

Variable Neighborhood Search with Ejection Chains
for the Antibandwidth Problem

MANUEL LOZANO
Departamento de Ciencias de la Computación e Inteligencia Artificial, Universidad de Granada, Spain.
lozano@decsai.ugr.es

ABRAHAM DUARTE
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
abraham.duarte@urjc.es

FRANCISCO GORTÁZAR
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
francisco.gortazar@urjc.es

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
rafael.marti@uv.es

ABSTRACT

In this paper, we address the optimization problem arising in some practical applications in which we
want to maximize the minimum difference between the labels of adjacent elements. For example, in the
context of location models, the elements can represent sensitive facilities or chemicals and their labels
locations, and the objective is to locate (label) them in a way that avoids placing some of them too close
together (since it can be risky). This optimization problem is referred to as the antibandwidth
maximization problem (AMP) and, modeled in terms of graphs, consists of labeling the vertices with
different integers or labels such that the minimum difference between the labels of adjacent vertices is
maximized. This optimization problem is the dual of the well-known bandwidth problem and it is also
known as the separation problem or directly as the dual bandwidth problem. In this paper, we first
review the previous methods for the AMP and then propose a heuristic algorithm based on the Variable
Neighborhood Search methodology to obtain high quality solutions. One of our neighborhoods
implements ejection chains which have been successfully applied in the context of tabu search. Our
extensive experimentation with 72 previously reported instances shows that the proposed procedure
outperforms existing methods in terms of solution quality employing a third of computing time.

Keywords: metaheuristics, VNS, layout problems.

Version: June 20, 2011

Lozano, et al. — 2

1. Introduction

In recent years there has been a growing interest in studying graph layout problems where the main
objective is to find a labeling of a graph in such a way that a specific objective function is maximized or
minimized. The Linear Arrangement (Rodriguez-Tello et al. 2008), Bandwidth (Piñana et al. 2004) or
Cutwidht (Pantrigo et al. 2011) fall into this class of optimization problems. In this paper, we tackle the
Antibandwidth Maximization Problem (AMP), which consists of labeling the vertices of a graph with
distinct integers in such a way that the minimum difference between labels of adjacent vertices is
maximized.

To formulate the AMP in mathematical terms, we first define the labeling 𝑓𝑓 of a graph 𝐺𝐺. Given an
undirected graph 𝐺𝐺(𝑉𝑉,𝐸𝐸), where 𝑉𝑉 (|𝑉𝑉| = 𝑛𝑛) and 𝐸𝐸 (|𝐸𝐸| = 𝑚𝑚) represent respectively, the set of
vertices and edges, a labeling 𝑓𝑓 of its vertices is a one-to-one mapping from the set 𝑉𝑉 to the set
{1,2, …𝑛𝑛} where each vertex 𝑣𝑣 ∈ 𝑉𝑉 has a unique label 𝑓𝑓(𝑣𝑣) ∈ {1,2, … ,𝑛𝑛}. Given the labeling 𝑓𝑓, the
antibandwidth 𝐴𝐴𝐴𝐴𝑓𝑓(𝐺𝐺) of graph 𝐺𝐺 can be computed as:

𝐴𝐴𝐴𝐴𝑓𝑓(𝐺𝐺) = min�𝐴𝐴𝐴𝐴𝑓𝑓(𝑣𝑣) ∶ 𝑣𝑣 ∈ 𝑉𝑉�,

where 𝐴𝐴𝐴𝐴𝑓𝑓(𝑣𝑣) = min{|𝑓𝑓(𝑣𝑣) − 𝑓𝑓(𝑢𝑢)| ∶ (𝑣𝑣,𝑢𝑢) ∈ 𝐸𝐸}.

The antibandwidth maximization problem (AMP) consists of finding a labeling 𝑓𝑓 that maximizes 𝐴𝐴𝐴𝐴𝑓𝑓(𝐺𝐺).

This NP-hard problem was originally introduced in Leung et al. (1984) in connection with multiprocessor
scheduling problems. AMP has also applications in relation to obnoxious facility location and radio
frequency assignment (see Hale, 1980; Cappanera, 1999; Burkard et al., 2001; and Yixun and Jinjiang,
2003).

Figure 1: (a) Graph example, (b) Antibandwidth of 𝐺𝐺 for a labeling 𝑓𝑓.

Figure 1.a shows an example of an undirected graph with 8 vertices and 9 edges. The number close to
each vertex represents the label assigned to it. For example, the label of vertex 𝐴𝐴 is 𝑓𝑓(𝐴𝐴) = 1, the label

Lozano, et al. — 3

of vertex 𝐴𝐴 is 𝑓𝑓(𝐴𝐴) = 5 and so on. Figure 1.b shows the antibandwidth of each vertex, calculated as the
minimum difference between the label of the corresponding vertex and all its neighbors’ labels.
Computing the minimum of these antibandwidth values we conclude that 𝐴𝐴𝐴𝐴𝑓𝑓(𝐺𝐺) = 2.

The antibandwidth problem can be optimally solved for specific classes of graphs. Raspaud et al. (2009)
solved it for two dimensional meshes (cartesian product of two paths), tori (cartesian product of two
cycles), and hyper-cubes. Török and Vrt’o (2007) extended these results to the case of three-
dimensional meshes. Dobrev et al. (2009) proposed an exact algorithm for Hamming graphs (Cartesian
product of d-complete graphs).

Recently, two heuristic procedures have been independently and simultaneously presented for the AMP
(and therefore they did not compare each other). Duarte et al. (2010) presented two randomized
greedy constructive procedures and a local search algorithm based on exchanges. Combining these
heuristics the authors derived several GRASP methods. Additionally, a static and a dynamic path
relinking post-processing procedures were also proposed for search intensification. In the static scheme,
path relinking is performed once between all pairs of elite set solutions previously found with GRASP. In
the dynamic scheme, after each GRASP local search phase, path relinking is executed between the
corresponding local maximum and a solution selected at random from the elite set. The authors also
proposed a GRASP with evolutionary path relinking heuristic, EvPR, which periodically applies path
relinking between all pairs of solutions in the elite set. This later method obtains the best results
although it consumes longer running times than the other variants.

