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ABSTRACT 

Automated graph-drawing systems utilize procedures to place vertices and arcs in order to produce 

graphs with desired properties. Incremental or dynamic procedures are those that preserve key 

characteristics when updating an existing drawing. These methods are particularly useful in areas such 

as planning and logistics, where updates are frequent. We propose a procedure based on the scatter 

search methodology that is adapted to the incremental drawing problem in hierarchical graphs. These 

drawings can be used to represent any acyclic graph. Comprehensive computational experiments are 

used to test the efficiency and effectiveness of the proposed procedure. 
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1. Introduction 

Most complex information systems include visual representations for interpretation and analysis. 

Graphs have become a fundamental modeling tool in areas such as project management, production 

planning, line balancing, and data and software visualization. Graph drawing is an established area of 

research that includes many articles and books (Di Battista et al., 1998; Kaufmann & Wagner, 2001). 

As a matter of fact, the Information Visualization community counts with numerous conferences, 

academic events, and software companies1. A key element within graph-drawing relates to the criteria 

used to judge the quality of a drawing. Arc-crossing minimization is considered one of the most 

common ways of creating good graphs (Purchase, 1997, 2000; Carpano, 1980). We adopted this 

criterion in the search procedures that we developed in this work. Figures 1(a) and 1(b) show two 

representations of the same graph. Using the arc-crossing minimization criterion, Figure1(b) may be 

considered better than Figure 1(a). Figure 1(b) is clearer and enables an easier interpretation and 

extraction of information. 

 

Figure 1. Two alternative representations of the same graph. 

We focus on hierarchical directed acyclic graphs (HDAG) which are also known as layered graphs. The 

HDAG representation is done by arranging the vertices on a series of equidistant vertical lines called 

layers in such a way that all arcs point in the same direction. The problem of minimizing the number 

of arc-crossings between any two layers is NP-Complete, even when the graph consists of only two 

layers (Garey & Johnson, 1983). Figure 2 shows the representation of a graph with 10 vertices and 

three layers (𝐿1 to 𝐿3), where the arc directions are implicitly assumed to go from left to right between 

each pair of layers. 

 

Figure 2. Multilayered HDAG. 

                                                            
1 See http://www.infovis-wiki.net for resources on visual analytics. 

http://www.infovis-wiki.net/
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Working with HDAGs is not a limitation, since there exists a number of procedures to transform a 

directed acyclic graph (DAG) into a HDAG (Mutzel, Jünger, & Leipert, 2002). A standard transformation 

method, introduced by Sugiyama et al. (1981), consists of arranging the vertices in layers so that all 

the arcs point in the same direction. Some arcs, however, might connect vertices that are in layers 

that are not contiguous. Then, artificial vertices are added in order to create a graph where arcs exist 

only within contiguous layers (i.e., a hierarchical graph). Even though the procedures that we 

developed are for HDAs, they also apply to DAGs thanks to these transformations. 

Figure 3 illustrates the transformation from DAG to HDAG following the so-called Sugiyama’s et al. 

method (1981). The DAG is represented in Figure 3(a). In the first step, the vertices are arranged in 

layers so that all the arcs go from one layer to another and there are no arcs connecting vertices in 

the same layer. This results in the graph in Figure 3(b). This graph contains two arcs (see dotted lines) 

that go from the first layer to the third, skipping over the second layer. These are arcs (3, 1) and (3, 6). 

To avoid these arcs, we create two artificial (or fictitious) vertices 𝐹1 and 𝐹2 and add them to layer 2. 

Finally, the new vertices are used to connect vertex 1 to 3 through 𝐹1 and 3 to 6 through 𝐹2. Figure 

3(c) shows the HDAG obtained through the transformation of the DAG in Figure 3(a). 

 

Figure 3. Transformation from DAG to HDAG. 

Given a HDAG and a list of new vertices and arcs, the incremental graph drawing problem consists of 

adding the new vertices and arcs to the HDAG without altering the relative position of the vertices in 

the existing HDAG while minimizing the number of arc crossings. Figure 4 illustrates the process of an 

incremental graph drawing. The original HDAG is shown in Figure 4(a). The new arcs are (2, 10), (3, 

11), (5, 11), (8, 4), (8, 5), (9, 10), and (10, 7). Figure 4(b) shows the HDAG with the new arcs, where the 

number of arc crossings is 14. An optimized drawing of the new HDAG, with a minimum number of arc 

crossing of 9, is shown in Figure 4(c). Note that the optimized drawing preserves the relative ordering 

of the original vertices in each layer. 

