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Abstract 
 

In this paper, we develop a general purpose heuristic for 
permutations problems.  The procedure is based on the scatter 
search and tabu search methodologies and treats the objective 
function evaluation as a black box, making the search algorithm 
context-independent.  We perform computational experiments with 
four well-known permutation problems to study the efficiency and 
effectiveness of the proposed method. 
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1. Introduction 

The purpose of this paper is to develop a context-independent method for solving an 
important class of combinatorial optimization problems.  Specifically we tackle 
problems whose solutions can be represented with a permutation. 
 
Our general-purpose heuristic is based on a model that treats the objective function 
evaluation as a black box, making the search algorithm context-independent.  The 
procedure is a scatter-tabu search hybrid.  The scatter search framework provides a 
means for diversifying the search throughout the exploration of the permutation 
solution space.  Two improvement methods are used to intensify the search in 
promising regions of the solution space: a simple local search based on exchange 
moves and a short-term memory tabu search.  Improved solutions are then used for 
combination purposes within the scatter search design. 
 
Our method does not take advantage of the structure of each problem instance; 
therefore it may not directly improve upon solutions found with procedures designed 
for specific permutation problems.  Nonetheless, we show that our results are 
competitive considering the general nature of the search procedure.  We base our 
conclusions on experimental testing with four well-known problems: linear ordering, 
traveling salesman, matrix bandwidth reduction and a job-sequencing problem.  Our 
procedure, however, is most useful when applied to problems for which specialized 
procedures are not available, for example, job-sequencing problems with nonlinear 
and/or stochastic objective functions. 
 
Metaheuristics have provided a mechanism for considerably improving the 
performance of simple heuristic procedures.  The search strategies proposed by 
metaheuristic methodologies result in iterative procedures that have the ability of 
escaping local optimal points.  Genetic algorithms (GAs) and scatter search (SS), for 
example, are metaheuristics designed to operate on a set of solutions that is 
maintained from iteration to iteration.  On the other hand, metaheuristics such as 
simulated annealing (SA) and tabu search (TS) typically maintain only one solution by 
applying mechanisms to change this solution from one iteration to the next.  
Metaheuristics have been developed to solve complex optimization problems in many 
areas, with combinatorial optimization being one of the most fruitful.  Generally, the 
most efficient procedures achieve their efficiencies by relying on context information.  
The solution method can be viewed as the result of adapting metaheuristic strategies 
to specific optimization problems.  In these cases, there is no separation between the 
solution procedure and the model that represents the system that produces the 
optimization problem to be solved. 
 
Metaheuristics can also be used to create solution procedures that are context 
independent.  The original genetic algorithmic designs were based on this model.  The 
advantage of this design is that the same solver can be applied to a wide variety of 
problems.  The obvious disadvantage is that the solutions found by context-
independent solvers might be inferior to those of specialized procedures when both are 
allotted the same amount of computer effort (e.g., total search time).  Context-
independent solvers (also referred to as general-purpose optimizers) based on 
metaheuristics have found their home in commercial implementations.  The Premium 
Solver Platform version 3.5 of Frontline Systems, Inc (www.frontsys.com), for instance, 
includes the Standard Evolutionary solver that is a context-independent GA 
implementation.  Opttek Systems, Inc (www.opttek.com) commercializes OptQuest, a 
context-independent solver based on scatter search.  Other GA-based commercial 
implementations of general-purpose optimizers are Evolver by Palisade Corporation 
(www.palisade.com) and Pointer by Synaps, Inc (www.synaps-inc.com). 
 
One of the main design considerations when developing a general-purpose optimizer is 
the solution representation to be employed.  The solution representation is used to 
establish the communication between the optimizer and the solution evaluator (which 
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generally is an abstraction of a complex system represented, for instance, by means of 
a computer simulation).  Classical GA implementations used binary strings to 
represent solutions even in problems where this representation was clearly inadequate 
(like in the case of permutation problems).  In our current development, we tackle 
problems whose solutions can be represented with permutations and use this 
representation within a solution procedure based on the SS methodology.  It is 
interesting to point out that modern commercial solvers based on metaheuristics such 
as Frontline’s Standard Evolutionary solver, OptQuest and Evolver support the 
permutation-based solution representation.  (Pointer does not support this 
representation because it specializes in searching for optimal solutions to engineering 
design problems.) 
 