Bansal and Srivastava (2011) proposed a Memetic Algorithm, MA, for the AMP. The algorithm starts by
creating an initial population of solutions using a randomized breath first search, BFS. This method
produces a spanning tree in which adjacent vertices belong to either same level or to adjacent levels.
This ensures that the vertices belonging to alternate levels are not adjacent. Non-adjacent vertices
belonging to alternative levels are labeled sequentially, and the remaining vertices are labeled in a
greedy fashion. As it is customary in evolutionary methods, the initial population evolves by applying
three steps: selection, combination and mutation. The selection strategy is implemented by means of a
classical tournament operator. The combination operator is implemented using a modified version of
the BFS procedure, in which a solution is obtained by copying part of its “father” (up to a random point)
and then completing it with the BFS constructive procedure. The mutation strategy is implemented by
swapping two positions of a solution. These three main steps are repeated until a maximum number of
iterations (generations) is reached.

In this paper, we propose a Variable Neighborhood Search procedure (Hansen et al. 2010) for the
antibandwidth maximization problem. Section 2 introduces the three neighborhood structures and the
associated local search methods in which our VNS method is based on. One of the neighborhoods
implements ejection chains (Glover and Laguna, 1997) which have been successfully applied in the
context of tabu search. Section 3 is devoted to describe the VNS procedure itself, and how the
neighborhoods interact. Computational experiments are described in Section 4 and concluding remarks
are made in Section 5.

Lozano, et al. — 4

2. Neighborhood Structures

Solutions to graph arrangement problems are typically represented as permutations, where each vertex
occupies the position given by its label. For example, the labeling of the graph depicted in Figure 1.a,

𝑓𝑓(𝐴𝐴) = 1; 𝑓𝑓(𝐴𝐴) = 5; 𝑓𝑓(𝐶𝐶) = 2;𝑓𝑓(𝐷𝐷) = 3; 𝑓𝑓(𝐸𝐸) = 4; 𝑓𝑓(𝐹𝐹) = 6; 𝑓𝑓(𝐺𝐺) = 7;𝑓𝑓(𝐻𝐻) = 8 ,

can be expressed with the permutation 𝑓𝑓 = (𝐴𝐴,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐴𝐴,𝐹𝐹,𝐺𝐺,𝐻𝐻). In short, the first vertex in the
permutation receives the label 1, the second vertex receives the label 2, and so on. In this section, we
define three neighborhood structures based on permutations. Associated to each neighborhood a local
search procedure can be defined to visit the solutions in the search space. In the next section we will
describe how these three neighborhoods, and their associated local searches, interact within the VNS
methodology.

The first two neighborhoods, N 1 and N 2, implement classic moves in permutation based problems,

general exchanges and consecutive swappings, respectively. Given a solution
𝑓𝑓 = (𝑣𝑣1, … , 𝑣𝑣𝑖𝑖 , … , 𝑣𝑣𝑗𝑗 , … , 𝑣𝑣𝑛𝑛), we define 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒(𝑓𝑓, 𝑗𝑗, 𝑖𝑖) as exchanging in 𝑓𝑓 the vertex in position 𝑖𝑖 with

the vertex in position 𝑗𝑗, producing a new solution 𝑓𝑓’ = (𝑣𝑣1, … , 𝑣𝑣𝑖𝑖−1,𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖+1, … , 𝑣𝑣𝑗𝑗−1,𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗+1, … , 𝑣𝑣𝑛𝑛).

For the sake of simplicity we denote 𝑓𝑓’ = 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒(𝑓𝑓, 𝑗𝑗, 𝑖𝑖). The associated neighborhood N 1 has size

𝑛𝑛(𝑛𝑛 − 1)/2, which can be considered relatively large, so instead of an exhaustive exploration we apply
candidate list strategies (Glover and Laguna 1997) for its improved scan. In particular, we order the
vertices according to their 𝐴𝐴𝐴𝐴𝑓𝑓 -value (where the vertex with the minimum antibandwidth comes first),

and examine them in this order. For each vertex 𝑣𝑣𝑖𝑖 , we search for the first position 𝑗𝑗 resulting in an
improving 𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑒𝑒(𝑓𝑓, 𝑗𝑗, 𝑖𝑖) move. If we find it, we apply the move; otherwise we do not change the
current solution 𝑓𝑓. In any case we resort to the next vertex in the ordered list. When all the vertices
have been examined and eventually some moves have been performed, we re-compute the
antibandwidth of all of them and update their order. (Update key information only at certain points is
considered an implementation of the elite candidate list introduced in the context of tabu search by
Glover and Laguna, 1997.) This local search method finishes when all the vertices have been examined
and no improving move have been found.

The second neighborhood N 2 is defined by means of two symmetric moves, 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠+(𝑓𝑓, 𝑣𝑣𝑖𝑖) and

𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠−(𝑓𝑓, 𝑣𝑣𝑖𝑖). The first one consists of removing the vertex 𝑣𝑣𝑖𝑖 from its current position 𝑖𝑖 in 𝑓𝑓 and
inserting it in position 𝑖𝑖 + 1 (i.e., swapping 𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑖𝑖+1 in 𝑓𝑓). Symmetrically, the second move swaps 𝑣𝑣𝑖𝑖
and 𝑣𝑣𝑖𝑖−1 in 𝑓𝑓. In mathematical terms, given a solution 𝑓𝑓 = (𝑣𝑣1, … , 𝑣𝑣𝑖𝑖−1,𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖+1 … , 𝑣𝑣𝑛𝑛) we have that:

𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠+(𝑓𝑓, 𝑣𝑣𝑖𝑖) = (𝑣𝑣1, … , 𝑣𝑣𝑖𝑖−1,𝑣𝑣𝑖𝑖+1,𝑣𝑣𝑖𝑖 … , 𝑣𝑣𝑛𝑛)

𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠−(𝑓𝑓, 𝑣𝑣𝑖𝑖) = (𝑣𝑣1, … , 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖−1,𝑣𝑣𝑖𝑖+1 … , 𝑣𝑣𝑛𝑛)

