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Abstract 
The purpose of this paper is to apply the scatter search methodology to general classes 
of binary problems.  We focus on optimization problems for which the solutions are 
represented as binary vectors and that may or may not include constraints.  Binary 
problems arise in a variety of settings, including engineering design and statistical 
mechanics (e.g., the spin glass problem).  A distinction is made between two sets of 
general constraint types that are handled directly by the solver and other constraints that 
are addressed via penalty functions.  In both cases, however, the heuristic treats the 
objective function evaluation as a black box.  We perform computational experiments 
with four well-known binary optimization problems to study the efficiency (speed) and 
effectiveness (solution quality) of the proposed method.  Comparisons are made against 
both commercial software and specialized procedures on a set of 376 instances.  We 
chose commercial software that is similar in nature to the proposed procedure, namely, 
it treats the objective function as a black box and the search is based on evolutionary 
optimization techniques. 
 
Keywords 
Optimization, Metaheuristics, Hard optimization problems 
 
 
 
 
 

mailto:francisco.gortazar@urjc.es�
mailto:abraham.duarte@urjc.es�
mailto:laguna@colorado.edu�
mailto:rafael.marti@uv.es�


Scatter Search for Binary Problems / 2 

1. Introduction 
Black box optimizers have a long tradition in the field of operations research.  These 
procedures treat the objective function evaluation as a black box and therefore do not 
take advantage of its specific structure.  Black box optimizers have also been referred to 
as context-independent procedures.  However, the context-independent notion is more 
difficult to define because no solver is totally independent from the context.  In fact, it 
can be argued that solvers are developed within a spectrum that ranges from almost no 
dependence on context to total dependence on context.  Knowledge about the context 
may be divided between the objective function and the set constraints.  For instance, 
some solvers may not have information about the structure of the objective function but 
have information regarding the feasibility region as defined by a set of constraints.  In 
the case of mathematical programming approaches, such as linear programming, the 
solvers have a very specific structure that they exploit (even though they “don’t know”, 
for instance, if they are solving a transportation or an aggregate production planning 
problem).  The structure — and therefore context dependency — is given by the 
formulation and not by the unknown (to the solver) real world context. 
 
Nonlinear optimization approaches that do not use derivatives (or estimate them) to find 
search directions — such as Nelder and Mead or Powell — may be considered as being 
at the high level of the context-independence range because they treat the objective 
function as a black box.  Methods that estimate derivatives — like those based on 
generalized reduced gradients (GRG) — assume objective function smoothness and that 
assumption alone moves them closer to the context-dependence end of the spectrum.  
However, we can’t ignore the fact that some of these procedures (for example the 
standard version of Microsoft Excel’s Solver) are routinely used to search for solutions 
to problems that do not meet the “smoothness” requirement.  The Solver acts as a 
general purpose procedure in the sense that it does not require that the user provides any 
context.  In the experimental section, we compare our proposed procedure with the 
Evolutionary Premium Solver (SDK callable library), which implements advanced 
search strategies for black box optimization. 
 
A similar philosophy is used by the general-purpose commercial optimization software 
known as OptQuest (by OptTek Systems, Inc.).  This software operates by treating the 
objective function evaluation as a black box.  However, OptQuest is not totally 
“ignorant” of the context given that a solution representation must be chosen in order to 
run this solver.  OptQuest allows users to represent solutions as a mixture of continuous, 
discrete, integer, binary, permutation and other specialized variables (project, 
categorical or enumeration).  Clearly, the solution representation gives OptQuest some 
information about the problem context and therefore the solver context-independence 
changes with each particular application because the amount of information that it 
receives varies.  The software chooses solvers based on the characteristics of the 
optimization model: Pure or mixed, Constrained or unconstrained and Deterministic or 
stochastic.  
 
The first characteristic refers to the solution representation.  That is, if only one type of 
variables (e.g., continuous or discrete) is used, then the problem is pure, otherwise the 
problem is mixed.  We consider both constrained and unconstrained problems in the 
realm of deterministic optimization. 
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Evolver by Palisade Corp. is a popular black-box optimizer based on genetic 
algorithms.  When coupled with @Risk, a module for risk analysis, Evolver can be used 
to search for solutions to problems for which the objective function is the result of a 
Monte Carlo simulation.  Evolver can be used as a callable library in the Evolver 
Development Kit or within Microsoft Excel as its modeling environment, where 
decision variables are declared as “adjusting cells.”  The use of specialized problem 
solving methods, such as “recipe”, “order” or “budget”, is encouraged because they give 
the solution process additional information that could result in improved outcomes and 
thus move the solution process closer to the context-dependent end of the spectrum.  We 
compare our proposed procedure with the Evolver Development Kit, Solver and 
OPtQuest, selecting the appropriate solving method to tackle binary problems. 
 
In addition to general purpose (and commercially available) software for optimizing 
unknown objective functions with discrete variables, the literature contains some 
examples of procedures that have been designed with some degree of context-
independence.  For instance, Rosen and Harmonosky (2005) proposed a simulated 
annealing that uses an adaptation of the response surface methodology to optimize 
simulations with a large number of discrete decision variables.  Guikema, Davidson and 
Çağnan (2004) also address the problem of optimizing simulations when the input 
variables are discrete.  Their method is based on using a standard genetic algorithm 
aided by ridge regression to limit the number of calls to the simulator. 
 
Holland’s (1975) genetic algorithms proposal was in fact a black-box optimizer that 
used an array of bits as the generic representation.  The proposed procedure did not 
include local search and the standard genetic operators (such as single-point crossover) 
were not linked to the problem context.  As GAs became more popular and researchers 
and practitioner applied them to many hard optimization problems, the context-
independent nature of the original proposal began to vanish when improved outcomes 
were obtained by the addition of problem structure.  Hence, most modern GA 
implementations are hybridized (e.g., coupled with local searches) and incorporate 
domain-specific knowledge into the search process. 
 
