

Context-Independent Scatter and Tabu Search for
Permutation Problems

Vicente Camposa, Manuel Lagunab and Rafael Martía

a Dpto. de Estadística e Investigación Operativa, Facultad de

Matemáticas, Universitat de Valencia, Dr. Moliner, 50,
46100 Burjassot-Valencia, Spain. Vicente.Campos@uv.es
and Rafael.Marti@uv.es

 Research partially supported by the Ministerio de Ciencia y

Tecnología of Spain: TIC2000-1750-C06-01

b Graduate School of Business and Administration, 419

UCB, University of Colorado, Boulder, CO 80309-0419,
USA Laguna@Colorado.edu

Abstract

In this paper, we develop a general purpose heuristic for
permutations problems. The procedure is based on the scatter
search and tabu search methodologies and treats the objective
function evaluation as a black box, making the search algorithm
context-independent. We perform computational experiments with
four well-known permutation problems to study the efficiency and
effectiveness of the proposed method.

Keywords: Scatter search, tabu search, combinatorial optimization,
permutation problems.

Last revision: July 2, 2001

Campos, Laguna and Martí 2

1. Introduction

The purpose of this paper is to develop a context-independent method for solving an
important class of combinatorial optimization problems. Specifically we tackle
problems whose solutions can be represented with a permutation.

Our general-purpose heuristic is based on a model that treats the objective function
evaluation as a black box, making the search algorithm context-independent. The
procedure is a scatter-tabu search hybrid. The scatter search framework provides a
means for diversifying the search throughout the exploration of the permutation
solution space. Two improvement methods are used to intensify the search in
promising regions of the solution space: a simple local search based on exchange
moves and a short-term memory tabu search. Improved solutions are then used for
combination purposes within the scatter search design.

Our method does not take advantage of the structure of each problem instance;
therefore it may not directly improve upon solutions found with procedures designed
for specific permutation problems. Nonetheless, we show that our results are
competitive considering the general nature of the search procedure. We base our
conclusions on experimental testing with four well-known problems: linear ordering,
traveling salesman, matrix bandwidth reduction and a job-sequencing problem. Our
procedure, however, is most useful when applied to problems for which specialized
procedures are not available, for example, job-sequencing problems with nonlinear
and/or stochastic objective functions.

Metaheuristics have provided a mechanism for considerably improving the
performance of simple heuristic procedures. The search strategies proposed by
metaheuristic methodologies result in iterative procedures that have the ability of
escaping local optimal points. Genetic algorithms (GAs) and scatter search (SS), for
example, are metaheuristics designed to operate on a set of solutions that is
maintained from iteration to iteration. On the other hand, metaheuristics such as
simulated annealing (SA) and tabu search (TS) typically maintain only one solution by
applying mechanisms to change this solution from one iteration to the next.
Metaheuristics have been developed to solve complex optimization problems in many
areas, with combinatorial optimization being one of the most fruitful. Generally, the
most efficient procedures achieve their efficiencies by relying on context information.
The solution method can be viewed as the result of adapting metaheuristic strategies
to specific optimization problems. In these cases, there is no separation between the
solution procedure and the model that represents the system that produces the
optimization problem to be solved.

Metaheuristics can also be used to create solution procedures that are context
independent. The original genetic algorithmic designs were based on this model. The
advantage of this design is that the same solver can be applied to a wide variety of
problems. The obvious disadvantage is that the solutions found by context-
independent solvers might be inferior to those of specialized procedures when both are
allotted the same amount of computer effort (e.g., total search time). Context-
independent solvers (also referred to as general-purpose optimizers) based on
metaheuristics have found their home in commercial implementations. The Premium
Solver Platform version 3.5 of Frontline Systems, Inc (www.frontsys.com), for instance,
includes the Standard Evolutionary solver that is a context-independent GA
implementation. Opttek Systems, Inc (www.opttek.com) commercializes OptQuest, a
context-independent solver based on scatter search. Other GA-based commercial
implementations of general-purpose optimizers are Evolver by Palisade Corporation
(www.palisade.com) and Pointer by Synaps, Inc (www.synaps-inc.com).

One of the main design considerations when developing a general-purpose optimizer is
the solution representation to be employed. The solution representation is used to
establish the communication between the optimizer and the solution evaluator (which

Campos, Laguna and Martí 3

generally is an abstraction of a complex system represented, for instance, by means of
a computer simulation). Classical GA implementations used binary strings to
represent solutions even in problems where this representation was clearly inadequate
(like in the case of permutation problems). In our current development, we tackle
problems whose solutions can be represented with permutations and use this
representation within a solution procedure based on the SS methodology. It is
interesting to point out that modern commercial solvers based on metaheuristics such
as Frontline’s Standard Evolutionary solver, OptQuest and Evolver support the
permutation-based solution representation. (Pointer does not support this
representation because it specializes in searching for optimal solutions to engineering
design problems.)

