f. A positive MoveValue
indicates that the solution “improves” since the number of critical vertices decreases, although the
objective value may or may not be reduced. This is an extension of the move value definition introduced
in Piñana et al. (2004) which differs from the move value proposed in Martí et al. (2001). In addition, we
modified this evaluation which takes the value -K (the penalization K being a huge number) when the
application of the move leads to a bandwidth of the vertex v, Bf'(v) which is larger than the current
bandwidth of the graph Bf(G).

Each step of the TS method consists of computing the set of vertices C(f) and exploring them in search of
improving moves. First we scan all the vertices in the graph to determine Bf(G) and compute C(f). Since
this is a time-consuming operation we do not re-compute Bf(G) until all the vertices in C(f) have been
examined and the selected moves performed. Then we consider each critical vertex v in C(f) and
implement a first strategy to explore the set M(v) of its associated moves. As opposed to the best strategy
that selects the move with the largest move value in M(v), the first strategy scans M(v) in search of the
first movement with a strictly positive value. (If no move in M(v) is positive, then the one with the largest
value is selected) The superiority of the first strategy in the context of different combinatorial
optimization problems has been well documented (see for example Laguna et al. 1999).

In the short-term memory design, the identity of a vertex whose label has been changed is the attribute
used to impose a tabu restriction. Specifically, after a move in M(v) is executed, the labels of the vertex v
and the other vertices involved are not allowed to change until the tabu tenure expires. This is a
straightforward memory structure implementation introduced in Martí et al. (2001), which basically
employs a one-dimensional array to store the iteration number each time vertex v gains its tabu status, and
compares its value with tenure (the number of iterations in which a vertex is not allowed to change its
label).

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 6

We have considered a more elaborate memory structure that implements a different tenure value for
vertex v from the other vertices involved in the move. In such a design, regarding neighborhood 1 (when
move1(v,u) is performed) the tenure value for vertex v is larger than the tenure value for vertex u, because
v is a critical or near critical vertex and u is a vertex that simply happens to have a label that makes the
move attractive. The same situation appears in neighborhood 2 when move2(v,u,w) is performed. On the
other hand, since move3(v,u) could modify the labels of a large number of vertices (u, u1, u2, …, uk, v), we
only set the tabu status for the "extreme vertices" v, u to avoid an excessive reduction in the search space.
We define c-tenure as the tabu tenure of the critical or near critical vertex v and nc-tenure as the tabu
tenure of the non-critical vertices in the move. We have also implemented an aspiration criteria that
permits changing the label of a tabu vertex u if its current label f(u) is the best label for a vertex v in C(f),
i.e. mid(v)=f(u), and the associated move has a positive value.

2.2 Long Term Memory
In the long term memory we re-start the search from a new solution after a number of consecutive
iterations without improvement. The new solution is generated using a level structure initiated in a vertex
which has been randomly selected according to the frequencies collected during the application of the
short term memory phase. Let CFreq(i) be the number of times that vertex i has been included in the set
C(f). We consider that the vertices with a large CFreq-value usually receive a label that determines the
bandwidth of the graph, and thus they are good candidates for initiating a label assignation.

A level structure is a partition of V into sets L1, L2, …, Lk, called levels, in which vertices adjacent to a
vertex in Li are either in Li-1, Li or Li+1 (if i=1 or k, we do not consider Li-1 or Li+1 respectively). The re-
starting mechanism first finds a level structure initiated in a vertex (root) with a high CFreq value. L1
consists only of this root and the procedure constructs a level structure from this starting vertex as in the
GPS method (Gibbs et al. 1976). A second level structure is built with its root in one vertex in Lk, and
both structures are merged into a single one as in the GPS method. Then the re-starting mechanism
assigns, level-by-level, consecutive labels to the vertices V of G, beginning with label 1. At each iteration
of the construction phase, the candidate list CL is formed with those vertices in the current level.
Therefore, initially CL=L1, and when all the vertices in L1 have been labeled, CL=L2 and so on, until all
the vertices in Lk have been labeled.

