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Abstract

In this paper we present a new evolutionary method for complex-process opti-
mization. It is partially based on principles of the scatter search methodology,
but it makes use of innovative strategies to be more effective in the context of
complex-process optimization using a small number of tuning parameters. In
particular, we introduce a new combination method based on path relinking,
which considers a broader area around the population members than previous
combination methods. We also use a population-update method which improves
the balance between intensification and diversification. New strategies to inten-
sify the search and to escape from suboptimal solutions are also presented.
The application of the proposed evolutionary algorithm to different sets of both
state-of-the-art continuous global optimization and complex-process optimiza-
tion problems reveals that it is robust and efficient for the type of problems
intended to solve, outperforming the results obtained with other methods found
in the literature.
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1. Introduction1

Many optimization problems arising from engineering applications are de-2

scribed by complex mathematical models (e.g., sets of differential-algebraic3

equations). A general complex-process optimization problem may be formu-4

lated as follows:5

Find x to minimize:6

C = φ(ẏ,y,x) (1)
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subject to7

f(ẏ,y,x) = 0 (2)
y(t0) = y0 (3)
h(y,x) = 0 (4)
g(y,x) ≤ 0 (5)

xL ≤ x ≤ xU (6)

where x is the vector of decision variables; C is the cost (objective function)8

to minimize; f is a functional describing the complex-process model (e.g., a9

system of differential algebraic equations); y is the vector of the states (and ẏ is10

its derivative); t0 the initial time for the integration of the system of differential11

algebraic equations (and, consequently, y0 is the vector of the states at that12

initial time); h and g are possible equality and inequality constraint functions13

which express additional requirements for the process performance; and, finally,14

xL and xU are the upper and lower bounds for the decision variables.15

Due to their complexity, these models have to be treated as “black-boxes”16

and they often present high nonlinearity and multimodality, thus the solu-17

tion of this type of problems is usually a difficult task. Moreover, in many18

instances, complex-process models present noise and/or discontinuities which19

make traditional deterministic methods (e.g., gradient-based methods) ineffi-20

cient to find the global solutions. Global optimization methods are robust al-21

ternatives to solve complex-process optimization problems. They can be roughly22

divided into deterministic (or exact) methods [1] and stochastic (or heuristic)23

methods [2]. Among stochastic methods, metaheuristics [3] and in particular24

population-based algorithms [4, 5], seem to be the most promising methods25

to deal with complex-process optimization since they usually provide excellent26

solutions (quite often the global optimum) in reasonable computation times.27

Some recent applications of population-based algorithms to complex-process28

optimization can be found in [6, 7, 8, 9, 10, 11, 12].29

Here we propose an evolutionary method for global optimization of complex-30

process models, which employs some elements of two well-established method-31

ologies: scatter search [13] and path relinking [14]. Regarding scatter search,32

the method uses a relatively small population size, partially chosen by a quality33

criterion from an initial set of diverse solutions. It also performs systematic34

combinations among the population members. Regarding path relinking, the35

new solutions are generated within the areas defined by every pair of solutions36

in the population, introducing a bias to generate new solutions which share37

more properties with the best population members than with the rest. How-38

ever, we have introduced new strategies and modified some standard scatter39

search designs in such a way that we prefer to label our method as “Evolution-40

ary Algorithm for Complex-process Optimization” (EACOP). Specifically, our41

contributions are:42

• A small population without memory structures (repeated sampling is al-43

lowed).44
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• A new combination method based on wide hyper-rectangles.45