Cross Entropy (Rubinstein and Kroese, 2004) is a more recent method for optimizing 
black boxes that originated from the need of estimating very small probabilities in rare-
event simulation.  Respectable performance has been achieved by implementations of 
the cross entropy method for some difficult combinatorial problems.  However, as 
shown by Laguna, Duarte and Martí (2007) in the context of the max-cut problem, cross 
entropy also benefits from hybridization and it is uncertain for how long the method 
will remain true to its origins as a black box procedure. 
 
The remaining of the article discusses our development and testing of a black box 
procedure for constrained and unconstrained optimization problems whose solutions are 
represented as binary strings.  The scatter search methodology is used as the basic 
framework for our solution procedure.  Although the scatter search philosophy is to take 
advantage of domain-specific knowledge, this methodology has been used in the past as 
the basis for black box procedures (e.g., for OptQuest and for the procedure to tackle 
permutation problems developed by Campos, Laguna and Martí, 2005). 
 
The main contribution of our work is the development or adaptation of scatter search 
methods that are helpful in the solution of binary problems for which the objective 
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function is treated as a black-box evaluator.  In particular, we developed three 
diversification generation methods for binary solutions (Section 2.2), an improvement 
method based on two neighborhoods (Section 2.3) and seven combination methods 
(Section 2.4).  We also adapted to our binary problems a reactive strategy within the 
combination methods, which was originally proposed by Campos, et al. (2005) for 
permutation problems.  Finally, our procedure includes a strategy for selectively 
applying the improvement method in order to reduce the computational effort associated 
with the black-box evaluator. 
 
 
2. Scatter Search Procedure 
Scatter Search (SS) is a metaheuristic that explores solution spaces by evolving a set of 
reference points.  It consists of five methods and their associated strategies.  Three of 
them, the Diversification Generation, the Improvement and the Combination Methods, 
are typically problem-dependent and are designed for the problem or the class of 
problems being solved.  The other two, the Reference Set Update and the Subset 
Generation Methods are context independent by design, and standard implementations 
are available (Laguna and Martí 2003). 
 
2.1 Classes of Problems 
We have adapted SS to develop a black box solver for optimization problems with 
binary variables.  We assume that a problem instance consists of finding a set of values 
for x = (x1, x2, …, xn) — where xi = 0 or 1 — in order to maximize an unknown 
objective function.  The user has the choice of specifying whether the problem is 
unconstrained or constrained.  For unconstrained problems, any binary vector of n 
elements is a feasible solution.  If the problem contains constraints the user may choose 
to transform it into an unconstrained problem by constructing a penalty function whose 
values are returned by the black box linked to the optimizer.  The solver, however, is 
capable of directly dealing with two general classes of constraints: multiple choice and 
budget.  Defining these constraints as part of the input to the optimizer adds a level of 
context-dependency that may result in improved outcomes (just as OptQuest or Evolver 
benefit from additional specificity in the choice of variable types or input constraints). 
 
Multiple-choice problems are such that k items must be chosen from a total of n.  This 
translates into formulating a multiple-choice constraint that forces that exactly k 
variables take on the value 1.  In mathematical terms: 
 

∑
=

=
n

i
i kx

1
 (1) 

 
The user specifies the value of k and the solver limits the search to solutions with 
exactly k variables set to 1. 
 
Budget problems are those containing constraints that limit the amount of resources 
used by a given solution.  In this case, resource utilization increases with the number of 
variables that are set to the value of one.  Infeasible solutions occur when the available 
resources are exceeded.  The mathematical form of this constraint may vary because 
resource utilization may be linear or nonlinear with respect to the variables that take on 
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the value of 1.  In the case of the knapsack problem, for instance, the constraint has the 
following mathematical form: 
 

∑
=

≤
n

i
ii bxa

1
 (2) 

 
The budget is given by the value of b and the ai coefficients indicate the amount of 
resources needed if the ith option is selected.  In our implementation, the solution 
evaluator returns a Boolean value indicating whether the solution is feasible or not.  In 
other words, the solution method does not know the level of infeasibility or what 
specific variables need to be given a value of zero to make the solution feasible.  The 
solution method, however, does know that for this type of problems, feasibility may be 
eventually achieved by switching variable values from 1 to 0. 
 
As mentioned above, if the problem contains constraints that cannot be casted as 
multiple-choice or budget, these constraints must be handled by the black-box by way 
of a penalty function.  The penalty function should be such that the objective function 
value of any infeasible solution must be worse than the objective function value of any 
feasible solution.  The specific form of the penalty function is the responsibility of the 
user and a number of alternatives have been studied in connection with evolutionary 
algorithms (Yeniay, 2005).  In the remainder of the paper, we refer to constrained 
problems as those containing multiple choice or budget constraints (as specified by the 
user).  Problems with general constraints are considered unconstrained and the solution 
method focuses on optimizing the penalized objective function. 
 
 
2.2 Diversification Generation Method 
The search starts with the application of a diversification generation method, as shown 
in Figure 1, that results in a population P of PSize points from which a subset is selected 
as the initial reference set (RefSet).  To obtain solutions with different structures we 
apply three different generators of binary vectors and create PSize/3 solutions with each 
one of them. 
 
The first one, G1, proposed by Glover (1998) uses a systematic approach to create a 
diverse set of binary vectors.  It generates a collection of solutions associated with an 
integer h = 2, 3,..., hmax, where hmax ≤ n - 1.  From a seed solution x, we generate 
solutions, x′ , for each value of h, by the following rule: khx +′1  = 1 - khx +1  for k = 0, 1, 2, 
3, …,  hn / , where  k  is the largest integer satisfying k ≤ n/h.  All other components 
of x′  are equal to x. 
 
