
Scatter Search for Chemical and Bio-Process
Optimization

JOSE A. EGEA, MARÍA RODRÍGUEZ-FERNÁNDEZ, JULIO R. BANGA
Process Engineering Group. Instituto de Investigaciones Marinas (C.S.I.C.)
Eduardo Cabello 6, 36208 Vigo, Spain. jegea@iim.csic.es, mrodriguez@iim.csic.es,
julio@iim.csic.es.

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa. Universitat de València.
Dr. Moliner 50, 46100 Burjassot (Valencia), Spain. rafael.marti@uv.es

Abstract

Scatter search is a population-based method that has recently been shown to yield promising outcomes for
solving combinatorial and nonlinear optimization problems. Based on formulations originally proposed
in the 1960s for combining decision rules and problem constraints such as the surrogate constraint
method, scatter search uses strategies for combining solution vectors that have proved effective in a
variety of problem settings. In this paper, we develop a general purpose heuristic for a class of nonlinear
optimization problems. The procedure is based on the scatter search methodology and treats the objective
function evaluation as a black box, making the search algorithm context-independent.

Most optimization problems in the chemical and bio-chemical industries are highly nonlinear in either the
objective function or the constraints. Moreover, they usually present differential-algebraic systems of
constraints. In this type of problem, the evaluation of a solution or even the feasibility test of a set of
values for the decision variables is a time-consuming operation. In this context, the solution method is
limited to a reduced number of solution examinations. We have implemented a scatter search procedure
in Matlab for this special class of difficult optimization problems. Our development goes beyond a
simple exercise of applying scatter search to this class of problem, but presents innovative mechanisms to
obtain a good balance between intensification and diversification in a short-term search horizon.
Computational comparisons with other recent methods over a set of benchmark problems favor the
proposed procedure.

KeyWords
Metaheuristics, Scatter Search, Chemical Engineering, Global Optimization, Nonlinear Dynamic

Systems.

Scatter Search for Chemical and Bio-Process Optimization / 2

1. Introduction
Mathematical modeling, optimization and control have become fundamental tools for optimally designing
and operating production facilities in most industrial sectors such as the chemical and biotechnological
process industries (e.g., see Shimizu, 1996; Bailey, 1998; Banga et al., 2003a,b; Biegler and Grossmann,
2004; Floudas et al, 2005). Since many of these processes are operated in batch or semi-continuous
modes, especially in the case of the bio-industries, they have an inherently dynamic nature. In this
context, there are at least three relevant types of optimization problems: optimal operation (dynamic
optimization), integrated process design and control, and parameter estimation. These problems can be
stated as, or transformed into, nonlinear programming problems subject to dynamic (usually differential
algebraic) constraints. Their highly constrained, non-linear and sometimes non-smooth nature often
causes non-convexity, and therefore global optimization methods are needed in order to find suitable
solutions (Floudas et al, 2005).

In this paper we address the optimization of this important class of problem i.e. the nonlinear
programming problem with both differential and algebraic constraints, as given in the following
formulation:

x
Min φ(y,x) (1)

Subject to:
(, ,) 0f y y x =& (2)

0 0()y t x= (3)

(,) 0h y x = (4)

(,) 0g y x ≤ (5)

L Ux x x≤ ≤ (6)

In this model φ(y,x) is the objective function; x is the vector of the nvar decision variables; y is the set of
state system variables (ỷ is the time derivative of y), f is the set of differential equations describing the
system dynamics, and h and g are, respectively, the equality and inequality constraints. Finally, xL and xU
are the lower and upper bounds, respectively, for the decision variables.

Many real world optimization problems in chemical engineering (and also in business or economics) are
too complex to be given tractable mathematical formulations. Although we have used mathematical
notation in the formulation above, we are considering the general case in which there is no explicit
expression of the objective function φ(y,x) since it contains multiple nonlinearities, combinatorial
relationships and uncertainties inaccessible to modeling except by resorting to more comprehensive tools
like computer simulation. In the context of optimizing simulations, a “complex evaluation” refers to the
execution of a simulation model (which can be extremely time-consuming).

Theoretically, the issue of identifying best values for a set of decision variables x falls within the realm of
optimization. Until quite recently, however, the methods available for finding optimal decisions have
been unable to cope with the complexities and uncertainties posed by many real world problems of the
form treated by simulation. The area of stochastic optimization has attempted to deal with some of these
practical problems, but the modeling framework limits the range of problems that can be tackled with
such technology. The complexities and uncertainties in these systems are the primary reason that
simulation is often chosen as a basis for handling the decision problems associated with them. Advances
in the field of metaheuristics have led to the creation of optimization engines that successfully guide a
series of complex evaluations with the goal of finding optimal values for the decision variables.

The resolution of the differential-algebraic constraints (, ,) 0f y y x =& is usually a hard problem. Thus, an
approximate method (typically a Runge-Kutta, BDF method, or a similar numerical process) is applied to
obtain the y-values corresponding to a set of decision values x. Therefore, this kind of complex problem
is solved with a black-box sequential method in which the optimization takes place in the set of the
decision variables x. Therefore, given a set of values for the x-variables, the approximate solver of the

Scatter Search for Chemical and Bio-Process Optimization / 3

differential-algebraic constraints computes the associated y-values. We then test the feasibility of the
(x,y) solution with the h and g functions. To sum it up, a remarkable computational effort is associated
with the evaluation and the feasibility test of one solution.

The disadvantage of “black-box” approaches is that the optimization procedure is generic and has no
knowledge of the process employed to perform evaluations inside the box and therefore does not use any
problem-specific information. The main advantage, on the other hand, is that the same optimizer can be
applied to complex systems in many different settings. Therefore, although we have designed and tested
our method in the process systems engineering environment, it can be directly applied to solve any kind
of black-box optimization problems in other settings.

Advances in the field of metaheuristics — the domain of optimization that incorporates artificial
intelligence and analogs to physical, biological or evolutionary processes — have led to the creation of
new approaches that successfully integrate simulation and optimization. We have identified the following
five methods as the best available to handle black-box problems. We will use them in our computational
comparison in Section 4.

Csendes (1988) proposed Global, a hybrid global optimization algorithm which is essentially an
improvement of the algorithm by Boender et al. (1982). It uses a random search followed by a local
search routine. Initially, it carries out a clustering phase. Next, two different local search procedures can
be selected for a second step. The first one is a quasi-Newton type algorithm. The second, more
appropriate for problems with discontinuous objective functions or derivatives, is a robust random search
method.

Differential Evolution (DE) is a heuristic algorithm for the global optimisation of nonlinear and (possibly)
non-differentiable continuous functions presented by Storn and Price (1997). This population-based
method handles stochastic variables by means of a direct search method which outperforms other popular
global optimization algorithms such as simulated annealing or genetic algorithms, and it is widely used by
the evolutionary computation community.