• An aggressive population update for a quick convergence.46

• A search intensification strategy called the “go-beyond”.47

On the other hand, our algorithm does not incorporate an improvement or48

local search method, as it is customary in scatter search and other popula-49

tion based methodologies. We have empirically found that in complex process50

optimization the marginal improvement obtained by the local search does not51

justify its inclusion in the algorithm, and its associated running time can be bet-52

ter invested in the generation and combination of solutions for a better overall53

performance.54

This paper is organized as follows: Section 2 presents our proposed algorithm55

for complex-process optimization. Section 3 presents the results obtained by56

applying the methodology to different sets of benchmark problems and compare57

them with those obtained by applying other state-of-the-art methods. The58

paper finishes with some conclusions.59

2. The evolutionary algorithm60

In this section we present a novel evolutionary algorithm for optimization61

of complex-process models. It shares some elements of scatter search, but we62

have introduced a set of changes with respect to the classical SS design to make63

the algorithm more robust and efficient, obtaining a better balance between64

diversification and intensification (which is the key point of global optimization65

algorithms) and using less tuning parameters.66

To illustrate how the algorithm works, during the following sections we will67

consider a 2-D dimensional unconstrained function to be minimized, shown68

as contour plots. In particular, we consider the function f(x1, x2) = 2 +69

0.01(x2 − x2
1)

2 + (1− x1)2 + 2(2− x2)2 + 7 sin(0.5x1) sin(0.7x1x2) in the range70

x1 ∈ [−6, 6] , x2 ∈ [−2, 7], which presents several minima.71

2.1. Building the initial population72

In this subsection we follow the standard SS design generating an initial73

set S of m diverse vectors (normally m = 10 × nvar, being nvar the problem74

size). Here we use a latin hypercube uniform sampling [15] to generate them. All75

these vectors are evaluated and the b/2 best ones in terms of quality (being b the76

population size) are selected as members of the initial population, Pop0. For77

example, in a minimization problem, provided the diverse vectors are sorted78

according to their function values (the best one first), the initial selection is79

Pop0 =
[
x1, x2, . . . , xb/2

]T
with xi ∈ S and i ∈ [1, 2, . . . , m], such that80

f(xi) ≤ f(xj) ∀ j > i , i ∈ [1, 2, . . . , b/2− 1] , j ∈ [2, 3, . . . , b/2] (7)
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Pop0 is completed selecting randomly b/2 additional vectors from the remaining81

m − b/2 diverse vectors in S. This completion strategy, although less sophis-82

ticated than others traditionally used in SS, which take into account relative83

distances to maximize the diversity of the solutions added to the initial pop-84

ulation, has empirically shown to be as effective as the latter. Moreover, for85

large-scale optimization problems, more sophisticated strategies can lead to high86

computational efforts to calculate relative distances amongst vectors.87

2.2. Combination method88

After the initial population has been built, its solutions are sorted according89

to their quality (i.e., the best solution is the first) and the combination method90

is applied. In the context of SS, Laguna and Mart́ı [13] checked that most of91

the quality solutions obtained by combination arise from sets of two solutions,92

thus, in our implementation, we restrict the combinations to pairs of solutions.93

The combination method is a key element in many optimization algorithms.94

In evolutionary algorithms, this combination method is represented by the cross-95

over and mutation operators. In the SS framework, linear combinations of two96

solutions were suggested by Glover [16]. Herrera et al. [17] studied different97

types of combination procedures for SS applied to continuous problems. They98

concluded that the BLX-α algorithm (with α = 0.5) is a suitable combination99

method for continuous scatter search. Using concepts from path relinking, La-100

guna and Mart́ı [18] already used this idea and extended it to avoid generating101

solutions in the same area by defining up to four different regions within and102

beyond the segments linking every pair of solutions. These authors changed103

the number of generated solutions from each pair of solutions in the population104

depending on their relative position. Ugray et al. [19] and Egea et al. [20] used105

the same principles, but instead of performing linear combinations between solu-106

tions, they performed a type of combination based on hyper-rectangles covering107

broader spaces and allowing different paths between pairs of solutions. However,108

these hyper-rectangles were created along the directions defined by every pair109

of population members, thus restricting possible promising search areas (Fig-110

ure 1(a)). In our design, we define the hyper-rectangles around the population111

members, which allows the number of search directions to increase. Besides, we112

consider a larger area covered by the hyper-rectangles, which enhances diversi-113

fication not only regarding search directions but also regarding search distance114

