
Scatter Search and Path Relinking
A tutorial on the Linear Arrangement Problem

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia,
Facultad de Matemáticas, Dr. Moliner 50, 46100, Burjassot, Valencia, España
Rafael.Marti@uv.es
Phone: (34) 96 354 30 90 / Fax: (34) 96 386 47 35

JUAN-JOSÉ PANTRIGO
Universidad Rey Juan Carlos. Esc. Tec. Sup. de Ing. Informática. Edif. Departamental II. C/ Tulipán
s/n. 28933 Móstoles, Madrid, España
Juanjose.Pantrigo@urjc.es
Phone: (34) 91 488 73 93 / Fax: (34) 91 488 85 30

ABRAHAM DUARTE
Universidad Rey Juan Carlos. Esc. Tec. Sup. de Ing. Informática. Edif. Departamental II. C/ Tulipán
s/n. 28933 Móstoles, Madrid, España
 Abraham.Duarte@urjc.es
Phone: (34) 91 488 81 16 / Fax: (34) 91 488 85 30

VICENTE CAMPOS
Departamento de Estadística e Investigación Operativa, Universidad de Valencia,
Facultad de Matemáticas, Dr. Moliner 50, 46100, Burjassot, Valencia, España
Vicente.Campos@uv.es
Phone: (34) 96 386 43 06 / Fax: (34) 96 386 47 35

FRED GLOVER
OptTek Systems, Inc, 2241 Seventeenth Street Boulder, CO 80302 USA,
Glover@OptTek.com
Phone: 303-447-3255 / Fax: 303-447-3886

ABSTRACT
Scatter search (SS) and path relinking (PR) are evolutionary methods that have been
successfully applied to a wide range of hard optimization problems. The fundamental
concepts and principles of the methods were first proposed in the 1970s and 1980s
respectively, and were based on formulations, dating back to the 1960s, for combining
decision rules and problem constraints. The methods use strategies for search diversification
and intensification that have proved effective in a variety of optimization problems and that
have sometimes been embedded in other evolutionary methods to yield improved
performance. This paper examines the scatter search and path relinking methodologies from
both conceptual and practical points of view, and identifies certain connections between their
strategies and those adopted more recently by particle swarm optimization. We describe key
elements of the SS & PR approaches and apply them to a hard combinatorial optimization
problem: the minimum linear arrangement problem, which has been used in applications of
structural engineering, VLSI and software testing.

KEY WORDS: Metaheuristics, scatter search, path relinking, particle swarm optimization,
combinatorial optimization

mailto:Rafael.Marti@uv.es�
mailto:Juanjose.Pantrigo@urjc.es�
mailto:Abraham.Duarte@urjc.es�
mailto:Vicente.Campos@uv.es�
mailto:Glover@OptTek.com�

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 2

1. Introduction

Scatter search (SS) was first introduced in Glover (1977) as a heuristic approach for general integer
programming problems. SS systematically generates and updates a set of reference points that includes
good solutions obtained by prior problem-solving efforts together with solutions that are screened to add
diversity to the reference set. Path relinking (PR) was subsequently proposed in Glover (1989) and Glover
and Laguna (1993) as an analog making use of neighborhood spaces in place of Euclidean spaces.
Interesting relationships exist between the SS/PR approaches and the more recent particle swarm
optimization methodology introduced by Kennedy and Eberhart (1995), as noted below.

The SS and PR template (Glover, 1997) has served as a foundation for most of the SS and PR
implementations to date, underscoring processes to take advantage of the flexibility of the SS and PR
methodologies. Through these processes, each of the basic components can be implemented in a variety
of ways and degrees of sophistication, and hence can be adapted conveniently to a variety of different
problem settings. Advanced options derive from the way that five pivotal elements of the methods are
implemented. We can find a large number of papers on both the SS method and the PR method and their
applications. Glover and Laguna (1997) provide overviews and a variety of references on these methods
and the monographic book on Scatter Search (Laguna & Martí, 2003) together with the feature cluster of
the European Journal of Operational Research (Martí, 2006), which includes 19 papers, provide the reader
with the elements to design successful SS implementations. A recent survey of SS and PR methods
appears in Resende et al (2010).

The following principles summarize the foundations of the scatter search and path relinking
methodologies as evolved from its origins:

 Useful information about the form (or location) of optimal solutions is typically contained
in a suitably diverse collection of elite solutions.

 When solutions are combined as a strategy for exploiting such information, it is important
to provide mechanisms capable of constructing combinations that extrapolate beyond the
regions spanned by the solutions considered.

 The manner of combining solutions may be viewed as forming paths between (and beyond)
them (using Euclidean spaces in SS and neighborhood spaces in PR). Each path results in
introducing attributes of one elite solution into another, by a process where the trajectory
for a given solution is influenced by the guidance of other solutions.

 It is likewise important to incorporate heuristic processes to map combined solutions into
new solutions. The purpose of these combination mechanisms is to incorporate both
diversity and quality.

 Taking account of multiple solutions simultaneously, as a foundation for creating
combinations, enhances the opportunity to exploit information contained in the union of
elite solutions.

A connection between the SS & PR approaches and particle swarm optimization (PSO) arises through the
SS & PR strategy of combining solutions in a manner that may be interpreted as generating trajectories of
selected elite solutions by reference to directions determined by other elite solutions (called guiding
solutions in path relinking). In contrast to PSO, the solutions guided by SS & PR are initially generated
and subsequently updated after the combination process by the application of associated heuristic or
metaheuristic processes. PSO methods characteristically guide the progress of solutions in different
streams of search by reference to the personal best of each stream and the global best over all streams.

The evolving reference set of elite solutions used by SS & PR always includes the global best, and hence
each solution in the set likewise enters into combinations with the global best to provide one of the
influences on its trajectory, inviting a direct comparison with the PSO approach. However, each solution
in SS & PR also enters into combinations with other members of the reference set, as would be analogous
to a form of PSO guided by additional personal best solutions beyond those deriving from a single stream
in question. Another apparent contrast is that SS & PR employ solution streams outside of those guided
by other elite solutions, drawing on improving methods (such as iterated descent or tabu search) to yield
new members to enter the elite reference set. Parallel versions of SS & PR which generate such streams
simultaneously set up a master slave relationship where the maintenance of the reference set and the
combinations produced from it yield the master processes than spawn candidate solutions passed to the

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 3

slaves employing local search. Aside from the differences in strategic detail, there are evidently intriguing
similarities in overall conceptual design between SS & PR approaches and PSO methods when viewed
from a higher level.

In this paper we consider the scatter search and path relinking methodologies applied to solve
combinatorial optimization problems by targeting an NP-hard problem based on graphs; the minimum
linear arrangement problem. We adapt three elements from the five in the SS and PR template that are
context-dependent (i.e., that are conveniently susceptible to being customized for specific problem
settings): the diversification generation method, the improvement method and the combination method.
Accompanying this, we apply a standard design for the other two methods (which usually are context-
independent): the reference set update and the subset generation methods. We begin by focusing on the
SS method and later include elements of the PR method.