Although the general problem of minimizing arc crossing on HDAGs has been studied extensively, the 

incremental graph-drawing version has received very little attention. In fact, we are only aware of one 

article that is limited to bipartite graphs (Martí & Estruch, 2001). The article describes a branch-and-

bound procedure that is tested on relatively small graphs and a metaheuristic based on GRASP (greedy 

randomized adaptive search procedure) applied to medium- and large-size instances (Feo & Resende, 

1995). 

Our first goal was to extend the application of GRASP to multi-layered HDAGs. This gave us a base case 

for finding solutions to the general incremental graph-drawing problem. We then approached the 
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problem from a different angle by adapting scatter search. Our computational testing includes 

comparisons of the performance of these two approaches. 

 

Figure 4. Illustration of the incremental graph-drawing process. 

The main contributions of this work are: 1) Implementation and testing of a procedure that integrates 

variable neighborhood (Mladenović & Hansen, 1997) and scatter search (Laguna and Martí, 2003), 2) 

Adaptation of an existing procedure for the bi-partite incremental graph-drawing problem to the 

multilayered case, and 3) Improvement of the state-of-the-art in solving the incremental graph-

drawing problem. 

2. Notation and Definitions 

A hierarchical graph 𝐻 = (𝑉, 𝐸, 𝑘, 𝐿) is defined as a graph 𝐺 = (𝑉, 𝐸), where 𝑉 and 𝐸 represent the 

set of vertices and arcs, respectively, and the function 𝐿(𝑣): 𝑉 → {1,2, … , 𝑘} indicates the index of the 

layer where 𝑣 resides. Hence,  𝐿(𝑣) − 𝐿(𝑢) = 1 ∀ (𝑢, 𝑣) ∈  𝐸. The 𝐿 function implicitly defines the 

sets of vertices 𝐿𝑖 = { 𝑣 ∈  𝑉 ∶  𝐿(𝑣) = 𝑖 } for 𝑖 = 1,2, … , 𝑘 which we refer to as layers. The set of 

vertices 𝑉 is the union of all the layers, i.e., 𝑉 = ⋃ 𝐿𝑖
𝑘
𝑖=1 . Since the arcs in a HDAG are straight lines 

that join the vertices in two contiguous layers, a drawing of a HDAG is given by the ordering of the 

vertices in each layer. Therefore, a drawing of 𝐻 is defined as 𝐷 = (𝐻,Φ), where Φ =

 { 𝜑1, 𝜑2 , … , 𝜑𝑘} and 𝜑𝑖 is the ordering (permutation) of the vertices in layer 𝐿𝑖. That is, 𝜑𝑖(𝑗) is the 

vertex in position 𝑗 in layer 𝐿𝑖. The position of vertex 𝑣 is defined as 𝜋(𝑣) in such a way that if 𝑣 = 𝜑𝑖(𝑗) 

then 𝜋(𝑣) = 𝑗. 

The problem of minimizing the arc crossings in a HDAG may be formulated as the problem of finding 

the optimal ordering in each layer. The optimal drawing 𝐷⋆ is such that no other 𝐷 has fewer arc 

crossings. An arc crossing is produced between arcs (𝑢, 𝑣) and (𝑢′, 𝑣′), where 𝑢, 𝑢′ ∈ 𝐿𝑖 and 𝑣, 𝑣′ ∈

 𝐿𝑖+1 when: 

(𝜋(𝑢) < 𝜋(𝑢′) ∧ 𝜋(𝑣) > 𝜋(𝑣′)) ∨ (𝜋(𝑢) > 𝜋(𝑢′) ∧ 𝜋(𝑣) < 𝜋(𝑣′)) 

For vertices 𝑢, 𝑢′ ∈  𝐿𝑖  where 𝜋(𝑢)  < 𝜋(𝑢′), we define 𝐶𝑖+1(𝑢, 𝑢
′) as the number of arc crossings 

between layers 𝐿𝑖 and 𝐿𝑖 +1 which are due to all the arcs incident to 𝑢 and 𝑢′. Formally, 