We apply this generator directly in the case of unconstrained problems and slightly 
modified in the case of constrained problems.  For multiple-choice problems, the 
modification consists of an early termination of the method when the number of 1s in 
the solution matches k.  For budget problems, the process stops when setting the value 
of a variable to one makes the solution infeasible. 
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1. Start with GlobalIter=0 and P = Ø.  Use the diversification generation
Px ∉

 method to construct a solution.  
Let x be the resulting solution.  If  then add x to P (i.e., }{xPP ∪= ), otherwise, discard x.  
Repeat this step until |P| = PSize. 

2. Use the reference set update

3. Apply the 

 method to build RefSet = { x1, …, xb } with b solutions from P.  Order 
the solutions in RefSet according to their objective function value such that x1 is the best solution and 
xb the worst.  Make NewSolutions = TRUE. 

improvement
while ( NewSolutions ) do 

 method to the b/2 best solutions in RefSet. 

 4. Pool = Ø 
 5. Generate NewSubsets with the subset generation
 while ( NewSubsets ≠ ∅ ) do 

 method.  Make NewSolutions = FALSE. 

 6. Select the next subset s in NewSubsets. 
 7. Apply the solution combination
 8  If 

 method to s to obtain one new trial solution x.   
Poolx ∉  then add x to Pool (i.e., }{xPoolPool ∪= ) 

 9. Delete s from NewSubsets. 
 end while 
 10. Apply the improvement

 11. Apply the 

 method to the b/2 best solutions in Pool.  Replace the original solutions 
in Pool with the improved ones. 

reference set update

 if ( RefSet has changed ) then 

 method.  Update the RefSet with the b best solutions in 
RefSet∪Pool 

 12. Make NewSolutions = TRUE. 
 else  
  13. Apply the reference set update

 14. Make NewSolutions = TRUE. 

 method.  Rebuild the RefSet replacing the worst b/2 solutions 
with new diverse solutions from P. 

 end if 
 if (ExecutionTime > MAXTIME ) then 
  15. STOP. Return the best solution in RefSet as the output of the method. 
 end if 
end while 

Figure 1. Outline of the scatter search procedure 
 
 
Once we generate PSize/3 solutions with the method above, which focuses on 
diversification and not on the quality of the resulting solutions, we compute score(i) for 
each variable xi to estimate its contribution to the objective function value in order to 
generate the remaining 2PSize/3 solutions considering both quality and diversity.  The 
score calculation has the following mathematical form, where 𝑓𝑓𝐴𝐴�  indicates the average 
of the objective function f over the solutions in A:  
 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) =
𝑓𝑓̅𝑃𝑃𝑖𝑖

1

𝑓𝑓̅𝑃𝑃𝑖𝑖
1 +𝑓𝑓̅𝑃𝑃𝑖𝑖

0
  where  { }1:1 =∈= ii xPxP  , { }0:0 =∈= ii xPxP  (3) 

 
The second generator, G2, constructs a solution step by step, starting with all variables 
set to 0, and switching in each step one variable from 0 to 1.  The variables are 
randomly selected and the probability of changing a selected variable from 0 to 1 is 
given by 
 

Prob(xi = 1) = min (0.1+score(i) , 1) (4) 
 
The addition of 0.1 to the computation of the probability reflects a bias to change the 
variable value from 0 to 1 (this is an arbitrary value and any other “small” value would 
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work as well).  For unconstrained problems, G2 performs steps as long as the solution 
under construction improves.  For multiple-choice problems, G2 stops after k variables 
change their values from 0 to 1.  For budget problems, it stops when the solution 
becomes infeasible (i.e., G2 changes variables from 0 to 1 as long as the solution 
remains feasible). 
 
The third generator, G3, can be viewed as a destructive method.  It was suggested by 
Glover (1998) and adapted by Duarte and Martí (2007).  It starts with all variables set to 
1 and at each step it switches the value of one variable from 1 to 0.  Variables are 
probabilistically selected according to their score values.  The complement of the scores 
(i.e., 1 – Prob(xi = 1)) is used to calculate the probability of changing the value from 1 
to 0.  The stopping criterion is customized for each type of problem in a similar way as 
in G2. 
 
After each construction the score values are updated.  We have empirically found that 
better results are obtained when the contribution of the last constructed solution to the 
score value is smoothed.  The smoothed score, sscore, is computed as a function of the 
score in the previous constructions and the current score.  Let scoret(i) be the score of 
variable i after the t-th construction, and let scoret-1(i) be its score in step t-1 (before the 
construction), both computed with expression (3).  Then, we compute the smoothed 
score, sscore(i), as: 
 

sscore(i) = α scoret-1(i) + (1-α) scoret(i) (5) 
 
where the parameter α controls the contribution of the current score relative to its 
previous value.  Then, we use sscore instead of score to generate the values of the 
variables in the next constructions.  We point out that the smoothing of the scores is 
similar to the way in which probability values are updated in the cross entropy method 
(Rubinstein and Kroese, 2004). 
 
The initial RefSet must balance solution quality and diversity, and we follow the 
standard reference set update method, selecting the best b/2 solutions (where 
b = |RefSet|) from P and then the b/2 solutions in P that are most diverse with respect to 
those already in the RefSet (computing the maximum of the minimum distances 
between each solution and the solutions already in RefSet as it is customary in scatter 
search).  Diversity is measured according to the Hamming distance between solutions.   
 
In the standard SS design (Laguna and Martí 2003) the improvement method is applied 
to all the solutions in P.  However, in context-independent solvers, local search methods 
are usually extremely time-consuming since every trial move must be evaluated by 
invoking the black-box evaluator.  Therefore, the improvement method in our procedure 
is applied selectively instead of across the board. 
 
The improvement method consists of a local search procedure, which we describe in 
Subsection 2.3.  It is applied to the best b/2 solutions in the RefSet (see step 3 in the 
pseudo-code of Figure 1).  The reference set is a collection of b solutions that are used 
to generate new solutions by way of applying a combination method.  In order to design 
a context-independent methodology that performs well across a wide collection of 
different binary problems, we propose — in Subsection 2.4 — a set of seven 
combination methods from which one is probabilistically selected according to its 
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performance in previous iterations.  The selection process is reactive, as described 
below. 
 