(Figure 1(b)).115

The areas containing high quality solutions should be more deeply explored116

with respect to other areas. We therefore use the relative quality of every pair117

of solutions (regarding their position in the sorted population) as a measure of118

bias to create the hyper-rectangles.119

Every population member defines b− 1 hyper-rectangles. A new solution is120

created inside every hyper-rectangle, which means that b2− b new solutions are121

created in every iteration. It must be noted that the population members are122

sorted according to their function values (the best one first) in every iteration.123

Considering minimization, this means:124
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(b) Our algorithm

Figure 1: Hyper-rectangles defining the areas for generating new solutions

f(x1) ≤ f(x2) ≤ . . . ≤ f(xb) (8)

Let us consider a solution, xi, to be combined with the rest of solutions in125

the population, xj , ∀i, j ∈ [1, 2, · · · , b], i 6= j. Two new points within the search126

space are defined:127

c1 = xi − d (1 + α · β) (9)
c2 = xi + d (1− α · β) (10)

where128

5



d =
xj − xi

2
, (11)

α =
{

1 if i < j
−1 if j < i

(12)

and129

β =
|j − i| − 1

b− 2
(13)

The new solution, xnew, will be created in the hyper-rectangle defined by c1130

and c2:131

xnew = c1 + (c2 − c1) • r (14)

where r is a vector of dimension nvar with all its components being uni-132

formly distributed random numbers in the interval [0, 1]. The notation (•) above133

indicates an entrywise product (i.e., the vectors are multiplied component by134

component), thus it is not a scalar product.135

“Bad” population members will generate new solutions close to “good” pop-136

ulation members with higher probability whereas the latter will generate new137

solutions far from the former with higher probability. The higher the difference138

of quality between solutions, the higher the bias (β) is introduced. Figure 2(a)139

shows the hyper-rectangles generated by the best solution in the population.140

They are defined by its relative position with respect to the rest of solutions141

in the population: the higher the difference of quality, the further the hyper-142

rectangle from the “bad” solution is created. Similarly, Figure 2(a) shows the143

hyper-rectangles generated by the worst solution in the population. In this144

case, they are generated to create solutions close to high quality solutions with145

increasing probability according to their quality.146

Although the incorporation of a memory structure is quite common in scat-147

ter search implementations to avoid combinations among population members148

previously combined, we have empirically found that our combination method149

based on wide hyper-rectangles and random sampling, benefits from multiple150

combinations of the same solutions. When the memory structure is present, the151

method does not explore any more a promising area around a pair of solutions152

if they did not generate a high quality solution in a previous iteration. How-153

ever, we can consider the situation illustrated in Figure 3, in which the solution154

generated in iteration i+1 is much better than the generated in iteration i from155

the same parents (and could eventually be the best so far). For this reason, we156

ignore in our method this memory structure.157

2.3. Population update158

The most used strategies to update the population in evolutionary algo-159

rithms are the (µ + λ) and (µ, λ) updating schemes [21]. In the (µ + λ)-ES the160

new population is selected by choosing µ solutions from the µ parents and λ161

6



−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

7

Function to be optimized
1st population member (best)
2nd population member
3rd population member
4th population member (worst)

(a) Hyper-rectangles defined by the best population member

−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

7

Function to be optimized
1st population member (best)
2nd population member
3rd population member
4th population member (worst)

(b) Hyper-rectangles defined by the best population member

Figure 2: Biased hyper-rectangles

offspring from the previous generation. In the (µ, λ)-ES the new µ population162

members are selected from the λ offspring in the previous generation. In gen-163

eral, (µ + λ) updating strategies may rapidly converge to sub-optimal solutions164

in continuous problems, specially in the case of methods using a small number165

of population members, like scatter search or our proposed method. On the166

other hand, (µ, λ) strategies do not present this effect, but they may need a167

much higher number of function evaluations to achieve the optimal solutions.168

Here we propose a (1+1) strategy applied to every population member, similar169

to that used in other evolutionary algorithms [22], which turns to be a good170

trade-off point between both methods in our context. It can be expressed by171

7



−6 −4 −2 0 2 4 6
−2

−1

0

1

2

3

4

5

6

7

Function to be optimized
Population members
Solution generated in iteration  i
Solution generated in iteration  i+1

