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Department of Computer Science,

University Rey Juan Carlos, Madrid, Spain, francisco.gortazar@urjc.es

Rafael Mart́ı
Department of Statistics and Operations Research

University of Valencia, Valencia, Spain, rmarti@uv.es

Abstract

In this paper, we propose a hybrid metaheuristic algorithm to solve the cyclic antiband-
width problem. This hard optimization problem consists in embedding an n-vertex graph
into the cycle Cn, such that the minimum distance (measured in the cycle) of adjacent
vertices is maximized. It constitutes a natural extension of the well-known antibandwidth
problem, and can be viewed as the dual problem of the cyclic bandwidth problem.

Our method hybridizes the artificial bee colony methodology (ABC) with tabu search
(TS) to obtain high-quality solutions in short computational times. ABC is a recent swarm
intelligence technique based on the intelligent foraging behavior of honeybees. The perfor-
mance of this algorithm is basically determined by two search strategies, an initialization
scheme that is employed to construct initial solutions and a method for generating neigh-
boring solutions. On the other hand, tabu search is an adaptive memory programming
methodology introduced in the eighties to solve hard combinatorial optimization problems.
Our hybrid approach adapts some elements of both methodologies, ABC and TS, to the
cyclic antibandwidth problem. In addition, it incorporates a fast local search procedure to
enhance the local intensification capability. Through the analysis of experimental results,
the highly effective performance of the proposed algorithm is shown with respect to the
current state-of-the-art algorithm for this problem.

Keywords. Artificial bee colony, local search, cyclic antibandwidth problem.

1 Introduction

Let G(V,E) be an undirected and unweighted graph, where V represents the set of vertices
(with |V | = n) and E represents the set of edges (with |E| = m). A labeling ϕ of the vertices
of G is a bijective function from V to the set of integers {1, . . . , n} where each vertex v ∈ V
receives a unique label ϕ(v) ∈ {1, . . . , n}. A circular arrangement of a labeling, simply called
circular labeling, arranges the vertices of the graph in a cycle Cn where the last vertex (the
one with label n) is next to the first vertex (the one with label 1). Given a circular labeling
ϕ, let us define the clockwise distance d+(u, v) = |ϕ(u)− ϕ(v)| with (u, v) ∈ E and, similarly
the counterclockwise distance d−(u, v) = n− |ϕ(u)− ϕ(v)| with (u, v) ∈ E. Then, for a given
circular labeling ϕ, the cyclic antibandwidth of G, referred to as CAB(G,ϕ), is computed as
follows:

CAB(G,ϕ) = min
(u,v)∈E

{d+(u, v), d−(u, v)}. (1)

The cyclic antibandwidth (CAB) problem consists in maximizing the value of CAB(G,ϕ)
over the set Π of all possible labelings:

CAB(G) = max
ϕ∈Π

CAB(G,ϕ). (2)
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Figure 1: A graph and a circular labeling layout.

d+ d−

d+(A,B) = |7− 8| = 1 d−(A,B) = 8− |7− 8| = 7
d+(B,C) = |8− 1| = 7 d−(B,C) = 8− |8− 1| = 1
d+(C,D) = |1− 6| = 5 d−(C,D) = 8− |1− 6| = 3
d+(C,E) = |1− 2| = 1 d−(C,E) = 8− |1− 2| = 7
d+(E,F) = |2− 5| = 3 d−(E,F) = 8− |2− 5| = 5
d+(F,G) = |5− 3| = 2 d−(F,G) = 8− |5− 3| = 6
d+(F,H) = |5− 4| = 1 d−(F,H) = 8− |5− 4| = 7
d+(G,H) = |3− 4| = 1 d−(G,H) = 8− |3− 4| = 7

Table 1: Clockwise and counterclockwise distances for the graph depicted in Figure 1.

Figure 1-left shows an example of a graph G with 8 vertices and 8 edges. Figure 1-right
shows a circular labeling ϕ of G, arranging the vertices in a cycle. Additionally, clockwise
(d+) and counterclockwise (d−) distances for each edge are shown in Table 1. In particular,
each row of this table reports the distance between each pair of adjacent vertices (those joined
with an edge). For example, the clockwise distance between vertex A and B is d+(A,B) =
|ϕ(A)−ϕ(B)| = |7−8| = 1. Similarly, the counterclockwise distance between these two vertices
is d−(A,B) = 8−|ϕ(A)−ϕ(B)| = 8−|7−8| = 7. In order to compute CAB(G,ϕ), we evaluate
d+ and d− for the remaining 7 edges (shown in Table 1), reporting the minimum of all of them.
Therefore, CAB(G,ϕ) = 1.

CAB is a natural extension of the antibandwidth problem [2, 37]. Although these two
optimization problems are related, we should not expect a method developed for the former
problem to perform well on the latter. We illustrate this fact by considering the example shown
in Figure 2, which corresponds to a caterpillar P5,4 graph. A caterpillar Pn1n2

is constructed
using the path Pn1

and n1 copies of the path Pn2
, where each vertex i in Pn1

is connected to the
first vertex of the i-th copy of the path Pn2

. For such instance we generate 106 solutions and
compute for each one the value of the objective function for the antibandwidth problem (AB)
and the cyclic antibandwidth (CAB). The correlation between both objective functions is rather
small (r = 0.13). In addition, the best solution found for AB (among the generated solutions)
is ϕABbest

= (0, 12, 3, 16, 6, 10, 1, 11, 2, 13, 4, 14, 5, 15, 7, 19, 9, 17, 8, 18) whose objective function
value is AB(G,ϕABbest

) = 9. This solution has a CAB-value of 7, which is relatively far from
ϕ(ABbest) (with a percentage difference of 28.5%). Symmetrically, the best solution found for
CAB problem ϕCABbest

= (16, 5, 14, 2, 11, 7, 19, 9, 17, 8, 18, 4, 15, 6, 12, 3, 13, 1, 10, 0) has a value
of CAB(G,ϕCABbest

) = 8 while the associated AB-value is 9 (with a percentage difference of
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12.5%). Finally, remark that ϕABbest
and ϕCABbest

are completely different labelings.