2. Problem Formulation

The minimum linear arrangement problem may be described as follows. Let G=(V,E) be a graph with a
vertex set V (|V|=n) and an edge set E (|E|=m). A labeling or linear layout f of G assigns the integers 1,
2, …, n to the vertices of G. Let f(v) be the label of vertex v, where each vertex has a different label. The
contribution of a vertex v, L(v,f), to the objective function is the sum of the absolute values of the
differences between f(v) and the labels of its adjacent vertices. That is:

() () ()
()

∑
∈

−=
vNu

ufvffvL ,

where N(v) is the set of vertices adjacent to v. The value of a linear arrangement of a graph G with
respect to a labeling f is then:

() ()∑
∈

=
Vv

fvLfGLA ,
2
1,

Figure 1 shows an example of a linear arrangement and the associated computation of the objective
function value. The optimum linear arrangement LA(G) of graph G is then the minimum LA(G,f) value
over all possible labelings f – i.e., the Linear Arrangement Minimization problem (MinLA) consists of
finding a labeling f that minimizes LA(G,f). This NP-hard problem (Garey & Johnson, 1979) is related to
two other well-known layout problems, the bandwidth and profile minimization problems. However, as
pointed out by McAllister (1999), an optimal solution for one of these problems is not necessarily optimal
for the other related problems.

The MinLA problem was first stated by Harper (1964), and through the years many different algorithms
have been proposed for solving it, with varying degrees of success.

Figure 1: Objective function computation for a graph G and an arrangement f.

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 4

The remainder of this paper is organized as follows. In Section 3 we first give a brief summary of some of
the leading methods previously developed from the MinLA problem. Section 4 covers the basics of the
scatter search procedure, introducing the SS methodology and describing how we apply it to solve the
MinLA problem. Section 5 describes the diversification generation methods we have incorporated which
are based on the GRASP methodology and in Section 6 we describe an improvement method based on
local search. Section 7 presents a mechanism to selectively apply the improvement method within Scatter
Search in order to save computational effort. Finally, Section 8 introduces a path relinking procedure
which fulfills the role of a combination method in our scatter search algorithm. The paper finishes with
the computational experiments in Section 9 and associated conclusions in Section 10.

3. Brief Summary of Previous MinLA Methods

We chiefly restrict attention to more modern solution approaches proposed since 1990.

Juvan and Mohar (1992) introduced the Spectral Sequencing method (SSQ). This method computes the
eigenvectors of the Laplacian matrix of G. It then orders the vertices according to the second smallest
eigenvector. As stated by Petit (2003a), the rationale behind the SSQ heuristic is that vertices connected
with an edge will tend to be assigned numbers that are close to each other, thus providing a good solution
to the MinLA problem.

McAllister (1999) proposed a heuristic method for the MinLA which basically consists of a constructive
procedure that labels vertices in a sequential order. Vertices are selected according to their degree with
respect to previously labeled vertices. This method compares favorably with previous methods for this
and related problems.

Petit (2003a) reviewed lower bounds and heuristic methods, proposed new ones and introduced a set of
21 small and medium size instances (62 ≤ n ≤ 10240) for the MinLA problem. Among the methods
reviewed were the Juvan-Mohar method (Juvan & Mohar, 1992), the Gomory-Hu tree method
(Adolphson and Hu 1973) and the Edge method to which he added a Degree method for improved lower
bounds. Petit concluded that the Juvan-Mohar method and the Degree method provide the best lower
bounds; however, their values are far from those of the best known solutions, and therefore they are of
very limited interest from a practical point of view. Petit additionally introduced both a constructive and
a local search procedure. The Successive Augmentation (SAG) is a greedy heuristic that constructs step
by step a solution extending a partial layout until all vertices have been enumerated. At each step, the
best free label is assigned to the current vertex. Vertices are examined in the order given by a breadth-
first search. Once a solution has been constructed, different improvement methods are considered. The
author studied three different heuristics based on local search: Hill-climbing, Full-search and Simulated
Annealing (SA). In the Hill-climbing method moves are selected at random; in the Full-search the entire
neighborhood of a solution is examined, at each iteration, in search of the best available move. Finally,
the SA algorithm implements the temperature parameter as described in Kirkpatrick, Gelatt, and Vecchi.
(1983) for move selection. Petit considered two neighborhoods, called flip2 and flip3. The former
exchanges the label of two vertices, while the latter "rotates" the label of three vertices.

The experimentation in Petit (2003a) shows that the neighborhood based on the exchange of two labels
(flip2) produces better results than the rotation (flip3). Overall experimentation concludes that the SA
method outperforms the others, although it employs much longer running times (not reported in the
paper). Therefore, the author recommends employing the Hill-climbing as well as the Spectral
Sequencing methods. In Petit (2003b), a more elaborate Simulated Annealing algorithm is proposed. The
author introduces a new neighborhood, flipN, based on the Normal distribution of the distances between
the labels of vertices. The Simulated Annealing algorithm based on the flipN neighborhood (SAN)
improves upon the previous SA method. Moreover, to speed up the method, the initial solution is
obtained with the SSQ algorithm. The combined method, SSQ+SAN, is able to outperform previous
methods.

Rodriguez-Tello, Hao and Torres-Jimenez (2008) proposed a new algorithm based on the Simulated
Annealing methodology. The Two-Stage Simulated Annealing (TSSA) performs two steps. In the first
one a solution is constructed with the procedure by McAllister (1999); then in the second step it performs
a Simulated Annealing procedure based on exchanges of labels. This method introduces two new

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 5

elements to solve the MinLA: a combined neighborhood and a new evaluation function. Given a vertex
v, the first neighborhood, selected with a probability of 0.9, examines the vertices u such that their label
f(u) is close to the median of the vertices' labels adjacent to v (at a maximum distance of 2). The second
neighborhood, selected with a probability 0.1, exchanges the labels of two vertices selected at random
with diversification (exploration) purposes. The method evaluates the solutions with a function that is
more discriminating than the original LA. The authors compared their TSSA method with the best known
algorithms and they concluded that their method outperforms previous algorithms.

4. Scatter Search Methodology

We begin by summarizing the “five-method template” for implementing SS and then discuss the
relationships among its component processes. These key components are as follows:

1. A diversification-generation method to generate a collection of diverse trial solutions, using an
arbitrary trial solution (or seed solution) as an input.

2. An improvement method to transform a trial solution into one or more enhanced trial solutions.
Neither the input nor the output solutions are required to be feasible, though the output solutions will
more usually be expected to be so. If no improvement of the input trial solution results, the
“enhanced” solution is considered to be the same as the input solution.

3. A reference-set update method to build and maintain a reference set consisting of the b “best”
solutions found (where the value of b is typically small, e.g. no more than 20), organized to provide
efficient accessing by other parts of the method. Solutions gain membership to the reference set
according to their quality or their diversity.

4. A subset-generation method to operate on the reference set, to produce several subsets of its solutions
as a basis for creating combined solutions.

5. A solution-combination method to transform a given subset of solutions produced by the Subset
Generation Method into one or more combined solution vectors.