Figure 3: Two solutions generated in the same hyper-rectangle in two consecutive iterations

saying that a solution can only enter the population by replacing its parent.172

As stated in Section 2.2, every population member is combined with the173

rest of population members, thus it performs b− 1 combinations creating b− 1174

new solutions (the offspring). Amongst these new solutions, we identify the175

best one in terms of quality. If it outperforms its parent (i.e., the population176

member which was being combined), the former replaces the latter in the pop-177

ulation. Provided the combination method mentioned above, this strategy acts178

by performing individual movements of the population members along the paths179

contained in the areas defined by each pair of solutions, instead of performing180

movements of the whole population at once as considered in (µ + λ) and (µ, λ)181

strategies. Although these individual movements are conditioned by the po-182

sition and distance of the population members, we could consider that every183

solution follows a self-tuned annealing scheme, in which big steps are allowed184

at the beginning of the search whereas the solution moves much more locally in185

the end, due to the proximity of the population members in the final stages.186

2.4. Exploiting promising directions: the go beyond strategy187

We have implemented an advanced strategy to enhance the search intensi-188

fication named the go-beyond strategy, which consists in exploiting promising189

directions. When performing the combination method all the new solutions cre-190

ated around a population member are sorted by quality. If the best of them191

outperforms its parent, a new non-convex solution in the direction defined by192

the child and its parent is created. The child becomes the new parent and the193

new generated solution is the new child. If the improvement continues, we might194

be in a very promising area, thus we apply this strategy again doubling the area195

for creating new solutions.196

A straightforward question arises from the last paragraph: how do we iden-197

tify the parent of a generated solution? As explained in Section 2.2, new solu-198
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tions are created in hyper-rectangles defined by the pair of population members199

combined and around one of the solutions of the pair. The parent of a solution200

will be the population member around which the hyper-rectangle containing the201

new solution has been generated. Figure 4 depicts how the go-beyond strategy202

works: from a pair of population members, two new solutions are generated in203

the corresponding hyper-rectangles. The squared solution is the child whose204

parent is the population member closest to it. Since the child outperforms the205

parent in quality we apply the go-beyond strategy and consider a new hyper-206

rectangle (solid line) defined by the distance between the parent and the child.207

A new solution (triangle) is created in this hyper-rectangle. This new solution208

becomes the child and the old child (i.e., the squared solution) becomes the209

parent. Since the new child (triangle) outperforms again its parent (square),210

the process is repeated, but the size of the new hyper-rectangle created (dotted211

line) is double-sized because of the improvement experienced during two con-212

secutive combinations. Finally, a new solution (starred) is created in an area213

very close to the global minimum. Algorithm 1 shows a pseudocode of the go214

beyond strategy procedure.215

Algorithm 1 go beyond strategy
Apply the combination
for i = 1 to b do

Identify the best child, xbest child(i), outperforming its parent, xparent(i)
xch = xbest child

xpr = xparent

improvement = 1
Λ = 1
while f(xch) < f(xpr) do

Create a new solution, xchild new, in the rectangle defined by [xch −
xpr−xch

Λ
, xch]

xpr = xch

xch = xchild new

improvement = improvement + 1
if improvement = 2 then

Λ = Λ/2
improvement = 0

end if
end while

end for

Although the go-beyond strategy has been mainly designed to enhance the216

search intensification, the fact that the size of the hyper-rectangles increases if217

the new solutions improve the old ones during consecutive iterations induces a218

diversification strategy, exploring regions where different minima can be found.219