 
2. Proposed Scatter Search Procedure 

Scatter search is a methodology that operates on a reference set (or population) of 
solution vectors (which in our case are permutations).  The SS process is organized to 
(1) capture information not contained separately in the original vectors, (2) take 
advantage of auxiliary heuristic solution methods (to evaluate the combinations 
produced and to actively generate new vectors), and (3) make dedicated use of strategy 
to carry out component steps.  For a detailed description of the SS methodology see 
Glover, Laguna and Martí (2000).   
 
We have adapted scatter search with the goal of developing a context-independent 
solver for permutation problems.  The solver is designed in such a way that the user 
must specify whether the objective function evaluation is more sensitive to the 
“absolute” positioning of the elements in the permutation or to their “relative” 
positioning.  Hence, we differentiate between two classes of problems: 
 

A-permutation problems⎯for which absolute positioning of the elements 
is more important 

 
R-permutation problems⎯for which relative positioning of the elements is 
more important 

 
The procedure, summarized in Figure 1, operates as follows.  A generator of 
permutations, which focuses on diversification and not on the quality of the resulting 
solutions, is used at the beginning of the search to build a set P of PopSize solutions 
(step 1).  The generator, proposed by Glover (1998), uses a systematic approach to 
creating a diverse set of permutations.  This contrasts with the typical GA approach of 
randomly generating a initial set of solutions from which to start the evolutionary 
search.  In order to obtain a set of solutions of reasonable quality and diversity, we 
apply an improvement method to the solutions in P.  The improvement method 
consists of two phases, a simple tabu search and a local search (LS), which are 
described in the next section.  The TS is based on a short-term memory function and 
is applied only to the most promising solutions.  In particular, given a solution p with 
an objective function value value(p), the TS is applied if the following condition holds: 
 

value(p) - | value(p) | * (1 - threshold) ≤ value(BestSol) 
 
where BestSol is the best solution found so far and threshold is a given search 
parameter.  The local search procedure is applied to all trial solutions, that is, those 
returned by the TS method as well as those not submitted to the tabu search.  This is 
performed in steps 2, 6 and 9 in the outline of Figure 1.  After step 2, P consists of the 
improved solutions obtained after the application of TS/LS or LS alone. 
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1. Generate solut ions — Apply the diversification generation method to 
generate a set of PopSize solutions. 

2. Improve solut ions — Apply the TS and LS methods to improve 
solutions generated in Step 1. 

3. Build the reference set  — Choose the “best” b solutions to build the 
initial RefSet. 

4. Init ial ize — Make BestSol the best solution in the current RefSet 
and GlobalImprove = 0 

do { 
 while ( new solutions in RefSet ) do { 
 5. Combine solut ions — Generate trial solutions from pairs of 

reference solutions where at least one solution in the pair is new. 
 6. Improve solut ions — Apply the local search methods to improve 

the solutions generated in step 5. 
 7. Update reference set  — Choose the best b solutions from the 

union of the current RefSet and the set of improved trial 
solutions. 

 } 
 8. Update the best — Set CurrentBest as the best solution in the 

RefSet. 
 if( CurrentBest improves BestSol ) 
  BestSol = CurrentBest 
  GlobalImprove = 0 
 else 
 GlobalImprove = GlobalImprove + 1 
 
 9. Rebuild RefSet — Remove the worst b/2 solutions from the 

RefSet.  Generate PopSize improved solutions applying steps 1 
and 2.  Choose b/2 “diverse” solutions and add them to RefSet. 

} while ( GlobalImprove < MaxIter ) 

Figure 1.  Scatter Search outline 
 
The reference set, RefSet, is a collection of b solutions that are used to generate new 
solutions by way of applying a solution combination method.  The construction of the 
initial reference set in step 3 starts with the selection of the best b/2 solutions from P.  
These solutions are added to RefSet and deleted from P.  The minimum distance from 
each improved solution in P-RefSet to the solutions in RefSet is computed.  Then, the 
solution with the maximum of these minimum distances is selected.  This solution is 
added to RefSet and deleted from P and the minimum distances are updated.  This 
process is repeated b/2 times.  The resulting reference set has b/2 high-quality 
solutions and b/2 diverse solutions.  The distance between two permutations p = (p1, 
p2, ..., pn) and q = (q1, q2, ..., qn) depends on the type of problem being solved.  For A-
permutation problems, the distance is given by: 
 

 ∑
=

−=
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i
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The distance for R-permutation problems is defined as: 
 

d(p,q) = number of times pi+1 does not immediately follow pi in q, 
for i = 1, …, n-1 

 
The combination procedure is applied in step 5 to all pairs of solutions in the current 
RefSet.  Since the reference set consists of b solutions, the number of trial solutions 
generated with the combination method is b(b-1)/2 when applied to the initial 
reference set.  Note that only pairs with at least one new solution are combined in 
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subsequent executions of this step and therefore the number of combinations varies 
after the initial reference set.  The combined solutions are improved in the same way 
as described above, that is, with the application of the TS and/or LS procedures.  The 
reference set is then updated by selecting the best b solutions from the union of RefSet 
and the improved trial solutions.  Steps 5, 6 and 7 in the outline of Figure 1 are 
performed as long as at least one new trial solution is admitted in the reference set. 
 