𝐶𝑖+1(𝑢, 𝑢
′) = ∑ |𝑣′ ∈ 𝛬𝑖+1(𝑢

′) ∶ 𝜋(𝑣) > 𝜋(𝑣′)|

𝑣∈𝛬𝑖+1(𝑢)

 



S á n c h e z - O r o ,  e t  a l .  | 5 

where 𝛬𝑖+1(𝑢) = 𝛬(𝑢) ∩ 𝐿𝑖+1 is the set of vertices in 𝐿𝑖 +1 that are adjacent to 𝑢 and 𝛬(𝑢) =

{ 𝑣 ∈  𝑉 ∶  (𝑢, 𝑣) ∈  𝐸 } is the set of all vertices adjacent to 𝑢. Similarly, we define 𝐶𝑖−1(𝑢, 𝑢
′) as the 

number of crossings between layers 𝐿𝑖−1 and 𝐿𝑖 produced by arcs incident to 𝑢 and 𝑢′ in 𝐿𝑖. We also 

define 𝛬𝑖−1(𝑢) = 𝛬(𝑢) ∩ 𝐿𝑖−1 as the set of vertices in 𝐿𝑖−1 that are adjacent to 𝑢. 

With these definitions, we can calculate the total number of arc crossings in a drawing 𝐷 = (𝐻,𝛷) as: 

𝐶(𝐷)  = ∑ ∑ 𝐶𝑖+1(𝑢, 𝑢
′)

𝑢,𝑢′∈𝐿𝑖
𝜋(𝑢)<𝜋(𝑢′)

𝑘−1

𝑖=1

=∑ ∑ 𝐶𝑖−1(𝑢, 𝑢
′)

𝑢,𝑢′∈𝐿𝑖
𝜋(𝑢)<𝜋(𝑢′)

𝑘

𝑖=2

 

For more than two decades, the barycenter has been the standard method to minimize arc crossings 

in a HDAG. This iterative method, when sweeping 𝐻 from left to right, fixes the ordering 𝜑𝑖−1 while 

rearranging the ordering of the vertices in 𝐿𝑖 by applying the barycenter calculation. This consists of 

calculating the position of 𝑢 ∈  𝐿𝑖  as the average position of the vertices in 𝐿𝑖−1 that are adjacent to 

𝑢. That is, the barycenter 𝑏𝑐 for vertex 𝑢 ∈ 𝐿𝑖, when sweeping 𝐻 from left to right is calculated as: 

𝑏𝑐(𝑢, 𝑖 − 1) =
∑ 𝜋(𝑣)𝑣∈𝛬𝑖−1(𝑢)

|𝛬𝑖−1(𝑢)|
. 

With a single sweep of 𝐻 from left to right, the barycenter calculations produce an ordering of the 

vertices in each layer. The procedure is then repeated from right to left. In this case, the position for 

𝑢 ∈  𝐿𝑖  is calculated as the average position of the vertices in 𝐿𝑖+1 that are adjacent to 𝑢. That is, the 

barycenter calculation when sweeping from right to left is 𝑏𝑐(𝑢, 𝑖 + 1). The process ends when the 

positions of the vertices do not change after a sweep. 

Symbol Definition 

𝐻 Hierarchical graph: 𝐻 = (𝑉, 𝐸, 𝑘, 𝐿) 
𝐺 Graph: 𝐺 = (𝑉, 𝐸) 
𝑉 Set of vertices of G 
𝐸 Set of arcs of G 
𝑘 Number of layers 
𝐼𝐻 Incremental graph: 𝐼𝐻 = (𝐼𝑉, 𝐼𝐸, 𝑘, 𝐿) 