We explore the associated neighborhood N 2 as we described above for N 1 (i.e., vertices are scanning in

ascending order of their antibandwidth value and examining in search for an improving move). Given a

Lozano, et al. — 5

vertex 𝑣𝑣𝑖𝑖 , we first compute its closest neighbor 𝑣𝑣𝑗𝑗 in terms of labels (i.e., its adjacent vertex in which the

antibandwidth of 𝑣𝑣𝑖𝑖 is reached):

𝐴𝐴𝐴𝐴𝑓𝑓(𝑣𝑣𝑖𝑖) = min{|𝑓𝑓(𝑣𝑣𝑖𝑖) − 𝑓𝑓(𝑢𝑢)| ∶ (𝑣𝑣𝑖𝑖 ,𝑢𝑢) ∈ 𝐸𝐸} = |𝑓𝑓(𝑣𝑣𝑖𝑖) − 𝑓𝑓�𝑣𝑣𝑗𝑗 �|

We want to change the label of 𝑣𝑣𝑖𝑖 to increase 𝐴𝐴𝐴𝐴𝑓𝑓(𝑣𝑣𝑖𝑖), therefore if 𝑗𝑗 > 𝑖𝑖 we try 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠−(𝑓𝑓, 𝑣𝑣𝑖𝑖);

otherwise, we try 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠+(𝑓𝑓, 𝑣𝑣𝑖𝑖). Without loss of generality consider that we try 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠−(𝑓𝑓, 𝑣𝑣𝑖𝑖). If it is an
improving move the procedure performs it, obtains the new solution 𝑓𝑓’ = (𝑣𝑣1, … , 𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖−1, 𝑣𝑣𝑖𝑖+1 … , 𝑣𝑣𝑛𝑛)
and tries the consecutive swap: 𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠−(𝑓𝑓’, 𝑣𝑣𝑖𝑖). The procedure performs consecutive swaps until no
further improvement is possible or 𝑗𝑗 = 1 (symmetrically 𝑗𝑗 = 𝑛𝑛). At that point vertex 𝑣𝑣𝑖𝑖 is discarded and
the method resorts to the following vertex in the ordering list.

The third neighborhood N 3 is based on the ejection chain methodology. This strategy is often used in

connection with Tabu Search (Glover and Laguna, 1997) and consists of generating a compound
sequence of moves, leading from one solution to another by means of a linked sequence of steps. In
each step, the changes in some elements cause other elements to be ejected from their current state. In
the context of the AMP, suppose that we want to exchange the label 𝑓𝑓(𝑢𝑢) of a vertex 𝑢𝑢 with the label
𝑓𝑓(𝑣𝑣) of another vertex 𝑣𝑣 because this exchange results in an increment of the antibandwidth of 𝑢𝑢, but
we found that it deteriorates the antibandwidth of 𝑣𝑣. We can therefore consider labeling 𝑢𝑢 with 𝑓𝑓(𝑣𝑣)
but, instead of labeling 𝑣𝑣 with 𝑓𝑓(𝑢𝑢), examine another vertex 𝑠𝑠 and check whether the label 𝑓𝑓(𝑢𝑢) may
be advantageously assigned to 𝑠𝑠 and whether, to complete the process, the label 𝑓𝑓(𝑠𝑠) is appropriate
to 𝑣𝑣. In terms of ejection chains, we may say that the assignment of 𝑓𝑓(𝑣𝑣) to 𝑢𝑢 caused 𝑓𝑓(𝑢𝑢) to be
“ejected” from 𝑢𝑢 to 𝑠𝑠 (and concluding by assigning 𝑓𝑓(𝑠𝑠) to 𝑣𝑣). The outcome defines a compound move
of depth two. We can repeat this logic to build longer chains.

To restrict the size of N 3 and to reduce the computational effort we only scan a subset 𝑊𝑊 of the

possible labels selected at random. As in the previous neighborhoods, vertices are scanning in
ascending order of their antibandwidth value. Let 𝑢𝑢 be the first vertex in the list, the chain starts by
selecting the best label 𝑓𝑓(𝑣𝑣) ∈ 𝑊𝑊 for 𝑢𝑢 and evaluating the exchange of both labels (𝑓𝑓(𝑣𝑣) and 𝑓𝑓(𝑢𝑢)). If
this is an improving move, it is applied and the chain stops (with depth one). Otherwise, we search for a
vertex 𝑠𝑠 with a label 𝑓𝑓(𝑠𝑠) in 𝑊𝑊 adequate for 𝑣𝑣. If the compound move of depth two is an improving
one, it is applied and the chain stops; otherwise the chain continues until the compound move becomes
an improving one or the length of the chain reaches the pre-specified limit depth. This local search is
therefore restricted by two parameters: the size of 𝑊𝑊 and the depth of the ejection chain, which control
both the number of vertices involved in the move and the distance between the labels. We consider a
maximum depth, 𝑑𝑑𝑒𝑒𝑠𝑠𝑑𝑑ℎ, of compound moves that will be empirically adjusted in our experiments (it
represents a balance between computational effort and search intensification). If none of the
compound moves from depth 1 to 𝑑𝑑𝑒𝑒𝑠𝑠𝑑𝑑ℎ is an improving move, no move is performed and the
exploration continues with the next vertex in the ordered list.

In the following section we define what we understand by an improving move. Considering that many
vertices can have an antibandwidth equal to the graph’s antibandwidth, a straight forward definition of

Lozano, et al. — 6

move value would result in a poor guided local search method and therefore we propose an alternative,
and richer, move value definition.

3. Variable Neighborhood Search

VNS is a methodology for solving optimization problems based on changing neighborhood structures. In
recent years, a large amount of VNS variants have been proposed. Just to mention a few: Variable
Neighborhood Descent (VND), Reduced VNS (RVNS), Basic VNS (BVNS), Skewed VNS (SVNS), General
VNS (GVNS) or Reactive VNS. We refer the reader to Hansen et al. (2010) for an excellent review of this
methodology.