Stochastic Ranking Evolution Strategy (SRES), developed by Runarsson and Yao (2000, 2005), consists
of an (µ,λ) evolution strategy combined with an approach to balancing objective and penalty functions
stochastically. In the (µ,λ)-ES algorithm, the evaluated objective and the penalty functions for each
individual are used to rank the individuals in a population, and the best (highest ranked) µ individuals out
of λ are selected for the next generation. This feature makes it especially appealing for the case of
constrained problems, like those considered here.

Jones (2001) proposed Direct (DIviding RECTangles), a deterministic global optimization algorithm
based on a modification of the Lipschitzian optimization scheme to solve difficult global optimization
problems. The search is performed by dividing the space into hyper-rectangles and is specifically
designed for those cases in which the objective function is non-smooth, no derivative information is
available, or its evaluation requires several different simulations to be performed. The algorithm operates
by systematically dividing the optimization domain into hyper-rectangles, and evaluating the objective
function in their centers. There are two phases to an iteration of Direct: first, hyper-rectangles are
identified as potentially optimal (i.e. it is expected that they contain a global solution); the second phase
consists of dividing potentially optimal hyper-rectangles into smaller ones. The objective function is
evaluated in the centers of new hyper-rectangles and the search is directed towards unexplored regions of
the domain. We use the Matlab implementation of Finkel and Kelley (2004) in our computational testing.

OptQuest is the optimization engine released by OptTek Systems, Inc.. As described in Laguna and Martí
(2002), this is a generic optimizer that overcomes the deficiency of black box systems and successfully
embodies the principle of separating the method from the model. In such a context, the optimization
problem is defined outside the complex system. Therefore, the evaluator can change and evolve to
incorporate additional elements of the complex system, while the optimization routines remain the same.
Hence, there is a complete separation between the model used to represent the system and the procedure
that solves optimization problems formulated around the model. The optimization technology embedded
in OCL is the metaheuristic known as scatter search. The method is organized to (1) capture information
not contained separately in the original points, (2) take advantage of auxiliary heuristic solution methods
(to evaluate the combinations produced and to actively generate new points), and (3) make dedicated use
of strategy instead of randomization to carry out component steps. In our testing we use the

Scatter Search for Chemical and Bio-Process Optimization / 4

implementation known as OQNLP (Ugray et al. 2003) which uses OptQuest to provide starting points for
any gradient-based local NLP solver. This procedure combines the superior accuracy and feasibility-
seeking behavior of gradient-based local NLP solvers with the global optimization abilities of scatter
search.

In this paper we propose a scatter search (SS) implementation to solve the optimization-simulation
problem that arises in chemical processes. This study goes beyond a simple exercise of implementing a
known method to solve a problem, and we propose innovative mechanisms and new strategies to
overcome the limitations of the previous methods described above. The remainder of the paper is
organized as follows. Section 2 is devoted to the generic SS methodology as it is usually applied. In
Section 3 we show our adaptation of this methodology to solve the optimization problem described
above, in which we propose new mechanisms for search intensification and diversification. The
computational comparison in Section 4 reports the solution of the five methods above and our proposal
when solving a set of well-known problems in the context of chemical process optimization. The paper
finishes with the associated conclusions.

2. Scatter Search Methodology
Scatter search (SS) was first introduced in Glover (1977) as a heuristic for integer programming. SS
orients its explorations systematically, relative to a set of reference points that typically consist of good
solutions obtained by prior problem solving efforts. The scatter search template (Glover 1998) has
served as the main reference for most of the SS implementations to date. SS methodology is very
flexible, since each of its elements can be implemented in a variety of ways and degrees of sophistication.
In this section we give a basic design to implement SS based on the well-known “five-method template”
(Laguna and Martí, 2003). The advanced features of SS are related to the way these five methods are
implemented. That is, the sophistication comes from the implementation of the SS methods instead of the
decision to include or exclude certain elements (as in the case of tabu search or other metaheuristics).

The fact that the mechanisms within SS are not restricted to a single uniform design allows the
exploration of strategic possibilities that may prove effective in a particular implementation. These
observations and principles lead to the following “five-method template” for implementing SS:

1. A Diversification Generation Method to generate a collection of diverse trial solutions, using an

arbitrary trial solution (or seed solution) as an input.
2. An Improvement Method to transform a trial solution into one or more enhanced trial solutions.

Neither the input nor the output solutions are required to be feasible, though the output solutions will
more usually be expected to be so. If no improvement of the input trial solution results, the
“enhanced” solution is considered to be the same as the input solution.

3. A Reference Set Update Method to build and maintain a reference set consisting of the b “best”
solutions found (where the value of b is typically small e.g. no more than 20), organized to provide
efficient accessing by other parts of the method. Solutions gain membership to the reference set
according to their quality or their diversity.

4. A Subset Generation Method to operate on the reference set, to produce several subsets of its
solutions as a basis for creating combined solutions.

5. A Solution Combination Method to transform a given subset of solutions produced by the Subset
Generation Method into one or more combined solution vectors.

Figure 1 shows the interaction among these five methods and highlights the central role of the reference
set. This basic design starts with the creation of an initial set of solutions P, and then extracts from it the
reference set (RefSet) of solutions. The darker circles represent improved solutions resulting from the
application of the Improvement Method.

Scatter Search for Chemical and Bio-Process Optimization / 5

P

RefSet

Diversification Generation
Method

Repeat until |P| = PSize

Subset Generation
Method

Improvement
Method

Solution Combination
Method

Improvement
Method

Stop if no more
new solutions

Reference Set
Update Method

Figure 1: Schematic representation of a basic SS design

The Diversification Generation Method is used to build a large set P of diverse solutions. The size of P
(PSize) is typically at least 10 times the size of RefSet. The initial reference set is built according to the
Reference Set Update Method, which can take the b better solutions (as regards their quality in the
problem solving) from P to compose the RefSet. However, diversity can be considered instead of or in
addition to quality for the updating. For example, the Reference Set Update Method could consist of
selecting b distinct and maximally diverse solutions from P. Regardless of the rules used to select the
reference solutions, the solutions in RefSet are ordered according to quality, where the best solution is the
first one in the list. The search is then initiated by applying the Subset Generation Method which, in its
simplest form, involves generating all pairs of reference solutions. The pairs of solutions in RefSet are
selected one at a time and the Solution Combination Method is applied to generate one or more trial
solutions. These trial solutions are subjected to the Improvement Method. The Reference Set Update
Method is applied once again to build the new RefSet with the best solutions, according to the objective
function value, from the current RefSet and the set of trial solutions. The basic procedure terminates after
all the generated subsets are subjected to the Combination Method and none of the improved trial
solutions are admitted to RefSet under the rules of the Reference Set Update Method. However, in
advanced SS designs, the RefSet rebuilding is applied at this point and the best b/2 solutions are kept in
the RefSet and the other b/2 are selected from P, replacing the worst b/2 solutions.