When no new solutions qualify to be added to the RefSet, step 9 performs a partial 
rebuilding of the reference set.  We keep the best b/2 solutions in the RefSet and 
delete the other b/2.  As in step 1, a set P of PopSize improved solutions is generated 
and the b/2 with maximum diversity are added to complete the RefSet.  The procedure 
stops when MaxIter global iterations are performed without improving the value of the 
best solution. 
 
The combination method is a key element in scatter search implementations.  This 
method is typically adapted to the problem context.  For example, linear combinations 
of solution vectors have been shown to yield improved outcomes in the context of 
nonlinear optimization (Laguna and Martí 2000).  An adaptive structured combination 
that focuses on absolute position of the elements in solutions to the linear ordering 
problem was shown effective in Campos, et al. (2000).  (This combination method 7 
below.)  In order to design a context-independent combination methodology that 
performs well across a wide collection of different problems, we propose a set of 10 
combination methods from which one is probabilistically selected according to its 
performance in previous iterations. 
 
In our implementation, solutions in the RefSet are ordered according to their objective 
function value.  So, the best solution is in the first one in RefSet and the worst is the 
last one.  When a solution obtained with combination method i (referred to as cmi) 
qualifies to be the jth member of the current RefSet, we add b-j+1 to score(cmi).  
Therefore, combination methods that generate good solutions accumulate higher 
scores and increase their probability of being selected.  To avoid initial biases, this 
mechanism is activated after the first InitIter combinations, and before this point 
selections are made completely at random.  A description of the ten combination 
methods follows. 
 
Combination Method 1 

This is an implementation of a classical GA crossover operator.  The method randomly 
selects a position k to be the crossing point from the range [1, n/2].  The first k 
elements are copied from one reference point while the remaining elements are 
randomly selected from both reference points.  For each position i (i = k+1, …, n) the 
method randomly selects one reference point and copy the first element that is still not 
included in the new trial solution. 
 
Combination Method 2 

This method is a special case of 1, where the crossing point k is always fixed to one. 
 
Combination Method 3 

This is an implementation of what is known in the GA literature as the partially 
matched crossover.  The method randomly chooses two crossover points in one 
reference solution and copies the partial permutation between them into the new trial 
solution.  The remaining elements are copied from the other reference solution 
preserving their relative ordering. 
 
Combination Method 4 

This method is case of what is referred to in the GA literature as a mutation operator.  
The method selects two random points in a chosen reference solution and inverts the 
partial permutation between them.  The inverted partial permutation is copied into the 
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new trial solution.  The remaining elements are directly copied from the reference 
solution preserving their relative order. 
 
Combination Method 5 

This combination method also operates on a single reference solution.  The method 
scrambles a sublist of elements randomly selected in the reference solution. The 
remaining elements are directly copied from the reference solution into the new trial 
solution. 
 
Combination Method 6 

This is a special case of combination method 5 where the sublist always starts in 
position 1 and the length is randomly selected in the range [2, n/2]. 
 
Combination Method 7 

The method scans (from left to right) both reference permutations, and uses the rule 
that each reference permutation votes for its first element that is still not included in 
the combined permutation (referred to as the “incipient element”).  The voting 
determines the next element to enter the first still unassigned position of the combined 
permutation.  This is a min-max rule in the sense that if any element of the reference 
permutation is chosen other than the incipient element, then it would increase the 
deviation between the reference and the combined permutations.  Similarly, if the 
incipient element were placed later in the combined permutation than its next 
available position, this deviation would also increase.  So the rule attempts to minimize 
the maximum deviation of the combined solution from the reference solution under 
consideration, subject to the fact that other reference solution is also competing to 
contribute.  A bias factor that gives more weight to the vote of the reference 
permutation with higher quality is also implemented for tie breaking.  This rule is used 
when more than one element receives the same votes.  Then the element with highest 
weighted vote is selected, where the weight of a vote is directly proportional to the 
objective function value of the corresponding reference solution. 
 