2. Proposed Scatter Search Procedure

Scatter search is a methodology that operates on a reference set (or population) of
solution vectors (which in our case are permutations). The SS process is organized to
(1) capture information not contained separately in the original vectors, (2) take
advantage of auxiliary heuristic solution methods (to evaluate the combinations
produced and to actively generate new vectors), and (3) make dedicated use of strategy
to carry out component steps. For a detailed description of the SS methodology see
Glover, Laguna and Martí (2000).

We have adapted scatter search with the goal of developing a context-independent
solver for permutation problems. The solver is designed in such a way that the user
must specify whether the objective function evaluation is more sensitive to the
“absolute” positioning of the elements in the permutation or to their “relative”
positioning. Hence, we differentiate between two classes of problems:

A-permutation problems⎯for which absolute positioning of the elements
is more important

R-permutation problems⎯for which relative positioning of the elements is
more important

The procedure, summarized in Figure 1, operates as follows. A generator of
permutations, which focuses on diversification and not on the quality of the resulting
solutions, is used at the beginning of the search to build a set P of PopSize solutions
(step 1). The generator, proposed by Glover (1998), uses a systematic approach to
creating a diverse set of permutations. This contrasts with the typical GA approach of
randomly generating a initial set of solutions from which to start the evolutionary
search. In order to obtain a set of solutions of reasonable quality and diversity, we
apply an improvement method to the solutions in P. The improvement method
consists of two phases, a simple tabu search and a local search (LS), which are
described in the next section. The TS is based on a short-term memory function and
is applied only to the most promising solutions. In particular, given a solution p with
an objective function value value(p), the TS is applied if the following condition holds:

value(p) - | value(p) | * (1 - threshold) ≤ value(BestSol)

where BestSol is the best solution found so far and threshold is a given search
parameter. The local search procedure is applied to all trial solutions, that is, those
returned by the TS method as well as those not submitted to the tabu search. This is
performed in steps 2, 6 and 9 in the outline of Figure 1. After step 2, P consists of the
improved solutions obtained after the application of TS/LS or LS alone.

Campos, Laguna and Martí 4

1. Generate solut ions — Apply the diversification generation method to
generate a set of PopSize solutions.

2. Improve solut ions — Apply the TS and LS methods to improve
solutions generated in Step 1.

3. Build the reference set — Choose the “best” b solutions to build the
initial RefSet.

4. Init ial ize — Make BestSol the best solution in the current RefSet
and GlobalImprove = 0

do {
 while (new solutions in RefSet) do {
 5. Combine solut ions — Generate trial solutions from pairs of

reference solutions where at least one solution in the pair is new.
 6. Improve solut ions — Apply the local search methods to improve

the solutions generated in step 5.
 7. Update reference set — Choose the best b solutions from the

union of the current RefSet and the set of improved trial
solutions.

 }
 8. Update the best — Set CurrentBest as the best solution in the

RefSet.
 if(CurrentBest improves BestSol)
 BestSol = CurrentBest
 GlobalImprove = 0
 else
 GlobalImprove = GlobalImprove + 1

 9. Rebuild RefSet — Remove the worst b/2 solutions from the

RefSet. Generate PopSize improved solutions applying steps 1
and 2. Choose b/2 “diverse” solutions and add them to RefSet.

} while (GlobalImprove < MaxIter)

Figure 1. Scatter Search outline

The reference set, RefSet, is a collection of b solutions that are used to generate new
solutions by way of applying a solution combination method. The construction of the
initial reference set in step 3 starts with the selection of the best b/2 solutions from P.
These solutions are added to RefSet and deleted from P. The minimum distance from
each improved solution in P-RefSet to the solutions in RefSet is computed. Then, the
solution with the maximum of these minimum distances is selected. This solution is
added to RefSet and deleted from P and the minimum distances are updated. This
process is repeated b/2 times. The resulting reference set has b/2 high-quality
solutions and b/2 diverse solutions. The distance between two permutations p = (p1,
p2, ..., pn) and q = (q1, q2, ..., qn) depends on the type of problem being solved. For A-
permutation problems, the distance is given by:

 ∑
=

−=
n

i
ii qpqpd

1

),(.

The distance for R-permutation problems is defined as:

d(p,q) = number of times pi+1 does not immediately follow pi in q,
for i = 1, …, n-1

The combination procedure is applied in step 5 to all pairs of solutions in the current
RefSet. Since the reference set consists of b solutions, the number of trial solutions
generated with the combination method is b(b-1)/2 when applied to the initial
reference set. Note that only pairs with at least one new solution are combined in

Campos, Laguna and Martí 5

subsequent executions of this step and therefore the number of combinations varies
after the initial reference set. The combined solutions are improved in the same way
as described above, that is, with the application of the TS and/or LS procedures. The
reference set is then updated by selecting the best b solutions from the union of RefSet
and the improved trial solutions. Steps 5, 6 and 7 in the outline of Figure 1 are
performed as long as at least one new trial solution is admitted in the reference set.