Figure 2 shows the interaction among these five components and highlights the central role of the

reference set. This basic design starts with the creation of an initial set of solutions P, and then extracts
the reference set (RefSet) of solutions from it. The shaded circles represent improved solutions resulting
from the application of the improvement method.

The diversification-generation method is used to build a large set P of diverse solutions. The size of P
(PSize) is typically at least 10 times the size of RefSet. The initial reference set is built according to the
reference-set-update method, which takes the b “best” solutions from P to compose the RefSet, which
typically is of modest size, e.g., containing between 10 and 30 solutions in all. The qualifier “best” is not
restricted to referring to solution quality (i.e., the objective function value of a solution), but often
embraces an expanded form of evaluation that accounts for diversity. This evaluation can change
throughout the application of the procedure. For example, during a phase that is specifically devoted to
diversification, the reference-set update method can consist of selecting b distinct and maximally diverse
solutions from P. Regardless of the rules used to select the reference solutions, the solutions in RefSet are
ordered according to quality, where the best solution is the first one in the list.

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 6

P

RefSet

Diversification Generation
Method

Repeat until |P| = PSize

Subset Generation
Method

Improvement
Method

Solution Combination
Method

Improvement
Method

Stop if no more
new solutions

Reference Set
Update Method

Figure 2: Schematic Representation of a Basic SS Design

The search is then initiated by applying the subset-generation method that, in its simplest form, involves
generating all pairs of reference solutions. The pairs of solutions in RefSet are selected one at a time and
the solution-combination method is applied to generate one or more trial solutions which are subjected to
the improvement method. The reference-set update method is applied once again to build the new RefSet
with the best solutions, according to the objective function value, from the current RefSet and the set of
trial solutions. The basic procedure terminates after all the subsets generated are subjected to the
combination method and none of the improved trial solutions are admitted to RefSet under the rules of the
reference-set-update method.

In our approach, we use a simple mechanism to construct an initial reference set and then update it during
the search. The size of the reference set is denoted by |RefSet| = b1 + b2 = b. The construction of the initial
reference-set starts with the selection of the best b1 solutions from P. These solutions are added to RefSet
and deleted from P. For each solution in P \ RefSet, the minimum of the distances to the solutions in
RefSet is computed. The solution with the maximum of these minimum distances is then selected. This
solution is added to the RefSet and deleted from P, and the minimum distances are updated. The process
is repeated b2 times, where b2 = b – b1. The resulting reference set has b1 high-quality solutions and b2
diverse solutions.

Of the five SS components, only four are strictly required. The improvement method is usually needed if
high-quality outcomes are desired, but an SS procedure can be implemented without it. On the other
hand, the SS method could incorporate tabu search or another complex metaheuristic as the improvement
method (usually demanding more running time).

5. Diversification Generation Methods

A straightforward scheme to construct a solution consists of performing n steps, labeling a vertex at each
step with the lowest available label. At a higher level of sophistication, the so-called Frontal Increase
Minimization (FIM) starts by creating a list of unlabeled vertices U, which at the beginning consists of all
the vertices in the graph (i.e. initially U=V). The first vertex v is randomly selected from all those
vertices in U and labeled as 1. In subsequent construction steps, the candidate list CL consists of all the
vertices in U that are adjacent to at least one labeled vertex. A vertex v is randomly selected from CL,

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 7

labeled with the next available label and deleted from U. The method finishes after n steps, when all the
vertices have received a label.

McAllister (1999) proposed the following refinement of the FIM construction. Let L be the set of labeled
vertices and let d(v) be the degree of vertex v, then dL(v) represents the number of labeled vertices
adjacent to v and dU(v) represents the number of unlabeled vertices adjacent to v. This variant of the FIM
construction is based on the computation of sf(v)=dU(v)-dL(v) as a way to measure the attractiveness of
vertex v for selection. Figure 3 shows a pseudo-code of this method, denoted C1, in which the vertex
with the lowest sf-value is selected from CL and assigned the lowest available label in each construction
step. The procedure specifies a tie-breaking mechanism in step 7 of Figure 3. When more than one
vertex in CL has the minimum sf-value, the method selects the oldest one (the vertex with maximum
number of iterations in CL). McAllister (1999) tested this method against previous constructive methods
based on the FIM strategy, showing its superiority.

1. Initially L = ∅ and U=V.
2. Select a vertex u randomly from U.
3. Assign the label l=1 to u. L = {u }, U = U \ {u }
WHILE (U ≠ ∅)
 4. l = l+1

5. Construct CL = { v ∈ U / (w,v) ∈ E ∀w∈ L }
 6. Compute sf(v) = dU(v)-dL(v) for all v in CL
 7. Select the vertex u in CL with minimum sf(u)
 8. Label u with the label l
 9. U = U \ {u}, L = L ∪ {u}
ENDWHILE

Figure 3. Pseudo-code of the constructive method C1

We propose now a GRASP construction based on the computation of sf(v). GRASP, Greedy Randomized
Adaptive Search Procedure, is a multi-start or iterative process in which each iteration consists of two
phases: construction and local search. The construction phase builds a feasible solution, whose
neighborhood is explored until a local optimum is found after the application of the local search phase
(Resende & Ribeiro, 2003). At each iteration of the construction phase, GRASP maintains a set of
candidate elements CL that can be feasibly added to the partial solution under construction. All candidate
elements are evaluated according to a greedy function (sf(v) in our case) in order to select the next
element to be added to the construction. A restricted candidate list (RCL) is created with the best
elements in CL. This is the greedy aspect of the method. The element to be added to the partial solution
is randomly selected from those in the RCL. This is the probabilistic aspect of the heuristic. Once the
selected element is added to the partial solution, the candidate list CL is updated and its elements
evaluated. This is the adaptive aspect of the heuristic. Figure 4 shows the pseudo-code of this GRASP
construction, which we will call C2.

1. Initially L = ∅ and U=V.
2. Select a vertex u randomly from U.
3. Assign the label l=1 to u. L = {u }, U = U \ {u }
WHILE (U ≠ ∅)
 4. l = l+1

5. Construct CL = { v ∈ U / (w,v) ∈ E ∀w∈ L }
 6. Compute sf(v) = dU(v)-dL(v) for all v in CL
 7. Construct RCL= { v ∈ CL / sf(v) ≤ th }
 8. Select a vertex u randomly in RCL
 9. Label u with the label l
 10. U = U \ {u}, L = L ∪ {u}
ENDWHILE

Figure 4. Pseudo-code of the constructive method C2

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 8

In the GRASP construction above, the parameter th represents a threshold on the quality of the elements.
Specifically, the elements in CL with an sf-value lower than th are admitted to become part of RCL. This
search parameter is computed as a fraction α of the rank of sf in CL:

th = msf + α (Msf-msf) ,)(min vsfmsf
CLv∈

= ,)(max vsfMsf
CLv∈

=

Note that if α is equal to 0, then th=msf, and the GRASP construction is equivalent to the McAllister
method. On the other hand, if α is equal to 1, then RCL=CL and the GRASP construction is equivalent to
the FIM strategy. In the computational study reported in Section 9, we test the effect of changes in α to
the solutions with this method.