In this paper, we focus on the VND variant, in which a predefined set of neighborhoods

�𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝑘𝑘𝑚𝑚𝑎𝑎𝑒𝑒 � is available and the change between them is performed in a deterministic and

sequential way. Our method (see Figure 2) implements a multi-start procedure where in each iteration
we first construct an initial solution with a level algorithm (Bansal and Srivastava 2011), and then apply
an improvement method with a VND strategy. The algorithm starts by constructing an initial solution
(step 2), obtaining a labeling 𝑓𝑓, and then applies in step 5 a local search over the first neighborhood,
𝐿𝐿𝐿𝐿𝑒𝑒𝑎𝑎𝐿𝐿𝐿𝐿𝑒𝑒𝑎𝑎𝐿𝐿𝑒𝑒ℎ(𝑓𝑓,𝑁𝑁𝑘𝑘) with 𝑘𝑘 = 1. If the resulting local optimum, 𝑓𝑓′, does not improve upon 𝑓𝑓, we set
𝑘𝑘 = 𝑘𝑘 + 1 (step 10) and apply again 𝐿𝐿𝐿𝐿𝑒𝑒𝑎𝑎𝐿𝐿𝐿𝐿𝑒𝑒𝑎𝑎𝐿𝐿𝑒𝑒ℎ(𝑓𝑓,𝑁𝑁𝑘𝑘), but now with 𝑘𝑘 = 2. We proceed in this way
until 𝑘𝑘 reaches 𝑘𝑘𝑚𝑚𝑎𝑎𝑒𝑒 or the resulting local optimum, 𝑓𝑓′, improves upon the initial solution. In the former
case, we finish this construction step since 𝑓𝑓 cannot be improved with any of the neighborhoods
considered. In the later case, we resort to 𝑘𝑘 = 1, update the current solution 𝑓𝑓 (steps 7 and 8), and
apply the local search with the first neighborhood to the obtained solution. The VND method
terminates when a maximum number of construction steps, 𝑀𝑀𝑎𝑎𝑒𝑒𝑀𝑀𝑑𝑑𝑒𝑒𝐿𝐿, is performed. It is worth
mentioning that when we compare two solutions, we do not restrict our attention to the objective
function, but we also consider additional evaluators (described in the next subsections). In this broad
sense has to be interpreted the step 6 of the algorithm (𝑓𝑓′ improves upon 𝑓𝑓).

PROCEDURE 𝑉𝑉𝑁𝑁𝐷𝐷(𝑀𝑀𝑎𝑎𝑒𝑒𝑀𝑀𝑑𝑑𝑒𝑒𝐿𝐿, 𝑘𝑘𝑚𝑚𝑎𝑎𝑒𝑒)

1. FOR 𝑖𝑖 = 1, … ,𝑀𝑀𝑎𝑎𝑒𝑒𝑀𝑀𝑑𝑑𝑒𝑒𝐿𝐿 DO
2. 𝑓𝑓 = 𝐶𝐶𝐿𝐿𝑛𝑛𝑠𝑠𝑑𝑑𝐿𝐿𝑢𝑢𝑒𝑒𝑑𝑑_𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢𝑑𝑑𝑖𝑖𝐿𝐿𝑛𝑛()
3. 𝑘𝑘 = 1
4. WHILE (𝑘𝑘 < 𝑘𝑘𝑚𝑚𝑎𝑎𝑒𝑒)
5. 𝑓𝑓′ = 𝐿𝐿𝐿𝐿𝑒𝑒𝑎𝑎𝐿𝐿𝐿𝐿𝑒𝑒𝑎𝑎𝐿𝐿𝑒𝑒ℎ(𝑓𝑓,𝑁𝑁𝑘𝑘)
6. IF 𝑓𝑓′ improves upon 𝑓𝑓 THEN
7. 𝑓𝑓 = 𝑓𝑓′
8. 𝑘𝑘 = 1
9. ELSE
10. 𝑘𝑘 = 𝑘𝑘 + 1
11. RETURN 𝑓𝑓

END

Figure 2. Pseudo-code of the VND method.

Lozano, et al. — 7

3. 1 Constructive method

Level algorithms (Díaz et al., 2002) are constructive procedures based on the partition of the vertices of
a graph in different levels, 𝐿𝐿1, … , 𝐿𝐿𝑠𝑠 , such that the endpoints of each edge in the graph are either in the
same label 𝐿𝐿𝑖𝑖 or in two consecutive levels, 𝐿𝐿𝑖𝑖 and 𝐿𝐿𝑖𝑖+1. This level structure guarantees that vertices in
alternative levels are not adjacent. Level structures are usually constructed using a breath first search
(BFS) method, providing a root of the corresponding spanning tree and an order in which the vertices of
the graph are visited. Bansal and Srivastava (2011) applied this procedure to the AMP. Specifically, they
proposed a randomized breadth first search wherein the spanning tree is constructed by selecting the
root vertex (in level 1) as well as the neighbors of the visited vertices at random.

Starting from an odd level (even level) the constructive procedure labels all the non-adjacent vertices of
odd levels (even levels) sequentially. The remaining vertices are labeled using a greedy approach in
which a vertex 𝑣𝑣 is labeled with the unused label that produces the minimum increasing of its
antibandwidth value 𝐴𝐴𝐴𝐴𝑓𝑓(𝑣𝑣). Figure 3.a shows a spanning tree of the graph introduced in Figure 1.a.

Figure 3.b depicts vertices in odd levels labeled sequentially. Finally, Figure 3.c shows the entire
labeling, where the unlabeled vertices have been labeled in a greedy fashion.

Figure 3: (a) Spanning tree, (b) Sequential labeling of odd levels, (c) Greedy labeling of remaining nodes.