𝑉̂ Set of new vertices. 
𝐼𝑉 Set of vertices in the incremental graph 𝐼𝐻: 𝐼𝑉 = 𝑉 ∪ 𝑉̂  
𝐼𝐸 Set of arcs in the incremental graph 𝐼𝐻 
𝐼𝐷 Incremental graph drawing: 𝐼𝐷 = (𝐼𝐻,𝛷) 
𝐼𝐷𝑡 Partial incremental graph drawing  
𝐿 Function that indicates the index of the layer where a vertex 𝑣 resides 
𝐿𝑖 Set of vertices in layer 𝑖: 𝐿𝑖 = {𝑣 ∈ 𝐼𝑉: 𝐿(𝑣) = 𝑖}  
𝐷 Drawing: 𝐷 = (𝐻,𝛷) 
𝛷 Set of the permutation: 𝛷 = {𝜑1, … , 𝜑𝑘} in 𝐷 
𝜑𝑖 Permutation of the vertices in layer 𝐿𝑖: 𝜑𝑖(𝑗) is the vertex in position 𝑗 in layer 𝐿𝑖 
𝜋 Position of vertex 𝑣. If 𝑣 = 𝜑𝑖(𝑗) then 𝜋(𝑣) = 𝑗 

𝐶𝑖+1(𝑢, 𝑢
′) Number of arcs crossings between layers 𝐿𝑖 and 𝐿𝑖+1 incidents with 𝑢 and 𝑢′  

𝛬(𝑢) Set of all vertices adjacent to 𝑢: 𝛬 = {𝑣 ∈ 𝐼𝑉: (𝑢, 𝑣) ∈ 𝐼𝐸} 
𝛬𝑖+1(𝑢) Set of vertices in 𝐿𝑖+1 that are adjacent to 𝑢: 𝛬𝑖+1 = 𝛬 ∩ 𝐿𝑖+1 
𝐶(𝐷) Total number of crossings in a drawing 𝐷 
𝜌(𝑣) Degree of (assigned or unassigned) vertex 𝑣  

Table 1. Definitions and symbols  
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From an original hierarchical graph 𝐻 = (𝑉, 𝐸, 𝑘, 𝐿), we define an incremental graph 𝐼𝐻 =

(𝐼𝑉, 𝐼𝐸, 𝑘, 𝐿) that results from adding a set of vertices 𝑉̂, with their corresponding arcs, without 

altering the number of layers 𝑘. The incremental graph is such that  𝐼𝑉 = 𝑉 ∪ 𝑉̂, 𝐸 ⊆  𝐼𝐸 and 𝐿(𝑣) ∶

𝐼𝑉 →  {1,2, … , 𝑘}, with the value of 𝐿(𝑣) not changing for 𝑣 ∈ 𝑉. Given a graph 𝐼𝐻, originating from a 

graph 𝐻, and a drawing 𝐷 of 𝐻, the incremental graph-drawing problem consists of finding a drawing 

𝐼𝐷 = (𝐼𝐻,Φ) that minimizes the number of arc crossings while keeping the same relative ordering of 

𝑉 in 𝐷. This means that if 𝜋(𝑢)  < 𝜋(𝑢′) in 𝐻 then the same should be true in 𝐼𝐻 for all 𝑢 and 𝑢′ such 

that 𝐿(𝑢) = 𝐿(𝑢′). 

We also define a partial incremental drawing 𝐼𝐷𝑡  as one with a set of vertices 𝐼𝑉𝑡  containing all vertices 

in 𝑉 and 𝑡 of the vertices in 𝑉̂. Therefore, a partial incremental drawing with 𝑡 = 0 is the original 

drawing, i.e., 𝐼𝐷0 = 𝐷. And, a partial drawing with 𝑡 = |𝑉̂| is a completed incremental drawing, i.e., 

𝐼𝐷|𝑉̂| = 𝐼𝐷. Table 1 summarizes all the symbols and definitions introduced above. 

 

3. Extension of GRASP to Multilayered Graphs 

As mentioned in Pinaud et al. (2004), “in comparison with static drawings, the literature on dynamic 

drawings is still in its infancy”.  Early works (Böhringer & Paulisch, 1990) introduced the concept of 

stability across consecutive drawings in a dynamical process. North (1996) presented a graph drawing 

system to achieve this stability. Branke (2001) adapted Sugiyama’s heuristic to include the stability 

conditions in the drawing method to preserve the user’s mental map. In all these cases, the proposed 

methods try to obtain a drawing similar to an existing drawing based on a distance function. For 

example, Pinaud et al. (2004) consider the number of pairs of vertices that are inverted in the new 

drawing with respect to their relative position in the previous drawing. They are in essence multi-

objective approaches which optimize both the aesthetic criteria and the stability distance function. 