We adapt the following constructive method C5 introduced in Piñana et al. (2004), which presents a good
balance between quality and diversity compared with the other four proposed constructions. Given a
label l to be assigned (labels 1,2,.., l-1, have been previously assigned), and a vertex v in level Li, we
define LeftB(v,l) as the difference between l and the minimum label of its adjacent vertices in Li-1. We
also define RightB(v,l) as the difference between the maximum label of its adjacent vertices in Li+1 and l.
If label l is assigned to vertex v, then Bf(v) would be the maximum between LeftB(v,l) and RightB(v,l).
However, since the vertices in level Li+1 are not yet labeled, we cannot compute RightB(v,l) exactly. We
compute a lower bound of this value as the number of unlabeled vertices in Li (excluding v) plus the
number of adjacent vertices of v in Li+1. If we wait until the next step to label vertex v (with label l+1),
LeftB(v,l) will increase by a unit, while RightB(v,l) will decrease by a unit. Therefore, if LeftB(v,l) is
greater than RightB(v,l) it is better to label vertex v as soon as possible in order to obtain a low Bf(v)
value; on the other hand, if it is lower, there is no need to label it now (and thus we can wait until later
steps). The restricted candidate list of vertices RCL is then built with those vertices v in CL with
LeftB(v,l) > RightB(v,l). A vertex v is randomly selected from RCL and labeled with l. The construction
phase terminates after n steps, when all the vertices have been selected and labeled.

Our TS algorithm for the MBMP executes the short-term memory component, computing the set of
critical and near-critical vertices C(f) at each iteration and performing moves to re-label these vertices in
order to reduce Bf(G). After a number tabu_iter of consecutive iterations without reducing the value of
Bf(G), the search is re-initiated by applying the long-term component. Then, a new labeling (solution) is
constructed, starting with the node with the largest Cfreq value (most of the times the critical one). We
have empirically found that an improved strategy alternates this criterion with the selection of the vertex
with the lowest degree (for root selection in the construction of the level structure) for diversification
purposes. In the construction of a new solution, namely fk, we apply a filter to discard low quality
solutions. Let ci be the value of solution fi according to the expression:

∑
∈

=
Vv

fi vB
n

c
i

)(1

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 7

Then if the value ck of the new solution fk satisfies the inequality

ikik cc
1,...,1

min)1(
−=

+≤ β

the solution is considered for improvement and the short-term component is applied. Otherwise, it is
discarded and a new solution is generated with the root in the next vertex according to the Cfreq value.
The algorithm finishes after max_iter re-starts. In the computational section we study the influence of the
three parameters in the short term component, α (which defines the near critical vertices), c-tenure and
nc-tenure (which controls the tabu tenure); as well as the parameter β that defines the filter in the long-
term component.

3. Scatter Search
SS methodology is very flexible, since each of its elements can be implemented in a variety of ways and
degrees of sophistication. In this section we propose a SS algorithm for the MBMP based on the well-
known “five-method template” (Laguna and Martí 2003):

1. Diversification Generation
2. Improvement
3. Reference Set Update
4. Subset Generation
5. Solution Combination

The SS procedure starts with the creation of an initial reference set of solutions RefSet. The
Diversification Generation Method is used to build a set P of diverse solutions. The size of P (PSize) is
typically at least 10 times the size of RefSet (b). The initial reference set is built according to the
Reference Set Update Method. It usually consists of selecting b/2 best solutions from P, as measured by
the objective function value and b/2 distinct and maximally diverse solutions from P. The solutions in
RefSet are ordered according to quality, where the best solution is the first one in the list.