In the adaptation above of the GRASP construction to the MinLA problem, we only consider the
evaluation given by the sf function. We now propose a second variant, C3, in which we include the
contribution of the selected vertex to the objective function. Specifically, let C(v,l) be the contribution of
v, when v is labeled with label l, to the current solution (and the labels 1 to l-1 have already been
assigned). In mathematical terms:

∑
∩∈

−=
LvNu

luflvC
)(

)(),(

The GRASP construction C3 only considers the vertices with minimum sf-value at each step. The
restricted candidate list RCL is now formed with the vertices with minimum sf-value and with a C-value
below a threshold thC. In this way we can say that the C-value is used as a tie-breaking mechanism when
more than one vertex in CL reaches the minimum sf-value. Figure 5 shows the pseudo-code of this
construction.

1. Initially L = ∅ and U=V.
2. Select a vertex u randomly from U.
3. Assign the label l=1 to u. L = {u }, U = U \ {u }
WHILE (U ≠ ∅)
 4. l = l+1

5. Construct CL = { v ∈ U / (w,v) ∈ E ∀w∈ L }
 6. Compute sf(v) = dU(v)-dL(v) for all v in CL
 7. Construct CLmsf = { v ∈ CL / sf(v)=msf}
 8. Construct RCL= { v ∈ CLmsf / C(v) ≤ thC }
 9. Select a vertex u randomly in RCL
 10. Label u with the label l
 11. U = U - {u}, L = L ∪ {u}
ENDWHILE

Figure 5. Pseudo-code of the constructive method C3

The parameter thC in C3 is the threshold that establishes the vertices with a relatively low contribution to
the current solution. It is computed as a fraction β of its range in the candidate list CLmsf:

) - dm (dM dm th LLLC β+= ,),(min lvCdm
CLmsfvL ∈

= ,),(max lvCdM
CLmsfvL ∈

=

If the parameter β in C3 takes the value 1, thC equals dML and all the vertices in CLmsf are in RCL, thus
resulting in a random selection among them. On the other hand, if it takes the value 0, thC equals dmL,
thus resulting in a greedy selection. In Section 9 we will compare the three constructive methods C1, C2
and C3 described in this section and study the influence of their parameters on their performance.

6. Improvement Method
Exchanges are used as the primary mechanism to move from one solution to another in our
implementation. We have considered an improvement method based on the ejection chain methodology
often used in association with tabu search (see Glover and Laguna, 1997). As a basis for describing our
approach, it is useful to first discuss a type of move commonly used in heuristics for the MinLA problem.

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 9

Given a labeling f and two vertices u and v with labels f(u) and f(v) respectively, we define move(u,v) as
the exchange of the labels f(u) and f(v). Let g be the resulting labeling when move(u,v) is performed. We
can then compute the value of g, LA(G,g), from the value of f, LA(G,f), as:

LA(G,g)=LA(G,f) - MoveValue(u,v)
where

MoveValue(u,v) = L(u,f)+L(v,f)-L(u,g)-L(v,g).

Therefore, the larger the MoveValue, the better the move. Previous heuristics for MinLA based on this
exchange move include the approach by Rodríguez-Tello et al. (2008), which, given a vertex u, considers
the median of the vertices' labels adjacent to u as the best label for exchange. Although assigning the
median label med(u) to u minimizes the sum of the absolute values of differences between this label and
the labels of adjacent vertices, it is of course necessary to give u a label different from med(u) unless the
adjacent vertex v with f(v) = med(u) is given a new assignment different from med(u). This will occur if
vertex u and vertex v exchange labels, but then the rationale of reassigning u the label med(u) is
destroyed1

. The following example (see Figure 6) illustrates that an exchange with the “median label” is
not necessarily the best choice.

Consider the partial graph depicted in Figure 6 in which vertex u has a relatively large contribution value
LA(u,f)=|23-2|+ |23-7|+|23-14|=46, and we consider exchanging its label, 23, with another one. According
to the rule above, we would consider the median of the labels of its adjacent vertices, med(u), as the best
label for exchange. In this example, med(u) is 7 and corresponds to vertex v. Let g be the labelling after
the exchange (g(v) = 23 and g(u) = 7); we then obtain LA(u,g) = 28, thus reducing the contribution of u to
the objective function LA. However, if we assign label 8 to vertex u (instead of 7), the contribution of u
will be |8-2|+|8-7|+|8-14|=13. This motivates an exchange between f(u) and a label f(v*), where v* is not
adjacent to u and where f(v*) is close to the value med(u). (In the present case, f(u) = 23 and f(v*) = 8.) Of
course, this is only a first order consideration, because it would be entirely possible that exchanging the
indicated f(u) and f(v*) could produce an unfavourable result – as where, for example, the vertices
adjacent to v* contain the labels 5, 6, 9 and 10. (Then assigning the label 23 to f(v*) would cause the new
labeling of v* to increase its LA value by 62, causing the value of the complete solution to deteriorate
significantly.) Nevertheless, we abide by the principle that it is usually better to consider a label close to
the “median-label” and not assigned to an adjacent vertex, than the “median-label” itself.

The situation illustrated in Figure 6 appears in all the cases in which the vertex considered for exchange
has an odd degree (and thus the median value corresponds to the label of one of its adjacent vertex). This
can be particularly problematic when the vertex u has only one adjacent vertex (|N(u)|=1). In that case,
the selection of the median-label could even cycle the search. In line with this, previous papers
(Rodríguez-Tello et al., 2008), do not limit the move to only considering med(u), but examine a set of
candidate labels close to the median at a maximum distance of 2. Therefore, they indirectly overcome
this situation. We now propose to extend this set of “good labels” for exchanging including a search
parameter width and avoiding the labels of adjacent vertices. The set CL(u) contains the candidate labels
for u:

CL(u)={l / |l-med(u)|≤ width, l≠f(v) ∀v∈N(u)}.

v

u

w

s

23

7 2

14

Figure 6. Move illustration

1 In the case where a vertex has an even number of adjacent neighbors, so that the labels of two of these neighbors
could be considered candidates for a median, then selecting any value between and including the two candidates will
minimize the sum of the absolute values of the differences. This property is not restricted to label values that are
positive integers, but holds for any finite collection of real valued labels

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 10

The ejection chain methodology we employ follows the general form indicated in Glover (1992) and
Glover (1996), which is “based on the notion of generating compound sequences of moves, leading from
one solution to another, by linked steps in which changes in selected elements cause other elements to be
ejected from their current state, position or value assignment.” In this section we make use of this notion
as follows:

In the MinLA problem, suppose that we want to exchange the label of a vertex u with the label f(v) of
another vertex v because this exchange results in a reduction of LA(u,f). However, this exchange could
produce an increase in LA(v,f), thus resulting in a non-improving move (MoveValue(u,v)<0). We can
therefore consider labeling v with f(u) but, instead of labeling u with f(v), examine another vertex w and
check whether the label f(v) may be advantageously assigned to w and whether, to complete the process,
the label f(w) is appropriate to assign to u (as by reducing LA(u,f)). In terms of ejection chains, we may
say that the assignment of f(u) to v caused f(v) to be “ejected” from v to w (and concluding by assigning
f(w) to u). The outcome defines a compound move of depth two that we can represent as
move(u,v)+move(v,w)). We can then repeat this logic to build longer chains.