Figure 2: A caterpillar P5,4 graph.

The CAB problem was proved to be NP-hard in Raspaud et al. [27]. This problem
was originally introduced in Leung et al. [20] in connection with multiprocessor scheduling
problems. It has been found to be relevant in allocating time slots for different sensors in a
network such that two sensors that interfere each other have a large time interval between their
periods of operation [2]. The associated decision version of this problem consist in determining
if CAB(G,ϕ) is larger than a given value k. Specifically, when k = 1 the problem is equivalent
to the existence of a Hamiltonian cycle in the complement of G. This belongs to standard
textbooks on complexity and it is well known as a King Arthur’s round table problem: “Is it
possible to place knights around a table such that no two enemies are neighboring?” [34].

Exact results for the CAB problem are proved for some specific classes of graphs like paths
[34], cycles [34], two dimensional meshes (Cartesian product of two paths), tori (Cartesian
product of two cycles), and asymptotic results are obtained for hypercube graphs [27]. Dobrev
et al. [4] extended these results to the case of Hamming graphs (Cartesian product of d-
complete graphs). However, to the best of our knowledge, only one metaheuristic approach has
been presented for finding the cyclic antibandwidth of general graphs, the memetic algorithm

by Bansal and Srivastava [2]. (In Section 4.3, we compare our proposal with this algorithm).
In this paper, we propose a new approach based on the artificial bee colony methodology

(ABC) [13, 14] for solving this problem. The ABC algorithm is a new population-based
metaheuristic approach that is inspired by the intelligent foraging behavior of honeybee swarm.
In essence, it implements memory structures based on the analogy with a bee population.
Inspired in the types of bees and their different behaviour this methodology considers different
elements in the algorithm. In particular, it consists of three essential components: food source
positions, nectar-amount and three honeybee classes (employed bees, onlookers and scouts).
Each food source position represents a feasible solution for the problem under consideration.
The nectar-amount for a food source represents the quality of such solution (represented by an
objective function value). Each bee-class symbolizes a particular operation for generating new
candidate food source positions. Specifically, employed bees search the food around the food
source in their memory; meanwhile they pass their food information to onlooker bees. Onlooker
bees tend to select good food sources from those found by the employed bees, and then they
search for food around the selected source. Scout bees are translated from a few employed
bees, which abandon their food sources and search new ones. Due to its simplicity and ease of
implementation, the ABC algorithm has captured much attention and has exhibited state-of-
the-art performances for a considerable number of problems, like forecasting stock markets [12],
clustering [16], numerical function optimization [21], among others [1, 15, 18, 23, 24, 31, 33].

From an algorithmic point of view, we can say that ABC is a population-based method
with memory structures. Although this methodology has been recently proposed [13], the
use of memory structures in optimization algorithms can be traced back to 1986 when Fred

3



Glover introduced the tabu search methodology. As a matter of fact, the term tabu search
(TS) was coined in the same paper that introduced the term meta-heuristic [8]. TS is based on
the premise that problem solving, in order to qualify as intelligent, must incorporate adaptive
memory and responsive exploration. These elements allow the implementation of procedures
that are capable of searching the solution space economically and effectively. Since local
choices are guided by information collected during the search, TS contrasts with memoryless
designs that heavily rely on semi-random processes that implement a form of sampling. Genetic
algorithms (GAs) probably constitute one of the most successful memory-less methods based on
semi-random sampling. It is a population based methodology proposed in the seventies in which
solutions are selected from a population according to their fitness, to form a new population
by means of some operators inspired in the natural evolution. From this perspective, if we
focus on the algorithm elements, we can view ABC as a hybrid metaheuristic combining the
elements of population based methods, such as GAs, and memory-based methods, such as tabu
search. In this paper, we explore this hybrid perspective taking some advanced tabu search
elements (such as the ejection chains) and integrating them in an population based procedure.

The rest of this paper is organized as follows. Section 2 gives a brief overview of the ABC
algorithm. Section 3 describes our hybrid ABC approach for the CAB problem. Section 4
provides an analysis of the performance of the proposed ABC and a comparison with the
existing literature. Finally, Section 5 contains a summary of results and conclusions.

2 The Artificial Bee Colony Algorithm

In a real bee colony, there are some tasks done by specialized individuals. Bees try to maxi-
mize the nectar amount unloaded to the food stores in the hive by this division of labor and
self-organization. Division of labor and self-organization are essential components of swarm
intelligence. The minimal model of swarm intelligent forage selection in a honeybee swarm
consists of three kinds of bees: employed bees, onlooker bees, and scout bees [35]. Employed
bees are responsible from exploiting the nectar sources explored before and they give infor-
mation to the onlooker bees in the hive about the quality of the food source which they are
exploiting. The onlookers tend to select good food sources from those found by the employed
bees, and then further search food around the selected food source. Specifically, employed bees
share information about food sources by dancing in a common area in the hive called dance
area (the duration of a dance is proportional to the nectar content of the food source currently
being exploited by the dancing bee). In the nature of real bees, if a food source is not worth
exploiting anymore, it is abandoned by the bees, and the employed bee of that source becomes
a scout searching the environment randomly or by an internal motivation. Scout bees perform
the job of exploration, whereas employed and onlooker bees perform the job of exploitation.

Motivated by this foraging behavior of honeybees, Karaboga [13, 14] proposed the artificial
bee colony (ABC) algorithm. In this algorithm, the position of a food source represents a
solution of the optimization problem and the nectar amount of a food source represents the
quality (fitness) of the solution represented by that food source. This algorithm assumes the
existence of a set of computational agents called honeybees (employed, onlookers and scouts)
and the process of bees seeking for good food sources is the process used to find the optimal
solution. The algorithm begins with a population of randomly distributed positions of food
sources. The number of employed bees is equal to the number of food sources existing around
the hive, and the number of employed and onlookers bees is the same.