We follow the standard subset generation method and, in step 5 of Figure 1, the 
procedure generates all pairs of reference solutions that have not been combined before.  
Here again, we limit the application of the improvement method to promising solutions.  
Specifically, we store the trial solutions resulting from the application of the 
combination method in a temporary Pool, and we apply the improvement method to the 
b/2 best solutions in Pool.  The reference set is then updated (see steps 10 and 11 in 
Figure 1) by selecting the best b solutions from the union of the RefSet and Pool (where 
the improved solutions replaced the original ones in Pool).  If the RefSet changes (i.e. a 
new trial solution in Pool improves upon the worst solution in the RefSet), then step 12 
sets the Boolean variable NewSolutions equal to TRUE and performs a new iteration in 
the outer while loop, applying again the subset generation method.  Alternatively, if the 
combination method is incapable of creating solutions that can be admitted to the 
RefSet, the reference set is rebuilt in step 14.  The rebuilding consists of keeping the 
best b/2 solutions intact and replacing the worst b/2 solutions in the RefSet with new 
diverse solutions from P.  The method stops after a pre-established MaxTime CPU 
seconds. 
 
2.3. Improvement Method 
A global iteration of the improvement method consists of three steps.  First, we 
construct the candidate list CL of elements (variables) to be changed, which simply 
consists of all the variables in the problem.  In the second step we order the elements 
(variables) in CL according to their score value (where those with the largest score are 
located first) and then, in the third step, we scan them in this order in search for 
improving moves.  We perform several iterations in the third step alternating flip 
(changing the value of a single variable from 1 to 0 or from 0 to 1) and swap 
(exchanging the values of two different variables) moves, where a swap consists of 
exchanging the values of two different variables.  In the first iteration we try flip moves 
with all the elements in CL (examined in order), changing their value if it improves the 
objective function.  The CL is reconstructed at this point.  Then, in the second iteration 
we consider swap moves with all the elements in CL (examined in order), in which we 
try to exchange the value of each variable with the value of another variable.  To do this 
we implement a first strategy, which scans the list of variables in search for the first one 
whose movement results in a strictly positive change of the objective function value.  
After this process, the CL is reconstructed again.  Further iterations are performed 
alternating between flip and swap moves.  The method stops after MaxImpIter iterations 
or before, if no improvements are achieved after trying all flips and swaps. 
 
It must be noted that in constrained problems these moves may lead to an infeasible 
solution.  However, we filter the moves and only consider those that lead to feasible 
solutions.  Specifically, when a move produces an infeasible solution, we discard the 
move and examine the next move in the exploration. 
 
2.4. Reactive Combination Method 
As mentioned earlier, we propose seven different combination methods and a reactive 
mechanism that probabilistically selects among them according to their ability to 
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produce high quality solutions during the current search.  This method was successfully 
applied by Campos et al. (2005) in the context of permutation problems. 
 
Solutions in the RefSet are ordered according to their objective-function value (where 
the best solution occupies the first place).  When a solution obtained with a combination 
method CMi qualifies to be the jth member of the current RefSet, we add b-j+1 to 
success(CMi).  Therefore, combination methods that generate good solutions 
accumulate higher success values and increase proportionally their probability of being 
selected.  To avoid initial biases, this mechanism is activated after the first InitIter 
combinations, and before this, selections are made completely at random.  A description 
of the seven combination methods follows.  These methods generate the new trial 
solution z from the combination of two reference solutions x and y.  It should be 
mentioned that the score value, initially computed with the solutions in P, is updated 
during the entire search process (i.e. computed considering not only the solutions in P 
but all the solutions examined during the search so far), thus providing an estimation of 
the contribution of each variable (when it takes on the value of 1) to the objective 
function value. 
 
The CM1 combination method first computes the partial solution z formed with the 
“union” of x and y, that is 
 

zi = 1  if xi = 1 or yi = 1 
zi = 0  otherwise 

 
It then performs a series of steps switching some variables from 1 to 0 in a similar way 
as the G3 generator.  Specifically, at each step, the method uses the score values to 
select probabilistically one variable with the value of 1 to switch it to 0.  For 
unconstrained problems, it continues in this fashion while the solution improves; for 
multiple-choice problems the method performs steps until the number of variables set to 
1 matches k.  For budget problems, it performs steps until the solution becomes feasible.  
Note that for this type of problems, the infeasibility is always reduced by switching 
variable values from 1 to 0.  The CM2 combination method is similar to CM1 with the 
only difference that the variable selection (to switch the value from 1 to 0 in z) is 
performed completely at random, that is, without considering the score values. 
 
The CM3 combination method is an adaptation of the one proposed by Laguna and 
Martí (2003) in the context of the knapsack problem.  The method calculates a weight 
for each variable, based on the objective function value of the two reference solutions 
being combined.  The weight for variable i that corresponds to the combination of 
reference solutions x and y is calculated with the following formula: 

 

( )
)()(
)()(

yfxf
yyfxxfiweight ii

+
+

=  (6) 

 
where f(x) is the objective function value of solution x and xi is the value of the ith 
variable.  Then, the trial solution z is constructed by using the weight as the probability 
for setting each variable to one, i.e., Prob(zi = 1) = weight(i).  Note that this combination 
method assumes that the objective function is being maximized. 
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In constrained problems a test is included to ensure the feasibility of the resulting 
solution.  In the case of multiple-choice problems, the method stops when k variables in 
z have been set to 1.  If less than k variables are set to 1, the resulting infeasible solution 
is discarded.  In the case of the budget problems the method stops when the resource 
limit b is reached (and the selection of an extra variable would violate it).  
 