The reference set, RefSet, is a collection of both high quality solutions and diverse solutions that are used
to generate new solutions by way of applying the Combination Method. We can use a simple mechanism
to construct an initial reference set and then update it during the search. The size of the reference set is
denoted by b = b1 + b2 = |RefSet|. The construction of the initial reference set starts with the selection of
the best b1 solutions from P. These solutions are added to RefSet and deleted from P. For each solution
in P-RefSet, the minimum of the distances to the solutions in RefSet is computed. Then, the solution with
the maximum of these minimum distances is selected. This solution is added to RefSet and deleted from
P, and the minimum distances are updated. The process is repeated b2 times, where b2 = b – b1. The
resulting reference set has b1 high quality solutions and b2 diverse solutions.

Of the five methods in SS methodology, only four are strictly required. The Improvement Method is
usually needed if high quality outcomes are desired, but a SS procedure can be implemented without it.
On the other hand, hybrid SS designs could incorporate a short-term tabu search or other complex
metaheuristic such as the improvement method (usually demanding more running time).

Scatter Search for Chemical and Bio-Process Optimization / 6

It is interesting to observe similarities and contrasts between SS and the original GA proposals. Both are
instances of what are sometimes called “population based” or “evolutionary” approaches. Both
incorporate the idea that a key aspect of producing new elements is to generate some form of combination
of existing elements. However, GA approaches are predicated on the idea of choosing parents randomly
to produce offspring, and further on introducing randomization to determine which components of the
parents should be combined. By contrast, the SS approach does not emphasize randomization,
particularly in the sense of being indifferent to choices among alternatives. Instead, the approach is
designed to incorporate strategic responses, both deterministic and probabilistic, that take account of
evaluations and history. SS focuses on generating relevant outcomes without losing the ability to produce
diverse solutions, due to the way the generation process is implemented.

3. Scatter Search for the Optimization-Simulation Problem
In this section we describe the adaptation of the SS methodology to solve the optimization problem
introduced in Section 1, in which the objective function is given by a simulation process and some
constraints are differential equations describing the system dynamics.

In unconstrained problems, the evaluation of a solution is directly given by the objective function, or the
output of the simulation process that defines it. In constrained problems, to make the search flexible, we
allow the method to generate and combine unfeasible solutions. In particular, we add a penalty term to
the objective function value defined by a weight multiplied by the maximum percentage of the violation
of the constraints. We consider relative violations instead of absolute ones to take into account the
different orders of magnitude among constraints. This weight, wpen, can be modified by the user to vary
the degree of unfeasibility permitted in the search.

3.1 Diversification Generation Method
Our SS method implemented in Matlab begins by generating an initial set P of diverse points. This is
usually accomplished by dividing the range of each variable into n sub-ranges of equal size. Then, a
solution is constructed in two steps. First, a sub-range is randomly selected. The probability of selecting
a sub-range is inversely proportional to its frequency count (which keeps track of the number of times the
sub-range has been selected). Second, a value is randomly chosen from the selected sub-range. The
starting set of points also includes the following three solutions: the first one in which all variables are set
to the lower bound, the second one in which all variables are set to the upper bound, and the third one in
which all variables are set to the midpoint between both bounds. This is the standard SS implementation
of the Diversification Generation Method for non-linear problems. It is implemented in the commercial
software OQNLP described in the introduction. However, we have found that in some instances in which
variables may have values in a huge range that does not contain the zero, a logarithmic distribution
usually provides better results.

In the context of chemical and bio-process optimization, the selection of the lower bounds for the decision
variables is usually quite straightforward because of their physical meaning (e.g. a temperature can never
have a value lower than 0 Kelvin). However, the selection of an upper bound is not so easy and they are
often chosen as an arbitrarily large value to contain all the potential values for each variable. Therefore, it
is expected that the optimal and good solutions may lie much closer to the lower bounds than to the upper
bounds. In this context, a uniform distribution for selecting diverse solutions within the bounds will not
generate many trial points with good values. In contrast, a logarithmic distribution will generate more
trial vectors very close to the lower bound, thus allowing the algorithm to be initialized with high quality
members in the initial population, ensuring a faster convergence. Moreover, a logarithmic distribution is
also helpful in the case of variables that can intrinsically have values in "different orders of magnitude"
(say, for instance, around 10-3, 10-2 or 102 as is the case of pre-exponential factors in kinetic equations) or
with variables without physical meaning, for which selecting bounds is a difficult task. In order to obtain
good initial values for these cases, an option for selecting variables in different orders of magnitude has
been added in our implementation under the name log_var.

Figure 2 illustrates this situation in one of the instances presented in Section 4. Consider a variable that
takes values between 10-12 and 104. If we generate a starting set of points (say 100) between those bounds
using a uniform distribution, we will approximately obtain the same number of values in every interval
shown in Figure 2a. Alternatively, if we select the log_var option for this variable, its values will be
randomly selected with equal probability across the sub-ranges depicted in Figure 2b. In this option, the

Scatter Search for Chemical and Bio-Process Optimization / 7

number of subintervals is automatically adjusted so that there are a maximum of two orders of magnitude
between the limits of each interval (e.g. for a variable between 10-12 and 104, the number of subintervals
would be 8), thus generating more solutions close to zero.

Figure 2: Intervals within a variable range

a) Values uniformly distributed within the bounds
b) Values distributed within the different orders of magnitude

3.2 Reference Set Update Method
As described in Section 2, the RefSet Update Method is applied in two different steps of the algorithm:
when building the initial RefSet from the set P of diverse solutions and when updating it with the
combined solutions.

3.2.1 Building the RefSet

After generating the set P of diverse solutions, two strategies may be chosen to select the first members of
the RefSet. In the first strategy (used by default), a subset of good and diverse points is selected as the
reference set. The initial RefSet is built selecting the best b/2 solutions from P as given by the evaluation-
simulation process and then making more b/2 selections in order to maximize the minimum distance
between the candidate solution and the solutions currently in RefSet. That is, for each candidate solution
x in P-RefSet and each solution z in RefSet, we calculate the Euclidean distance d(x,z) and then select the
candidate solution that maximizes dmin(x), where

{ }),(min)(min zxdxd
z RefSet∈

= .