Most of the SS approaches are based on combinations of two elements (subsets of size 2) from the RefSet.
Although this is a straightforward implementation of the Subset Generation Method, it has proved to be
very effective (Campos et al. 2001). According to this, the search is initiated by generating all pairs of
reference solutions (resulting in (b2-b)/2 pairs). These pairs are selected one at a time in lexicographical
order and the Solution Combination Method is applied to generate one or more trial solutions. These trial
solutions are subjected to the Improvement Method. The Reference Set Update Method is now applied to
build the new RefSet with the best solutions, according to the objective function value, from the current
RefSet and the set of trial solutions. If RefSet changes after the application of the reference set update
method, the search continues by applying the subset generation method again. However, now we only
consider those pairs in which at least one solution has not been combined in the past (in other words, we
do not combine pairs already combined in previous iterations). If RefSet does not change after the
application of the Reference Set Update Method, the search finishes.

It should be noted that the advanced features of SS are related to the way these five methods are
implemented. That is, the sophistication comes from the implementation of the SS methods instead of the
decision to include or exclude certain elements (as in the case of TS mentioned above). Three of these
Methods, the Diversification Generation, the Improvement and the Combination, are problem dependent
and should be designed specifically for the problem at hand (although it is possible to design “generic”
procedures, it is more effective to base the design on the specific characteristics of the problem setting).
The other two, the Reference Set Update and the Subset Generation Methods, are context independent,
and usually have the standard implementation described above (as is the case with our procedure). Our
three methods follow:

The Diversification Generation Method generates a collection of diverse trial solutions with good quality
and diversity among them. Piñana et al. (2004) proposed five constructive algorithms for the MBMP
within the GRASP methodology. C1, C2 and C3 are based on a node assignment, while C4 and C5 are
based on a level structure. We have considered the methods C2 and C5 (the best one in each class) to
obtain solutions with different structures. Moreover, we propose a new method, C6, to increase diversity

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 8

in the set P. Therefore, in this phase of the SS method, we generate |P|/3 solutions with C2, |P|/3
solutions with C5 and |P|/3 solutions with C6.

The method C5 was introduced in the previous section. A description of C2 follows. This method starts
by creating a list of unlabeled vertices U, which at the beginning consists of all the vertices in the graph
(i.e. initially U=V). The first vertex v is randomly selected from all those vertices in U. We assign a
random label to v and delete it from U. In subsequent construction steps, the candidate list CL consists of
all the vertices in U that are adjacent to at least one labeled vertex. The restricted candidate list RCL is
formed from those vertices that have been in CL for a maximum number of construction steps. A vertex v
is randomly selected from RCL in order to be labeled. Once v is selected it is labeled with the best
available label according to the vertices already labeled (we compute mid(v) considering only the vertices
already labeled). Then U, CL and RCL are updated for the next step. The construction C2 terminates
after n steps, when all vertices have been selected and labeled (i.e. when U= ∅).

Construction C6 implements a deterministic version of C5. It assigns, level-by-level, consecutive labels
to the vertices V of G beginning with label 1. Given a label l to be assigned (labels 1,2,.., l-1, have been
previously assigned), we compute as in C5 for each vertex v in level Li, LeftB(v,l) and RightB(v,l).
However, instead of generating a list of candidate vertices based on these values, we directly assign label
l to the vertex v with the minimum difference LeftB(v,l) - RightB(v,l). The algorithm first builds a level
structure with its root on a vertex with minimum degree. As in C5, the construction of the level structure
to be labeled consists of the construction of two different structures that are merged into a single one.
Then it selects one vertex in L1 to receive label 1, and finishes after n steps according to the values
computed above. Further constructions start with the creation of a level structure in another root vertex
with minimum degree from those not used and proceed in the same way.

The Improvement Method transforms a trial solution into one or more enhanced trial solutions. (If no
improvement of the input trial solution results, the “enhanced” solution is considered to be the same as
the input solution.)

Each step in our improvement method consists of selecting a vertex v in C(f) to be considered for a move.
M(v) is computed, and a vertex u is selected in M(v) to perform move1(v,u). We implement the first
strategy that scans M(v) in search for the first vertex u whose movement results in a strictly positive move
value. The local search phase terminates when improvement is no longer possible (i.e. when there is no
move that reduces the number of vertices in C(f)).