Combination Method 8 

In this method the two reference solutions vote for their incipient element to be 
included in the first still unassigned position of the combined permutation.  If both 
solutions vote for the same element, the element is assigned.  If the reference solutions 
vote for different elements but these elements occupy the same position in both 
reference permutations, then the element from the permutation with the better 
objective function is chosen.  Finally, if the elements are different and occupy different 
positions, then the one in the lower position is selected. 
 
Combination Method 9 

Given two reference solutions p and q, this method probabilistically selects the first 
element from one of these solutions.  The selection is biased by the objective function 
value corresponding to p and q.  Let e be the last element added to the new trial 
solution.  Then, p votes for the first unassigned element that is position after e in the 
permutation p.  Similarly, q votes for the first unassigned element that is position after 
e in q.  If both reference solutions vote for the same element, the element is assigned 
to the next position in the new trial solution.  If the elements are different then the 
selection is probabilistically biased by the objective function values of p and q. 
 
Combination Method 10 

This is a deterministic version of combination method 9.  The first element is chosen 
from the reference solution with the better objective function value.  Then reference 
solutions vote for the first unassigned successor of the last element assigned to the 
new trial solution.  If both solutions vote for the same element, then the element is 
assigned to the new trial solution.  Other wise, the “winner” element is determined 
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with a score, which is updated separately for each reference solution in the 
combination.  The score values attempt to keep the proportion of times that a 
reference solution “wins” close to its relative importance, where the importance is 
measured by the value of the objective function.  The scores are calculated to minimize 
the deviation between the “winning rate” and the “relative importance”.  For example, 
if two reference solutions p and q have objective function values of value(p) = 40 and 
value(q) = 60, than p should contribute with 40% of the elements in the new trial 
solution and q with the remaining 60% in a maximization problem.  The scores are 
updated so after all the assignments are made, the relative contribution from each 
reference solution approximates the target proportion.  More details about this 
combination method can be found in Glover (1994). 
 
 
3. Tabu Search and Local Search methods 

Insertions are used as the primary mechanism to move from one solution to another 
in the local search method.  We define MOVE(pj, i) to consist of deleting pj from its 
current position j in p to be inserted in position i (i.e., between the current elements 
pi-1 and pi).  This operation results in the ordering p′ as follows: 
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Since the local search method is context independent, the only available mechanism 
for computing the move value is submitting p′ for evaluation and comparing its value 
with the value of p.  In order to reduce the computational effort associated with 
evaluating moves for possible selection and to increase the search efficiency, we define 
INSERT(pj) as the set of promising insert positions for pj.  We consider inserting pj only 
in those positions in INSERT(pj).  Then, the neighborhood N of the current solution is 
given as: 
 

N = {p′ : MOVE(pj, i), for j = 1, ..., n  and i ∈ INSERT(pj)} 
 
We partition N into n sub-neighborhoods Nj associated with each element pj  as: 
 

Nj = {p′ : MOVE(pj, i),  i ∈ INSERT(pj)} 
 
The set INSERT(pj) depends on whether the problem is an A-permutation or a 
R-permutation problem.  In A-permutation problems we accumulate in FreqIns(i,j) the 
number of times that element i has been inserted in position j improving the current 
solution.  Then, given an element i, we compute m(i) as the position j where the value 
of FreqIns(i,j) is maximum.  We consider that m(i) and the positions around it are 
desirable positions for inserting element i.  This information is used to assign 
INSERT(pj) the following values: 
 

INSERT(pj) = [ m(pj) – RANGE, m(pj) + RANGE ] 
 
The value of RANGE is an additional search parameter.  In R-permutation problems 
we accumulate in FreqIns(i,j) the number of times that element i has been inserted in 
the position immediately preceding element j.  Then we compute m(i) as the element j 
with maximum FreqIns(i,j) value.  We define pp(e) as the previous position of element e 
in the current solution.  Then we can consider that pp(m(i)) is a desirable position for 
inserting element i.  In this case, INSERT(pj) is assigned the following values: 
 

INSERT(pj) = { pp(e) / FreqIns(pj,e) ≥ α m(pj) } 
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where the value of α is dynamically adjusted to obtain a set with 2*RANGE elements.  
The implementation is such that we avoid ordering all the elements in FreqIns(i,j), so 
we are able of constructing the set INSERT(pj) with a low computational effort. 
 
The rule for selecting an element for insertion is based on frequency information.  
Specifically, the number of times that element j has been moved resulting on an 
improved solution is accumulated in freq(j).  The probability of selecting element j is 
proportional to its frequency value freq(j). 
 