This strategy requires |P| simulations to identify the best b/2 solutions in terms of the objective function
value. Unless we choose a low value for |P|, this can cause a waste of computational effort, especially in
the case of the time-consuming problems we are facing in this study. We therefore propose an alternative
strategy in which the initial RefSet is formed with three solutions: one solution with all the variables in
their lower bound, another one having all the variables in their upper bounds and the third one given by
the midpoint between the first two. The RefSet is completed using the same procedure of maximizing the
minimum Euclidean distance between the candidate solutions in P and the current members of the RefSet.
This second strategy does not involve any simulation prior to the optimization stage. We therefore have
no information about the quality of these solutions, so we expect the algorithm to converge more slowly.
We may say that the first strategy combines quality and diversity in the initial RefSet, whereas the second
focuses only on diversity (and saves computational effort).

3.2.2 Updating the RefSet

In its original design, the Reference Set Update Method indicates that the RefSet is updated by selecting
the best b solutions from the union of the reference set and the new combined solutions. However, we
have empirically found that this standard mechanism would result in intermediate reference sets with very
similar solutions which are unlikely to produce new good solutions by combination. We have then added
a distance filter to prevent similar solutions from becoming part of the RefSet. Specifically, we compare
each newly created solution (y,x) with the worst solution in the current RefSet (yb,xb); if it improves its
value (φ(y,x)<φ (yb,xb)) instead of directly replacing it, as in the original SS implementation, we compute
the distance between the new solution and the RefSet without the worst solution d(x,RefSet-xb) as:

d(x,RefSet-xb)
{ }

{ }),(min zxd
z bx-RefSet∈

=

Scatter Search for Chemical and Bio-Process Optimization / 8

If this distance is larger than a threshold value dth, the new solution x replaces the old one xb in the
RefSet. On the other hand, if φ(y,x)<φ (yb,xb) and d(x,RefSet-xb)<dth we scan the RefSet from xb-1 to x1 in
search of a solution xj satisfying φ(y,x)<φ (yj,xj) and d(x, RefSet- xj)<dth in order to replace xj with x. If no
xj verifies it, the solution x does not enter the RefSet.

Figure 3 shows a schematic representation of four solutions in the RefSet (white circles) and a candidate
solution to be included (black circle). Numbers inside each circle represent the objective function value
for each solution and the distance between circles represents the Euclidean distance. In a minimization
problem, in the original design of the update method, the solution with value 3 would replace the solution
with value 7. In our design, with a threshold value dth=2, it replaces the solution with value 4.

Figure 3: Four solutions in RefSet and a new solution to enter it.

We have implemented an aspiration criteria (according to tabu search terminology) for this distance filter.
If a solution has the best value found so far but it does not verify the distance filter, we ignore this filter
and add it to the RefSet replacing its closest solution. The parameter dth is initially set to the minimum
distance between the solutions in the initial RefSet. The distance filter avoids the inclusion in the RefSet
of solutions that would lead to a reduction of this minimum distance. If after k consecutive iterations
(where one iteration is a complete combination and update of the RefSet) the best solution has been
improved, dth is increased by 10%; otherwise, it is reduced by 10% of its value. Note that in the last
iterations the dth-value is always reduced, permitting the final refinement of the solutions.

We have included a second filter to prevent the method from being trapped in a region for a large number
of iterations. In particular, if two solutions are relatively far apart but present very similar objective
values, as can happen in functions with flat landscapes, we do not replace the worst one with the slightly
better one. The value filter indicates that a solution (yj,xj) in the RefSet can be replaced with a new
solution (y,x) if φ(y,x)< vth φ(yj,xj), where the threshold value, vth, is set in the range [0.75 , 1].

Figure 4 illustrates this situation in a minimization problem of a real function. Consider a solution XR in
the RefSet and a candidate solution XC to enter it. Suppose that they verify the distance filter according
to dth and XC has a slightly better value (say around 0.1% lower) than XR. Then, instead of directly
replacing XR with XC, the quality filter considers that they may lie in the same flat area of the function,
as shown in Figure 4, and forbids the replacement in order to "wait" for a better solution (thus performing
a more aggressive search).

XR XC

Figure 4: Two solutions in a flat zone of the objective function.

6

1
4 3

7

dth = 2

d = 0.8

d = 3.6

Scatter Search for Chemical and Bio-Process Optimization / 9

Note that both filters act in a coordinated way since the assumption of flat landscapes is related with value
and distance. Consider, for example, a new solution in Figure 4 close to the origin and with the same
value of XC. The situation would be completely different, since it does not belong to the same flat area
of XR, as indicated by its distance. On the other hand, SS design specifies that when no new solution is
added to the RefSet, it is rebuilt with new and diverse solutions. Therefore, if we restrict the incorporation
of solutions that contribute only slight quality and diversity to the current RefSet, the SS design by itself
will make the search more efficient over a long term horizon.

In accordance with the problem’s characteristics the user adjusts this filter value, vth, for an optimal
algorithm performance. The default value for this filter is relatively conservative, but it should be changed
in problems in which we want to enhance diversity (for example when there are multiple local minima
and the global optimum has a small basin of attraction). When relying on local search, the search may be
more aggressive, whereas if no Improvement Method is present, it is recommended that the default
conservative value is used. In future versions, this filter could be dynamic, being more relaxed at the
beginning of the search in order to quickly locate the basin of attraction of the global minimum, and
tighter at the end of the search to allow a specified tolerance in the solution. The evolution of this filter is
not obvious and it is part of our current research. As is shown in the next section, the algorithm performs
very well with the suggested constant value.

3.3 Subset Generation and Solution Combination Methods
The Subset Generation Method consists of selecting each pair of solutions in RefSet and then applying the
Solution Combination Method to them. If the RefSet changes after the application of the reference set
update method described above, indicating that at least one new solution has been inserted in the
reference set, we again apply the combination method to all the pairs in RefSet containing at least one new
element. Otherwise, as in advanced SS designs, we resort to the Rebuilding mechanism as described in
Section 2.

The combination method is a key element in SS implementations. This method is typically adapted to the
problem context. Linear combinations of two solutions were suggested by Glover (1994) in the context
of nonlinear optimization and are a generalization of the linear or arithmetical crossover also used in
continuous and convex spaces (Michalewicz and Logan 1994). We consider a similar implementation to
that introduced in OQNLP (Ugray et al. 2005) of a generalized linear combination in which instead of
producing solutions in the same segment of the reference solutions, it produces solutions in the rectangles
defined over this segment. Specifically, we consider the three rectangles defined by the points 1: (x'-d,
x'); 2: (x', x'+d) and 3: (x'', x''+d) as shown in Figure 5, where

2
xxd
′−′′

=

and we assume that the reference solutions are x′ and x ′′ (x’ being superior in quality to x''). We then
randomly generate solutions within the rectangles, thus obtaining the combined solutions from x' and x''.

Figure 5. Generalized combination method

Scatter Search for Chemical and Bio-Process Optimization / 10

As described in Laguna and Martí (2005), depending on the relative positions of x’ and x’’ in the RefSet,
different types of solutions will be generated. We adapt their description to our implementation based on
rectangles.