When no new solutions qualify to be added to the RefSet, step 9 performs a partial
rebuilding of the reference set. We keep the best b/2 solutions in the RefSet and
delete the other b/2. As in step 1, a set P of PopSize improved solutions is generated
and the b/2 with maximum diversity are added to complete the RefSet. The procedure
stops when MaxIter global iterations are performed without improving the value of the
best solution.

The combination method is a key element in scatter search implementations. This
method is typically adapted to the problem context. For example, linear combinations
of solution vectors have been shown to yield improved outcomes in the context of
nonlinear optimization (Laguna and Martí 2000). An adaptive structured combination
that focuses on absolute position of the elements in solutions to the linear ordering
problem was shown effective in Campos, et al. (2000). (This combination method 7
below.) In order to design a context-independent combination methodology that
performs well across a wide collection of different problems, we propose a set of 10
combination methods from which one is probabilistically selected according to its
performance in previous iterations.

In our implementation, solutions in the RefSet are ordered according to their objective
function value. So, the best solution is in the first one in RefSet and the worst is the
last one. When a solution obtained with combination method i (referred to as cmi)
qualifies to be the jth member of the current RefSet, we add b-j+1 to score(cmi).
Therefore, combination methods that generate good solutions accumulate higher
scores and increase their probability of being selected. To avoid initial biases, this
mechanism is activated after the first InitIter combinations, and before this point
selections are made completely at random. A description of the ten combination
methods follows.

Combination Method 1

This is an implementation of a classical GA crossover operator. The method randomly
selects a position k to be the crossing point from the range [1, n/2]. The first k
elements are copied from one reference point while the remaining elements are
randomly selected from both reference points. For each position i (i = k+1, …, n) the
method randomly selects one reference point and copy the first element that is still not
included in the new trial solution.

Combination Method 2

This method is a special case of 1, where the crossing point k is always fixed to one.

Combination Method 3

This is an implementation of what is known in the GA literature as the partially
matched crossover. The method randomly chooses two crossover points in one
reference solution and copies the partial permutation between them into the new trial
solution. The remaining elements are copied from the other reference solution
preserving their relative ordering.

Combination Method 4

This method is case of what is referred to in the GA literature as a mutation operator.
The method selects two random points in a chosen reference solution and inverts the
partial permutation between them. The inverted partial permutation is copied into the

Campos, Laguna and Martí 6

new trial solution. The remaining elements are directly copied from the reference
solution preserving their relative order.

Combination Method 5

This combination method also operates on a single reference solution. The method
scrambles a sublist of elements randomly selected in the reference solution. The
remaining elements are directly copied from the reference solution into the new trial
solution.

Combination Method 6

This is a special case of combination method 5 where the sublist always starts in
position 1 and the length is randomly selected in the range [2, n/2].

Combination Method 7

The method scans (from left to right) both reference permutations, and uses the rule
that each reference permutation votes for its first element that is still not included in
the combined permutation (referred to as the “incipient element”). The voting
determines the next element to enter the first still unassigned position of the combined
permutation. This is a min-max rule in the sense that if any element of the reference
permutation is chosen other than the incipient element, then it would increase the
deviation between the reference and the combined permutations. Similarly, if the
incipient element were placed later in the combined permutation than its next
available position, this deviation would also increase. So the rule attempts to minimize
the maximum deviation of the combined solution from the reference solution under
consideration, subject to the fact that other reference solution is also competing to
contribute. A bias factor that gives more weight to the vote of the reference
permutation with higher quality is also implemented for tie breaking. This rule is used
when more than one element receives the same votes. Then the element with highest
weighted vote is selected, where the weight of a vote is directly proportional to the
objective function value of the corresponding reference solution.

Combination Method 8

In this method the two reference solutions vote for their incipient element to be
included in the first still unassigned position of the combined permutation. If both
solutions vote for the same element, the element is assigned. If the reference solutions
vote for different elements but these elements occupy the same position in both
reference permutations, then the element from the permutation with the better
objective function is chosen. Finally, if the elements are different and occupy different
positions, then the one in the lower position is selected.

Combination Method 9

Given two reference solutions p and q, this method probabilistically selects the first
element from one of these solutions. The selection is biased by the objective function
value corresponding to p and q. Let e be the last element added to the new trial
solution. Then, p votes for the first unassigned element that is position after e in the
permutation p. Similarly, q votes for the first unassigned element that is position after
e in q. If both reference solutions vote for the same element, the element is assigned
to the next position in the new trial solution. If the elements are different then the
selection is probabilistically biased by the objective function values of p and q.