ABC is an iterative algorithm that starts by generating random solutions (food sources)
and then, the following activities (performed by each category of bees) are repeated until a
stopping condition is met:

1. Employed bees phase. The employed bees start the search process and employ cognitive
skill to move towards the food source with greater nectar amount. Each employed bee
finds a new food source near its currently assigned food source (using a neighborhood
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operator) and checks the nectar amount of the new discovered position. If the nectar
amount of the new discovered position is greater than the previous one, the employed bee
refreshes its associated memory by replacing the previous position by the new one; oth-
erwise, the employed bee keeps the previous position in its memory. During exploration,
they continuously investigate the probability of new food sources and update memory.
After all employed bees finish this exploitation process, they share the nectar information
of the food sources with the onlookers.

2. Onlooker bees phase. Communication among bees related to the quality of food sources
occurs in the dancing area. Since information about all the current rich sources is avail-
able to an onlooker on the dance floor, they probably could watch numerous dances
and choose to employ them at the most profitable source. Each onlooker selects a food
source according to the traditional roulette wheel selection method. After that, similar
to employed bees, each onlooker tries to discover hidden potential food source near its
selected food source (using the neighborhood operator) and calculates the nectar amount
of the neighbor food source. If onlookers find more attractive food sources, they keep the
information of new food sources and forget the previous ones.

3. Scout bees phase. If the employed bee and onlookers associated with a food source cannot
find a better neighboring food source in limit number of iterations (a control parameter
of the ABC algorithm), the food source is abandoned and the bee associated with it
becomes a scout. The scout will search for the location of a new food source in the
vicinity of the hive. When the scout finds a new food source, it becomes an employed
bee again. Then, each employed bee is assigned to a food source and another iteration
of the ABC algorithm begins.

The ABC algorithm was originally designed for continuous optimization problems [14]
and much work has been devoted to the development of extended models for these problems
[5, 6, 7, 21, 36]. However, other variants of the ABC algorithm have been successfully applied
to a wide range of optimization problems, such as quadratic minimum spanning tree problem
[33], leaf-constrained minimum spanning tree problem [31], binary optimization problems [18],
image segmentation [23], constrained optimization problems [15], design of recurrent neural
networks [12], multi-objective optimization problems [1, 24], symbolic regression [17], and
clustering [16].

3 Hybrid ABC for the CAB Problem

In this section, we explore the adaptation of the ABC framework to obtain high quality solu-
tions for the CAB problem. The original template of ABC is quite intuitive, focusing on the
intelligent behaviour of honeybee swarms. In our experience, however, this method requires
of very large iterations for finding high-quality solutions to difficult problems. This was our
motivation for exploring changes and extensions that resulted in a hybrid version of the original
ABC methodology.

The proposed changes and extensions, which attempt to accelerate the ABC method, con-
sist of using an initialization method to construct good starting solutions (food sources), a
neighborhood technique based on the ejection chain methodology (which is frequently used in
conjunction with tabu search), and an additional fast local search to improve upon the trial
solutions that the method generates. We want to point out that it is not our intention to
diminish the merit of the original ABC method, which was conceived as a generic procedure
capable of providing solutions of reasonably good quality to a wide range of optimization prob-
lems. Our goal is to suggest a way of hybridizing the original proposal in order to make it
more competitive when compared to specialized procedures. We view this process as being
similar to the transformations experienced by the GA community [10], which over the years
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has incorporated elements such as local search, simulated annealing and elitism that are depar-
tures from the original methodology [19, 28, 22]. In this work, we use the cyclic antibandwidth
problem for illustration purposes.

The rest of the section is organized as follows. In Section 3.1, we provide a general overview
of the overall algorithm. In Section 3.2, we describe the initialization method. In Section 3.3,
we propose the neighborhood procedure, which plays a fundamental role in our ABC. Finally,
in Section 3.4, we provide details for the local search approach that is embedded in the proposed
hybrid ABC algorithm to enhance the local intensification capability.

3.1 General Scheme of the Proposed Hybrid ABC Algorithm

An outline of our proposal, called HABC-CAB, is depicted in Figure 3. The approach begins
with a population of solutions (food sources) generated by the function Construct-Solution-

RBFS (Step 2), which implements the effective randomized breadth-first search (RBFS) method
proposed by Bansal and Srivastava [2] to construct solutions for the CAB problem (Section
3.2). Then, the following steps are repeated until a termination criterion is met:

• Empoyed bees phase. It produces new solutions for the employed bees using the neigh-
borhood operator Generate-Neighboring (Step 9). We propose a neighborhood operator
that implements ejection chains [9], which have been successfully applied in the context
of tabu search (Section 3.3).

• Onlooker bees phase. It produces new solutions for the onlookers using the tournament
operator Binary-Tournament (Step 18). In the basic ABC algorithm, an onlooker bee
selects a food source depending on a probabilistic value, which is similar to the roulette
wheel selection in GAs [10]. However, the tournament selection is widely used in ABC
applications due to its simplicity and ability to escape from local optima [32, 33]. For
this reason, we employ a binary tournament selection in the HABC-CAB algorithm.
Specifically, an onlooker bee selects the best food source among two food sources that
were randomly selected from the population. Then, each onlooker determines a food
source in the neighborhood of its chosen solution similarly to the employed bee phase
(Step 19).

• Scout bees phase. It determines when to abandon solutions and the corresponding em-
ployed bee becomes a scout bee. The scout bee starts to search a new food source by
using the function Construct-Solution-RBFS (Step 29).

In order to enhance the exploitation capability of HABC-CAB, a fast local search method
(FLS) is embedded in the proposed algorithm (Section 3.4). Specifically, after generating new
solutions (in the initialization and scout phases) and producing neighboring food sources (in
the employed and onlooker phases), it is applied (with a probability pLS) to further improve the
quality of the solutions. In addition, in each iteration, after all bees complete their searches,
our ABC algorithm memorizes the best food source found so far.