Starting from a trial solution constructed with either the diversification generator or 
any of the combination methods, the local search (LS) procedure chooses the best 
insertion associated with a given element.  At each iteration, an element pj in the 
current solution p is probabilistically selected according its freq(j) value.  The solution 
p′ with the lowest value in Nj is selected.  The LS procedure execute only improving 
moves.  An improving move is one for which the objective function value of p′ is better 
(strictly smaller for minimization problems or strictly larger for maximization 
problems) than the objective function value of p.  The LS procedure terminates when 
no improving move is found after NTrials elements are consecutively selected and the 
exploration of their neighborhood fails to find an improving move. 
 
The tabu search (TS) method is also based on the insert neighborhood described 
above.  At each iteration, an element pj is probabilistically selected according to its 
freq(j) value and the move that leads to the best solution in Nj is selected.  The move is 
executed even when the move does not improve upon the current solution, resulting in 
a possible deterioration of the current objective function value.  The moved element pj 
becomes tabu-active for TabuTenure iterations, and therefore, it cannot be selected for 
insertion during this time.  The TS routine terminates after TabuIter consecutive 
iterations without improvement.  The best solution found is returned as the output of 
the method. 
 
 
4. Permutation Problems used for Testing 

We have used four combinatorial optimization problems to test our procedure.  
Solutions to these problems are naturally represented as permutations: 

 

• the bandwidth reduction 
• the linear ordering problem 
• the traveling salesman problem 
• a single machine sequencing problem. 

 

We target these problems because they are well known, they are different in nature 
and problem instances with known optimal solutions are readily available.  Existing 
methods to solve these problems range from construction heuristics and 
metaheuristics to exact procedures.  We now provide a brief description of each 
problem class. 
 
The bandwidth reduction problem (BRP) refers to finding a configuration of a matrix 
that minimizes its bandwidth.  The bandwidth of a matrix { }ijaA =  is defined as the 

maximum absolute difference between i and j for which 0≠ija .  The BRP consists of 

finding a permutation of the rows and columns that keeps the nonzero elements in a 
band that is as close as possible to the main diagonal of the matrix, the objective is to 
minimize the bandwidth.  This NP-hard problem can also be formulated as a labeling 
of vertices on a graph, where edges are the nonzero elements of the corresponding 
symmetrical matrix.  Metaheuristics proposed for this problem include a simulating 
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annealing implementation by Dueck and Jeffs (1996) and a tabu search approach by 
Martí, et al (2001). 
 
The Linear Ordering Problem (LOP) is also a NP-hard problem that has a significant 
number of applications.  This problem is equivalent to the so-called triangulation 
problem for input-output tables in economics and has generated a considerable 
amount of research interest over the years, as documented in Grötschel, Jünger and 
Reinelt (1984), Chanas and Kobylanski (1996), Laguna, Martí and Campos (1998) and 
Campos, et al (2000).  Given a matrix of weights the LOP consists of finding a 
permutation of the columns (and simultaneously the rows) in order to maximize the 
sum of the weights in the upper triangle, the equivalent problem in graphs is that of 
finding, in a complete weighted graph, an acyclic tournament with a maximal sum of 
arc weights.  For a complete description of this problem, its properties and 
applications see Reinelt (1985). 
 
The Traveling Salesman Problem (TSP) that consists of finding a tour (cyclic 
permutation) visiting a set of cities that minimizes the total travel distance.  A 
tremendous amount of research has been devoted to this problem, which would be 
impossible and impractical to summarize here.  However, a couple of valuable 
references about the TSP are Lawler, et al (1985) and Reinelt (1994). 
 
Finally, the fourth problem is a single machine-sequencing problem (SMS) with delay 
penalties and setup costs.  At time zero, n jobs arrive at a continuously available 
machine.  Each job requires a specified number of time units on the machine and a 
penalty (job dependent) is charged for each unit that job commencement is delayed 
after time zero.  In addition, there is a setup cost sij charged for scheduling job j 
immediately after job i.  The objective is to find the schedule that minimizes the sum of 
the delay and setup costs for all jobs.  Note that if delay penalties are ignored, the 
problem becomes an asymmetric traveling salesman problem.  Barnes and Vanston 
(1981) reported results on three branch and bound algorithms of instances up 20 jobs 
and Laguna, Barnes and Glover (1993) developed a TS method that is tested in a set of 
instances that ranges from 20 to 35 jobs. 
 