Combination Method 10

This is a deterministic version of combination method 9. The first element is chosen
from the reference solution with the better objective function value. Then reference
solutions vote for the first unassigned successor of the last element assigned to the
new trial solution. If both solutions vote for the same element, then the element is
assigned to the new trial solution. Other wise, the “winner” element is determined

Campos, Laguna and Martí 7

with a score, which is updated separately for each reference solution in the
combination. The score values attempt to keep the proportion of times that a
reference solution “wins” close to its relative importance, where the importance is
measured by the value of the objective function. The scores are calculated to minimize
the deviation between the “winning rate” and the “relative importance”. For example,
if two reference solutions p and q have objective function values of value(p) = 40 and
value(q) = 60, than p should contribute with 40% of the elements in the new trial
solution and q with the remaining 60% in a maximization problem. The scores are
updated so after all the assignments are made, the relative contribution from each
reference solution approximates the target proportion. More details about this
combination method can be found in Glover (1994).

3. Tabu Search and Local Search methods

Insertions are used as the primary mechanism to move from one solution to another
in the local search method. We define MOVE(pj, i) to consist of deleting pj from its
current position j in p to be inserted in position i (i.e., between the current elements
pi-1 and pi). This operation results in the ordering p′ as follows:

()
()⎩

⎨
⎧

>
<

=′
++−

+−−

jippppppp

jippppppp
p

nijijj

njjiji

for,,,,,,,,,

for,,,,,,,,,

1111

1111

KKK

KKK

Since the local search method is context independent, the only available mechanism
for computing the move value is submitting p′ for evaluation and comparing its value
with the value of p. In order to reduce the computational effort associated with
evaluating moves for possible selection and to increase the search efficiency, we define
INSERT(pj) as the set of promising insert positions for pj. We consider inserting pj only
in those positions in INSERT(pj). Then, the neighborhood N of the current solution is
given as:

N = {p′ : MOVE(pj, i), for j = 1, ..., n and i ∈ INSERT(pj)}

We partition N into n sub-neighborhoods Nj associated with each element pj as:

Nj = {p′ : MOVE(pj, i), i ∈ INSERT(pj)}

The set INSERT(pj) depends on whether the problem is an A-permutation or a
R-permutation problem. In A-permutation problems we accumulate in FreqIns(i,j) the
number of times that element i has been inserted in position j improving the current
solution. Then, given an element i, we compute m(i) as the position j where the value
of FreqIns(i,j) is maximum. We consider that m(i) and the positions around it are
desirable positions for inserting element i. This information is used to assign
INSERT(pj) the following values:

INSERT(pj) = [m(pj) – RANGE, m(pj) + RANGE]

The value of RANGE is an additional search parameter. In R-permutation problems
we accumulate in FreqIns(i,j) the number of times that element i has been inserted in
the position immediately preceding element j. Then we compute m(i) as the element j
with maximum FreqIns(i,j) value. We define pp(e) as the previous position of element e
in the current solution. Then we can consider that pp(m(i)) is a desirable position for
inserting element i. In this case, INSERT(pj) is assigned the following values:

INSERT(pj) = { pp(e) / FreqIns(pj,e) ≥ α m(pj) }

Campos, Laguna and Martí 8

where the value of α is dynamically adjusted to obtain a set with 2*RANGE elements.
The implementation is such that we avoid ordering all the elements in FreqIns(i,j), so
we are able of constructing the set INSERT(pj) with a low computational effort.

The rule for selecting an element for insertion is based on frequency information.
Specifically, the number of times that element j has been moved resulting on an
improved solution is accumulated in freq(j). The probability of selecting element j is
proportional to its frequency value freq(j).

Starting from a trial solution constructed with either the diversification generator or
any of the combination methods, the local search (LS) procedure chooses the best
insertion associated with a given element. At each iteration, an element pj in the
current solution p is probabilistically selected according its freq(j) value. The solution
p′ with the lowest value in Nj is selected. The LS procedure execute only improving
moves. An improving move is one for which the objective function value of p′ is better
(strictly smaller for minimization problems or strictly larger for maximization
problems) than the objective function value of p. The LS procedure terminates when
no improving move is found after NTrials elements are consecutively selected and the
exploration of their neighborhood fails to find an improving move.

The tabu search (TS) method is also based on the insert neighborhood described
above. At each iteration, an element pj is probabilistically selected according to its
freq(j) value and the move that leads to the best solution in Nj is selected. The move is
executed even when the move does not improve upon the current solution, resulting in
a possible deterioration of the current objective function value. The moved element pj
becomes tabu-active for TabuTenure iterations, and therefore, it cannot be selected for
insertion during this time. The TS routine terminates after TabuIter consecutive
iterations without improvement. The best solution found is returned as the output of
the method.