The HABC-CAB algorithm requires four input values: tmax denotes the computation time
limit, NP determines the number of food sources which is equal to the number of employed
or onlooker bees, limit controls the generation of scout bees, and pLS is the probability of
applying FLS. The algorithm returns the best food source found so far. A detailed description
of all the above-mentioned functions is provided in the following sections.

3.2 The RBFS Constructive Method

In this paper we use as initialization algorithm the Randomized Breadth-First Search con-
structive procedure proposed by Bansal and Srivastava [2]. For the completeness of the paper
we briefly describe this method. Level algorithms [3] are constructive procedures based on
the partition of the vertices of a graph in different levels, L1, ..., Ls, such that the endpoints
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Input: G, tmax, limit, NP , pLS

Output: Sb

// Initialization phase

for i = 1 to NP do1

S ← Construct-Solution-RBFS(G);2

if U(0, 1) < pLS then3

Si ← Fast-Local-Search (S);4

end5

end6

while computation time tmax not reached do7

// Empoyed bees phase

for i = 1 to NP do8

E ← Generate-Neighboring(Si);9

if U(0, 1) < pLS then10

E ← Fast-Local-Search (E);11

end12

if E is better than Si then13

Si ← E;14

end15

end16

// Onlooker bees

for i=1 to NP do17

Sj ← Binary-Tournament (S1, ..., SNP );18

O ← Generate-Neighboring(Sj);19

if U(0, 1) < pLS then20

O ← Fast-Local-Search (O);21

end22

if O is better than Sj then23

Sj ← O;24

end25

end26

// Scout bees phase

for i=1 to NP do27

if Si does not change for limit iterations then28

S ← Construct-Solution-RBFS(G);29

if U(0, 1) < pLS then30

Si ← Fast-Local-Search (S);31

end32

end33

end34

// Remember the best food source found so far

Sb ← Best-Solution-Found ();35

end36

Figure 3: Pseudocode algorithm for HABC-CAB.

of each edge in the graph are either in the same level Li or in two consecutive levels, Li and
Li+1. This level structure guarantees that vertices in alternative levels are not adjacent. Level
structures are usually constructed using a breath first search method, providing a root of the
corresponding spanning tree and an order in which the vertices of the graph are visited.

Bansal and Srivastava [2] applied a level procedure to the CAB problem. Specifically, they
proposed a randomized breadth first search, RBFS, wherein the spanning tree is constructed
by selecting the root vertex (in level 1) as well as the neighbors of the visited vertices at
random. Starting from an odd level (even level) the constructive procedure labels all the non-
adjacent vertices of odd levels (even levels) sequentially. The remaining vertices are labeled
using a greedy approach in which a vertex is labeled with the unused label that produces the
minimum decreasing of the objective function. We refer the reader to [2] and [3] for a more
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detailed description.

3.3 Neighborhood Operator

The proposed neighborhood operator (NO1) is inspired by the ejection chain methodology
(Figure 4). This strategy is often used in connection with tabu search [9] and consists of
generating a compound sequence of moves, leading from one solution to another by means of
a linked sequence of steps. In each step, the changes in some elements cause other elements to
be ejected from their current state.

Let us introduce the cyclic antibandwidth CAB(ϕ, u) of vertex u for a labeling ϕ. In
mathematical terms it can be computed as follows:

CAB(ϕ, u) = min
(u,v)∈E

{d+(u, v), d−(u, v)}. (3)

Using this definition, the CAB problem can be alternatively enunciated as follows:

CAB(G,ϕ) = min
u∈V
{CAB(ϕ, u)}. (4)

Given a solution ϕ, let us consider now two vertices, u and v, labeled with ϕ(u) and ϕ(v),
respectively. In the context of the CAB problem, suppose that we assign the label ϕ(v) to
the vertex u, since this operation results in an increment of CAB(ϕ, u). After this operation,
we will have an unlabeled vertex, vfree = v, and a free label, lfree = ϕ(u) (the one initially
assigned to u). We can therefore consider labeling vfree with lfree. However, other labels may
be better suited for this vertex. To check this possibility, we scan a subset L of possible labels
for vfree, selected at random (Step 6), and find the label lbest ∈ L ∪ {lfree} that produces the
best CAB(ϕ, vfree) (Step 7). Then, we assign lbest to vfree (Step 8). If the best label is lfree,
then the graph will result completely labeled (Step 9). Otherwise, the best label belongs to
L, and the new free vertex is the one which had this label (Steps 13-14). Then, the process is
repeated for labeling this vertex. This process ends after performing Imax trial interchanges.

Input: G, ϕi, Imax, nL

Output: ϕ
ϕ← ϕi;1

I ← 1;2

vfree ← Select-Node-Random (V );3

lfree ← ϕ(vfree);4

while I ≤ Imax do5

L← Select-Labels-Random ({1, ..., n}, nL);6

lbest ← Best-Label (vfree, L ∪ {lfree});7

ϕ(vfree)← lbest;8

if lbest = lfree then9

vfree ← Select-Node-Random (V );10

lfree ← ϕ(vfree);11

else12

Find u ∈ V such as ϕ(u) = lbest;13

vfree ← u;14

end15

I ← I + 1;16

end17

ϕ(vfree)← lfree;18

Figure 4: Pseudocode algorithm for NO1.
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The main objective of NO1 is to generate a series of interchanges for redistributing the labels
among a set of nodes, looking for a relative improvement of their cyclic antibandwidth values.
This operator starts with an initial vertex, u, chosen at random (Step 3) and performs the
aforementioned process throughout Imax iterations. If during an iteration the graph becomes
completely labeled, another initial vertex is selected at random (Steps 10-11). NO1 finishes
the construction of a neighborhood by assigning lfree to vfree (Step 18).