• If both x’ and x’’ are in the first b/2 elements of the (sorted) RefSet, then we generate solutions in
rectangles 1 and 3 once and two solutions in rectangle 2, for a total number of four solutions.

• If only x’ is in the first half of the RefSet, then one solution in each rectangle is generated, for a
total number of three solutions.

• If neither x’ nor x’’ are in the first half of the RefSet, then one solution in rectangle 2 is generated
and another one in rectangles 1 or 3 (randomly chosen), for a total number of two solutions.

3.4 Improvement Method
The improvement method consists of a local search with the appropriate algorithm, using a carefully
selected solution as the starting point. One of the advantages of implementing our optimization method in
the Matlab environment is that we can easily apply any improvement method available in one of the many
existing libraries. We have considered the following seven methods:

fmincon: a local gradient-based method, implemented as part of the Matlab Optimization
Toolbox®, this solver finds a local minimum of a constrained multivariable function
by means of a SQP (Sequential Quadratic Programming) algorithm. The method uses
numerical or, if available, analytical gradients.

solnp: the SQP method by Ye (1987)

npsol: developed by the Stanford Systems Optimization Laboratory (see Gill et al., 1998) ,

this is usually considered a state of the art solver for dense nonlinear programming
problems.

snopt: developed by the Stanford Systems Optimization Laboratory (see Gill et al., 2002),

this is a state of the art solver for sparse active-set nonlinear programming problems.

Nomadm: Nonlinear Optimization for Mixed variables And Derivatives-Matlab, abbreviated as

NOMADm (see Abramson, 2002), is a Matlab code that runs various Generalized
Pattern Search (GPS) algorithms to solve nonlinear and mixed variable optimization
problems. This solver is suitable when local gradient-based solvers do not perform
well.

n2fb: this algorithm was specially designed for non-linear least squares problems by

Dennis, Gay and Welsch (1981). The method is based on a combined approximation
of a Gauss-Newton and quasi-Newton algorithm.

clsSolve: as a part of the Tomlab optimization environment (Holmström, 2004), this algorithm

solves sparse or dense nonlinear least squares optimization problems with explicit
handling of linear inequality and equality constraints and simple bounds on the
variables.

In a classical implementation of SS, the improvement method is applied to a large number of solutions
(all the initial solutions in P and all the combined solutions from the RefSet). However, in applications
related to chemical and bio-process engineering, we often face time-consuming evaluation problems (i.e.
every function evaluation can consume several minutes). This implies that the application of the
improvement method should be restricted to a low number of promising solutions. It is expected that in
the first iterations of the search process the solutions generated will be of a relatively poor quality.
Therefore, we have implemented a threshold value, Init_imp that determines the iteration number in
which the improvement method is applied for the first time (i.e. defining a number of previous function
evaluations before calling the improvement method). Then, once this threshold is satisfied, a quality and
a diversity filter are applied. These filters were successfully applied in Ugray et al. (2005) and they do
not allow the Improvement Method to be applied from a solution of a low quality (quality filter), or from
a solution close to a solution from which the Improvement Method was applied in previous iterations

Scatter Search for Chemical and Bio-Process Optimization / 11

(diversity filter). As documented by these authors, they significantly reduce the computational time with
good results.

Since the Improvement Method is selectively applied, when the SS algorithm is over (i.e. the method
reaches the specified number of function evaluations or computational time), before abandoning the
search, we apply the Improvement Method to the best solution found so far, just to be sure that it is not
skipped, or simply to refine the best solution.

3.5 RefSet Rebuilding
Rebuilding is a key operation associated with the reference set. It implements a mechanism to partially
rebuild the RefSet when none of the new trial solutions generated with the Combination Method qualifies
for addition to the reference set. In advanced SS designs, the method is usually the same as that used to
create the initial RefSet, in the sense that it uses the max-min distance criterion for selecting diverse
solutions. Typically, it keeps the best b/2 solutions in the RefSet and selects the other b/2 from the same
or a new set P with the distance criterion.

We have modified the standard implementation of the rebuilding mechanism to incorporate the notion of
ortogonality. Over a long-term horizon, the purpose of adding diverse solutions to the RefSet is to
generate new search directions. It is therefore interesting not only to get scattered solutions in the search
space, but also solutions that are able to create new search directions. Then, instead of selecting the
solutions in P with the max-min distance, we select those with min-max cosine with the solutions already
in the RefSet. Specifically, we choose the best element in RefSet as the center of gravity and in the first
iteration apply the standard criterion to add the first diverse solution to the RefSet. Consider now the
vector linking this new solution with the center of gravity. In subsequent iterations, instead of
considering the solutions in P, we consider the vectors that they define with the center of gravity and
select the solution associated with the vector that minimizes the maximum value of the cosine among the
vectors of the solutions already in the RefSet.

In the standard SS design, the RefSet is rebuilt only when no combined solution qualifies to enter it and
there is therefore no new solution to be combined. At this point the method could stop, as in basic SS
implementations, or the RefSet can be rebuilt and the search continues. However, in our SS design we
also apply the rebuilding method in two other cases. If the solutions in the RefSet are very similar it is
unlikely that new solutions will result from the combination of these similar solutions and we can save
time if we stop the combination method at that point and resort to the RefSet rebuilding. Therefore, after
each combination step, we compute for each variable the standard deviation of its values in the RefSet
solutions. If the deviation of all the variables is below the threshold v_rebuild, we consider that the RefSet
is too homogeneous, then stop the combination method and directly apply the rebuilding mechanism. A
complementary test is to measure whether the solutions in the RefSet are in the same flat region of the
objective function. In that case we also stop the combination method and directly apply the rebuilding
method as before. Specifically, if the objective values of all the solutions in the RefSet are too close (the
Euclidean distances between the values of all the pairs of solutions being lower than f_rebuild) we
consider that they belong to the same flat region and apply the rebuilding mechanism.

3.6 Intensification
The inclusion of the distance filter in the RefSet Update Method (Section 3.2.2) could be too restrictive
when the parameter dth takes relatively large values, rejecting too many solutions to become part of the
RefSet. Instead of keeping this parameter under low values to prevent this effect, we have experimentally
found that if we store the rejected solutions with good values in a secondary reference set, RefSet2, we
can treat them differently from the other solutions in the RefSet. RefSet2 stores the solutions that do not
qualify to enter into the RefSet and present a value close to the value of the best solution found
(specifically, better than x2, the second solution in the RefSet) with a maximum of 25 solutions. During
the solution combination method, we combine the best solution in the RefSet with all the solutions in
RefSet2 and check if any of the resulting solutions improve the best solution in the RefSet. In that case,
the new solution replaces the best one in the RefSet; otherwise it is discarded. The solutions in RefSet2
are then deleted. This intensification mechanism is performed every Inten_freq steps where one step is a
complete application of the standard combination method in the RefSet.