4. Permutation Problems used for Testing

We have used four combinatorial optimization problems to test our procedure.
Solutions to these problems are naturally represented as permutations:

• the bandwidth reduction
• the linear ordering problem
• the traveling salesman problem
• a single machine sequencing problem.

We target these problems because they are well known, they are different in nature
and problem instances with known optimal solutions are readily available. Existing
methods to solve these problems range from construction heuristics and
metaheuristics to exact procedures. We now provide a brief description of each
problem class.

The bandwidth reduction problem (BRP) refers to finding a configuration of a matrix
that minimizes its bandwidth. The bandwidth of a matrix { }ijaA = is defined as the

maximum absolute difference between i and j for which 0≠ija . The BRP consists of

finding a permutation of the rows and columns that keeps the nonzero elements in a
band that is as close as possible to the main diagonal of the matrix, the objective is to
minimize the bandwidth. This NP-hard problem can also be formulated as a labeling
of vertices on a graph, where edges are the nonzero elements of the corresponding
symmetrical matrix. Metaheuristics proposed for this problem include a simulating

Campos, Laguna and Martí 9

annealing implementation by Dueck and Jeffs (1996) and a tabu search approach by
Martí, et al (2001).

The Linear Ordering Problem (LOP) is also a NP-hard problem that has a significant
number of applications. This problem is equivalent to the so-called triangulation
problem for input-output tables in economics and has generated a considerable
amount of research interest over the years, as documented in Grötschel, Jünger and
Reinelt (1984), Chanas and Kobylanski (1996), Laguna, Martí and Campos (1998) and
Campos, et al (2000). Given a matrix of weights the LOP consists of finding a
permutation of the columns (and simultaneously the rows) in order to maximize the
sum of the weights in the upper triangle, the equivalent problem in graphs is that of
finding, in a complete weighted graph, an acyclic tournament with a maximal sum of
arc weights. For a complete description of this problem, its properties and
applications see Reinelt (1985).

The Traveling Salesman Problem (TSP) that consists of finding a tour (cyclic
permutation) visiting a set of cities that minimizes the total travel distance. A
tremendous amount of research has been devoted to this problem, which would be
impossible and impractical to summarize here. However, a couple of valuable
references about the TSP are Lawler, et al (1985) and Reinelt (1994).

Finally, the fourth problem is a single machine-sequencing problem (SMS) with delay
penalties and setup costs. At time zero, n jobs arrive at a continuously available
machine. Each job requires a specified number of time units on the machine and a
penalty (job dependent) is charged for each unit that job commencement is delayed
after time zero. In addition, there is a setup cost sij charged for scheduling job j
immediately after job i. The objective is to find the schedule that minimizes the sum of
the delay and setup costs for all jobs. Note that if delay penalties are ignored, the
problem becomes an asymmetric traveling salesman problem. Barnes and Vanston
(1981) reported results on three branch and bound algorithms of instances up 20 jobs
and Laguna, Barnes and Glover (1993) developed a TS method that is tested in a set of
instances that ranges from 20 to 35 jobs.

5. Computational Experiments

For our computational testing, we have employed the following problem instances:

• 37 BRP instances from the Harwell-Boeing Sparse Matrix Collection found in
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing. This collection
consists of a set of standard test matrices arising from problems in linear
systems, least squares, and eigenvalue calculations from a wide variety of
scientific and engineering disciplines. The size of these instances ranges from
54 to 685 rows with an average of 242.9 rows (columns).

• 49 LOP instances from the public-domain library LOLIB (1997) found in
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB. These
instances consist of input-output tables from economic sectors in the
European community and their size ranges from 44 to 60 rows with an average
of 48.5 rows (columns).

• 31 TSP instances from the public-domain library TSPLIB (1995) found in
http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib. These
instances range in size from 51 to 575 cities with an average of 159.6 cities.

• 40 SMS instances from Laguna, Barnes and Glover (1993) available upon
request from laguna@colorado.edu. The best solutions available for these
instances have not been proved optimal, however they are the best upper

Campos, Laguna and Martí 10

bounds ever found. These instances range in size from 20 to 35 jobs with an
average of 26.0 jobs.

In order to apply the different strategies described above, we have classified the BRP
and SMS as A-permutation problems and the LOP and TSP as R-permutation
problems. Note that the objective function in the SMS problem is influenced by both
the absolute position of the jobs (due to the delay penalties) and the relative position of
the jobs (due to the setup costs). Our classification is based on the knowledge that
the delay penalties in the tested instances are relatively larger when compare to the
setup cost. In cases when this knowledge is not available, it would be recommended
to run the procedure twice on sample set of problems in order to establish the relative
importance of the positioning of elements in the permutation.