In our local search procedure based on ejection chains, EC, we define moveEC(u,depth) as the ejection
chain that starts the chain building process from vertex u. To restrict the search and to make it more
efficient, we only scan the labels in CL(u). Let v be the vertex with an associated label f(v)∈ CL(u) with
a maximum MoveValue(u,v). The chain starts by making moveEC(u,depth) = move(u,v), thus exchanging
the labels f(u) and f(v). If move(u,v) is an improving one, it is executed and the chain stops. Otherwise,
we select the vertex v in CL(u) so that, when assigning its label f(v) to u, the contribution of u to the
objective function, LA(u,f) is minimized. We then search for a vertex w with a label f(w) in CL(v) which
is adequate for v. We select the label f(w) in CL(v) with maximum MoveValue(v,w). If the compound
move of depth two, move(u,v)+move(v,w), is an improving one (MoveValue(u,v)+MoveValue(v,w)≥0), the
move is executed and the chain stops; otherwise the chain continues until the compound move becomes
an improving one or the length of the chain reaches the pre-specified limit depth. If none of the
compound moves from depth 1 to depth examined in moveEC(u,depth) is an improving move, no move is
performed and the exploration continues with the next vertex to be considered for movement.

Note that we perform a move even when its value is 0. We have empirically found that this strategy
permits the exploration of a larger number of solutions (compared to an implementation in which only
moves with a positive value are performed), thus obtaining improved outcomes. On the other hand, we
have also found that when we apply a move, we usually change a relatively large number of labels, and it
is useful to apply the ejection chain from the same vertex again. Therefore, we move to the next vertex
considered for movement when no exchange is performed in the ejection chain.

A global iteration of the EC method consists of first ordering the vertices in the opposite order to their
labeling in the construction. We then examine the vertices in this order in search of an improving moveEC
move. The rationale behind this ordering is to give priority to those vertices which are more constrained
in the construction process. We have also considered a variant in which the vertices are ordered
according to their contribution LA(u,f). However, this variant produces lower quality results compared
with the former one. The method continues iterating only if in the previous iteration (i.e. the examination
of all nodes) at least one improving move is performed. Otherwise, EC stops.

In addition to the parameter depth our ejection chain method EC includes the parameter width described
previously. By this means we control both the number of vertices involved in the move and the distance
between the labels. Both parameters together permit the application of EC with a moderate running time;
however, they constrain the search to “small” moves in the sense that it only considers candidate labels
close to the neighbor's labels of the vertex selected for movement. In order to diversify the search and try
more aggressive moves, we apply the Hill Climbing method (Petit, 2003a) in which moves are selected at
random at the end of EC as a post-processing of the ejection chain for iter_Hc iterations. Section 9
reports on the experimentation in which we study these search parameters.

7. Filtering Solutions
After a number of iterations, it is possible to estimate the fractional improvement achieved by the
application of the improvement phase and use this information to increase the efficiency of the search
(Laguna & Martí, 1999). Define the fractional improvement in the iteration i as:

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 11

)(
)()()(*

*

i

ii

G,fLA
G,fLAG,fLA=iP −

where fi is the solution (labeling) constructed at iteration i, LA(G,fi) is its value, and fi

* is the improved
solution obtained applying the improvement method EC to fi (and LA(G,fi

*) is its value). After n
iterations, the mean µP and standard deviation σP of P can be estimated as:

n

iP
=μ

n

=i
P

∑
1

)(
ˆ

1

)ˆ)((
ˆ 1

2

−

−∑
n

μiP
=σ

n

=i
P

P

Then, at a given iteration i, these estimates can be used to determine whether it is “likely” that the
improvement phase will be able to improve the current construction enough to produce a better solution
than the current best, fbest. In particular, we calculate the minimum fractional improvement imp(i) that is
necessary for a construction fi to be better than fbest, as:

)(
)()()(

i

besti

fG,LA
fG,LAfG,LA=iimp −

If the value of imp(i) is close to the estimation of µP, we can consider that when we apply the
improvement method EC to the current solution fi, we will probably obtain a solution fi

* which is better
than fbest. Therefore, in order to save computational time, we only apply EC to promising solutions fi
according to this estimation. In mathematical terms, if PPii m p σδµ ˆˆ)(+< , then we apply EC to fi;
otherwise, we discard fi. The value of δ is a search parameter representing a threshold on the number of
standard deviations away from the estimated mean percentage improvement. In Section 9, we perform a
set of preliminary experiments to test the effect of different δ values on solution quality and speed.

8. Combination Method based on Path Relinking

We consider a reference set with b =10 solutions and apply a combination method to them. In our
implementation for the linear arrangement problem we have considered the path relinking methodology to
elaborate our combination method.

The initial reference set (RefSet) in standard scatter search implementations is constructed by selecting the
|RefSet|/2 best solutions from a population of solutions P and adding to RefSet the |RefSet|/2 most diverse
solutions in P \ RefSet one-by-one, where the concept of diversity is defined below. Instead of this one-
by-one selection of diverse solutions we consider here solving the maximum diversity problem (MDP) in
order to obtain the five most diverse solutions in P \ RefSet.

The MDP consists of finding, from a given set of elements and corresponding distances between
elements, the most diverse subset of a given size. The diversity of the chosen subset is given by the sum
of the distances between every pair of elements. Since the MDP is a computationally hard problem, we
employ the GC2 method (Duarte & Martí, 2007) because it provides a good balance between solution
quality and speed, attributes that are important in order to embed it as part of the overall solving
procedure.

In order to define a distance function we need to consider that reverse labelings (permutations) define
equivalent MinLA solutions. In mathematical terms, let p=(p1, p2, …, pn) and q=(q1, q2, .., qn) be two
labelings of a set of n vertices in which qi=n-pi+1, then we say that p and q are reverse permutations and
equivalent MinLA solutions with the same value (it is easy to check that LA(G,p)=LA(G,q)). In order to
measure the distance between pairs of MinLA solutions, we want equivalent solutions to have a distance
of 0. We then propose the following function:

∑
=

∂=
n

i
iqpd

1
),(where

 +−≠≠

=∂
otherwise

qnpandqpif iiii
i 0

11

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 12

To illustrate this distance function, consider for example p=(6,1,2,3,4,5) and q=(1,2,3,4,5,6), then
d(p,q)=0+1+1+0+1+1=4. Therefore, we build the RefSet with the five best solutions and the five most
diverse solutions (according to the distance above) from the set of solutions P obtained with the
application of the GRASP method.