Figure 6 illustrates those combinations in an example with six solutions in the RefSet (black circles) and
three solutions in RefSet2 (stars). The square represents the global optima. In this example this

Scatter Search for Chemical and Bio-Process Optimization / 12

intensification strategy makes the process converge faster since the combination of the starred solutions
with the best in RefSet generates solutions which are very close to the global optimum of the function.

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

Figure 6. Intensification strategy

4. Computational Experiments
In order to evaluate the performance of our algorithm, we have applied it to solve three well-known and
hard optimization problems from the chemical and bio-process engineering area. The chemical
isomerization of alpha-pinene (Box et al. 1973, Dolan et al. 2004), the design of a waste water treatment
plant (Moles et al. 2003a) and a parameter estimation problem in biochemical pathways (Moles et al.,
2003b). These three problems involve dynamic systems (i.e. simulations by the integration of systems of
differential-algebraic equations). We have compared the results of our SS method implemented in Matlab,
SSm, with those provided by the five global optimization algorithms identified as the best and
summarized in the introduction: DE, Global, SRES, Direct and OQNLP. The last three can handle
general non-linear problems, including black-box simulations for the objective function and/or equality
constraints. On the other hand, DE and Global were designed to handle bound-constrained nonlinear
problems, but we have extended them for general constraints by means of penalty function approaches in
order to report a complete comparison.

All the experiments were carried out on a PC Pentium-IV 3.06 GHz using Matlab 6.5, Release 13, under
Windows XP Pro. We implemented SSm as described in Section 3 with the following standard parameter
values: PSize=100, b=10, b1=b2=5, vth=0.999, tolerance=10-4, Init_imp=100nvar, f_rebuild=10-5,
v_rebuild=10-5, Inten_freq = 20, and the weight to penalize unfeasible solutions, wpen, was set to 1000.

In our first experiment we compare the six methods under consideration when solving the isomerization
of alpha-pinene. This is a parameter estimation problem that arises from the modeling of the chemical
phenomena of an isomerization reaction. The problem was described in Box et al. (1973) and it is part of
the COPS benchmarking collection maintained by Dolan et al. (2004). The dynamic model is defined by
the following system of five ordinary differential equations in which y’ represents the time derivative of
state variable y.

5534
'

5

33
'

4

5534312
'

3

11
'

2

121
'

1

)(

)(

yyy

yy

yyyy

yy

yy

θθ

θ

θθθθ

θ

θθ

−=

=

++−=

=

+−=

The problem consists of finding the reaction coefficients, θi in [0,1], to minimize the differences between
the values of the states obtained from experimental data and the values, y, predicted by the model. The
best known solution is θ*=(5.9256·10-5, 2.9632·10-5, 2.0450·10-5, 2.7473·10-4, 4.0073·10-5) with value
1.9872·101.

Scatter Search for Chemical and Bio-Process Optimization / 13

The improvement method applied in SSm for this problem is fmincon and all decision variables are
declared as log_var (it is frequent in parameter estimation problems for the solution to lie very close to
the bounds, and in these cases the log_var strategy performs remarkably well).

In order to obtain statistically significant results, we run each method 10 times on this problem and report
the average (Avg. Value), best and worst solution values of the 10 runs (each run is limited to 50
seconds). Table 1 reports these three values as well as the average running time in seconds and the
average number of function evaluations of each method. Direct and OQNLP only allow one run since
Direct is a determinist method and we are using the OQNLP implementation for Matlab, which does not
permit the modification of the random generator seed. Therefore, the value of these methods must be
compared with the average value of the other methods.

Solver Best Value Worst Value Avg. Value CPU Time (sec.) Avg. # Evaluations
SSm 1.9872·101 6.8613·101 2.4747·101 41 1144
DE 3.1951·104 3.2945·104 3.2051·104 46 1250

SRES 3.3858·104 4.2707·104 3.8398·104 47 1300
Global 3.1638·104 4.2755·104 3.5225·104 45 1277
OQNLP 3.1252·104 3.1252·104 3.1252·104 51 1565
Direct 3.6421·104 3.6421·104 3.6421·104 45 1053

Table 1. Comparison for the alpha-pinene problem.

Table 1 shows that the best solution quality is obtained with the SSm method in the lowest computational
time. Moreover, considering the average values over the 10 runs, it also shows that SSm is robust, since it
is able to obtain the best solutions on average. Our proposal also presents a moderate number of function
evaluations when compared with the other solvers. None of the other methods obtains solutions of good
quality in this problem for the computation time horizon considered.

Complementary information to compare the methods is given in Figure 7. It depicts the convergence
curves of the best three methods for this problem: DE, Global and SSm. This experiment has the goal of
showing how the value of the best solution found improves over time. The three procedures were run for
50 seconds and the best solution found was reported every second (approx.) As shown in Table 1, the
best solution for SSm has, in fact, a value of 19.872; however, it is not depicted in Figure 7 for scaling
purposes.

10
−2

10
−1

10
0

10
1

10
2

10
2

10
3

10
4

10
5

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 [−

]

DE
GLOBAL
SSm

CPU Time [s]

Figure 7. Convergence curves for the alpha-pinene isomerization problem.

As shown in Table 1 and Figure 7, SSm performs significantly better than the rest of the solvers in the
short time horizon considered (50 seconds). Actually, the best-known solution was obtained by SSm in 9

Scatter Search for Chemical and Bio-Process Optimization / 14

out of the 10 runs carried out. The other solvers failed to reach points close to this solution, although
several of them could ultimately succeed it would be at a very large computational cost.

In our second experiment we consider another typical application of global optimization in process
engineering. Specifically, we target an extremely hard problem that arises from the integrated design and
control of complex processes. The objective is to find the static variables of the process design, the
operating conditions and the controllers’ parameters which optimize a combined measure of the plant
economics and its controllability, subject to a set of constraints which ensure appropriate dynamic
behaviour and process specifications. The particular case study considered here was presented by Moles
et al (2003a), and it has 8 decision variables, 185 constraints (33 differential-algebraic equality
constraints and 152 non-linear inequality constraints) and the value of the best known solution is
1.5379·103.

We perform a preliminary experiment to set appropriate parameter values for this problem. We do not
reproduce the results of this experiment here, just the conclusions and the configuration of the final SSm
method.

• The improvement method was deactivated because it consumes excessive running time without
significant solution improvement. However, a final refinement phase was activated using the
solver Nomadm. The reason for these two special settings is the presence of discontinuities in
the problem, which makes gradient-based algorithms fail or converge prematurely.

• RefSet was initialized using only diverse solutions in order to avoid a very short Euclidean
distance among RefSet members, which made the convergence slower.

• The Intensification strategy was deactivated because it did not work properly, probably because
the value of dth becomes too low in the first few iterations.