The solution procedure was implemented in C++ and compiled with Microsoft Visual
C++ 6.0, optimized for maximum speed. All experiments were performed on a Pentium
III at 800 MHz. The scatter search parameters PopSize, MaxIter, b and InitIter were set
to 100, 2, 10 and 50 respectively, as recommended in Campos et al. (1999). The
parameters associated with the local search procedure were set after some preliminary
experimentation (RANGE = 3 and Ntrials = 25).

In our first experiment we consider the SS method with LS but without the TS routine
as a baseline to compare future experiments as well as to measure the contribution of
the TS improvement method. Table 1 reports for each problem type (1) the average
percentage deviation from the best known solution to each problem, (2) the average
number of evaluations, (3) the average percentage of improvement obtained from the
best solution in the initial reference set, (4) the average number of rebuilds of the
reference set, (5) the average CPU seconds, (6) the average time spent in the local
search routine and (7) the average percentage improvement achieved by the local
search method. It should be mentioned that in the case of LOP and TSP the best
solutions considered are the optimal solutions as given in the public libraries. In the
case of the BRP the best solutions are from Martí et al (2000) and the best solutions
for the SMS instances are due to Laguna et al (1993).

Since the best solution in the initial reference set is obtained with the application of
the diversification generator and the local search method, the values in the column
labeled “Improvement from initial best solution” in Table 1 provide a measure of the
contribution of the combination methods to the algorithm’s output.

Deviation
from best

Number of
evaluations

Improvement
from initial best

solution

Number
of

rebuilds
Total

seconds LS seconds
LS

improvement

BRP 178.8% 263339 10.3% 3.9 12.7 12.4 4.6%

LOP 0.003% 745904 0.1% 3.1 8.9 8.8 31.0%

TSP 23.4% 12362564 31.8% 17.0 98.2 97.1 19.2%

SMS 0.1% 1272044 0.5% 5.2 2.6 2.5 14.2%

Table 1. Scatter Search method

As anticipated, the procedure does not perform equally well across problem types.
Table 1 shows that in the LOP and SMS problem the procedure yields excellent results
with average percent deviations from the best solutions of 0.003% and 0.1%,
respectively. These results are obtained with a computational effort that average less
than 9 seconds. The performance on the TSP is less desirable, but we should keep in
mind that these problems are on average larger than in the case of the LOP and SMS.
The method has unacceptable results for the BRP. There are two reasons for this
output: the instances are significantly larger and the change in the objective function
value from one solution to another does not represent a meaningful guidance for the
search. In particular, the objective is a min-max function that in many cases results
in the same evaluation for all the solutions in the neighborhood of a given solution.

Campos, Laguna and Martí 11

Our context-independent method is then unable to obtain information from the
evaluation of this “flat landscape” function to direct the search.

It is interesting to note the effect of the value of MaxIter in the number of times that
the reference set is rebuilt. In most problem instances this value is relatively small,
meaning that most of the good solutions are found early in the search and that the
method does not perform many global iterations. In the TSP instances, however, the
method finds some of the good solutions later in the search and therefore performs
several “restarts” before terminating. This termination criterion is typical in
commercial software, where the user is always able to stop the process manually or
allow the search to run to completion according to a predefined rule (such as the one
we have used here).

One of the key elements in the way solutions are combined within our adaptation of
scatter search is the self-adapting nature of the combination methods. For the
experiment reported in Table 1, we recorded the number of times each combination
method is used throughout the search. In Table 2 we report the relative frequency of
use of each combination method by problem class. Note that in the BRP case the
most frequently used combination method is 6, which is one that operates on a single
solution and uses a fair amount of randomization over strategy. This is not surprising
given the established fact that the change on the objective function value does not
provide adequate search directions. In problems where our procedure performs well,
combination methods that rely on strategic choices, such as number 7, are used more
often. In general, there is a more uniform distribution of frequencies in problems
where the method performs well (see the LOP row in Table 2).

 Combination Methods
 1 2 3 4 5 6 7 8 9 10

BRP 2% 1% 5% 5% 10% 59% 9% 7% 1% 0%

LOP 20% 9% 16% 2% 4% 5% 34% 7% 2% 2%

TSP 3% 1% 3% 2% 1% 4% 29% 55% 1% 0%

SMS 21% 11% 34% 3% 4% 5% 12% 7% 2% 1%

Table 2. Relative Frequency

In our next set of experiments we tested the merit of the short-term memory TS
adaptation as an additional improvement method within our SS design. We begin our
experimentation with the tabu search improvement method by setting the TabuIter
and TabuTenure parameters to 100 and 10, respectively. We then test 3 values for
threshold. = 1.0, 0.8, 0.2. Tables 3, 4 and 5 show the results for each value of this
parameter, where this time we replace the LS values with the TS values in the last two
columns of the tables.