 
5. Computational Experiments 

For our computational testing, we have employed the following problem instances: 

 

• 37 BRP instances from the Harwell-Boeing Sparse Matrix Collection found in 
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing. This collection 
consists of a set of standard test matrices arising from problems in linear 
systems, least squares, and eigenvalue calculations from a wide variety of 
scientific and engineering disciplines.  The size of these instances ranges from 
54 to 685 rows with an average of 242.9 rows (columns). 

• 49 LOP instances from the public-domain library LOLIB (1997) found in 
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB.  These 
instances consist of input-output tables from economic sectors in the 
European community and their size ranges from 44 to 60 rows with an average 
of 48.5 rows (columns). 

• 31 TSP instances from the public-domain library TSPLIB (1995) found in 
http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.  These 
instances range in size from 51 to 575 cities with an average of 159.6 cities. 

• 40 SMS instances from Laguna, Barnes and Glover (1993) available upon 
request from laguna@colorado.edu.  The best solutions available for these 
instances have not been proved optimal, however they are the best upper 
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bounds ever found.  These instances range in size from 20 to 35 jobs with an 
average of 26.0 jobs. 

In order to apply the different strategies described above, we have classified the BRP 
and SMS as A-permutation problems and the LOP  and TSP as R-permutation 
problems.  Note that the objective function in the SMS problem is influenced by both 
the absolute position of the jobs (due to the delay penalties) and the relative position of 
the jobs (due to the setup costs).  Our classification is based on the knowledge that 
the delay penalties in the tested instances are relatively larger when compare to the 
setup cost.  In cases when this knowledge is not available, it would be recommended 
to run the procedure twice on sample set of problems in order to establish the relative 
importance of the positioning of elements in the permutation. 
 
The solution procedure was implemented in C++ and compiled with Microsoft Visual 
C++ 6.0, optimized for maximum speed.  All experiments were performed on a Pentium 
III at 800 MHz.  The scatter search parameters PopSize, MaxIter, b and InitIter were set 
to 100, 2, 10 and 50 respectively, as recommended in Campos et al. (1999).  The 
parameters associated with the local search procedure were set after some preliminary 
experimentation (RANGE = 3 and Ntrials = 25). 
 
In our first experiment we consider the SS method with LS but without the TS routine 
as a baseline to compare future experiments as well as to measure the contribution of 
the TS improvement method.  Table 1 reports for each problem type (1) the average 
percentage deviation from the best known solution to each problem, (2) the average 
number of evaluations, (3) the average percentage of improvement obtained from the 
best solution in the initial reference set, (4) the average number of rebuilds of the 
reference set, (5) the average CPU seconds, (6) the average time spent in the local 
search routine and (7) the average percentage improvement achieved by the local 
search method.  It should be mentioned that in the case of LOP and TSP the best 
solutions considered are the optimal solutions as given in the public libraries.  In the 
case of the BRP the best solutions are from Martí et al (2000) and the best solutions 
for the SMS instances are due to Laguna et al (1993). 
 
Since the best solution in the initial reference set is obtained with the application of 
the diversification generator and the local search method, the values in the column 
labeled “Improvement from initial best solution” in Table 1 provide a measure of the 
contribution of the combination methods to the algorithm’s output. 

 

  
Deviation 
from best 

Number of 
evaluations 

Improvement 
from initial best 

solution 

Number 
of 

rebuilds 
Total 

seconds LS seconds 
LS 

improvement 

BRP 178.8% 263339 10.3% 3.9 12.7 12.4 4.6% 

LOP 0.003% 745904 0.1% 3.1 8.9 8.8 31.0% 

TSP 23.4% 12362564 31.8% 17.0 98.2 97.1 19.2% 

SMS 0.1% 1272044 0.5% 5.2 2.6 2.5 14.2% 

Table 1. Scatter Search method 
 
As anticipated, the procedure does not perform equally well across problem types.  
Table 1 shows that in the LOP and SMS problem the procedure yields excellent results 
with average percent deviations from the best solutions of 0.003% and 0.1%, 
respectively.  These results are obtained with a computational effort that average less 
than 9 seconds.  The performance on the TSP is less desirable, but we should keep in 
mind that these problems are on average larger than in the case of the LOP and SMS.  
The method has unacceptable results for the BRP.  There are two reasons for this 
output: the instances are significantly larger and the change in the objective function 
value from one solution to another does not represent a meaningful guidance for the 
search.  In particular, the objective is a min-max function that in many cases results 
in the same evaluation for all the solutions in the neighborhood of a given solution.  
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Our context-independent method is then unable to obtain information from the 
evaluation of this “flat landscape” function to direct the search. 
 