The CM4 combination method first computes the partial solution z formed with the 
“intersection” of x and y: 
 

zi = 1 if xi = 1 and yi = 1 
zi = 0 otherwise 

 
A number of steps are then performed in which a variable with the value of zero is 
chosen.  The probability of selecting variable i is proportional to weight(i).  (Note that 
the larger the weight the more attractive it is, at least from the history of the search, to 
set the value of the variable to one.)  The difference between CM3 and CM4 is that CM3 
starts the process of switching variable values from 0 to 1 with all the variables set to 0 
while CM4 starts with the partial solution z that represents the intersection of the 
reference solutions being combined.  Also, the value of r in CM3 is a random number 
between 0 and 1 while for CM4 it is set to 0.5.  That is, CM4 uses simple rounding to set 
the value of the selected variable.  CM4 stops in the same way as CM1, depending on 
the type of problem. 
 
The CM5 combination method is very similar to CM4.  Starting from the partial 
solution constructed with the intersection of the reference solutions, variables that are 
set to 0 are chosen to change their value to 1.  The only difference with CM4 is that 
variables with a value of 0 are selected completely at random, that is, ignoring their 
weight values.  This method is the “fixed crossover” developed by Dolezal et al. (1999) 
for their genetic algorithm designed to tackle max-cut problems. 
 
The CM6 combination method starts with all the variable values set to 0.  Then, it 
applies the G2 constructive method with the restriction that the zi variables that are 
candidates to be switched to 1 are those with a value of 1 in x or y (i.e., those for which 
xi + yi ≥ 1). 
 
The CM7 combination method is based on the path relinking methodology adapted for 
GRASP (Laguna and Martí 1999).  It generates new solutions by exploring trajectories 
that connect high-quality solutions  by starting from one of these solutions, called an 
initiating solution, and generating a path in the neighborhood space that leads toward 
the other solutions, called guiding solutions.  The CM7 combination method explores 
the path between two solutions x and y in the RefSet.  It starts with the first solution x, 
and gradually transforms it into the guiding solution y, by changing the value of the 
variables in x with their value in y.  If the value is the same in both solutions, then no 
change is made and the procedure moves to the next variable.  Our procedure examines 
the variables in lexicographical order and in at most n steps it reaches y.  The procedure 
uses a first-improving strategy, meaning that if during the relinking process it finds an 
intermediate solution that is better than either x or y, then the procedure stops.  If no 
better solution is found, the solution that is most distant from x and y is the combined 
solution resulting from the application of this method.  In addition to exploring the path 



Scatter Search for Binary Problems / 11 

from x to y, the procedure also constructs the path from y to x and chooses the best 
solution found during both processes to be the outcome of CM7. 
 
 
3. Optimization Problems used for Testing 
We have used four combinatorial optimization problems to test our procedure.  
Solutions to these problems are naturally represented as binary vectors: 
 

1. the max-cut problem 
2. the maximum diversity problem 
3. the knapsack problem 
4. the multi-demand multi-dimensional knapsack problem 

 
We target these problems because they are well known, they are different in nature, and 
optimal (or high-quality) solutions to several problem instances are readily available.  
Existing methods to solve these problems range from construction heuristics and 
metaheuristics to exact procedures.  We now provide a brief description of each 
problem class. 
 
The max-cut problem consists of finding a partition of the nodes of a weighted graph 
into two subsets such that the sum of the weights on the edges connecting the two 
subsets is maximized.  A solution to this problem can be represented as a binary vector 
with cardinality equal to the number of nodes in the graph (where the value 0 or 1 
indicates that the associated node belongs to one or other subset).  The max-cut problem 
falls within the class of binary unconstrained problems. 
 
Beginning with the simple approach introduced by Sahni and Gonzales (1976) different 
heuristics and metaheuristics have been proposed for this problem.  Recently Festa et al. 
(2002) developed six different algorithms based on the variable neighborhood search, 
GRASP and Path Relinking (PR) methodologies.  We will compare our method with the 
SS algorithm (Martí et al. 2009) that was shown to outperform existing methods. 
 
The maximum diversity problem (MDP) consists of selecting a subset of k elements 
from a set of n elements in such a way that the sum of the distances between the chosen 
elements is maximized.  Clearly, a solution to this problem can be represented as a 
binary string x, where variable xi takes on the value of 1 if element i is selected and 0 
otherwise, i = 1, ..,n.  There is only one constraint in this problem that forces that 
exactly k variables in the string are assigned the value of 1.  This problem belongs to the 
class of multiple choice problems.  Many different methods have been proposed to 
search for solutions to the MDP.  Recently, Silva et al. (2004) presented two GRASP 
approaches, Duarte and Martí (2007) introduced a tabu search and Gallego et al. (2008) 
a scatter search method.  We will use the latter method in our comparison since it has 
been shown to outperform previous approaches. 
 
Knapsack problems are well known in the operations research literature.  The problem 
consists of choosing, from a set of items, the subset that maximizes the value of the 
objective function subject to a capacity constraint.  Mathematically, the problem can be 
expressed as follows: 
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This is a budget-constrained problem that attempts to maximize the benefit associated 
with selecting a subset of n available objects.  For a comprehensive examination of the 
knapsack and other related problems we refer the reader to Martello and Toth (1990).  
Pisinger (1995) considered a three step method based on the well known ratios ci/ai and 
forward and backward computations.  We will use this specialized method in our 
experiments and compare results against optimal solutions. 
 