The Solution Combination Method transforms a given subset of solutions produced by the Subset
Generation Method into one or more combined solution vectors. As in most SS implementations, we
restrict our attention to pairs of solutions. Specifically, we have considered four different combination
methods to obtain a new solution from two given solutions f and g.

Combination Method 1 is based on computing the "average label" of each vertex according to the labels
in two given solutions. Let f and g be two labelings, then we compute for each vertex v the "average
label" Avg(v) as

Avg(v) = (1/2) (f(v)+g(v))

Note that Avg(v) is not necessarily an integer number and, moreover, two different vertices could have the
same value. Then, in order to obtain a new labeling, we order the vertices according to their Avg-values
(the first being the vertex with the lowest value) and assign consecutive labels to them from 1 to n.

Combination Method 2 generalizes the previous method. Given two solutions f and g, it computes the
"convex combination label" Conv(v) for each vertex v with the value

Conv(v)= f(v)+λ(g(v)-f(v))

As in the previous method, vertices are ordered according to these values and consecutive labeling. We
will study the influence of the parameter λ (in (0,1)) in the solution quality.

Combination Method 3 selects in step i (from i=1 to n) the label for vertex vi. It scans (from left to right)
each given solution f and g, and uses the rule that each labeling votes for its first label that has not yet

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 9

been included in the combined solution (referred to as the “incipient label”). The voting determines the
next label to be assigned to the first as yet unlabeled vertex of the combined solution. This is a min-max
rule in the sense that if any label of the solution is chosen other than the incipient label, then it would
increase the deviation between the original and the combined permutations. Similarly, if the incipient
label were placed later, in the combined solution, than its next available position, this deviation would
also increase. Hence the rule attempts to minimize the maximum deviation of the combined solution
from the original solutions. This method was successfully applied to the linear ordering problem
(Campos et al. 2001).

Note that the MBMP is a problem in which relative positioning of the elements is more important than
their absolute positioning. Therefore, before combining two solutions with method 3, we rotate one of
them to maximize the number of vertices with the same label in both solutions. Figure 1 shows a
representation of two solutions f and g of a graph with eight vertices in which the label of each vertex is
depicted, and Figure 2 shows three consecutive rotations of solution g.

 f 1 3 4 2 5 8 7 6

 g 6 8 7 1 2 3 4 5

Figure 1. Representation of two solutions

 g’ 1 2 3 4 5 6 8 7

 g’’ 2 3 4 5 6 8 7 1

 g’’’ 8 7 1 2 3 4 5 6

Figure 2. Rotations of a solution

In Figure 1 we can see that, for example, the label of vertex 2 is 3 in solution f and 8 in solution g.
Solutions g’, g’’ and g’’’ are obtained by rotating g (shifting all the labels the same number of positions in
the permutation vector). Figure 2 depicts in bold the labels that match with solution f, for example, vertex
2 is labeled with 3 in f and in g’’. We can see that g’ has two coincident labels with f, g’’ has four and
g’’’ has two, then we would combine f with g’’.

Combination Method 4 first constructs two level structures. The first one is initiated (rooted) in the
vertex that has label 1 in f and the procedure constructs a level structure from this starting vertex as in the
GPS method (Gibbs et al. 1976). Then, from those vertices in the last level of this structure, we select the
vertex with the largest label in g and the method constructs a second level structure rooted in it. Both
structures are then combined and within each level we assign the first labels to vertices with lower Avg-
value as computed in Combination Method 1.

Different advanced designs have been proposed for the SS methodology (Laguna and Martí, 2003). In
this paper we focus on the use of memory. We have considered the hybridization between SS and TS.
Specifically, we propose a version in which we replace the local search procedure with the TS method
introduced above. Moreover, we study not only the inclusion of this advanced improvement method, but
a simpler version with no improvement at all. This way in the next section we study the contribution of a
memory-less local search, as well as a memory-based local search in the SS procedure.