It is interesting to note the effect of the value of MaxIter in the number of times that 
the reference set is rebuilt.  In most problem instances this value is relatively small, 
meaning that most of the good solutions are found early in the search and that the 
method does not perform many global iterations.  In the TSP instances, however, the 
method finds some of the good solutions later in the search and therefore performs 
several “restarts” before terminating.  This termination criterion is typical in 
commercial software, where the user is always able to stop the process manually or 
allow the search to run to completion according to a predefined rule (such as the one 
we have used here). 
 
One of the key elements in the way solutions are combined within our adaptation of 
scatter search is the self-adapting nature of the combination methods.  For the 
experiment reported in Table 1, we recorded the number of times each combination 
method is used throughout the search.  In Table 2 we report the relative frequency of 
use of each combination method by problem class.  Note that in the BRP case the 
most frequently used combination method is 6, which is one that operates on a single 
solution and uses a fair amount of randomization over strategy.  This is not surprising 
given the established fact that the change on the objective function value does not 
provide adequate search directions.  In problems where our procedure performs well, 
combination methods that rely on strategic choices, such as number 7, are used more 
often.  In general, there is a more uniform distribution of frequencies in problems 
where the method performs well (see the LOP row in Table 2). 
 

 Combination Methods 
 1 2 3 4 5 6 7 8 9 10 

BRP 2% 1% 5% 5% 10% 59% 9% 7% 1% 0% 

LOP 20% 9% 16% 2% 4% 5% 34% 7% 2% 2% 

TSP 3% 1% 3% 2% 1% 4% 29% 55% 1% 0% 

SMS 21% 11% 34% 3% 4% 5% 12% 7% 2% 1% 

Table 2. Relative Frequency 
 
In our next set of experiments we tested the merit of the short-term memory TS 
adaptation as an additional improvement method within our SS design.  We begin our 
experimentation with the tabu search improvement method by setting the TabuIter 
and TabuTenure parameters to 100 and 10, respectively.  We then test 3 values for 
threshold. = 1.0, 0.8, 0.2.  Tables 3, 4 and 5 show the results for each value of this 
parameter, where this time we replace the LS values with the TS values in the last two 
columns of the tables. 
 

  
Deviation 
from best 

Number of 
evaluations 

Improvement 
from initial best 

solution 

Number 
of 

rebuilds 
Total 

seconds TS seconds 
TS 

improvement 

BRP 175.5% 832370 6.2% 4.5 42.4 30.6 6.1% 

LOP 0.001% 1177229 0.01% 2.4 14.4 12.8 51.8% 

TSP 25.3% 27663495 15.6% 9.6 297.4 289.3 62.6% 

SMS 0.1% 2326553 0.3% 5.2 5.4 4.5 32.0% 

Table 3. Average performance with threshold = 1.0 
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Deviation 
from best 

Number of 
evaluations 

Improvement 
from initial best 

solution 

Number 
of 

rebuilds 
Total 

seconds TS seconds 
TS 

improvement 

BRP 164.1% 1308025 10.8% 4.4 74.3 62.3 5.6% 

LOP 0.001% 1340786 0.01% 2.3 16.5 15.3 40.2% 

TSP 17.6% 25024919 20.6% 8.1 281.3 274.6 21.4% 

SMS 0.1% 2793349 0.4% 4.5 5.8 5.2 14.2% 

Table 4. Average performance with threshold = 0.8 
 
 

  
Deviation 
from best 

Number of 
evaluations 

Improvement 
from initial best 

solution 

Number 
of 

rebuilds 
Total 

seconds TS seconds 
TS 

improvement 

BRP 156.3% 1479022 10.8% 4.3 75.2 64.4 6.7% 

LOP 0.001% 1394947 0.01% 2.3 17.2 16.2 40.1% 

TSP 15.8% 25587886 22.0% 7.6 264.7 258.9 23.1% 

SMS 0.05% 2669407 0.4% 4.2 5.5 5.0 14.7% 

Table 5. Average performance with threshold = 0.2 
 
Tables 3, 4 and 5 show that as the value of threshold decreases the average deviation 
from the best solutions generally decreases.  This trend is expected, because skipping 
the TS phase may result in a missing opportunity to improve upon the trial solution 
generated as a result of combining solutions or applying the diversification generator.  
However, as threshold decreases, the method employs more computational time.  Note 
that the results for the LOP and SMS problem are not significantly affected by the 
change on the threshold parameter, since the scatter search is capable of finding high 
quality solutions to these instances without the application of the TS routine. 
 