Lozano, et al. — 8

3.2 Local search

In the AMP there may be many different solutions with the same objective function value. We could say
that the solution space presents a “flat landscape”. In this kind of problems, such as the min-max or
max-min, local search procedures typically do not perform well because most of the moves have a null
value. In the AMP there may be multiple vertices with an antibandwidth value equal to 𝐴𝐴𝐴𝐴𝑓𝑓(𝐺𝐺). Then,

changing the label of a particular vertex 𝑢𝑢 to increase its antibandwidth 𝐴𝐴𝐴𝐴𝑓𝑓(𝑢𝑢), does not necessarily

imply that 𝐴𝐴𝐴𝐴𝑓𝑓(𝐺𝐺) also increases. We therefore consider that a move improves the current solution if

the number of vertices with a relative small antibandwidth value is reduced, regardless whether the
objective function improves or not. With this extended definition of “improving” we overcome the lack
of information provided by the objective function. Specifically, we classify the vertices in the sets 𝐿𝐿𝑖𝑖 for
𝑖𝑖 = 1 to 𝑚𝑚𝑎𝑎𝑒𝑒𝐴𝐴𝐴𝐴 where set 𝐿𝐿𝑖𝑖 contains the vertices with antibandwidth 𝑖𝑖. In mathematical terms,
𝐿𝐿𝑖𝑖 = {𝑣𝑣 ∈ 𝑉𝑉 | 𝐴𝐴𝐴𝐴𝑓𝑓(𝑣𝑣) = 𝑖𝑖}. For example, considering the graph depicted in Figure 1.a and the

corresponding labeling 𝑓𝑓, we obtain the sets 𝐿𝐿1 = ∅, 𝐿𝐿2 = {𝐴𝐴,𝐷𝐷}, 𝐿𝐿3 = {𝐴𝐴,𝐶𝐶,𝐸𝐸,𝐺𝐺,𝐻𝐻}, and 𝐿𝐿4 = {𝐹𝐹}.

We consider that a move changing the label of a vertex 𝑣𝑣 improves the current solution if it reduces the
cardinality of any set 𝐿𝐿𝑖𝑖 with 𝑖𝑖 ≥ 𝐴𝐴𝐴𝐴𝑓𝑓(𝑣𝑣) without increasing the cardinality of any set 𝐿𝐿𝑘𝑘 with 𝑘𝑘 ≤ 𝑖𝑖. In

other words, if vertex 𝑣𝑣 is removed from 𝐿𝐿𝑖𝑖 and included in 𝐿𝐿𝑒𝑒 with 𝑒𝑒 > 𝑖𝑖. We have empirically found
that this criterion allows the local search procedure to explore a larger number of solutions than a
typical implementation that only performs moves when the objective function is improved. Figure 4.a
shows an improving move for the labeling of Figure 1.a. The move consists of exchanging the labels of
vertices 𝐴𝐴 and 𝐻𝐻, obtaining a new solution 𝑓𝑓′. In the new labeling, vertex 𝐴𝐴 is removed from set 𝐿𝐿2 and
included in set 𝐿𝐿3. It means that the antibandwidth value of vertex 𝐴𝐴 is increased by one unit (from 2 to
3). On the other hand vertex 𝐻𝐻 remains in set 𝐿𝐿3. This move does not increase the antibandwidth of the
graph, but we reduce the number of vertices with a small antibandwidth value.

Considering the graph shown in Figure 1.a if we now exchange the labels of vertices 𝐺𝐺 and 𝐻𝐻 (see Figure
4.b) vertex 𝐺𝐺 is removed from set 𝐿𝐿3 and included in set 𝐿𝐿4 (i.e., its antibandwidth is improved by one
unit), but vertex 𝐻𝐻 is removed from set 𝐿𝐿3 and included in set 𝐿𝐿2. We then consider that this move does
not improve the incumbent solution.

Figure 4: (a) Improving move, (b) Non-improving move.

Lozano, et al. — 9

4. Experimental results

This section describes the computational experiments that we performed to compare our procedure
with the state-of-the-art methods for solving the AMP. The VNS procedure described in Section 3 was
implemented in Java SE 6 and all the experiments were conducted on an Intel Core 2 Quad CPU Q 8300
with 6 GiB of RAM and Ubuntu 9.04 64 bits OS. We have considered three sets with a total of 72
instances. They have been previously used in several linear layout problems (Pantrigo et al. 2011;
Duarte et al. 2010). The first set, Harwell-Boeing, is a subset of the public domain Matrix Market library
(Harwell-Boeing, 2011); the second one, Grid graphs, was introduced in Rolim et al. (1995) and the third
one, Hamming graphs, was introduced in Dobrev et al. (2009). All these instances are available at
http://www.optsicom.es/abp/. A detailed description of each set of instances follows:

Harwell-Boeing. We derived 24 instances from the Harwell-Boeing Sparse Matrix Collection (Harwell-
Boeing, 2011). This collection consists of a set of standard test matrices arising from problems in linear
systems, least squares, and eigenvalue calculations from a wide variety of science and engineering. The
problems range from small matrices, used as counter-examples to hypotheses in sparse matrix research,
to large matrices arising in practical applications. Graphs are derived from these matrices as follows. Let
𝑀𝑀𝑖𝑖𝑗𝑗 denote the element of the 𝑖𝑖-th row and 𝑗𝑗-th column of the 𝑛𝑛 × 𝑛𝑛 sparse matrix 𝑀𝑀. The

corresponding graph has 𝑛𝑛 vertices. Edge (𝑖𝑖, 𝑗𝑗) exists in the graph if and only if 𝑀𝑀𝑖𝑖𝑗𝑗 ≠ 0. We consider

two subsets in the Harwell-Boeing set. The first consists of 12 smaller instances of size 𝑛𝑛 ∈ [30, 100]:
bcspwr01, bcspwr02, ibm32, pores1, curtis54, will57, bcsstk01, dwt234, ash85,

bcspwr03, impcol.b, and nos4. The second subset contains 12 larger instances with 𝑛𝑛 ∈ [400, 900]:
494bus, 662bus, 685bus, bcsstk07, bcsstk06, can445, can715, dwt503, dwt592,

impcol.d, nos6, and sherman4.