The 0/1 multi-demand multi-dimensional knapsack problem (MDMKP) represents a 
class of practical problems, including portfolio selection, capital budgeting and some 
facility location problems.  Mathematically, the problem can be formulated as follows, 
where the m knapsack constraints are followed by the q demand constraints: 
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It must be noted that the MDMKP represents a class of binary problems with general 
constraints for which finding feasible solutions may not be trivial.  Arntzen, et al. 
(2006) proposed an adaptive memory programming algorithm for this problem.  Their 
method is based on a short-term tabu search coupled with strategic oscillation around 
the feasibility boundaries.  This method outperforms previous heuristics due to 
Cappanera and Trubian (2005) and therefore we will include it in our computational 
testing.  Cappanera and Trubian (2005) noted that the intriguing combinatorial structure 
of the MDMKP makes it a challenging problem for commercial integer linear 
programming solvers. 
 
 
4. Experimental Results 
This section describes the computational experiments that we have performed to test the 
efficiency of our black box scatter search procedure as well as comparing it with various 
methods from the literature.  We have implemented the methods in Java SE 6 and all the 
experiments were conducted on a Pentium 4 computer at 3 GHz with 2 GB of RAM.  
We have employed four sets of instances in our experimentation (available at 
http://www.uv.es/rmarti): 
 
Max-cut: This data set consists of 94 instances from two sources.  The 

Hartmann problems are 10 instances with 125 nodes and 375 edges 
all with weight values equal to -1 or 1.  The second set consists of 84 
instances (n=50 to 300) generated with rudy, a machine independent 
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graph generator by Giovanni Rinaldi.  The toroidal, planar and 
random graphs have weights taking the values of -1, 0, or 1. 

 
MDP: This data set consists of 92 instances from two sources.  The first one 

with 40 instances, referred to as Glover, for which the values are 
calculated as the Euclidean distances from randomly generated points 
with coordinates in the 0 to 100 range.  The second one with 52 
instances, referred to as Silva, for which the values are integer 
numbers randomly generated between 50 and 100.  The value of n 
ranges from 50 to 300 and the value of k ranges from 0.1n to 0.3n. 

 
Knapsack: This data set consists of 96 instances from four types, as documented 

in Pisinger (1994): strongly correlated, subset sum, uncorrelated and 
weakly correlated instances.  We consider 24 instances in each group 
with n= 100, 300, 1000 and 3000 (6 instance for each n value). 

 
MDMKP: This data set consists of 94 instances from Cappanera and Trubian 

(2005) in which basic multi-knapsack instances were modified by 
adding demand constraints and also allowing for negative cost 
coefficients.  We consider 47 instances with positive coefficients and 
47 with both positive and negative coefficient values.  The value of n 
ranges from 50 to 250, the value of m ranges from 5 to 15 and the 
value of q ranges from m/2 to m. 

 
We first compute, for each instance, the overall best solution value, BestValue.  The 
BestValue may be the optimal value if, as in the case of the knapsack problem instances, 
it is known.  Otherwise, BestValue represents the best-known as found by the execution 
of all methods under consideration.  Then, in each experiment, we compute for each 
method the relative percent deviation (RPD) between the best solution value (Value) 
obtained with a particualr method and BestValue for that instance.  That is, 

( ) %100⋅
−

=
BestValue

ValueBestValueRPD  

We report the average RPD across all the instances considered in each particular 
experiment.  We also report, for each method, the number of instances (#Best) for 
which the value of the best solution obtained with this method matches BestValue.  In 
the preliminary experiments, however, #Best refers to the solutions found within the 
experiment since simplified versions of the method are not expected to match best-
known solutions.  In addition, we calculate the Rank statistic — proposed by Ribeiro, et 
al. (2002) — associated with each method.  For each instance, the n_rank of a method 
M is defined as the number of methods that found a better solution than the one found 
by M.  In case of ties, all the methods receive the same n_rank, equal to the number of 
methods strictly better than all of them.  The value of Rank is the sum of the n_rank 
values for all the instances in the experiment, thus, the lower the Rank the better the 
method. 
 
In our preliminary experimentation we employed a set of 138 representative instances 
that included 42 Max-cut (rudy instances with n ≥ 200), 48 MaxDiv (Glover and Silva 
instances with n ≥ 125) and 48 Knapsack instances (from the four sources with 
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n ≥ 1000).  We did not include MDMKP instances in this preliminary experimentation 
because we report the results obtained with our method when solving this problem 
without parameter tuning, which is relevant information regarding expected 
performance of a general purpose solver. 
 
In the first preliminary experiment, we study the impact of changes in the value of the 
α parameter, which is used to update the score in the construction procedures within 
the diversification generation method.  We also test the contribution of the score and 
the smoothed score, sscore, to the final solution. We run three versions of our SS 
algorithm (as it appears in Figure 1) for 5 global iterations with only one combination 
method, CM1, instead of the reactive mechanism.  The first version, SS-random, does 
not incorporate the score and therefore probabilistic selections in the diversification and 
improvement methods are replaced here with completely random selections.  The 
second version, SS-score, incorporates the score strategy, without the smoothness 
factor.  The third version, SS-sscore(α), adds the smoothness parameter α for the 
updating of the score values.  Note that by virtue of equation (5), SS-score is equivalent 
to SS-sscore(0).  Table 1 reports the RPD, #Best and Rank values for the set of 138 
instances and each version (with two values of α  for SS-sscore(α)) as well as CPU 
time in seconds (Time). 
 

Method RPD #Best Rank Time (sec.) 

SS-random 4.43% 37 368 38 

SS-score 3.09% 40 311 54 

SS-sscore(0.3) 2.72% 52 295 55 

SS-sscore(0.5) 2.87% 51 296 55 

Table 1. Analysis of the score parameter 
 
Given the results summarized in Table 1, we determined that the best choice for the 
value of α is 0.3, which yields the lowest relative deviation and the best Rank value.  
The table also reveals the contribution of probabilistic selection based on smoothed 
scores over totally random choices. 
 