2.5. Escaping from local optima220

Our algorithm does not implement any rebuilding mechanism as it is cus-221

tomary in advanced evolutionary designs [13] to replace the worst solutions222
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Figure 4: The go-beyond strategy

which are not likely to produce high quality offspring. Instead of this, we de-223

fine a vector nstuck which computes the number of consecutive iterations that224

every population member does not produce any new solution outperforming its225

function value. If the corresponding nstuck(i) value for a population member i226

exceeds a predefined number, nchange, we consider that this solution is stuck227

in a local optima and we replace it with another solution randomly generated228

within the search space. The number of consecutive iterations to perform the229

replacement will be experimentally determined in Section 3. When a population230
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member is replaced, its nstuck(i) value is reset to zero.231

Algorithm 2 summarizes in pseudo-code how our algorithm works.232

Algorithm 2 Pseudo code of our algorithm
Set parameters
Initialize nstuck

Create set of diverse solutions (latin hypercube)
Generate initial population with high quality and random solutions
repeat

for i = 1 to b do
Combine xi with the rest of population members
if best child outperforms xi then

Label xi

Apply go beyond strategy (Algorithm 1)
end if

end for
Replace labeled population members by their corresponding best children and
reset their corresponding nstuck(i)
Add one unit to the corresponding nstuck(j) of the not labeled population mem-
bers
if any of the nstuck values > nchange then

Replace those population members by random solutions and reset their nstuck

values
end if

until Stopping criterion is met

3. Computational experience233

To test our algorithm’s performance, we have carried out three different sets234

of experiments. In the first one we consider a set of 40 well known unconstrained235

global optimization problems of different dimensions (we will call them LM236

problems) that have usually been used as benchmark problems in the literature237

for testing optimization software [18, 23]. In this instance we will select a238

value for nchange (i.e., the number of consecutive iterations that a population239

member has not being updated before replacing it by a random solution). In the240

second set of experiments we will consider the set of 24 “never solved” functions241

used as benchmarks in the IEEE Congress on Evolutionary Computation 2005242

(CEC’2005) [24]. In the final set of experiments we will consider two complex-243

process optimization problem arising from bioprocess engineering. In both the244

second and the third set of experiments we will compare our algorithm with245

other state-of-the-art global optimization methods.246

All the computational experiments were conducted on a Pentium IV com-247

puter at 2.66 GHz. Both our algorithm and the methods used in the third248

set of experiments (see Section 3.3) were implemented in Matlab. Results for249

the second set of experiments (i.e., CEC’2005 problems) were taken from the250

references shown in Table 3.251
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The number of population members depends on the problem size in our252

algorithm. Here we generate approximately a number of new solutions of 10 ·253

nvar per iteration. This means that the number of population members is the254

first even number, n, which accomplishes n2−n ≥ 10 ·nvar. Table 1 shows the255

number of population members used for the different dimensions considered in256

the test problems.

Population size Problem dimension

6 2-3
8 4
10 6
12 10
16 20-24
18 25-30
22 40

Table 1: Number of population members used depending on the problem dimension

257

3.1. LM problems258

The mathematical equations of the 40 test problems in the first data set259

are described in [18] and [23]. Table 2 provides information about all these260

problems.261

Following the same procedure as in [18], we have defined an optimality gap262

as:263

GAP = |f(x)− f(x∗)| (15)

where x is a heuristic solution and x∗ is the optimal solution. We say that a264

heuristic solution is satisfactory if:265

GAP ≤
{

ε if f(x∗) = 0
ε |f(x∗)| if f(x∗) 6= 0 (16)

We set ε = 0.001. For each test function we performed 25 independent runs266

with a limit of 50000 function evaluations. We tested values of nchange from 1267

to 50 and computed the following indexes:268

• Number of different problems solved.269

• Number of total problems solved (regarding the 25 runs per problem).270

• Number of different solved problems in an independent run (and its fre-271

quency).272

Figures 5 shows the influence of nchange over the number of different prob-273

lems solved and the number of total problems solved considering the 25 runs per274

problem performed. The dashed lines represent the results obtained ignoring275

any type of replacement (i.e., for nchange = ∞).276
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Number of Problem Problem
variables Number Name

x∗ f(x∗)