Deviation
from best

Number of
evaluations

Improvement
from initial best

solution

Number
of

rebuilds
Total

seconds TS seconds
TS

improvement

BRP 175.5% 832370 6.2% 4.5 42.4 30.6 6.1%

LOP 0.001% 1177229 0.01% 2.4 14.4 12.8 51.8%

TSP 25.3% 27663495 15.6% 9.6 297.4 289.3 62.6%

SMS 0.1% 2326553 0.3% 5.2 5.4 4.5 32.0%

Table 3. Average performance with threshold = 1.0

Campos, Laguna and Martí 12

Deviation
from best

Number of
evaluations

Improvement
from initial best

solution

Number
of

rebuilds
Total

seconds TS seconds
TS

improvement

BRP 164.1% 1308025 10.8% 4.4 74.3 62.3 5.6%

LOP 0.001% 1340786 0.01% 2.3 16.5 15.3 40.2%

TSP 17.6% 25024919 20.6% 8.1 281.3 274.6 21.4%

SMS 0.1% 2793349 0.4% 4.5 5.8 5.2 14.2%

Table 4. Average performance with threshold = 0.8

Deviation
from best

Number of
evaluations

Improvement
from initial best

solution

Number
of

rebuilds
Total

seconds TS seconds
TS

improvement

BRP 156.3% 1479022 10.8% 4.3 75.2 64.4 6.7%

LOP 0.001% 1394947 0.01% 2.3 17.2 16.2 40.1%

TSP 15.8% 25587886 22.0% 7.6 264.7 258.9 23.1%

SMS 0.05% 2669407 0.4% 4.2 5.5 5.0 14.7%

Table 5. Average performance with threshold = 0.2

Tables 3, 4 and 5 show that as the value of threshold decreases the average deviation
from the best solutions generally decreases. This trend is expected, because skipping
the TS phase may result in a missing opportunity to improve upon the trial solution
generated as a result of combining solutions or applying the diversification generator.
However, as threshold decreases, the method employs more computational time. Note
that the results for the LOP and SMS problem are not significantly affected by the
change on the threshold parameter, since the scatter search is capable of finding high
quality solutions to these instances without the application of the TS routine.

These tables also show that when the TS method is activated, it is responsible for a
large contribution in the quality of the solutions as well as for the total CPU time. For
example in the LOP the TS improves the trial solutions by at least 40%, on average.
We have also observed that the contribution of the LS procedure is significantly
reduced when the TS method is used. This indicates that the average performance of
the procedure with both LS and TS active is not significantly better than the average
performance when TS alone is used as the improvement method. However, since the
LS does not significantly add to the total computational time when TS is active, having
both methods switched on at the same time give the best opportunity for finding high
quality solutions.

In our next experiment we compare the performance of the SS procedure with TS as
the local optimizer when the threshold parameter is set to 0.2 and the TabuIter is set
to 0, 100 and 250. Figure 2 shows the behavior of the procedure in the four problems
under consideration. Since the magnitude of the relative deviation from the best
solutions is fairly different for each problem, we have depicted TSP and BRP in the
same line graph and the LOP and SMS problem in a separate one using logarithmic
scale.

Campos, Laguna and Martí 13

0%

50%

100%

150%

200%

0 100 250

TabuIter

A
ve

ra
ge

 D
ev

ia
tio

n

BRP

TSP

0,0%

0,0%

0,0%

0,0%

0,1%

1,0%

10,0%

100,0%

0 100 250

TabuIter

A
ve

ra
ge

 D
ev

ia
tio

n

LOP

SMS

Figure 2. Summary of results with TabuIter = 0, 100, 250

As anticipated, the performance of the procedure improves as the number of TS
iterations increases. Most of the gains, however, seem to be realized from TabuIter = 0
to TabuIter = 100. The additional computational effort of setting TabuIter = 250 does
not seem justified in the set of problems that we tested.

In the introduction, we mentioned that there exist several commercial optimization
packages that based on metaheuristic technology and that are capable of searching for
solutions to permutation problems. In our next experiment, we compare the
performance of our procedure with OptQuest and the Standard Evolutionary from
Frontline Systems. The version that we use includes the tabu search improvement
procedure with a threshold value of 0.2 and TabuIter = 100. Since the commercial
optimizers include features such as graphical interfaces or other variable
representations, they are significantly slower than our C++ implementation, which was
specifically designed for permutation problems. To make a fair comparison, we have
set a fixed number of objective function evaluations as a termination criterion for all
procedures. The deviation from optimal or best solutions and the average CPU
seconds for each procedure is reported in Table 6.

 Deviation from best CPU seconds

 OptQuest Frontline SS/TS OptQuest Frontline SS/TS

BRP 252.2% 264.6% 172.4% 952 952 43

LOP 8.5% 16.1% 0.0% 301 300 25

TSP 311.4% 8.4% 5.7% 5,772 5,628 23

SMS 5.5% 0.8% 0.1% 237 300 5

Table 6. Comparison with commercial software

This table shows that the proposed scatter search with a tabu search improvement
method yields higher quality solutions on the average when compared to two
commercially available software packages. We include the execution time to show the
advantage of using a specialized code that does not include additional costly routines,
such as those associated with graphical output or databases to store all visited
solutions. The main goal of our experiment was to compare the quality of the
solutions and verify that our procedure represents a contribution to the solution of
permutation problems with context-independent solvers.