We apply the relinking process to each pair of solutions in the RefSet. Given the pair (f,g), we consider
the path from f to g (where f is the initiating solution and g the guiding one). In this path we basically
assign each vertex label one by one in the guiding solution to the initiating solution. Given the pair (f,g),
let C(f,g) be the candidate list of vertices to be examined in the relinking process from f to g. At each step
in this process, a vertex v is chosen from C(f,g) and labeled in the initiating solution with its label g(v) in
the guiding solution. To do this, in the initiating solution we look for the vertex u with label g(v) and
perform move(u,v), then vertex v is removed from C(f,g). The candidate set C(f,g) is initialized with a
randomly selected vertex. In subsequent iterations, each time a vertex is selected and removed from
C(f,g), its adjacent vertices are included in this candidate set of vertices.

In the Path Relinking methodology, it is convenient to add a local search exploration from some of the
solutions visited in order to produce improved outcomes (Laguna & Martí, 1999; Piñana et al., 2004).
We have applied the local search method based on ejection chains EC to some of the solutions generated
in the path. Note that two consecutive solutions after a relinking step only differ in the labeling of two
vertices. Therefore, it does not seem efficient to apply the local search exploration at every step of the
relinking process. We introduce the parameter pr to control the application of the EC method. In
particular, EC is applied pr times in the relinking process. We report on the effectiveness of the
procedure with different values of this parameter in the computational testing that follows. After the
application of the Path Relinking strategy, we return the best solution found as the output of the method.

9. Computational Experiments

This section describes the computational experiments that we performed to compare our proposed
procedure with previous methods for solving the MinLA problem. We first describe our preliminary
experimentation to compare the alternative solving methods proposed in previous sections. We also adjust
the search parameters in order to establish a good combination of the proposed elements and strategies in
our "final" algorithm. All experiments were performed on a personal computer with a 3.2 GHz Intel
Xenon processor and 2.0 GB of RAM. We consider a set of twenty one instances (62 ≤ n ≤ 10,240 and
125 ≤ m ≤ 30,380) introduced in Petit (2003a). They are designed to be difficult; i.e. in that they cannot
be optimally solved by an explicit enumeration of all their feasible solutions. This set includes random
graphs and three families of "real-world" graphs: VLSI, graph-drawing and engineering (fluid-dynamics
and structural mechanics).

Method Best Worst Dev. Best Time (seconds)
C1 53,9734.5 365,513.4 174.79% 2.25

C2(rand) 279,603.8 313,168.7 16.50% 2.75
C2(0.1) 279,516.6 313,168.7 16.50% 2.50
C2(0.2) 279,331.3 312,248.5 20.12% 2.75
C2(0.3) 279,401.6 312,932.7 19.97% 2.75
C2(0.4) 279,401.6 312,932.7 19.97% 2.75
C2(0.5) 279,344.8 313,168.2 16.50% 2.75

C3(rand) 282,040.0 327,343.5 13.77% 2.75
C3(0.1) 266,755.0 315,570.2 29.04% 2.50
C3(0.2) 266,852.7 322,400.5 31.71% 2.75
C3(0.3) 266,534.5 320,361.7 39.10% 2.75
C3(0.4) 265,768.2 321,176.7 36.76% 2.75
C3(0.5) 262,767.2 324,549.7 37.04% 2.75

Table 1. Comparison of constructive methods

We perform the preliminary experimentation on four instances: randomA1, c1y, bintree10 and
mesh33x33 selected at random from the original set. In our first preliminary experiment we compare the
previous constructive method C1 (McAllister, 1999) with our two methods C2(α) and C3(β) described in
Section 5. We test five values for the search parameters α and β: 0.1, 0.2, 0.3, 0.4 and 0.5. We also test a

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 13

variant C2(rand) in which the value of α is randomly selected from among these five values in each
construction (and similarly with β in C3(rand)). Table 1 shows the results of these three methods on the
four Petit instances mentioned above. We construct 100 solutions with each method on each instance and
report the average across the four instances of the best solution found, Best, and the average of the worst
solution found, Worst. We also report the average percentage deviation of the best solution obtained with
each method from the best known solution, Dev. Best, as well as the average running time, Time.

The results in Table 1 indicate that the two proposed methods, C2 and C3, obtain better solutions than the
previous method C1. Moreover, as shown in the average percentage deviation, the best results are
obtained with the C3 method with a random selection of the parameter β (C3(rand)). However, in this
experiment we have empirically found that some methods systematically obtain better solutions on some
instances than other methods (although on average, across all the instances C3, is the best one). For
example, C1 always obtains the best solutions in the bintree instances and C2 always obtains the best in
the random ones. Therefore we have considered a mixed method, called C4, in which we randomly select
C1, C2(rand) or C3(rand) in each construction. C4 is able to obtain an average percentage deviation of
11.26% across the four problems of our preliminary experimentation, thus improving upon the other
methods. We will then consider C4 as the constructive method in the rest of our experimentation.

Method Best Worst Dev. Best
C4 263,636.7 509,565.2 11.26%

C4+EC(1,1) 264,574.5 457,632.0 13.34%
C4+EC(1,5) 263,224.8 327,512.8 13.15%

C4+EC(1,10) 262,739.3 370,197.0 13.19%
C4+EC(1,15) 264,512.5 319,452.0 13.58%
C4+EC(1,20) 262,872.3 316,349.0 13.05%
C4+EC(5,1) 262,025.0 454,472.5 11.45%
C4+EC(5,5) 261,836.8 309,190.0 11.21%

C4+EC(5,10) 263,258.3 303,643.8 11.23%
C4+EC(5,15) 260,298.3 324,966.8 11.14%
C4+EC(5,20) 262,929.3 332,535.3 11.30%
C4+EC(10,1) 261,698.0 302,020.5 10.51%
C4+EC(10,5) 260,345.3 313,030.5 10.37%

C4+EC(10,10) 263,572.3 439,862.0 10.88%
C4+EC(10,15) 262,983.8 311,830.8 10.84%
C4+EC (10,20) 261,869.8 452.744.8 10.91%

Table 2. Comparison of C4 coupled with different improvement methods with a time limit of 500 sec.

In our second preliminary experiment we undertake to compare the effectiveness of the improvement
method described in Section 5. As a baseline method, we consider the construction method C4 without
any improvement run for 500 seconds. We compare it with the combination of C4 and the ejection-chain-
based improvement method EC with several values for its two parameters: width and depth. To do this,
we run C4+EC(width,depth) for 500 seconds on each instance and report, as in the previous experiment,
the Best, Worst and Dev. Best average values. Table 2 shows that the best combination of the search
parameters is obtained with width=10 and depth=5 in our ejection-chain procedure, since C4+EC(10,5)
presents an average percentage deviation from the best known solution of 10.37. It should be noted that
previous studies (Rodriguez-Tello et al., 2008) are limited to a width value of 5 in the local search
method, and we are obtaining the best results with width set to 10. On the other hand, the variant
C4+EC(1,1) is simply C4 plus a local search and surprisingly obtains worse solutions (13.34 average
percentage deviation from best) than C4 by itself (which as shown in the previous experiment obtains an
11.26 average percentage deviation from best). This is explained by the fact that the local search method
is extremely time-consuming in this problem, and within 500 seconds the method can only construct and
improve less than 50 solutions in some instances.