Grid graphs. This data set consists of 24 matrices constructed as the Cartesian product of two paths
(Raspaud et al., 2009). They are also called two dimensional meshes and, as documented in Raspaud et
al. (2009), the optimal solutions of the antibandwidth problem for these types of instances are known by
construction. As in the previous set, we consider two subsets, the first with 12 smaller instances (𝑛𝑛 ∈
[81, 120]): mesh9x9, mesh50x2, mesh34x3, mesh25x4, mesh20x5, mesh10x10, mesh17x6,

mesh13x8, mesh15x7, mesh12x9, mesh11x11, and mesh12x12, and the second with 12 larger
instances (𝑛𝑛 ∈ [960, 1170]): mesh130x7, mesh120x8, mesh110x9, mesh100x10, mesh50x20,
mesh40x25, mesh60x17, mesh34x30, mesh80x13, mesh70x15, mesh90x12, and
mesh33x33.

Hamming graphs. This data set consists of 24 graphs constructed as the Cartesian product of d complete
graphs Knk, for k = 1,2,...,d (Dobrev et al., 2009). The vertices in these graphs are d-tuples (i1, i2, . . . , id),
where ik ∈ {0, 1, . . . , nk−1}. Two vertices (i1,i2,...,id) and (j1,j2,...,jd) are adjacent if and only if the two tuples
differ in exactly one coordinate. These graphs are referred to as Hamming graphs. It is shown in Dobrev
et al. (2009) that if d≥2 and 2≤n1 ≤n2 ≤···≤nd, then the optimal solution of the antibandwidth problem for
this type of instance is given by:

http://www.optsicom.es/abp/�

Lozano, et al. — 10

𝐴𝐴𝐴𝐴��𝐾𝐾𝑛𝑛𝑘𝑘

𝑑𝑑

𝑘𝑘=1

� = �
𝑛𝑛1𝑛𝑛2 …𝑛𝑛𝑑𝑑−1 if 𝑛𝑛𝑑𝑑−1 ≠ 𝑛𝑛𝑑𝑑

𝑛𝑛1𝑛𝑛2 …𝑛𝑛𝑑𝑑−1 − 1 if 𝑛𝑛𝑑𝑑−1 = 𝑛𝑛𝑑𝑑 and 𝑑𝑑 ≥ 3
�

As in the previous sets, we consider two subsets, the first with 12 smaller instances (n ∈ [80,180]):
hamming4x4x5, hamming3x5x6, hamming4x5x5, hamming3x5x7, hamming4x5x6, hamming3x5x8,
hamming4x4x8, hamming4x5x7, hamming5x5x6, hamming4x5x8, hamming5x5x7, and
hamming5x6x6, and the second with 12 larger instances (n ∈ [840, 1152]): hamming3x3x4x4x6,
hamming2x3x4x5x7, hamming3x3x4x5x5, hamming2x3x4x6x6, hamming2x2x5x6x7,
hamming3x4x4x4x5, hamming3x3x4x4x7, hamming2x3x4x5x8, hamming3x3x4x5x6,
hamming2x3x3x7x8, hamming2x3x5x6x6, and hamming3x4x4x4x6.

We have divided our experimentation into two parts: preliminary experimentation and final
experimentation. The preliminary experiments were performed to set the values of the key search
parameters of our heuristic method as well as to show the merit of the proposed search strategies. We
consider a representative subset of instances (12 Harwell-Boeing, 12 Grids and 12 Hamming instances
with different densities and sizes).

In our preliminary experimentation, we first consider the ejection chain method implemented in

neighborhood N 3 (see Section 2). In particular, the first experiment is devoted to adjust the size of the

set 𝑊𝑊 of candidate labels of the ejection chain (EC) procedure. To do that, we generate a set of 100
solutions with the constructive procedure described in Section 3.1 and apply to them the EC method
with different values of |𝑊𝑊| ∈ {0.1𝑛𝑛, 0.2𝑛𝑛, 0.3𝑛𝑛, 0.4𝑛𝑛, 0.5𝑛𝑛}. Table 1 shows the average percentage
deviation (Dev.) between the best solutions found and the best known value (which in the case of the
Grids and Hamming instances are the optimal values). We also report the so-called Score associated
with each method (Resende et al. 2010). This statistic is based on the nrank of each algorithm over each
instance. The nrank of algorithm A is defined as the number of methods that found a better solution
than the one found by A. In the event of ties, the methods receive the same nrank, equal to the number
of methods strictly better than all of them. The value of Score is the sum of the nrank values for all the
instances in the experiment, thus, the lower the Score the better the method. Finally, for each value of
|𝑊𝑊| we show the CPU time in seconds (Time) needed to construct and improve 100 solutions.

|𝑾𝑾| Dev. Score Time

0.1𝑛𝑛 25.27% 67 78.72

0.2𝑛𝑛 24.37% 50 120.26

0.3𝑛𝑛 23.42% 37 159.92

0.4𝑛𝑛 22.10% 18 198.34

0.5𝑛𝑛 21.73% 25 236.43

Table 1: Width of the Ejection Chain procedure.

Lozano, et al. — 11

Table 1 shows that size of 𝑊𝑊 has an important effect in both the quality of the solution obtained and the
running time. As it was expected, the larger the |𝑊𝑊|, the lower the deviation (and the larger the CPU
time). Taking into account that the EC method is part of a master procedure, we set 𝑊𝑊 = 0.3𝑛𝑛 as a
compromise selection for the rest of our experimentation.

In the second preliminary experiment, we adjust the 𝑑𝑑𝑒𝑒𝑠𝑠𝑑𝑑ℎ parameter of the ejection chain method. We
again construct 100 solutions and improve them with the EC method considering 𝑊𝑊 = 0.3𝑛𝑛 and
𝑑𝑑𝑒𝑒𝑠𝑠𝑑𝑑ℎ ∈ {0.06𝑛𝑛, 0.07𝑛𝑛, 0.08𝑛𝑛}. Table 2 shows the same statistics than above.

𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 Dev. Score Time

0.06𝑛𝑛 24.93% 2 62.90

0.07𝑛𝑛 24.83% 5 66.81

0.08𝑛𝑛 24.83% 1 70.82

Table 2: Depth of the Ejection Chain procedure.

Table 2 clearly shows that the impact of 𝑑𝑑 is less relevant than 𝑊𝑊. In this case, average deviation ranges
from 24.93% (for 𝑑𝑑 = 0.06) to 24.83% (for 𝑑𝑑 ≥ 0.07). We set 𝑑𝑑 = 0.06 since the method requires
shorter CPU time and the difference in average percentage deviation is insignificant.