4. Computational Results
For our computational testing, we implemented, in C, our two solving methods, TS and SS, described in
the previous sections. We first study the contribution of their different elements and then compare their
solutions with those obtained with the previous tabu search procedure of Martí et al. (2001), pTS, the
GRASP method by Piñana et al. (2004), the Node Shift and the GA methods by Lim et al. (2005) and the
SA method by Rodriguez-Tello et al. (2005). Our codes were compiled with Microsoft Visual C++ 6.0,
optimizing for maximum speed. The experiments with the 113 previously reported instances were run on
a Pentium IV at 3 GHz with 1GB of RAM. These instances are from the public domain Harwell-Boeing
Sparse Matrix Collection (http://math.nist.gov/MatrixMarket/data/Harwell-Boeing).

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 10

In Martí et al. (2005) we proposed a branch and bound algorithm to obtain lower bounds for the MBMP.
In some cases we know that the bound matches the optimal solution, but in most large instances we do
not know how far this value is with respect to the optimal solution. We used these lower bounds in all the
experiments in this section.

We performed four sets of experiments with the following goals:

1. A preliminary experimentation with 16 instances to find the best values for the key search
parameters of our tabu search algorithm TS, α, β, c-tenure, nc-tenure and the neighborhood.

2. A preliminary experimentation with 16 instances to study the different combination methods

as well as the contribution of the improvement phase in the SS algorithm. We also test the
hybridization of the TS and the SS methods.

3. An experiment with the entire set of 113 instances to compare the performance of our two

proposals TS and SS, with the best known methods for this problem: pTS, GRASP,
Node_Shift and SA.

4. A final experiment to measure the robustness of the proposed procedures on the 16 instances

used in experiments 1 and 2. We replicated the methods over 20 independent runs and
measure the variation across runs.

The preliminary experimentation was performed on the following 16 representative problem instances (8
medium-size problems and 8 large-size problems): will57, impcol_b, dwt__234, west0132, impcol_c,
west0167, fs_183_1, will199, impcol_a, bcspwr04, gre__343, plskz362, bcspwr05, dwt__592, steam2, and
662_bus.

In our first experiments with the TS algorithm we tested values for α in the range [0.1, 0.7] and c-tenure,
nc-tenure in the range [2, 10]. In these experiments we run the short-term component of the method.
Following the recommendations in Martí et al. (2001) we perform it with tabu_iter=100 in all the
experiments. Table 1 shows the results for different α values (with c-tenure = nc-tenure=5) and Table 2
shows the results for different tenure values (with α=0.1). Both tables show the average value of the
bandwidth in the 16 instances, the average percentage deviation from the lower bound and the running
time in seconds.

 α Value % LB Dev. Time
 0.1 36.13 28.9% 0.60
 0.3 36.81 30.5% 0.54
 0.5 36.44 29.5% 0.41
 0.7 37.19 32.5% 0.37

Table 1. Preliminary experiment. TS with α

 c-tenure nc-tenure Value % LB Dev. Time
 5 5 36.13 28.9% 0.60
 7 5 36.94 31.3% 0.56
 10 5 37.44 32.7% 0.51
 7 2 36.44 29.0% 0.58
 10 2 36.75 30.1% 0.58
 0 0 36.50 31.6% 0.62
 5 7 36.63 29.9% 0.55
 5 10 36.06 28.4% 0.60
 2 7 36.63 30.0% 0.49
 2 10 35.94 28.4% 0.59

Table 2. Preliminary experiment. TS with tenure

Table 1 shows that the best results are achieved with α=0.1 and Table 2 shows that, regarding the tabu
tenure, the best solutions are obtained with c-tenure = 2 and nc-tenure=10. This is an interesting result
since the foundations of an asymmetric tenure given in Section 2 were based on the hypothesis that the

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 11

tenure of a critical vertex c-tenure is probably larger than the tenure of a non-critical vertex nc-tenure.
Note that Table 2 also shows that the results of the local search method without memory structures
(c-tenure =nc-tenure=0) are clearly inferior to those obtained with the selected version with memory,
since the former obtains an average percentage deviation from the lower bound of 31.6% while the TS
method with c-tenure = 2 and nc-tenure=10 presents a deviation value of 28.4%. Hence, we use these
values to perform the rest of our experimentation.