As in the first experiment, we run each method 10 times on this problem and report the average (Avg.
Value), best and worst solution values of the 10 runs (each run was given an allowed time horizon of 360
seconds approx.) as well as the average running time in seconds and the average number of function
evaluations of each method. Since our preliminary experimentation indicates that improved solutions are
obtained when the local search is not applied, we also report the results of OQNLP with no local search as
OQNLP* (this solver implements this option).

Solver Best Value Worst Value Avg. Value CPU Time (sec.) Avg. # Evaluations
SSm 1.5379·103 1.5423·103 1.5397·103 362 12530
DE 1.5379·103 1.6418·103 1.5483·103 301 16782

SRES 1.5381·103 1.5392·103 1.5385·103 352 13170
Global 1.5697·103 1.6731·103 1.6049·103 334 14998
OQNLP 2.4839·103 2.4839·103 2.4839·103 332 10927

OQNLP* 1.7424·103 1.7424·103 1.7424·103 480 12306
Direct 2.3387·103 2.3387·103 2.3387·103 308 18015

Table 2. Comparison on a design plant problem.

Table 2 shows that the best solutions are obtained with the DE and SSm methods. Both are able to match
the best-known solution. Although SSm presents a slightly longer average computational time than DE
(362 versus 301 seconds), the former presents a lower number of function evaluations (12,530) than the
latter (16,782). Moreover, comparing the best and worst values across the 10 runs, SSm presents a very
low dispersion. The other solvers under consideration are also able to obtain good solutions which are
close to the best-known.

Figure 8 depicts the convergence curves of the best three methods for this problem. Specifically, it shows
the best curve (over the 10 runs) of the SSm, DE and SRES methods. The curves in this figure show that
the three algorithms present similar convergence rates. In the first fractions of one second, the SRES
obtains the best solutions; however, after five seconds SSm slightly improves on the other two methods
and after one minute the three of them obtain the same solutions in terms of quality.

In our final experiment we target the Parameter Estimation in Biochemical Pathways problem. This is a
challenging parameter estimation problem introduced as a benchmark by Moles et al. (2003b). This
problem has a large number of local minima, and a very small basin of attraction for the global solution,
which makes it very difficult to solve in a reduced computational time. As a reference, Moles et al.

Scatter Search for Chemical and Bio-Process Optimization / 15

(2003b) reported computation times of about 40 hours using Evolution Strategies on a PC Pentium-
III/866 MHz. The problem consists of a system of 8 ordinary differential equations and 36 parameters to
be estimated from a set of pseudo-experimental data. Since this is a synthetic problem, its global solution
is known and has a value of 0.0.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
3

10
4

CPU Time [s]

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 [−

]

DE
SRES
SSm

Figure 8: Convergence curves for the integrated design problem.

After preliminary experimentation with the SSm method, the following options and parameters were set to
enhance diversification over intensification in the global search for an aggressive search of the solution
space.

• The RefSet dimension b was set to 4 to limit intensification and favour diversification via the
RefSet rebuilding process (which with this low b value is applied more often than with the
default design).

• Filters for solutions to join the RefSet are tightened causing the same effect as a small number of
RefSet members. Only solutions that significantly improve the existing ones in the RefSet are
allowed to join it. The function tolerance for joining the RefSet was 10-2 (i.e. vth = 0.99) and the
function tolerance for aspiration criteria was 10-3.

• The distance filter of local search was deactivated to perform local searches from close points,
due to the small basin of attraction of the global solution.

• The variables were declared log_var since this option has proved particularly effective in
parameter estimation problems. Moreover, the local search algorithm used was n2fb (in double
precision in the final refinement) as it is more efficient than SQP methods for challenging
parameter estimation problems like this one.

The results obtained with the different global solvers, for a computation time horizon of 350 seconds, are
presented in Table 3, and the best convergence curves are shown in Figure 9.

Solver Best Value Worst Value Avg. Value CPU Time (sec.) Avg. # Evaluations
SSm 1.5868·10-7 1.1181·102 1.4073·101 323 17190
DE 2.7429·102 4.3230·102 3.7853·102 354 18756
Sres 2.1099·102 3.9095·102 2.5875·102 350 20580

Global 7.4123·102 8.4587·102 7.8100·102 143 9012
OQNLP 7.8145·101 7.8145·101 7.8145·101 416 20718
Direct 1.1368·103 1.1368·103 1.1368·103 351 30547

Table 3. Comparison on a parameter estimation problem.

Table 3 clearly shows the superiority in terms of solution quality of our proposal SSm. It is able to obtain
significantly better solutions (the best solution value is 1.5868·10-7) than the other six approaches (with
best values from 7.8145·101 to 1.1368·103) over similar running times (323 seconds on average).
Moreover, the SSm is quite robust with an average value of 14.073, closely followed by OQNLP with an
average value of 78.145.

Scatter Search for Chemical and Bio-Process Optimization / 16

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

O
bj

ec
tiv

e
F

un
ct

io
n

V
al

ue
 [−

]

SRES
OQNLP
SSm

 CPU Time [s]

Figure 9: Convergence curves for the parameter estimation problem.

Figure 9 shows that SSm clearly improves on the other two best methods for this problem. When the
optimization process starts, the SSm procedure quickly moves to the range of high quality solutions and
maintains its lead during the rest of the solution time (this is especially true after the first minute of
computation time). Within the running time horizon of 350 seconds, SSm found the global solution in 6
out of 10 runs, whereas the rest of the solvers failed in all the runs. It is particularly important to highlight
that SSm decreased the computational time reported by Moles et al (2003b) by more than two orders of
magnitude, which is a very relevant result, and the best-known heuristic solution for this problem to date.

Conclusions
The objective of our study has been to expand and advance knowledge associated with the
implementation of SS procedures. Unlike other population based methods such as the well-known
genetic algorithms, scatter search has not yet been extensively studied. Specifically, we have introduced
new strategies in the five key methods of SS procedure: a diversification generation method based on
magnitudes, a selective reference set update method based on filters, a combination method that
discriminates among reference solutions and a restrictive application of the improvement method.

In particular, we have considered a SS implementation for nonlinear continuous optimization of black-
box models. We can find extremely difficult instances within this class of problems and we have
compared our proposal with five well-known methods when solving three benchmark instances. The
comparison favors our SS implementation.

Acknowledgments
The team at CSIC acknowledges financial support from the Spanish Government (MEC AGL2004-
05206-C02-01/ALI) and Xunta de Galicia (PGIDIT05PXIC40201PN). Author Jose A. Egea gratefully
acknowledges financial support (FPU fellowship) from the Spanish Ministry of Education and Science.
Research by Rafael Martí is partially supported by the Ministerio de Educación y Ciencia (refs. TIN2004-
20061-E and TIC2003-C05-01) and by the Agencia Valenciana de Ciència i Tecnologia (ref. GRUPOS03
/189).