In this preliminary experiment we also examined the contribution of each diversification 
generation method (G1, G2 and G3) to the solution quality.  Specifically, we employed 
G1 to generate the PSize solutions in P and obtained a RPD value of 3.23%, instead of 
the 2.72% shown in Table 1 in which the three methods are applied (each one 
generating PSize/3 solutions).  Similarly, we applied G2 or G3 to populate P and 
obtained RPD values of 3.09% and 2.88%, respectively.  This reinforced our conjecture 
that the combined use of three different generation methods is more effective than the 
application of a single method in isolation.  
 
In the second preliminary experiment we consider the contribution of the improvement 
method to the overall scatter search procedure.  Table 2 reports the average of the RPD 
values of two procedures, the BinarySS without the improvement method and the 
BinarySS with the improvement method.  These were both run with the PSize parameter 
set to 100.  The results in Table 2 are quite conclusive about the contribution of the 
improvement method to the quality of the best solutions found during the search. 
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 Max-cut MaxDiv Knapsack 
BinarySS without Imp. 46.40% 8.98% 10.43% 
BinarySS with Imp. 7.16% 1.00% 1.42% 

Table 2. RPD values of 10 runs of the improvement method 
 
In our third preliminary experiment we search for an effective value for the MaxImpIter 
parameter in the improvement method.  This parameter determines the amount of search 
effort invested in improving solutions.  A large value emphasizes search intensification 
while a small value favors diversification (by allowing the SS to spend more time 
combining solutions than improving them).  Clearly, intensification and diversification 
are induced by a number of factors in the scatter search method and here we are only 
controlling one of them as it relates to the number of iterations in the improvement 
method.  Our experimentation showed that a value of 30 for MaxImpIter achieves a 
good balance between exploration and exploitation and therefore we chose this value to 
complete the setting of the search parameters. 
 
One of the key elements in the way solutions are combined within our implementation 
of scatter search is the self-adapting nature of the combination methods.  Therefore, as 
part of the performance analysis of our SS implementation, we wanted to know whether 
some combination methods are more effective than others for particular problems.  With 
this goal in mind, we performed two additional preliminary experiments.  In the first 
one we recorded the number of times that each combination method was used 
throughout the search when the procedure was applied to three problem classes.  Table 
3 reports the relative frequency of the use of each combination method by problem 
class.  For this experiment, the full SS procedure was used with a time limit of 5 
seconds.  The full SS includes the improvement method and the seven combination 
methods. 
 
Problem CM1 CM2 CM3 CM4 CM5 CM6 CM7 
Max-cut 170 244 170 185 171 172 169 
MDP 49824 5209 2221 4092 2272 23800 49461 
Knapsack 89 93 96 102 99 70 161 

Table 3. Frequency of use of the combination methods 
 
In the second experiment relative to the contribution of the combination methods, we 
consider seven different scatter search versions, SS-CMi for i = 1 to 7, in which only 
one combination method, CMi, is applied.  In the last row of Table 4, we include the 
complete SS version, BinarySS, in which the reactive mechanism with the seven 
combination methods is activated. 
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Method RPD #Best Rank Time (sec.) 

SS-CM1 3.52% 31 611 14s 

SS-CM2 3.50% 26 593 15s 

SS-CM3 3.07% 42 404 12s 

SS-CM4 3.44% 23 639 15s 

SS-CM5 3.76% 29 593 12s 

SS-CM6 3.22% 30 533 12s 

SS-CM7 3.31% 38 475 12s 

BinarySS 2.77% 48 390 11s 

Table 4. Contribution of combination methods  
 
Tables 3 and 4 reveal the importance of embedding several mechanisms for combining 
reference solutions within the scatter search framework.  Consider, for instance, CM5 in 
Table 3.  This method is rarely used for MDP instances (only on 2% of the cases) while 
it is the fourth most used for Max-cut instances (on 13% of the cases).  Similar 
examples of varying performance are found in Table 3, with CM1 and CM7 as the 
possible exceptions.  Both methods seem to perform well across all three problem types.  
Table 4 shows the advantage (both in terms of solution quality and speed) of employing 
several combination methods and the reactive mechanism over versions with a single 
combination method. 
 
We now compare our scatter search implementation (BinarySS) — employing the 
parameter values that resulted from the experiments above — against three well known 
commercial solvers: 

 the Evolutionary Premium Solver by Frontline Systems 
(http://www.frontsys.com) in the Solver Software Development Kit (version 
7.2).  This solver manages the constraints with the fcnconstraint function, 
defining an upper bound in the case of budget problems and lower and upper 
bounds for multiple-choice problems. 

 OptQuest (version 6.2) by OptTek Systems (http://www.opttek.com).  This 
engine allows us to define upper requirements to handle constraints in Budget 
problems and dual requeriments for multiple-choice problems. 

 Evolver by Palisade Corporation (http://www.palisade.com) in the Evolver 
Development Kit (version 4.1.2). This method manages constraints with the 
evconstraintadd function for both budget and multiple-choice problems. 

 
We also consider state-of-the-art specialized methods for each problem class, all of 
which are expected to outperform general context-independent solvers.  We are only 
using them as a baseline for comparison.  Specifically, for the Max-cut instances, we 
consider the SS method by Martí et al. (2009), for the MDP instances we use the SS 
method by Gallego et al. (2008), and for the Knapsack instances we use Expknap by 
Pisinger (1995).  In this experiment, we add the MDMKP instances and the Almha 
procedure by Arntzen et al. (2006).  None of the MDMKP instances were used for fine 
tuning and therefore they will be a good test for the generalization attributes of the 
solver that we have created.  For Max-cut and MDP we compare against the best known 

http://www.frontsys.com/�
http://www.opttek.com/�
http://www.palisade.com/�
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solutions.  For the Knapsack and MDMKP instances we compare against the optimal 
solutions.  The termination limit was set to 30 seconds, however, some methods 
finished earlier, as triggered by their internal logic.  Tables 5 to 8 show the RPD, #Best, 
Rank, and the CPU time for each problem class, respectively.  We also report in tables 6 
to 8 the number of instances for which each method is able to find a feasible solution, 
given that it is not unusual that black-box solvers fail to find feasible solutions for 
highly constrained instances.  A RPD value of 100% is assigned when a feasible 
solution is not found.  In this way, the average RPD value reflects the method’s ability 
to find feasible solutions. 
 