In the next preliminary experiment we compare the three neighborhoods introduced in Section 2 for the
TS method. Table 3 shows the results of three algorithms, each one implementing the TS short-term
component with a different neighborhood. Moreover, we consider a fourth method, Mixed, in which the
three neighborhoods are combined applying the three associated moves consecutively.

 Neighb. Value % LB Dev. Time
 1 35.94 28.4% 0.59
 2 46.56 62.4% 1.16
 3 59.44 114.1% 52.63
 Mixed 35.94 28.4% 54.92

Table 3. Preliminary experiment. TS with different neighborhoods

Table 3 shows that the best solutions are obtained with neighborhood 1. This is the simplest
neighborhood in terms of the number of operations to perform a move and it explains its extremely low
running times (0.59 seconds on average). This experiment shows that within a tabu search framework
this is the most effective neighborhood and even the combination of the three moves considered is unable
to improve its results. Hence, we use this neighborhood in the rest of our experimentation. Note that
these results differ in part with the experiments by Rodríguez-Tello et al. (2006) since their SA
implementation based on neighborhood 3 produces remarkable results.

Table 4 reports the results of the long-term TS method for different values of parameter β in the range
[0.1, 0.5]. In this experiment we apply the short-term component with c-tenure = 2, nc-tenure=10, α=0.1,
and the global number of iterations maxiter set to 25.

 β Value % Dev. Time
 0.1 33.50 16.8% 14.05
 0.3 33.56 16.8% 14.06
 0.5 33.69 17.4% 14.67

Table 4. Preliminary experiment. TS with β

Table 4 shows that there are no significant differences among the β values, with only a moderate
improvement in low values. We will use β=0.1 in the final experiments.

In our second set of experiments we use the same 16 problem instances to study some key elements in the
performance of our SS procedure. Table 5 reports the results of four versions of the SS algorithm, each
one with a different combination method (as described in Section 3). Table 6 shows the results of four
versions of the SS algorithm (all of them with Combination Method 1), the first one with no improvement
method (No), in the second one the improvement is applied after the Combination Method (Post Combi.),
the third one is the standard SS design in which the improvement is applied after the Solution Generation
Method and also after the Combination Method (Standard), finally, in the fourth version, we apply the
short-term memory TS as the improvement (Tabu), instead of the local search applied in the other
versions.

 Combination Value % Dev. Time
 1 35.81 26.1% 1.06
 2 36.06 26.8% 1.32
 3 37.00 30.3% 2.30
 4 38.06 33.8% 0.96

Table 5. Preliminary experiment. SS with combination methods

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 12

 Improvement Value % Dev. Time
 No 46.63 61.2% 0.16
 Post Combi. 36.31 27.8% 0.65
 Standard 35.81 26.1% 1.05
 Tabu 33.56 17.0% 111.79

Table 6. Preliminary experiment. SS with improvement methods

Table 5 shows that the best results are obtained with Combination Method 1, which presents an average
percent deviation of 26.1%, closely followed by Combination Method 2, which presents a deviation of
26.8%. Table 6 shows that the classic design of SS in which the local search is applied after both,
solution generation and combination, obtains better results (26.1%) compared with the version with no
local search at all (61.2%) or the version in which the local search is applied only after combination
(27.8%). As expected, the use of local search increases the running times (the version with no local
search presents an average of 0.16 seconds and the classic SS design presents an average of 1.05
seconds). Finally, the version in which the TS method replaces the local search is the best one in terms of
solution quality (17.0% deviation from lower bound) although it presents longer running times (111.79
seconds on average).