6. Conclusions

We have developed a heuristic procedure based on the scatter search methodology for
a class of combinatorial problems whose solutions can be represented as
permutations. Our method uses a systematic diversification generator and 10
combination methods. We also tested two improvement methods: one based on a
simple hill-climbing procedure and the other on a short-term memory tabu search.
The method is context-independent in the sense that it treats the objective function
evaluation as a black box. To allow for the use of key search strategies, the method
requires that the problems be classified as either “absolute” or “relative” in terms of

Campos, Laguna and Martí 14

the relevant factor for positioning elements in the permutation. We don’t see this as a
limiting feature of our procedure, since the speed of execution allows for
experimenting with both settings before deciding whether two solve an instance or set
of instances as A-permutation or R-permutation problems.

The performance of the procedure has been assessed using 157 instances of four
different permutations problems. Solutions obtained with our method have been
compared with the best-known solutions to each problem. The procedure has been
shown competitive with methods specifically designed for problems the LOP and SMS
problem. The method provides reasonable results although significantly inferior to
those obtained with custom methods for the TSP. Finally, the method has been shown
inadequate for the BRP due to the min-max nature of the objective function
calculation associated with this class of problems. The method was shown superior to
comparable procedures that are commercially available. Our experimentation allows
us to conclude that context-independent methods can be useful in the context of
permutation problems when the associated objective function is capable of
discriminating among solutions in a given neighborhood.

References

Campos, V., M. Laguna and R. Martí (1999) “Scatter Search for the Linear Ordering
Problem,” Corne, Dorigo and Glover (Eds.) New Ideas in Optimization, McGraw-Hill,
UK.

Campos, V., F. Glover, M. Laguna and R. Martí (2000) “An Experimental Evaluation of
a Scatter Search for the Linear Ordering Problem,” Working paper, University of
Colorado at Boulder.

Chanas, S. and P. Kobylanski (1996) “A New Heuristic Algorithm Solving the Linear
Ordering Problem,” Computational Optimization and Applications, vol. 6, pp. 191-205.

Dueck, G. H. and J. Jeffs (1995) “A Heuristic Bandwidth Reduction Algorithm,” J. of
Combinatorial Math. And Comp., vol. 18, pp. 97-108.

Glover, F. (1994) “Tabu Search for Nonlinear and Parametric Optimization with Links
to Genetic Algorithms,” Discrete Applied Mathematics, vol. 49, pp. 231-255.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial
Evolution, Lecture Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald , M.
Schoenauer and D. Snyers (Eds.), Springer, pp. 13-54.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston.

Glover, F., M. Laguna and R. Martí (1999) “Scatter Search,” to appear in Theory and
Applications of Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui
(Eds.), Springer-Verlag.

Grötschel, M., M. Jünger and G. Reinelt (1984), “A Cutting Plane Algorithm for the
Linear Ordering Problem,” Operations Research, vol. 32, no. 6, pp. 1195-1220.

Laguna, M., Barnes, J.W. and Glover, F. (1993), “Intelligent Scheduling with Tabu
Search: An application to jobs with linear delay penalties and sequence-dependent
setup costs and times”, Journal of applied intelligent, no. 3, pp. 159-172.

Laguna, M., R. Martí (2000) “Experimental Testing of Advanced Scatter Search designs
for global optimization of multimodal functions,” technical report TR11-2000, Dpto de
Estadística e I.O., University of Valencia.

Campos, Laguna and Martí 15

Laguna, M., R. Martí and V. Campos (1998) “Intensification and Diversification with
Elite Tabu Search Solutions for the Linear Ordering Problem,” to appear in Computers
and Operations Research.

Lawler, Lenstra, Rinnoy Kan and Shmoys (1985), The Traveling Salesman Problem. A
guided tour of combinatorial optimization”, John Wiley and Sons.

Martí, R., Laguna, M., Glover, F. and Campos, V. (2000) “Reducing the Bandwidth of a
Sparse Matrix with Tabu Search”, to appear in European Journal of Operational
Research.

Reinelt, G. (1985) The Linear Ordering Problem: Algorithm and Applications, Research
and Exposition in Mathematics, Vol. 8, H.H. Hofman and R. Wille (Eds.), Heldermann
Verlag, Berlin.

Reinelt, G. (1994), “The Traveling Salesman. Computational Solutions for TSP
applications”, Lecture Notes in Computer Science, Springer Verlag, Berlin.