As described in Section 5 the application of the improvement method finishes with a post-processing
consisting of the Hill climbing method (HC). It is performed for iter_Hc iterations. Table 3 reports the
statistics Best, Worst, Dev. Best as well as the CPU running time, Time, of the C4+EC+HC procedure
with iter_Hc=0, |V| /20, |V| /15, |V| /10 and |V| /5.

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 14

iter_Hc Best Worst Dev. Best Time

0 261,538.5 434,911.3 10.12% 505.8
|V|/20 255,043.3 288,956.0 10.02% 502.0
|V|/15 254,594.5 298,544.3 9.64% 504.8
|V|/10 255,680.8 285,602.0 10.47% 508.5
|V|/5 253,935.5 284,989.3 9.96% 505.3

Table 3. Hill climbing post-processing in the improvement method

Table 3 clearly shows that the application of the HC post-processing in the EC improvement method
presents a marginal improvement in the final quality of the solution. Specifically, the application of the
Hill climbing method for n/15 iterations reduces the average percentage deviation from 10.12% to 9.64%
consuming the same running time. In the reminder of our experimentation we select the constructive
method C4 and the improvement method EC(10,5) with the post-processing HC.

In the third preliminary experiment we test the effect of the filter mechanism described in Section 7 to
skip the improvement method when the value of the construction recommends it. During the first 20
constructions the method stores the fractional improvement achieved with the local search procedure EC.
Then, when a solution is constructed, it computes its minimum fractional improvement imp that is
necessary to improve the best solution known so far. If PPi m p σδµ ˆˆ +< we apply the improvement
method; otherwise it is skipped, where Pµ̂ and Pσ̂ are the average and the standard deviation
estimations of the percentage improvement. The parameter δ controls the number of standard deviations
away from the estimated mean percentage improvement. To measure the effectiveness of this strategy and
the best choice of δ, we populate the RefSet with 100 solutions and apply this filter from iteration 21 to
100. Table 4 reports the average, across the instances in the preliminary experimentation, of the number
of iterations in which the test recommends not applying the improvement, Skip, the average percentage
deviation from the best known solution, Dev. Best and the average running time of the methods, Time.

Table 4 shows that as δ decreases the number of skipped improvement iterations increases. This is to be
expected by definition of δ. However, the average percentage deviation from the best solution known,
Dev. Best, does not present significant changes across different values of δ, thus indicating the robustness
of the filter (i.e. solutions skipped for improvement hardly modify the final result). The best value for δ is
0.5, since it provides a saving in the CPU time without a significant deterioration of the quality of the
final solution.

δ # Skip Dev. Best Time
0.5 51.7 10.51% 292.0
1 37.5 10.40% 550.2

1.5 30.0 10.90% 485.2
2 25.7 10.86% 485.7

Table 4. Filtering solutions

In our final preliminary experiment we test the path relinking (PR) algorithm to measure the contribution
of the combination method within our scatter search procedure. We populate the RefSet with the
solutions obtained by applying our GRASP algorithm for 100 iterations. We then apply the PR to all the
pairs in RefSet and report the best solution found. As described in Section 8, we apply the improvement
method (EC(10,5)+HC) to some of the solutions in the paths. In particular, it is applied pr times in each
path. Table 5 reports the statistics Best, Dev. Best and Time of the SS+PR algorithm with different
values of the pr parameter.

Results in Table 5 show that as pr increases, the SS+PR algorithm is able to marginally improve the
quality of the final solution. However, as expected, running times also increase since, as we have already
mentioned, the application of the improvement method is time-consuming. We set pr=15 because it
represents a good balance between solution quality and speed.

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 15

pr best Dev. Best Time
5 254,964.5 9.59% 824.5

10 253,773.5 8.51% 1,041.7
15 253,516.5 8.00% 1,268.0
20 252,476.5 8.04% 1,521.7

Table 5. Scatter search with path relinking (SS+PR)

In the final experiment we compare our SS+PR algorithm with the best published methods: the
McAllister constructive method C1 coupled with the Hill-climbing algorithm HC (Petit, 2003a), C1+HC,
the simulated annealing SAN (Petit, 2003) and the two stage simulated annealing TSSA (Rodriguez-Tello
et al., 2008). Table 6 shows the results in the 21 Petit instances. We run these methods once on each
instance (with the exception of C1+HC that, considering its simplicity, is executed 1000 times) with their
parameters adjusted to run for about 1000 seconds of CPU time.

Table 6 is split into two parts. In the upper part we can find the results of each algorithm on each
particular instance in the Petit set. Specifically, we report the value of the best solution found, Value, and
the percentage deviation, Dev., between Value and the value of the best solution found with the four
methods under consideration. In the lower part of Table 6 we report the average running time of each
method across the 21 instances, Avg. Time, as well as the average percentage deviation, Avg. Dev., and
the number of best solutions, #Best, that each method is able to obtain.

 SS+PR C4+HC SAN TSSA
 Value Dev. Value Dev. Value Dev. Value Dev.
randomA1 914882 2.31 950394 6.28 894205 0.00 948868 6.11
randomA2 6572444 0.00 6708192 2.07 6596880 0.37 6625307 0.80
randomA3 14336736 0.00 14463797 0.89 14346700 0.07 14441751 0.73
randomA4 1779181 1.17 1824564 3.75 1758560 0.00 1816732 3.31
randomG4 179138 0.00 206123 15.06 299571 67.23 185912 3.78
bintree10 4267 0.00 13951 226.95 14247 233.89 4440 4.05
hc10 523776 0.00 538116 2.74 540512 3.20 523776 0.00
mesh33x33 32703 0.00 35509 8.58 38481 17.67 33464 2.33
3elt 431737 0.00 1369880 217.30 867560 100.95 509337 17.9
airfoil1 322611 0.00 867560 168.92 1369880 324.62 392989 21.8
whitaker3 1307540 0.00 4857190 271.48 4857190 271.48 1313857 0.48
c1y 65084 4.23 70896 13.54 73867 18.30 62441 0.00
c2y 82665 4.38 89029 12.41 89029 12.41 79199 0.00
c3y 136103 9.66 144902 16.75 163785 31.96 124117 0.00
c4y 125720 9.19 146651 27.36 146651 27.36 115144 0.00
c5y 109279 12.71 122652 26.51 123891 27.79 96952 0.00
gd95c 506 0.00 529 4.55 506 0.00 507 0.20
gd96a 114377 18.83 107945 12.15 111144 15.47 96253 0.00
gd96b 1421 0.35 1527 7.84 1483 4.73 1416 0.00
gd96c 519 0.00 531 2.31 519 0.00 523 0.77
gd96d 2414 0.84 2399 0.21 2421 1.13 2394 0.00
Avg. Time 529.14 552.90 1274.14 870.57
Avg. Dev. 3.03% 49.89% 55.17% 2.97%
#Best 11 0 4 9

Table 6. Comparison of best methods

Table 6 shows that C4+HC and SAN are clearly inferior to the other two methods considered in this
comparison, since they obtain an average percentage deviation from the best known solution of 49.89 and
55.17 respectively. Our SS+PR method obtains the greatest number of best solutions found by any of the
methods, 11, followed by the TSSA method which obtains 9 best solutions. SS+PR and TSSA obtain an
average percentage deviation of 3.03 and 2.97 respectively. It should be noted that our SS+PR algorithm
presents a running time of 529.14 seconds on average, which compares favorably with the 870.57 seconds
of TSSA. Moreover, TSSA would demand more than four hours of CPU time in some instances if we
adjusted its parameters as in Rodriguez-Tello et al. (2008), although the average percentage deviation
from employing such lengthy runs would be reduced to 0.05.