An important parameter of this operator is nL = |L|, because it controls the size of the set
of available labels. In other words, if nL = n this procedure is able to obtain the best label for
the incumbent vertex (since all labels are available). On the other hand, if the size of nL is close
to 1, the procedure has fewer options of choosing a good label for the incumbent vertex. It is
also important to remark that large values of nL do not necessarily mean profitable benefits
on the cyclic antibandwidth of the whole graph, since improving the cyclic antibandwidth of a
given vertex does not imply an improvement of the cyclic antibandwidth of the graph. Thus,
the impact of nL on the performance of NO1 should be carefully examined (see Section 4.2).

3.4 Fast Local Search Method

Different authors proposed to enhance the exploitation capability by embedding a local search
method in the ABC algorithm. For example, in [33], after the execution of the ABC algorithm,
a local search method is applied to the best solution found. An alternative approach is proposed
in [32] where the local search technique is applied (with a probability pL) to the neighboring
food source found by an employed bee. The main purpose of hybridizing ABC with a local
search method is to balance exploration versus exploitation. Specifically, ABC performs the
global search by exploring the search space, whereas the local search is responsible for exploiting
a small region of the search space in order to find a local optimum.

We present a fast local search algorithm (FLS) for the CAB problem, which has been
hybridized with the ABC algorithm. This local optimizer is invoked with a probability pLS
immediately after a new solution is built by Construct-Solution-RBFS or generated by Generate-

Neighboring (see Figure 3).

Input: G, ϕi

Output: ϕ
ϕ← ϕi;1

L← {1, ..., n− 1};2

while |L| > 0 do3

Select l ∈ L randomly;4

Find u, v ∈ V such as ϕ(u) = l and ϕ(v) = l + 1;5

ϕ′ ← Swap(ϕ, u, v);6

if min{CAB(ϕ′, u), CAB(ϕ′, v)} > min{CAB(ϕ, u), CAB(ϕ, v)} then7

ϕ← ϕ′;8

L← {1, ..., n− 1};9

else10

L← L/{l};11

end12

end13

Figure 5: Pseudocode algorithm for FLS.

The proposed FLS procedure has the following main contributions (Figure 5):

• Consecutive swaps. FLS is based on a systematic application of specific swap moves that
exchange the label l of a vertex u with the label l + 1 of a vertex v (Steps 5-6). This
type of moves produce smooth changes in the objective function of the current labeling,
because they will increment/decrement the objective function in one unit at most [29].
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• First-improvement local search. Our method implements the so-called first choice strat-
egy that scans moves in search for the first exchange yielding to an improvement in the
objective function. However, in the CAB problem, there may be many different solutions
with the same objective function value. We could say that the solution space presents a
flat landscape. In this kind of problems, such as the min-max or max-min, local search
procedures typically do not perform well because most of the moves have a null value. In
the case of the CAB problem, there may be multiple vertices with a cyclic antibandwidth
value equal to CAB(G,ϕ). Then, changing the label of a particular vertex u to increase
its cyclic antibandwidth CAB(ϕ, u), does not necessarily imply that CAB(G,ϕ) also
increases.

We therefore extend the definition of “improving” to overcome the lack of information
provided by the objective function. Specifically, we consider that the labeling ϕ′ resulting
from a swap move changing the labels of the vertices u and v improves the current labeling
ϕ if the worst cyclic antibandwidth among the ones of vertices u and v becomes increased
(Step 7). We have empirically found that this criterion allows the local search procedure
to explore a larger number of solutions than a typical implementation that only performs
moves when the objective function is improved. An advantage concerning this way of
checking the suitability of a swap is that it surpasses the need for evaluating the whole
solution, because decisions are made taking into account only the effects of the swap on
the implied vertices.

• Data structures. FLS maintains data structures to be able to compute CAB(ϕ′, u) and
CAB(ϕ′, v) in constant time (Step 7), after exchanging the label of u with the label of v.
Specifically, it records, for each vertex w ∈ V , l−min(w), l

−

max(w), l
+
min(w), and l+max(w),

which are defined as follows:

l−min(w) = min
(w,t)∈E

{ϕ(t) : ϕ(t) < ϕ(w), }, l−max(w) = max
(w,t)∈E

{ϕ(t) : ϕ(t) < ϕ(w)}, (5)

and

l+min(w) = min
(w,t)∈E

{ϕ(t) : ϕ(t) > ϕ(w)}, l+max(w) = max
(w,t)∈E

{ϕ(t) : ϕ(t) > ϕ(w)}. (6)

Then, using this information, the new cyclic antibandwidth values for u and v may be
directly obtained by:

CAB(ϕ′, u) = min{|l+1−l+min(u)|, n−|l+1−l+max(u)|, |l+1−l−max(u)|, n−|l+1−l−min(u)|},
(7)

and

CAB(ϕ′, v) = min{|l − l+min(v)|, n− |l − l+max(v)|, |l − l−max(v)|, n− |l − l−min(v)|}, (8)

where l = ϕ(u) and remind that ϕ′(u) = l + 1 and ϕ′(v) = l.

In general, local search methods are a really computational expensive procedures, since
they evaluate a huge number of solutions in a given neighbourhood (exploitation). The FLS
presented in this section significantly decrease the cost of computing the value of each visited
solution, as we will show in Section 4.
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4 Computational Experiments

This section describes the computational experiments that we performed to assess the perfor-
mance of the HABC-CAB algorithm presented in the previous section. Firstly, we detail the
experimental setup (Section 4.1), then, we analyze the results obtained from different exper-
imental studies carried out with this algorithm. Our aim is: (1) to analyze the influence of
the parameters and settings associated with HABC-CAB and show the benefits of using the
proposed neighborhood operator and local search method (Section 4.2); and (2) to compare
the results of HABC-CAB with previous approaches for the CAB problem (Section 4.3).

4.1 Experimental Setup

The code of HABC-CAB has been implemented in C and the source code has been compiled
with gcc 4.6. The experiments were conducted on a computer with a 3.2 GHz Intel R© CoreTM i7
processor with 12 GB of RAM running FedoraTM Linux V15. We have considered ten sets
with a total of 236 instances classified in two groups: 164 instances with known optimum, and
72 instances with unknown optimum. All these instances are available at the following URL:
http://www.optsicom.es/abp/. A detailed description of each set of instances follows.