2 1 Branin (9.42478, 2.475)a 0.397887
2 B2 (0, 0) 0
3 Easom (π, π) -1
4 Goldstein and Price (0, -1) 3
5 Shubert (-7.7083, -7.0835)a -186.7309
6 Beale (3, 0.5) 0
7 Booth (1, 3) 0
8 Matyas (0, 0) 0
9 SixHumpCamelback (0.089840, -0.712659)a -1.031628
10 Schwefel(2) (420.9687, 420.9687) 0
11 Rosenbrock(2) (1, 1) 0
12 Zakharov(2) (0, 0) 0

3 13 De Joung (0, 0, 0) 0
14 Hartmann(3,4) (0.114614, 0.555649, 0.852547) -3.862782

4 15 Colville (1, 1, 1, 1) 0
16 Shekel(5) (4, 4, 4, 4) -10.1532
17 Shekel(7) (4, 4, 4, 4) -10.40294
18 Shekel(10) (4, 4, 4, 4) -10.53641
19 Perm(4,0.5) (1, 2, 3, 4) 0
20 Perm0(4,10) (1, 1/2, 1/3, 1/4) 0
21 Powersum (1, 2, 2, 3) 0

6 22 Hartmann(6,4) (0.20169, 0.150011, 0.47687, -3.322368
0.275332, 0.311652, 0.6573)

23 Schwefel(6) (420.9687,. . . , 420.9687) 0
24 Trid(6) xi = i ∗ (7− i) -50

10 25 Trid(10) xi = i ∗ (11− i) -210
26 Rastrigin(10) (0,. . . , 0) 0
27 Griewank(10) (0,. . . , 0) 0
28 Sum Squares(10) (0,. . . , 0) 0
29 Rosenbrock(10) (1,. . . , 1) 0
30 Zakharov(10) (0,. . . , 0) 0

20 31 Rastrigin(20) (0,. . . , 0) 0
32 Griewank(20) (0,. . . , 0) 0
33 Sum Squares(20) (0,. . . , 0) 0
34 Rosenbrock(20) (1,. . . , 1) 0
35 Zakharov(20) (0,. . . , 0) 0

>20 36 Powell(24) (3, -1, 0, 1, 3,. . . , 3, -1, 0, 1) 0

37 Dixon and Price(25) xi = 2−
z−1

z , z = 2i−1 0
38 Levy(30) (1,. . . , 1) 0
39 Sphere(30) (0,. . . , 0) 0
40 Ackley(30) (0,. . . , 0) 0

aThis is one of several multiple optimal solutions.

Table 2: LM test problems

According to the results in Figure 5 we can conclude that the replacement277

described in Section 2.5 helps to obtain better results. However, it is not obvious278

to choose an optimal value for nchange. Values under 10 seem to provide poor279

results, whereas there is not a clear trend for the rest of values in the tested280

range. According to the criteria mentioned above, we have chosen a value of281

nchange = 22 because it is in the group of values solving the highest number282
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Figure 5: Influence of nchange

of different problems (36), and it solves the highest number of total problems283

(761). A value of nchange = 27 provides the same results but it solves 32284

problems in its best run (4 times out of 25) whereas the test with nchange = 22285

solves 33 problems in 2 out of the 25 independent runs performed. Results in286

this experiment compare favorably with the results reported by Laguna and287

Mart́ı [18], which tested different advanced scatter search designs reporting 30288

different solved problems, and Hedar and Fukushima [23] which presented a289

directed tabu search method, reporting 32 different solved problems.290

3.2. CEC’2005 problems291

In this experiment we will consider some of the functions used as bench-292

marks in the IEEE Congress on Evolutionary Computation 2005 (CEC’2005)293

and described in [24]. In particular, these function are F8, F13, F14, F16, F17,294