In our third set of experiments, we use the 113 Harwell Boeing problem instances to compare the
performance of our proposed procedures TS and SS_TS (the hybrid version of SS with TS) with the best
heuristics reported in the literature. Specifically, we compare their solutions with those obtained with the
previous TS procedure of Martí et al. (2001), pTS; the GRASP method with Path Relinking by Piñana et
al. (2004), GRASP-PR; the genetic and node shift methods by Lim et al. (2005) with 100 restarts, GA and
NS; and the simulated annealing method by Rodríguez-Tello et al. (2005), SA. Tables 7 and 8 report the
results on a single run of these seven methods when solving 33 medium (n<200) and 80 large (200 ≤ n
≤1000) instances, respectively. These tables show the average value of the best solution found in a single
run, Bf(G), the average percentage deviation of the best solutions from the lower bounds, Dev.; the CPU
time in seconds, CPU; and the number of best solutions and optima that each method is able to match.
Note that we do not know how far the lower bound is with respect to the optimal solution, so the “true”
number of optima achieved by each method could be higher than the numbers in the table, but we can
only certify the optimality of the cases indicated (further research in exact methods is needed to make
these values accurate).

 pTS GRASP-PR TS GA NS SA SS_TS
Bf(G) 23.21 22.52 22.52 22.48 22.36 22.61 22.67
Dev. 15.98% 9.15% 9.26% 10.70% 8.21% 11.60% 9.80%
CPU 3.378 2.854 4.499 2.543 2.177 12.002 22.501
No. of best 11 22 19 16 21 26 21
No. of optima 9 15 11 11 16 9 12

Table 7. Comparison on 33 medium instances

 pTS GRASP-PR TS GA NS SA SS_TS
Bf(G) 99.86 99.09 96.16 97.01 97.61 96.59 96.72
Dev. 35.91% 33.41% 27.77% 33.17% 28.38% 30.26% 25.20%
CPU 156.890 151.161 139.417 85.219 240.642 210.255 456.216
No. of best 4 12 27 39 15 34 39
No. of optima 1 4 4 2 5 2 5

Table 8. Comparison on 80 large instances

This experiment clearly shows that the seven methods under comparison obtain solutions of similar
values on average. In medium instances, the average value of the best solutions found ranges from 22.36
for the NS method to 23.21 for the pTS. In large instances, this value ranges from 96.16 for the TS to
99.86 for the pTS. Comparing the best with the worst results it represents a variation range of 3.8% on
average.

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 13

Regarding CPU time, the GRASP-PR, pTS, TS and SS_TS methods were run on a Pentium IV at 3GHz,
the SA, as reported in Rodríguez-Tello et al. (2006) was run on a Pentium IV at 2.8GHz, and the GA and
NS, as reported in Lim et al. (2005), were run on a Pentium IV at 1.6GHz. The hybrid SS_TS is clearly
the most time-consuming method, since it presents an average of 22.501 seconds on medium instances
and 456.216 seconds on large instances. The fastest one is surprisingly the GA in both medium and
large-size instances.

As mentioned, the NS method provides good results; especially in medium instances in which it is able to
obtain the lowest average value (22.36) and the largest number of optima (16) of all the methods in 2.177
seconds. Moreover, as reported in Lim et al. (2005), if we run the NS heuristic for 200 restarts it is able
to reduce the average value in medium instances to 22.18, although CPU time increases up to 16.69
seconds on average.

Our tabu search method, TS, provides a good balance between solution quality and speed since it presents
an average percentage deviation of 9.26% achieved in 4.49 seconds in medium instances (only improved
by the NS and GRASP-PR methods), and a deviation of 27.77% achieved in 139.41 seconds in large
instances (no method presents a lower average percentage deviation). Note that in large instances the TS
method is closely followed by the NS method in terms of solution quality (27.77 % versus 28.38%);
however, the NS needs 240.64 seconds compared with the 139.41 seconds of the TS.

Rodríguez-Tello et al. (2006) replicated their SA method 20 times and report the best, the worst and the
average value of the best solutions found in each run. In our final experiment we will report these values
on the 16 instances used in the preliminary experiments, collected after 20 replications of our TS and
SS_TS methods, to measure their robustness and to compare them with the SA.