Instances with known optimum

• Paths. This data set consists of 24 graphs constructed as a linear arrangement of vertices
such that every vertex has a degree of two, except the first and the last vertex that have
a degree of one. The size of these instances ranges from 50 to 1000. For a path Pn with
n vertices, Sýkora et al. [34] proved that the optimal CAB value is

CAB(Pn) =
⌈n

2

⌉

− 1. (9)

• Cycles. This data set consists of 24 graphs constructed as a circular arrangement of
vertices such that every vertex has a degree of two. The size of these instances ranges
from 50 to 1000. For a cycle Cn with n vertices the optimal cyclic antibandwidth is

CAB(Cn) =
⌈n

2

⌉

− 1, (10)

as shown in [34].

• Grids. This data set consists of 24 graphs constructed as the Cartesian product of two
paths Pn1

and Pn2
[27]. The size of these instances ranges from 81 to 1170. They are

also called two dimensional meshes. For a grid Pn1
× Pn2

with n = n1 · n2 vertices the
optimal cyclic antibandwidth fulfills that [27]:

⌊

n2(n1 − 1)

2

⌋

≤ CAB(Pn1
× Pn2

) ≤

⌈

n2(n1 − 1)

2

⌉

, (11)

if n1 is even and n2 is odd (n1 ≥ n2), and

CAB(Pn1
× Pn2

) =
n2(n1 − 1)

2
, (12)

otherwise.

• Toroidal grids (Tori). This data set consists of 37 graphs constructed as the Cartesian
product of two cycles (i.e., Cn×Cn). The size of these instances ranges from 16 to 1600.
The optimal cyclic antibandwidth is

11



CAB(Cn × Cn) =
n(n− 2)

2
, (13)

if n is even, and

CAB(Cn × Cn) =
(n− 2)(n+ 1)

2
, (14)

if n is odd (see [27]).

• Hamming graphs. This data set consists of 24 graphs constructed as the Cartesian
product of d complete graphs Knk

, for k = 1, 2, ..., d [4]. The size of these instances
ranges from 80 to 1152. The vertices in these graphs are d-tuples (i1, i2, ..., id), where
ik ∈ {0, 1, ..., nk−1}. Two vertices (i1, i2, ..., id) and (j1, j2, ..., jd) are adjacent if and
only if the two tuples differ in exactly one coordinate. These graphs are referred to as
Hamming graphs. Dobrev et al. [4] proved that if d ≥ 2 and 2 ≤ n1 ≤ n2 ≤ ... ≤ nd,
then the optimal cyclic antibandwidth for this type of instances is given by:

CAB(
d
∏

k=1

Knk
) =

{

n1n2...nd−1 if nd−1 6= nd, d ≥ 2
n1n2...nd−1 − 1 if nd−1 = nd and nd−2 6= nd−1, d ≥ 3

(15)

and

n1n2...nd−1 −min{n1n2...nd−2, nq+1...nd−1} ≤ CAB(
d
∏

k=1

Knk
) ≤ n1n2...nd−1 − 1, (16)

where nd−2 = nd−1 = n, d ≥ 3 and q is the minimal index such that q ≤ d − 2 and
nq = nd.

Instances with unknown optimum

• Caterpillars. This data set consists of 40 graphs. Each caterpillar, Pn1n2
is constructed

using the path Pn1
and n1 copies of the path Pn2

(usually referred to as “hairs”), where
each vertex i in Pn1

is connected to the first vertex of the i-th copy of the path Pn2
. The

size of these instances ranges from 20 to 1000.

• Complete binary trees (CBT). This data set consists of 24 trees, where every tree-level
is completely filled except possibly the last level and all nodes are as far left as possible.
The size of these instances ranges from 30 to 950.

• Harwell-Boeing. We derived 24 matrices from the Harwell-Boeing Sparse Matrix Collec-
tion [11]. The size of these instances ranges from 30 to 900. This collection consists of a
set of standard test matrices arising from problems in linear systems, least squares, and
eigenvalue calculations from a wide variety of science and engineering problems. The
problems range from small matrices, used as counter-examples to hypotheses in sparse
matrix research, to large matrices arising in practical applications. Graphs are derived
from these matrices as follows. Let Mij denote the element of the i-th row and j-th
column of the n × n sparse matrix M . The corresponding graph has n vertices. Edge
(i, j) exists in the graph if and only if Mij 6= 0.
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4.2 Study of the Neighborhood Operator and the FLS Method

In this section, we investigate the effects of the two search strategies, NO1 and FLS, proposed
for HABC-CAB. For these experiments, we consider a representative subset of instances (10
Harwell-Boeing, 10 complete binary trees and 10 Hamming instances with different densities
and sizes). In order to have a fair comparison, all the ABC variants were stopped using a
time limit of 150 seconds. Additionally, each algorithm was executed once for each problem
instance.

In our first preliminary experiment, we study the effect of the search parameters, Imax

and nL, in the neighborhood operator, NO1. Specifically, we implement 16 different variants
of HABC-CAB with Imax = {0.1n, 0.25n, 0.5n, n} and nL = {0.01n, 0.1n, 0.25n, 0.5n}. The
population size is set to 20, limit = 0.5n, and pLS = 1.

We compute for each instance the overall best solution value, BestValue, obtained by the
execution of all methods under consideration. Then, for each method, we compute the relative
deviation between the best solution value found by the method and the BestValue. In Table 2,
we report the average of this relative deviation in percentage (%Dev) across all the instances
considered in each particular experiment and the percentage of instances (%Best) for which the
value of the best solution obtained by a given method matches BestValue. We also show the
average rankings, computed by the Friedman test, obtained by these ABC variants (Av. Ran.).
This measure is obtained by computing, for each instance, the ranking ra of the observed results
for algorithm a assigning to the best of them the ranking 1, and to the worst the ranking |A|
(where A is the set of algorithms). Then, an average measure is obtained from the rankings of
this algorithm for all test problems. For example, if a certain algorithm achieves rankings 1,
3, 1, 4, and 2, on five instances, the average ranking is 1+3+1+4+2

5 = 2.20. Note that the lower
the ranking, the better the algorithm.