F18, F19, F20, F21, F22, F23, and F24 with dimensions N = 10 and N = 30,295

for a total of 24 test problems. These functions were reported in [25] under296

the section “Never solved multimodal functions” and are considered the most297

difficult instances used a global optimization benchmark problems up to now.298

In our second experiment we run 25 independent times each instance and299

record the best, worst and mean value obtained considering all the runs. The300

budget of function evaluations is 100,000 for problems with dimension N = 10,301

and 300,000 for problems with dimension N = 30. We compare our results with302

those obtained by a set of methods, most of them based on hybrid evolutionary303

strategies, shown in Table 3.304

Table 4 reports the sorted average of the minimum optimality gap (i.e., the305

gap of the best run out of 25) across the 24 instances.306

In this second set of experiments, our algorithm achieves a value very close307

to L-CMA-ES (which is in the first place) for N = 10, and the best value for308

N = 30. These results reveal that our method is competitive for solving difficult309

problems.310
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Name Description Reference

BLX-GL50 Hybrid real coded genetic algorithm [26]
BLX-MA Real coded memetic algorithm [27]
CoEVO Cooperative co-evolutionary algorithm [28]

DE Differential evolution algorithm [29]
DMS-L-PSO Particle multi-swarm optimizer [30]

EDA Continuous estimation of distribution algorithm [31]
G-CMA-ES Covariance matrix adaptation evolution strategy [32]

K-PCX Population based steady-state algorithm [33]
L-CMA-ES Advanced local search evolutionary algorithm [34]
L-SADE Self adaptive differential evolution algorithm [35]

SPC-PNX Real parameter genetic algorithm [36]

Table 3: Methods considered for the comparison

(a)

N = 10
Method Avg. GAP

L-CMA-ES 202.7
DE 203.4

L-SaDE 205.6
SPC-PNX 206.0
EACOP 208.3

DMS-L-PSO 244.4
EDA 249.8

G-CMA-ES 256.0
BLX-GL50 257.2

K-PCX 257.4
CoEVO 268.2

BLX-MA 306.2

(b)

N = 30
Method Avg. GAP
EACOP 385.1

L-CMA-ES 392.6
G-CMA-ES 402.1
BLX-MA 407.2

EDA 408.1
BLX-GL50 408.6
SPC-PNX 410.4

DE 412.6
K-PCX 419.3
CoEVO 549.2
L-SaDE N/A

DMS-L-PSO N/A

Table 4: Comparison over the “Never solved” CEC’2005 test problems

3.3. Complex-process problems311

In this last set of experiments we will consider two complex-process mod-312

els arising from bioprocess engineering. For the sake of comparison, we have313

considered three methods for solving this type of problems:314

• DE: Differential Evolution. This is a heuristic algorithm for the global op-315

timization of nonlinear and (possibly) non-differentiable continuous func-316

tions presented by [22]. This population-based method handles stochastic317

variables by means of a direct search method which outperforms other318

popular global optimization algorithms, and it is widely used by the evo-319

lutionary computation community.320

• G-CMA-ES: Covariance Matrix Adaptation Evolutionary Strategy. This321

is an evolutionary algorithm that makes use of the covariance matrix in a322

similar way to the inverse Hessian matrix in a quasi-Newton method, and323

it is particularly interesting for solving ill-conditioned and non-separable324

problems. This method [32] was ranked in the first place in the CEC’2005325

(see Section 3.2) [25].326
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• SSm: Scatter search for Matlab. This advanced scatter search implemen-327

tation was recently developed in the context of complex-process optimiza-328

tion, outperforming other state-of-the-art methods [20].329

The problems considered in this set of experiments contain additional con-330

straints apart from bound constraints in the decision variables. To handle them,331

we have modified the objective functions using a static penalty term. The ob-332

jective function evaluated by the tested algorithms has the following form:333

F (x) = C(x) + w ·max {max{viol(h), viol(g)}} (17)

where x is the vector of decision variables being evaluated, C(x) is the orig-334

inal objective function value (Eq. 1), h is the set of equality constraints (Eq. 4)335

and g is the set of inequality constraints (Eq. 5). w is a penalization parameter336

selected by the user, which is constant during the optimization procedure (and337