 SA TS SS_TS
 Min. Value 33.37 33.06 33.31
 Max. Value 35.19 34.00 34.06
 Avg. Value 34.13 33.60 33.58
 Avg. Run time 66.11 57.95 182.07

Table 9. Results on 20 independent runs

Table 9 shows that the three methods under comparison are quite robust. The SA presents a variation
range between the average of the worst and the best value of the 16 instances in the 20 independent runs
of 1.82, the TS 0.94 and the SS_TS 0.75 units. This table also shows a marginal improvement in the
SS_TS algorithm with respect to the other two methods, although it presents significantly longer running
times (almost 3 times longer than the others).

Conclusions
In this paper we explore the adaptation of the memory programming paradigm to the matrix bandwidth
minimization problem. We propose two new methods, one based on TS and the other based on the SS
methodology. We study the contribution of some key elements in heuristic search to the final results of
the method. Specifically, we consider neighbourhood definition, local search, combination methods and
the use of memory.

Our extensive computational testing on a public domain set of previously reported instances show the
effectiveness of the use of memory in heuristic search as well as the convenience of employing relatively
simple neighbourhoods and combination methods when memory is present. Moreover, the comparison
with the best-known methods favours our TS implementation (although some memory-less methods such
as simulated annealing or genetic algorithms also present very good results).

Acknowledgements

The authors would like to thank Professors Rodriguez-Tello, Hao and Torres-Jimenez for sharing their
results with us in the appropriate format for reporting our experiments.

Adaptive Memory Programming for the Matrix Bandwidth Minimization / 14

References
Campos, V., F. Glover, M. Laguna and R. Martí (2001), An Experimental Evaluation of a Scatter Search
for the Linear Ordering Problem, Journal of Global Optimization 21, 397-414

Cuthill, E. and McKee, J. (1969). Reducing the Bandwidth of Sparse Symmetric Matrices, In: Proc. ACM
National Conference, Association for Computing Machinery, New York, 157-172.

Dueck, G. H. and Jeffs, J., 1995. A Heuristic Bandwidth Reduction Algorithm, J. of Combinatorial Math.
and Comp. 18, 97-108.

Gibbs, N. E., Poole, W. G. and Stockmeyer, P. K. (1976), An Algorithm for Reducing the Bandwidth and
Profile of Sparse Matrix, SIAM Journal of Numerical Analysis 13 (2), 236-250.

Glover (1977), Heuristics for Integer Programming Using Surrogate Constraints, Decision Sciences 8,
156-166.

Glover, F. and M. Laguna (1997), Tabu Search, Kluwer Academic Publishers, Boston.

Laguna, M. and R. Martí (2003), Scatter Search. Methodology and Implementations in C, Kluwer
academic Publishers, Boston.

Laguna, M., R. Martí, V. Campos (1999), Intensification and Diversification with Elite Tabu Search
solutions for the LOP, Computers and Operations Research 26, 1217-1230

Lim, A., Rodrigues, B., Xiao, F. (2005), Heuristics for matrix bandwidth reduction, European Journal of
Operational Research, forthcoming.

Lin, S. and B. Kernighan (1973), An effective heuristic algorithm for the traveling salesman problem,
Operations Research 21, 498-516.

Martí, R., Laguna, M., Glover, F. and Campos, V. (2001). Reducing the Bandwidth of a Sparse Matrix
with Tabu Search, European Journal of Operational Research 135 (2) 211-220.

Martí, R., Campos, V. and Piñana, E., (2006), A Branch and Bound Algorithm for the Matrix Bandwidth
Minimization, Technical Report. University of Valencia, Spain.

Piñana, E., Plana, I., Campos, V. and Martí, R., (2004), GRASP and Path relinking for the matrix
bandwidth minimization, European Journal of Operational Research 153, 200-210.

Papadimitriou, C.H., (1976), The NP-completeness of the bandwidth minimization problem, Computing
16 (3) 263-270.

Rodriguez-Tello, E., Jin-Kao, H., Torres-Jimenez, J. (2006), An Improved Simulated Annealing
Algorithm for the Matrix Bandwidth Minimization, European Journal of Operational Research,
forthcoming.