References
Abramson, M. A. (2002) Pattern Search Algorithms for Mixed Variable General Constrained
Optimization Problems. PhD Thesis, Rice University (USA).

Bailey, J. E. (1998) “Mathematical modeling and analysis in biochemical engineering: Past
accomplishments and future opportunities”, Biotechnology Progress, vol. 14, pp. 8-20.

Scatter Search for Chemical and Bio-Process Optimization / 17

Banga, J. R., Balsa-Canto, E., Moles, C. G. and Alonso, A. A. (2003a) “Improving food processing using
modern optimization methods”, Trends in Food Science and Technology, vol. 14, pp. 131-144

Banga, J.R., Moles, C.G., Alonso, A.A. (2003b) "Global optimization of bioprocesses using stochastic
and hybrid methods". In "Frontiers In Global Optimization ", C.A. Floudas and P. M. Pardalos, (Eds.),
Nonconvex Optimization and Its Applications, vol. 74, pp. 45-70, Kluwer Academic Publishers.

Biegler, L.T., Grossmann, I.E. (2004) Retrospective on optimization. Computers & Chemical
Engineering, vol. 28 (8), pp. 1169-1192.

Boender, C.G.E., Rinooy Kan, A.H.G., Timmer, G.T. and Stougie, L. (1982) “A stochastic method for
global optimization”, Math Programming, vol. 22, pp. 125-140.

Box, G. E. P., Hunter, W. G., MacGregor, J. F., Erjavec, J. (1973) “Some problems associated with the
analysis of multiresponse data”, Technometrics, vol. 15, pp. 33-51.

Csendes, T. (1988) “Nonlinear parameter estimation by global optimization— efficiency and reliability”,
Acta Cybernetica, vol. 8(4), pp. 361–370.

Dennis, J.E., Gay, D.M., and Welsch R.E. (1981), “An Adaptive Nonlinear Least-Squares Algorithm”,
Acm Trans. Math. Software, vol. 7, No. 3.

Dolan, E. D., Moré, J. J. and Munson, T. S. (2004) “Benchmarking optimization problems with COPS
3.0”, Technical Report ANL/MCS-TM-273, Argonne National Laboratory.

Finkel, D. E. and Kelley, C. T. (2004) “An Adaptive Restart Implementation of DIRECT”, Technical
Report CRSC-TR04-30, NC State University.

Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A. and Kallrath, J. (2005) “Global
optimization in the 21st century: Advances and challenges”, Computers & Chemical Engineering, vol. 29
(6), pp. 1185-1202.

Gill, P. E., Murray, W., Saunders, M. A. and Wight, M. H. (1998) “User’s guide for npsol 5.0: A
FORTRAN package for nonlinear programming”, Technical Report SOL 86-1, Systems Optimization
Laboratory, Stanford University.

Gill, P. E., Murray, W. and Saunders, M. A. (2002) “SNOPT: An SQP algorithm for large-scale
constrained optimization”, SIAM Journal on Optimization, vol. 12(4), pp. 979-1006.

Glover, F. (1994) “Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic
Algorithms),” Discrete Applied Mathematics, vol. 49, pp. 231-255.

Glover, F. (1998). A Template for Scatter Search and Path Relinking. J.-K. Hao, E. Lutton, E. Ronald,
M. Schoenauer and D. Snyers, eds. Artificial Evolution, Lecture Notes in Computer Science vol. 1363.
Springer Verlag, pp. 13-54.

Kenneth Holmström and Marcus M. Edvall (2004). “The Tomlab Optimization Environment” in
Modeling Languages and Mathematical Optimization, Joseph Kallrath, BASF AB (ed.), Kluwer
Academic Publishers.

Jones, D. R. (2001) “DIRECT global optimization algorithm” in Encyclopedia of optimization, C. A.
Floudas and P. M. Pardalos (Eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 431-
440

Laguna, M., and R. Marti. (2002). “The OptQuest Callable Library”. Stefan Voss and D. Woodruff, eds.
Optimization Software Class Libraries. Kluwer Academic Publishers, Boston, pp. 193-218.

Laguna, M., and R. Marti. (2003). Scatter Search: Methodology and Implementations in C. Kluwer
Academic Publishers.

Laguna, M., and R. Martí. (2005). “Experimental Testing of Advanced Scatter Search Designs for Global
Optimization of Multimodal Functions”, Journal of Global Optimization, vol. 33, pp. 235-255

Michalewicz, Z. and T. D. Logan (1994) “Evolutionary Operators for Continuous Convex Parameter
Spaces”, Proceedings of the 3rd Annual Conference on Evolutionary Programming, A.V. Sebald and L.
J. Fogel (Eds.), World Scientific Publishing, River Edge, NJ, pp. 84-97.

C.G. Moles, G. Gutierrez, A.A. Alonso and J.R. Banga, (2003a). “Integrated Process Design and Control
via Global Optimization: A Wastewater Treatment Plant Case Study”. Chemical Engineering Research
and Design, vol. 81(5), pp. 507-517.

Scatter Search for Chemical and Bio-Process Optimization / 18

C.G. Moles, P. Mendes and J.R Banga, (2003b). “Parameter estimation in biochemical pathways: A
comparison of global optimization methods”. Genome Research, vol 13(11), pp. 2467-2474.

Runarsson, T. P. and Yao, X. (2000) “Stochastic ranking for constrained evolutionary optimization”.
IEEE Trans. Evol. Comput, vol. 4, pp. 284–294.

Runarsson,T.P. and Yao,X. (2005) Search biases in constrained evolutionary optimization. IEEE Trans.
Sys. Man Cybern., vol. 35, pp. 233–243.

Shimizu, K., (1996) “A Tutorial Review on Bioprocess Systems Engineering”, Computers and Chemical
Engineering, vol. 20, pp. 915-941.

Storn, R. and K. Price (1997) “Differential Evolution – A Simple and Efficient Heuristic for Global
Optimization over Continuous Spaces”, Journal of Global Optimization, vol. 11, pp. 341-359

Ugray, Z., L. Lasdon, J. Plummer, F. Glover, J. Kelly and R. Martí. (2005). “A Multistart Scatter Search
Heuristic for Smooth NLP and MINLP Problems”. Metaheuristic Optimization via Memory and
Evolution: Tabu Search and Scatter Search. Cesar Rego and Bahram Alidaee (Eds). Kluwer Academic
Publishers. pp 25-58.

Ye, Y. 1987. Interior algorithms for linear, quadratic and linearly constrained non-linear
programming”, Phd Thesis, Department of ESS, Stanford University (USA)

The MathWorks Inc. Optimization Toolbox for Use with Matlab®. User’s guide. Version 2.