To handle multiple constraints in the MDMKP problem we consider the static penalty 
approach described in Yeniay (2005) in which the penalization of an infeasible solution 
x is computed as K(1-s/m) where K is a large positive constant set to 109, m is the 
number of constraints and s is the number of satisfied constraints.  We used this penalty 
function when executing all the methods in the comparison set. 
 
Method RPD #Best Rank Time (sec.) 

OptQuest 19.09% 6 302 25.14 

Evolver 10.34% 10 204 16.16 

Solver 8.99% 3 213 14.84 

BinarySS 5.20% 13 114 12.33 

SS (Marti et al 2009) 0.00% 91 0 13.17 

Table 5. Max-cut problem (94 instances) 
 
Method RPD #Best Rank Time (sec.) #Feasible 

OptQuest 2.48% 7 169 30.51 92 

Evolver 88.93% 1 305 23.84 9 

Solver 2.40% 2 207 10.85 92 

BinarySS 0.22% 31 59 1.97 92 

SS (Gallego et al 2008) 0.07% 71 16 30.02 92 

Table 6. Maximum diversity problem (92 instances) 
 

Method RPD #Best Rank Time (sec.) #Feasible 

OptQuest 2.64% 62 36 5.24 96 

Evolver 59.03% 3 320 7.95 40 

Solver 51.76% 7 290 6.56 47 

BinarySS 1.68% 30 124 45.02 96 

Expknap (Pisinger 1995) 0.75% 41 76 0.11 96 

Table 7. Knapsack problem (96 instances) 
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Method RPD #Best Rank Time (sec.) #Feasible 

OptQuest 31.85% 0 189 24.40 65 

Evolver 90.63% 0 367 10.95 11 

Solver 39.87% 0 289 12.75 65 

BinarySS 29.46% 0 207 20.47 71 

Almha (Arntzen et al., 2006) 1.86% 28 11 59.97 94 

Table 8. Multi-demand multi-dimensional knapsack problem (94 instances) 
 
The behavior of BinarySS is fairly consistent across problem classes.  The method 
delivers low relative percent deviations with respect to the best-known (or optimal) 
solutions and always ranks best among the black-box solvers, which are also based on 
evolutionary strategies.  As mentioned before, the RPD values in Tables 6 to 8 are 
computed considering a value of 100% for infeasible solutions.  Anyway, one must take 
into consideration the success rate in finding feasible solutions when assessing RPD 
values. 
 
The performance of BinarySS on the MDMKP set is more than acceptable.  This is a set 
of instances to which BinarySS has not been exposed before (e.g., during the tuning 
process) and, as shown in Table 8, the procedure is able to find 71 out of 94 feasible 
solutions.  This compares well with OptQuest, Evolver, and Solver, which found 65, 11, 
and 65 feasible solutions, respectively.  The RPD values in Table 8 also support the 
conclusion that the BinarySS is able to perform at a higher level than the competing 
black-box approaches. 
 
In order to test the robustness of the results shown in Tables 5 to 8, we replicate 10 
times each method on the entire set of 376 instances.  Table 9 shows the standard 
deviation of the RPD values for each method and each problem type.  We can observe 
that all the methods exhibit very small standard deviations of the RPD values in the four 
problems (smaller than 0.01 in all the cases), and thus we may conclude that the four 
black-box solvers exhibit a high level of robustness. 
 

Method Max-cut MDP Knapsack MDMKP 

OptQuest 0.00011 0.00007 0.00008 0.00128 

Evolver 0.00302 0.00195 0.00033 0.00687 

Solver 0.00327 0.00123 0.00056 0.00448 

BinarySS 0.00082 0.00007 0.00017 0.00517 

Table 9. Standard deviations of RPD across 10 replications (376 instances) 
 
Our final experiment is designed to show how the average value of the best solution 
found improves over time.  We use the reduced set of problems that were employed for 
the fine-tuning experiments and run the four context-independent procedures for 180 
seconds while recording the average deviation values every second.  Figure 2 shows the 
results of this experiment which does not include the MDMKP instances because the 
deviation is only informative when the method is able to obtain a feasible solution, and 
as shown in Table 8, this happens only in a small fraction of the instances for two of the 
methods. 
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Figure 2. Performance profile for a 180-second run 

 
 
The profile in Figure 2 indicates that our method is capable of finding high-quality 
solutions to all the instances in the three classes from the early stages of the search.  At 
no time during the span of the search, the BinarySS produces a RPD value that is worse 
than any of the competing methods.  In this figure, the RPD values are calculated with 
the best solution found up to that point in the search.  Finding high quality solutions 
early in the search is particularly important in the context of simulation-optimization, 
where the search horizon (defined as the number of calls to the objective function 
evaluator) may be particularly limited. 
 
 
5. Conclusions 
We have described the development of a scatter search application to optimization of 
problems whose solution representation is given by a binary vector.  We have discussed 
the notion of context-independence and how solver designers attempt to use some 
limited, but important, information to improve the quality of the outcomes.  In our 
particular procedure, we disclose two types of constraints to the solution method.  This 
gives our solver some advantages when constructing and combining solutions because 
feasibility can be achieved easier than when dealing with general constraints (linear or 
nonlinear) that are handled with penalty functions. 
 
The results of our experiments with 376 problem instances are quite conclusive 
regarding the effectiveness of the method that we have developed.  In the process of 
developing this method, we are able to show the advantages of using multiple 
combination methods.  The first-improving strategy when applied to the complete 
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neighborhood resulted in an effective use of the allotted searching time.  We expect that 
our experience will help software developers to improve upon the commercial solvers 
that are based on evolutionary processes. 
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