Imax nL Av. Ran. %Dev %Best

n 0.5n 11.01 5.05 6.67
0.5n 0.5n 10.15 4.87 10.00
0.25n 0.5n 10.48 4.84 6.67
0.1n 0.5n 9.83 5.05 6.67
n 0.25n 8.21 3.86 10.00

0.5n 0.25n 7.78 3.65 26.67
0.25n 0.25n 7.81 3.90 10.00
0.1n 0.25n 8.88 4.33 13.33
n 0.1n 4.51 1.95 56.67

0.5n 0.1n 4.56 2.30 43.33
0.25n 0.1n 5.86 3.22 26.67
0.1n 0.1n 7.33 3.76 6.67
n 0.01n 10.11 8.60 26.67

0.5n 0.01n 9.90 6.83 16.67
0.25n 0.01n 9.98 6.38 16.67
0.1n 0.01n 9.53 5.90 10.00

Table 2: Results of HABC-CAB with different parameter values for NO1.

Results in Table 2 show that the nL parameter has an important effect on the quality of
the solution obtained by the method. According to the rankings, (Av. Ran.), the HABC-CAB
variants with nL = 0.1n obtain the best results. Actually, these variants also outperform the
others in terms of %Dev. and %Best (with the only exception of the HABC-CAB variant with
Imax = 0.5n and nL = 0.25n). These results support our conjecture that large values of nL do
not necessarily improve the cyclic antibandwidth of the whole graph, since improving the cyclic
antibandwidth of a given vertex does not imply an improvement of the cyclic antibandwidth
of the graph. Therefore, attending to the results shown in Table 2, we set nL = 0.1n and
Imax = n for the rest of our experimentation.

Our next empirical study was performed to show the merit of the proposed neighborhood
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operator, NO1. In order to do this, it was compared with a standard neighborhood operator
(NO2) that has been widely used in the literature for a variety of graph arrangement prob-
lems. Specifically, NO2 is a swap operator that interchanges the labels associated with two
vertices chosen at random. We have also examined a third operator, NO3, performing two
consecutive swap moves. We have also studied the effect of limit search parameter within each
neighborhood operator. Specifically, we consider limit = {0.25n, 0.5n, n, 2n}, resulting in 12
different HABC-CAB variants. Table 3 shows the associated results, reporting again the same
statistics.

NO limit Av. Ran. %Dev %Best

NO1 2n 4.96 0.51 66.67
NO1 n 4.98 0.48 66.67
NO1 0.25n 4.91 0.63 60.00
NO1 0.5n 4.76 0.32 70.00
NO2 2n 7.13 5.91 16.67
NO2 n 6.80 5.90 13.33
NO2 0.5n 7.31 6.35 20.00
NO2 0.25n 6.61 6.27 16.67
NO3 2n 7.70 6.31 23.33
NO3 n 7.45 6.23 23.33
NO3 0.5n 7.83 6.39 16.67
NO3 0.25n 7.51 6.42 16.67

Table 3: Results of the HABC-CAB instances with different neighborhood operators.

Results in Table 3 show that NO1 clearly outperforms NO2 and NO3. Actually, there are
no significant differencies among all NO1 variants. However, any NO1 variant is better than
any NO2 or NO3 variant. Considering the results presented in this table, we set limit = 0.5n
for the rest of our experimentation, since exhibits the best performance.

Finally, in Table 4, we analyze the influence of FLS on the performance of HABC-CAB.
Specifically, we investigate the effects of varying the pLS parameter associated with this local
search procedure. In order to do this, we have tested the performance of four HABC-CAB
configurations with pLS = {0, 0.25, 0.5, 1}. Notice that pLS = 0 means that the HABC-CAB
method does not use the local search. On the other hand, pLS = 1 means that FLS is invoked
after a new solution is built by Construct-Solution-RBFS or generated by Generate-Neighboring.

pLS Av. Ran. %Dev %Best

0 4.00 32.05 0.00
0.25 2.22 1.15 46.67
0.5 1.92 0.75 56.67
1 1.87 0.45 60.00

Table 4: Results of HABC-CAB with different pLS values.

Results in Table 4 clearly show the merit of the local search method. Specifically, the
ranking of the variant without local search is almost two times the ranking of the worst of the
three remaining variants. Notice that all methods were executed for the same CPU time (150
seconds), therefore the local search procedure is worth using within the ABC template. In
fact, the more often we apply the local search procedure, the better the HABC-CAB variant
performs. In particular, when pLS = 1 we obtain the best results in terms of ranking, %Dev

and %Best. Consequently, we set pLS = 1 for the rest of the experiments.

4.3 HABC-CAB vs. State-of-the-art Metaheuristic for the CAB Problem

In this section, we undertake a comparative analysis among HABC-CAB (Imax = n, nL = 0.1n,
limit = 0.5n, and pLS = 1) and the current best algorithm for the CAB problem, the memetic
algorithm (named MACAB) proposed by Bansal and Srivastava [2]. This algorithm starts
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by creating an initial population of solutions using the RBFS method (Section 3.2). As it
is customary in evolutionary methods, the initial population evolves by applying three steps:
selection, combination and mutation. The selection strategy is implemented by means of a
classical tournament operator. The combination operator is implemented using a modified
version of the RBFS procedure, in which a solution is obtained by copying part of its ”father”
(up to a random point) and then completing it with the RBFS constructive procedure. The
mutation strategy is implemented by swapping two positions of a solution. These three main
steps are repeated until a maximum number of iterations (generations) is reached.