We finish our experimentation studying the contribution of the different SS elements in the evolution of
the best solution. Specifically, Figure 7 depicts, for each SS iteration, the value of the best solution in the

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 16

RefSet (Best RefSet), the value of the best solution obtained with the combination of the solutions in the
RefSet (Best Comb), and the value of the best solution resulting from the application of the improvement
method to the combined solutions (BestLS).

Figure 7. Evolution of the best SS solution

Figure 7 shows the contribution of the combination and improvement methods to the best solution found.
This figure clearly shows that the solutions obtained by combination are not able to improve themselves
the value of the best solution in the RefSet; however, they constitute good seeds for the application of the
improvement method. This is especially true in iterations 1, 2 and 7 in which the application of the
improvement method to the combined solutions is able to improve the best solution in the RefSet, thus
generating a new best solution overall.

10. Conclusions

We have developed a heuristic procedure based on the SS methodology to illustrate how this
methodology can be applied to an intensively studied problem in combinatorial optimization – the linear
arrangement minimization problem. Although our development is tutorial in nature, our illustrative
method nevertheless performs highly effectively compared to the leading methods in the literature.

Overall experiments with previously reported instances were performed to first identify the contribution
of the different elements in our procedure and then to compare the outcomes with those of previous
methods. Our preliminary experiments illustrate the merit of the proposed mechanisms, such as the use
of ejection chains (Section 6), the filter of low quality constructions (Section 7) and the selection of
diverse solutions for Path Relinking (Section 8), that we hope other researchers might find useful in
different combinatorial optimization problems. The efficacy of the resulting scatter search with path
relinking implementation is demonstrated by surpassing the best procedures in the literature in the
number of best solutions obtained when solving the problem within moderate running times (1000
seconds on medium sized instances). An immediate opportunity for obtaining still better results may be
noted to arise by employing a self-adjusting mechanism for choosing parameter values, rather than
relying on fixed values that represent a compromise between competing considerations. To carry the basic
foundations of this work further, a sequel will examine more finely tuned versions of the illustrated
strategies, and additionally focus on longer term strategies, thus exposing options for obtaining improved
solutions when time limits are made substantially longer.

Acknowledgments
This research has been partially supported by the Ministerio de Ciencia e Innovación of Spain (TIN2009-
07516). The authors thank Professors Rodriguez-Tello, Hao and Torres-Jimenez for sharing their results
with them.

Scatter Search and Path Relinking for the Linear Arrangement Minimization / 17

References
Adolphson, D., & Hu., T. C. (1973). Optimal linear ordering. SIAM Journal on Applied Mathematics, 25(3) 403-423.
Garey, M.R., & Johnson, D.S. (1979). Computers and Intractability. A guide to the theory of completeness, New
York: W. H. Freeman and Company.
Glover, F. (1977). Heuristics for Integer Programming Using Surrogate Constraints. Decision Sciences 8, 156-166.
Glover, F. (1982). Ejection Chains, Reference Structures and Alternating Path Methods, Boulder: University of
Colorado.
Glover, F. (1989). "Tabu Search - Part I," ORSA Journal on Computing, 1(3) 190-206.
Glover, F. (1996). Ejection Chains, Reference Structures and Alternating Path Methods for Traveling Salesman
Problems- Discrete Applied Mathematics 65(1-3) 223-253.
Glover, F. (1997) A Template for Scatter Search and Path Relinking. In Hao, J.-K., Lutton, E., Ronald, E.,
Schoenauer, M., & Snyers, D., (Eds.), Artificial Evolution, Lecture Notes in Computer Science 1363, 13-54. Springer.
Glover, F., & Laguna, M. (1993). Tabu Search. In Modern Heuristic Techniques for Combinatorial Problems, C.
Reeves, ed., Blackwell Scientific Publishing, pp. 71-140
Glover, F., & Laguna, M. (1997). Tabu Search. Boston: Kluwer Academic Publishers.
Harper, L. H. (1964). Optimal assignment of numbers to vertices. SIAM Journal on Applied Mathematics, 12(1) 131-
135.
Juvan, M., & Mohar, B. (1992). Optimal linear labelings and eigenvalues of graphs. Discrete Applied Mathematics,
36(2) 153–168.
Kennedy, J., Eberhart, R.C. (1995). Particle swarm optimization. In: Proceedings of IEEE International Conference
on Neural Networks, vol. IV, pp. 1942–1948.
Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220, 671-680.
Laguna, M., & Martí, R. (1999). GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization.
INFORMS Journal on Computing, 11(1) 44-52.
Laguna, M., & Martí, R. (2003). Scatter Search: Methodology and Implementations in C. Boston: Kluwer Academic
Publishers.
Martí, R. (Guest editor) (2006). Scatter Search Methods for Optimization. A Feature Cluster of the European Journal
of Operational Research, 169(2).
Martí, R., Laguna, M., Glover, F., & Campos, V. (2001). Reducing the Bandwidth of a Sparse Matrix with Tabu
Search. European Journal of Operational Research, 135(2) 211-220.
McAllister, A. J. (1999). A new heuristic algorithm for the linear arrangement problem. New Brunswick, CA: TR-99-
126a, Faculty of Computer Science, University of New Brunswick.
Petit, J. (2003a). Combining Spectral Sequencing and Parallel Simulated Annealing for the MinLA Problem. Parallel
Processing Letters 13(1) 71-91.
Petit, J. (2003b). Experiments on the minimum linear arrangement problem. ACM Journal of Experimental
Algorithmics 8.
Piñana, E., Plana, I., Campos, V., & Martí, R. (2004) GRASP and Path Relinking for the Matrix Bandwidth
Minimization, European Journal of Operational Research 153, 200-210.
Resende, M.G.C. & Ribeiro, C.C. (2003). Greedy Randomized Adaptive Search Procedures. in Handbook of
Metaheuristic, 219-249. Kluwer Academic Publishers.
Resende, M.G.C., Ribeiro, C.C., Glover, F. & Martí, R (2010). Scatter search and path-relinking: Fundamentals,
advances, and applications, Handbook of Metaheuristics (2nd edition), M. Gendreau and J. Y. Potvin, eds. Kluwer
Academic Publishers, 87-108, New York.
Rodriguez-Tello, E., Hao, J., & Torres-Jimenez, J. (2008). An Effective Two-Stage Simulated Annealing Algorithm
for the Minimum Linear Arrangement Problem. Computers & Operations Research 35(10) 3331-3346.