usually has a high positive value). We use the L −∞ norm of the constraints338

set to penalize the original objective function.339

We have performed 10 independent runs for each instance and the best and340

mean values achieved by each method are reported.341

3.4. Integrated design and control of a wastewater treatment plant342

This case study represents a configuration of a real wastewater treatment343

plant placed in Manresa (Spain), as described by Moles et al. [37].344

The overall model consists of 33 DAEs (14 of them are ODEs) and the345

optimization problem has 8 design variables. The integrated design problem is346

formulated as an NLP-DAEs, where the objective function to be minimized is347

a weighted sum of economic and controllability cost terms.348

The minimization is subject to several sets of constraints:349

• The 33 model DAEs (system dynamics), acting as differential-algebraic350

equality constraints.351

• 32 inequality constraints which impose limits on some process magnitudes.352

• An additional set of 120 double inequality constraints on the state vari-353

ables.354

To prove the inefficiency of local search methods for solving this problem we355

have applied a multistart procedure (using 100 different initial points) using a356

SQP method. The histogram of the local solutions found is shown in Figure357

6. Only solutions with function values lower than 10000 are plotted in the358

histogram.359

The histogram shows the practical non-convexity of the problem and the360

best value reported by the multistart (f(x) = 1738.7) is far from the best361

known solution of 1537.8 reported by Moles et al. [37] and Egea et al. [20].362

Table 5 shows the results obtained by each algorithm in a budget of 15,000363

function evaluations.364

Every method finds the best known solution for this problem along the 10365

runs performed, but only DE and EACOP find it in all the runs.366
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Figure 6: Histogram of solutions obtained from the multistart procedure for the integrated
design and control problem

DE G-CMA-ES SSm EACOP
Best 1537.8 1537.8 1537.8 1537.8
Mean 1537.8 1540.7 1538.2 1537.8

Table 5: Results for the integrated design and control problem

3.5. Drying operation367

This case study deals with the optimization of a bioproduct drying process,368

similar to the one formulated by Banga and Singh [38]. In particular, the369

aim is to dry a cellulose slab maximizing the retention of a nutrient (ascorbic370

acid). The dynamic optimization problem associated with the process consists371

of finding the dry bulb temperature along the time to maximize the ascorbic372

acid retention at the final time.373

The models is described by a systems of partial differential equations (PDE’s)374

which is transformed to a system of ODE’s using a collocation method [39]. The375

number of decision variables for this problem is 40. Like in the previous example,376

we have applied a multistart procedure (using 100 different initial points) using377

a SQP method. The histogram of the local solutions found is shown in Figure378

7. Only values corresponding to feasible solutions are presented.379

Again, the histogram shows the practical non-convexity of the problem and380

the best value reported by the multistart is very far from the best known solution381

for this problem.382

Table 6 shows the results obtained by each algorithm in a budget of 200,000383

function evaluations.384

In this example our algorithm obtains the best results regarding both best385

and mean values along the 10 runs performed (note that this is a maximization386

problem).387
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Figure 7: Histogram of solutions obtained from the multistart procedure for the drying oper-
ation problem

DE G-CMA-ES SSm EACOP
Best 0.1986 0.1995 0.1979 0.2001
Mean 0.1944 0.1975 0.1962 0.1991

Table 6: Results for the drying operation problem

Conclusions388

We have developed an evolutionary method for optimization of complex-389

process models which makes use of some elements of the scatter search and path390

relinking metaheuristics. However, our method incorporates several innovative391

mechanisms and strategies that constitute a different evolutionary design.392

We have applied the proposed methodology over different sets of nonlinear393

global optimization problems. For the first set of problems, the results out-394

performed those found in the literature. For the second set of problems (i.e.,395

the “never solved” problems of the CEC’2005 conference), our algorithm ranks396

in the first positions regarding the minimum gap with respect to the global397

solution compared to other state-of-the-art solution methods. In the third set398

of experiments we consider two complex-process models and our algorithm is399

competitive with previous methods. In summary, our proposed method proves400

to be efficient for solving complex-process models, and it is specially interesting401

in those cases in which standard local search methods fail to locate the global402

solution.403
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