In our third preliminary experiment, we study the contribution of each neighborhood to the VNS
method. Specifically, we study the quality that each neighborhood is able to obtain when it works in
isolation (implemented in a local search) and when they all work in combination within the VNS. We
compare the LS1 local search procedure (in which we apply neighborhood 𝑁𝑁1 until no further
improvement is possible), with the LS2 (that applies 𝑁𝑁2) and LS3 (that applies 𝑁𝑁3). As in the previous
experiments, we construct 100 solutions with the aforementioned procedure and improve them with
any of the three variants as well as with the VNS method (based on the three neighborhoods as
described in Section 3). Table 3 summarizes the results of these four methods.

Method Dev. Score Time

LS1 11.97% 21 58.98
LS2 16.11% 44 123.00

LS3 24.87% 67 55.62
VNS 9.32% 2 122.88

Table 3: Comparison of different neighborhoods.

Results in Table 3 confirm that the VNS procedure compares favorably with simple local search methods.
Specifically, VNS achieves the lowest deviation (9.32%) compared with the three local search methods
tested (11.97%, 16.11% and 24.87%, for LS1, LS2, and LS3, respectively). Additionally, the score value of
VNS is 2 which means that VNS was only outperformed twice while the second best method (LS1) was
outperformed in 21 times. On the other hand, the CPU time of LS2 and VNS is significantly larger than
the one invested by LS1 and LS3. To complement this information, we show in Figure 5 how the average

Lozano, et al. — 12

deviation value of these four methods improves over time (we consider a time horizon of 150 seconds
reporting values every second).

Considering that the differences between LS1 and VNS are relatively small, we have applied two
statistical tests for pairwise comparisons, the Wilcoxon test and the Sign test. The former tests if the
two samples (the solutions of both methods) come from different populations, while the latter
computes the number of instances on which an algorithm improves upon the other. The resulting p-
values of 0.000 and 0.001 respectively, indicate that there are significant differences between the
results of both methods, resulting VNS as the best method of this experiment.

Figure 5: Average deviation of the best solution found over the time.

The time-profile depicted in Figure 5 shows that VNS clearly outperforms LS2 and LS3 and presents a
marginal improvement with respect to LS1 (this improvement is consolidated as the search progresses).
Note that the AMP is a max-min problem, where the objective function consists of maximizing a
minimum value. As it is well documented, this kind of problems presents a “flat landscape” in which
simple local search methods usually get trapped (because the associated moves have a null value). In
this context, the VNS turns to be a good option since the change of the neighborhood can help to
disclose which are the “good” moves. Although not shown in this figure, it is worth mentioning that
even if we run LS1 for longer running times (up to 1800 seconds), it is not able to reach the objective
function values found by VNS in the first 100 seconds in 8 out of 36 instances.

In the final experimentation we compare our VNS method with the best previous methods. As described
in Section 1, they are the Memetic Algorithms, MA, proposed by Bansal and Srivastava (2011) and the
Evolutionary Path Relinking, EvPR, due to Duarte et al., (2010). Table 4 presents the performance of
each algorithm over the whole set of 36 small instances: 12 Harwell-Boeing instances with size
𝑛𝑛∈[30,100], 12 Grid graphs with 𝑛𝑛 ∈ [81, 120], and 12 Hamming graphs with n ∈ [80,180].

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 20 40 60 80 100 120 140

D
ev

.

Seconds

LS1

LS2

LS3

VNS

Lozano, et al. — 13

Method Value Dev. Score Time

MA 25.77 15.86% 35 8.00

EvPR 26.45 11.97% 28 3.28
VNS 27.08 9.01% 17 1.38

Table 4: Comparison of state of the art methods for small instances.

The results presented in this table clearly show that our proposed VNS outperforms the previous
competitors in both average percent deviation and score, consuming shorter running times. Specifically,
VNS obtains an average deviation of 9.01% while EvPR obtains 11.97% and MA 15.86% investing less
than a third of their CPU time. Note that in the case of Grid and Hamming graphs, deviations are
computed with respect to the optimal value known by construction.

We conduct the same study over the set of 36 large instances: 12 Harwell-Boeing instances with size
𝑛𝑛∈[400,900], 12 Grid graphs with 𝑛𝑛 ∈ [960, 1170], and 12 Hamming graphs with n ∈ [840,1152]. Table 5
compares the same methods reporting the same statistics.

Method Value Dev. Score Time

MA 209.33 40.16% 40 2734.87

EvPR 239.08 14.96% 45 670.30
VNS 247.49 11.58% 23 269.30

Table 5: Comparison of state of the art methods for large instances.

Results reported in Table 5 are in line with those shown in Table 4 and confirm that the VNS method
outperforms previous algorithms. We applied the non-parametric Friedman test for multiple correlated
samples to the best solutions obtained by each of the 3 methods on our entire set of 72 instances. This
test computes, for each instance, the rank value of each method according to solution quality (where
rank 3 is assigned to the best method and rank 1 to the worst one). Then, it calculates the average rank
values of each method across all the instances solved. If the averages differ greatly, the associated p-
value or significance will be small. The resulting p-value of 0.001 obtained in this experiment clearly
indicates that there are statistically significant differences among the three methods tested. Specifically,
the rank values produced by this test are 2.33 (VNS), 1.86 (EvPR), and 1.81 (MA).

In order to evaluate the behavior of these methods over a long-term time horizon, we run MA, EvPR and
VNS for 30 minutes, reporting the average deviation of the best found solution every minute. We
consider the set of 36 representative instances used in the preliminary experimentation. Figure 6 shows
the corresponding average time profile.

Lozano, et al. — 14

Figure 6: Performance profile for a 30 minutes.

Figure 6 shows that VNS consistently produces better results than its competitors although the three of
them are able to produce good results. Specifically, the three methods quickly improve its average
deviation in the first two minutes in which VNS clearly establishes its superiority. From this point, the
methods are only able to produce a marginal improvement (around 1%), which on the other hand is a
difficult task considering the max-min of this optimization problem.