We should point out that HABC-CAB and MACAB were run under the same computational
conditions (in order to enable a fair comparison between them) on all instance sets listed in
Section 4.1. The parameter values used for MACAB are the ones recommended in the original
work. These algorithms were run once on each instance and the cutoff time for each execution
was set to 150 seconds. Results are outlined in Table 5. For those instance sets with known
optimum, the last two columns display the %Dev and %Best measures computed with respect
to the corresponding optimum values. For those instance sets with unknown optimum, these
two columns display an hyphen.

Inst. Alg. %Dev %Best %Dev-Opt %Best-Opt

CBT HABC-CAB 0.00 100.00 - -
MACAB 18.05 0.00 - -

Hamming HABC-CAB 0.76 95.83 23.76 0.00
MACAB 45.10 4.17 55.09 0.00

Harwell-Boeing HABC-CAB 0.07 91.67 - -
MACAB 42.89 12.50 - -

Caterpillars HABC-CAB 0.09 80.00 - -
MACAB 1.85 47.50 - -

Tori HABC-CAB 0.15 70.27 16.70 18.92
MACAB 32.99 48.65 37.52 13.51

Cycles HABC-CAB 0.42 54.17 4.94 8.33
MACAB 14.44 66.67 17.69 54.17

Paths HABC-CAB 0.01 95.83 0.01 95.83
MACAB 0.00 100.00 0.00 100.00

Grids HABC-CAB 0.64 34.78 0.80 30.43
MACAB 0.10 95.65 0.26 56.52

Table 5: HABC-CAB vs. MACAB.

Table 5 shows that our HABC-CAB method obtains better results in terms of %Dev and
%Best (and, when available, in terms of %Dev-Opt and %Best-Opt) than MACAB in 5 set of
instances (out of 8). Specifically, our method outperforms the MACAB in CBT, Hamming,
Harwell-Boeing, Caterpillars, and Tori. On the other hand, MACAB performs better than
our HABC-CAB procedure in one of the instance sets (Grids). Regarding the set Cycles, our
method obtains better results in terms of %Dev, but the MACAB method gets some more best
solutions (%Best). Finally, both methods obtain similar results in the set of instances Paths.

Attending to the values of %Dev-Opt and %Best-Opt, the instances of the sets Hamming,
Tori, and Cycles seem to be the hardest ones. Therefore, we believe that there is still room
for improvement. Similarly, the sets of instances Paths and Grids could be considered “easy
to solve” since, in general, both methods are able to obtain solutions with a relative low
percentage deviation with respect to the optimum.

To complement this information, we compare HABC-CAB with MACAB using theWilcoxon
matched-pairs signed ranks test. With this test, the results of two algorithms may be directly
compared. In statistical terms, this test answers the question: Do the two samples represent
two different populations? When comparing two algorithms with the Wilcoxon test, it deter-
mines if the results of two methods are significantly different. Table 6 summarizes the results
of this procedure for a level of significance α = 0.05, where the values of R+ (associated to
HABC-CAB) and R− (associated to MACAB) of the test are specified, together with the crit-
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ical values. If R− is smaller than both, R+ and the critical value, HABC-CAB is statistically
better than MACAB (represented with the sign +); if R+ is smaller than both, R− and the
critical value, our algorithm is statistically worse than its competitor (represented with the sign
−); if neither R+ nor R− is smaller than the critical value, the test does not find statistical
differences among them (represented with the sign ∼).

Inst. Set R
+

R
− Critical val. Sig. differences?

CBT 300.0 0.0 81 +

Hamming 290.5 9.5 81 +

Harwell-Boeing 269.0 7.0 81 +

Caterpillars 525.0 255.0 264 +

Tori 508.0 158.0 221 +

Cycles 161.0 115.0 81 ∼

Paths 126.5 149.5 81 ∼

Grids 19.0 234.0 81 −

Table 6: HABC-CAB vs. MACAB (Wilcoxon’s test)

The Wilcoxon test reveals that: (1) HABC-CAB has the upper hand in the statistical
comparison over its competitor on CBT, Hamming, Harwell-Boeing, Caterpillars, and Tori,
which confirms the previous results, (2) MACAB statistically outperforms our proposal only in
the case of the Grids set, and (3) there are not significant differences between these algorithms
for the Cycles and Paths sets. In summary, this statistical analysis evidences that, in a global
view, the comparison favors the proposed HABC-CAB algorithm.

5 Conclusions

In this paper, an artificial bee colony (ABC) algorithm, based on mimicking the food foraging
behavior of honeybee swarms, is proposed as a method of solving the cyclic antibandwidth
(CAB) problem. We propose changes and extensions to the original template of ABC, resulting
in a hybrid ABC approach. In particular, our algorithm employs the initialization scheme
presented in [2] (instead of random initialization), and a tournament operator (instead of a
roulette wheel-based operator). Additionally, we propose to use a local search procedure after
a new solution is built by the initialization operator or generated by the neighboring operator.
Specifically, we present a new effective and efficient local search for the CAB problem, where
the neighborhood is visited in an intelligent way. We have also introduced a new neighborhood
operator specifically designed for the CAB problem, which follows principles of the ejection
chain methodology.

Based on a series of preliminary experiments to identify effective ways to coordinate the
underlying strategies, we are able to produce a method that reaches high quality solutions on
previously reported instances. In fact, the designed algorithm has experimentally proved to
be competitive with the state-of-the-art (the memetic algorithm by Bansal and Srivastava [2]).
Specifically, the empirical study reveals a clear superiority when tackling the hardest instances.

We believe that the hybrid ABC framework presented in this paper is a significant contri-
bution, worthy of future study. We will intend to explore other interesting avenues of research,
such as the adaptation of the proposed approach for its application to other challenging graph
layout problems, including linear arrangement [30], bandwidth [26], and cutwidth [25] prob-
lems.
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[27] A. Raspaud, H. Schröder, O. Sýkora, L. Torok, I. Vrt’o. Antibandwidth and cyclic an-
tibandwidth of meshes and hypercubes. Discrete Mathematics 309 (2009) 3541–3552.
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