These tables also show that when the TS method is activated, it is responsible for a 
large contribution in the quality of the solutions as well as for the total CPU time.  For 
example in the LOP the TS improves the trial solutions by at least 40%, on average.  
We have also observed that the contribution of the LS procedure is significantly 
reduced when the TS method is used.  This indicates that the average performance of 
the procedure with both LS and TS active is not significantly better than the average 
performance when TS alone is used as the improvement method.  However, since the 
LS does not significantly add to the total computational time when TS is active, having 
both methods switched on at the same time give the best opportunity for finding high 
quality solutions. 
 
In our next experiment we compare the performance of the SS procedure with TS as 
the local optimizer when the threshold parameter is set to 0.2 and the TabuIter is set 
to 0, 100 and 250.  Figure 2 shows the behavior of the procedure in the four problems 
under consideration.  Since the magnitude of the relative deviation from the best 
solutions is fairly different for each problem, we have depicted TSP and BRP in the 
same line graph and the LOP and SMS problem in a separate one using logarithmic 
scale. 
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Figure 2. Summary of results with TabuIter = 0, 100, 250 
 
As anticipated, the performance of the procedure improves as the number of TS 
iterations increases.  Most of the gains, however, seem to be realized from TabuIter = 0 
to TabuIter = 100.  The additional computational effort of setting TabuIter = 250 does 
not seem justified in the set of problems that we tested. 
 
In the introduction, we mentioned that there exist several commercial optimization 
packages that based on metaheuristic technology and that are capable of searching for 
solutions to permutation problems.  In our next experiment, we compare the 
performance of our procedure with OptQuest and the Standard Evolutionary from 
Frontline Systems.  The version that we use includes the tabu search improvement 
procedure with a threshold value of 0.2 and TabuIter = 100.  Since the commercial 
optimizers include features such as graphical interfaces or other variable 
representations, they are significantly slower than our C++ implementation, which was 
specifically designed for permutation problems.  To make a fair comparison, we have 
set a fixed number of objective function evaluations as a termination criterion for all 
procedures.  The deviation from optimal or best solutions and the average CPU 
seconds for each procedure is reported in Table 6. 
 

 Deviation from best  CPU seconds 

 OptQuest Frontline SS/TS  OptQuest Frontline SS/TS 

BRP 252.2% 264.6% 172.4%  952 952 43 

LOP 8.5% 16.1% 0.0%  301 300 25 

TSP 311.4% 8.4% 5.7%  5,772 5,628 23 

SMS 5.5% 0.8% 0.1%  237 300 5 

Table 6. Comparison with commercial software 
 
This table shows that the proposed scatter search with a tabu search improvement 
method yields higher quality solutions on the average when compared to two 
commercially available software packages.  We include the execution time to show the 
advantage of using a specialized code that does not include additional costly routines, 
such as those associated with graphical output or databases to store all visited 
solutions.  The main goal of our experiment was to compare the quality of the 
solutions and verify that our procedure represents a contribution to the solution of 
permutation problems with context-independent solvers. 
 
6. Conclusions 

We have developed a heuristic procedure based on the scatter search methodology for 
a class of combinatorial problems whose solutions can be represented as 
permutations.  Our method uses a systematic diversification generator and 10 
combination methods.  We also tested two improvement methods: one based on a 
simple hill-climbing procedure and the other on a short-term memory tabu search.  
The method is context-independent in the sense that it treats the objective function 
evaluation as a black box.  To allow for the use of key search strategies, the method 
requires that the problems be classified as either “absolute” or “relative” in terms of 
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the relevant factor for positioning elements in the permutation.  We don’t see this as a 
limiting feature of our procedure, since the speed of execution allows for 
experimenting with both settings before deciding whether two solve an instance or set 
of instances as A-permutation or R-permutation problems. 
 
The performance of the procedure has been assessed using 157 instances of four 
different permutations problems.  Solutions obtained with our method have been 
compared with the best-known solutions to each problem.  The procedure has been 
shown competitive with methods specifically designed for problems the LOP and SMS 
problem.  The method provides reasonable results although significantly inferior to 
those obtained with custom methods for the TSP.  Finally, the method has been shown 
inadequate for the BRP due to the min-max nature of the objective function 
calculation associated with this class of problems.  The method was shown superior to 
comparable procedures that are commercially available.  Our experimentation allows 
us to conclude that context-independent methods can be useful in the context of 
permutation problems when the associated objective function is capable of 
discriminating among solutions in a given neighborhood. 
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