Figure 7: Time to target plots.

To finish our experiments we consider a time-to-target plot (Aiex et al. 2002). We ran the three
competing methods 100 times on a representative instance, Hamming 5x6x6, stopping when a solution
with objective value equal to the best known for this instance, 16, was found. For each run we recorded

0%

10%

20%

30%

40%

50%

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

D
ev

.

Time (min.)

EvPR

MA

VNS

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 5000 10000 15000 20000

P
ro

ba
bi

lit
y

Time (milliseconds)

EvPR

MA

VNS

Lozano, et al. — 15

the running time. Each run was independent of the other, using a different initial seed for the random
number generator. With these 100 running times, we plot the time-to-target plots (run time
distributions), shown in Figure 7. This figure shows that VNS is able to find the target solution faster
than the other two methods. Moreover, this experiment illustrates the exponential runtime distribution
for these methods. Therefore, linear speed is expected if they are implemented in parallel.

5. Conclusions

In this paper, we report our research on the use of different neighbours and candidate list strategies
that allows us to cope with a computationally expensive objective function evaluation within a VNS
procedure with ejection chains. Our procedure selects moves from a candidate list of moves whose
move values are not updated after every iteration. The list follows the tabu search principle that the
values of a set of elite moves do not drastically change from one iteration to the next and therefore it is
not necessary to update them after the execution of every move. In addition to the application of this
candidate list strategy, our procedure employs an unconventional definition of move value, which is not
based on the change of the objective function value to direct the search. In this way, our move value
definition conveys information that is not available when the change in the objective function value is
calculated.

The performance of the procedure has been assessed using 72 problem instances of several types and
sizes. Our preliminary experimentation clearly proves the merit of combine neighborhoods, as VNS
does, in the context of max-min problems. Moreover, the procedure has been shown robust in terms of
solution quality within a reasonable computational effort. The proposed method was compared with
two recently developed procedures due to Duarte et al. (2010) and Bansal and Srivastava (2011)
respectively. The comparisons favor the proposed variable neighborhood search implementation.

Acknowledgments
This research has been partially supported by the Ministerio de Ciencia e Innovación of Spain within the
OPTSICOM project (http://www.optsicom.es/) with grant codes TIN2008-05854, TIN2009-07516 and
P08-TIC-4173.

References
Aiex, R.M., M.G.C. Resende, and C.C. Ribeiro (2002) “Probability distribution of solution time in GRASP:
An experimental investigation” J. of Heuristics, 8: 343-373.

Bansal, R., K. Srivastava (2009) “Memetic algorithm for the antibandwidth maximization problem”.
Journal of Heuristics, 17:39-60.

Burkard, R.E., H. Donnani, Y. Lin, G. Rote (2001) “The obnoxious center problem on a tree”. SIAM Journal
Discrete Math., 14(4):498-590.

Cappanera, P. (1999) “A survey on obnoxious facility location problems”. Technical report TR-99-11,
Dipartimento di Informatica, Uni. Di Pisa.

Díaz, J., J. Petit, M. Serna (2002) “A survey of graph layout problems”. Journal ACM Computing Surveys,
34(3): 313-356.

Lozano, et al. — 16

Dobrev, S., R. Královic, D. Pardubská, L. Török, I. Vrt’o (2009) “Antibandwidth and cyclic antibandwidth
of Hamming graphs”. Electronic Notes in Discrete Mathematics, 34:295–300.

Duarte, A., R. Martí, M.G.C. Resende, R.M.A. Silva (2010) “GRASP with path relinking heuristics for the
antibandwidth problem”. Networks, In press.

Glover, F., M. Laguna (1997). Tabu search. Kluwer Academic Publishers.

Hale, W.K. (1980) “Frequency assignment: theory and applications”. In Proceedings of the IEEE, 68:
1497–1514.

Hansen, P., N. Mladenovic, J. Brimberg, J.A. Moreno-Pérez (2010) “Variable neighborhood search”. In
Handbook of Metaheuristics, Springer. pp. 61-86.

Harwell-Boeing 2011. http://math.nist.gov/MatrixMarket/ data/Harwell-Boeing/

Leung, J.Y.-T., O. Vornberger, J.D. Witthoff (1984) “On some variants of the bandwidth minimization
problem”. SIAM Journal on Computing, 13:650–667.

Pantrigo, J.J., R. Martí, A. Duarte, E.G. Pardo (2011) “Scatter search for the cutwidth minimization
problem”. Annals of Operations Research. In press.

Piñana, E., I. Plana, V. Campos, R. Martí (2004) “GRASP and path relinking for the matrix bandwidth
minimization”. European Journal of Operational Research, 153:200–210.

Raspaud, A., H. Schröder, O. Sykora, L. Török, I. Vrt’o (2009) “Antibandwidth and cyclic antibandwidth of
meshes and hypercubes”. Discrete Mathematics, 309:3541–3552.

Resende, M., R. Martí, M. Gallego, A. Duarte (2010) “GRASP and path relinking for the max-min diversity
problem“. Computers and Operations Research, 37:498-508.

Rodriguez-Tello, E., H. Jin-Kao, J. Torres-Jimenez (2008) “An improved simulated annealing algorithm for
the matrix bandwidth minimization”. European Journal of Operational Research, 185:1319–1335.

Rolim, J., O. Sykora, I. Vrt’o (1995) “Optimal cutwidths and bisection widths of 2- and 3-dimensional
meshes”. In Graph Theoretic Concepts in Computer Science. Lecture Notes in Computer Science,
Springer, 1017: 252–264.

Török, L., I. Vrt’o (2007) “Antibandwidth of 3-dimensional meshes”. Electronic Notes in Discrete
Mathematics, 28:161–167.

Yixun, L., Y. Jinjiang (2003) “The dual bandwidth problem for graphs”. Journal of Zhengzhou University,
35:1–5.

http://math.nist.gov/MatrixMarket/%20data/Harwell-Boeing/�

	1. Introduction
	2. Neighborhood Structures
	3. Variable Neighborhood Search
	3. 1 Constructive method
	3.2 Local search
	4. Experimental results
	5. Conclusions