A different approach was proposed in Martí & Estruch (2001), in which the relative position between 

vertices in the original drawing is considered as a constraint to create a new drawing.  These authors 

did not consider a measure or distance between drawings but instead, they included the constraints 

induced by the previous ordering of vertices. They proposed a greedy randomized adaptive search 

procedure (GRASP) to solve this incremental graph drawing problem. Their implementation is limited 

to bipartite graphs. In this paper, we consider their approach to tackle the dynamic or incremental 

graph drawing problem. We extended this GRASP with the goal of finding baseline benchmarks for the 

multilayered incremental graph-drawing problem. GRASP consists of two phases: construction and 

improvement. The construction is an iterative process in which a solution is built by selecting one 

element at a time. The improvement typically consists of a local search. 

3.1 Construction 

The process starts with the random selection of a vertex from all those with maximal degree. The 

vertex is placed in a random position within its layer. In subsequent steps, the candidate list (𝐶𝐿) of 

vertices to be added to the drawing consists of all the unassigned vertices. The degree 𝜌(𝑣) of each 

unassigned vertex 𝑣 is calculated with respect to the partial drawing. The next vertex to be added to 

the drawing is selected from a restricted candidate list 𝑅𝐶𝐿 that contains all the unassigned vertices 

whose degree is at least as high as 𝛼% of the maximal degree 𝜌𝑚𝑎𝑥 = max
𝑣∈𝐶𝐿

𝜌(𝑣). That is, 𝑅𝐶𝐿 =

{𝑣 ∈ 𝐶𝐿 ∶ 𝜌(𝑣) ≥ 𝛼𝜌𝑚𝑎𝑥}. Let 𝑣∗ be the selected vertex. 
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Then, 𝑣∗ is placed in the position prescribed by 𝑏𝑐(𝑣∗, 𝐿(𝑣∗) + 1), except when 𝐿(𝑣∗) = 𝑘, in which 

case the barycenter is calculated as  𝑏𝑐(𝑣∗, 𝑘 − 1). We simplify the notation to refer to the barycenter 

of a vertex 𝑣 as 𝑏𝑐(𝑣), with the understanding that the actual calculation depends on whether 𝐿(𝑣) 

is equal to 𝑘 or not. If 𝑣∗ ∈ 𝑉, then the vertex is placed in the feasible position that is closest to its 

barycenter 𝑏𝑐(𝑣∗). Otherwise, it is placed in either ⌊𝑏𝑐(𝑣∗)⌋ or ⌈𝑏𝑐(𝑣∗)⌉, whichever is better. If both 

positions are taken, then 𝑣 is placed as close as possible. Once 𝑣∗ is placed, it is eliminated from 𝐶𝐿 

and the degree values 𝜌(𝑣) for 𝑣 ∈ 𝐶𝐿 are updated. 

3.2 Improvement 

The neighborhood search during this phase is based on a probabilistic selection without replacement. 

All vertices are considered for repositioning but the order in which they are considered is 

probabilistically determined by the vertex degrees. The probability that a vertex 𝑣 is selected is: 

𝑃𝑟(𝑣) =
𝜌(𝑣)

∑ 𝜌(𝑢)𝑢∈𝐼𝑉
 

Hence, the higher the degree, the higher the probability of being selected. Let 𝑣∗ be the selected 

vertex. Then, three moves are considered: 

1. Place 𝑣∗ in ⌊𝑏𝑐(𝑣∗)⌋ − 1. 

2. Place 𝑣∗ in ⌊𝑏𝑐(𝑣∗)⌋ or ⌈𝑏𝑐(𝑣∗)⌉. 

3. Place 𝑣∗ in ⌊𝑏𝑐(𝑣∗)⌋ + 1. 

If 𝑣∗ ∈ 𝑉, then the repositioning of 𝑣∗ must be to a feasible position. Feasibility is checked with respect 

to the relative position of 𝑣∗ and all 𝑣 for which 𝐿(𝑣∗) = 𝐿(𝑣). The feasible positions are calculated in 

reference to the closest positions specified by the three moves above. Only improvement moves are 

executed. If after the exploration of the entire neighborhood, that is, if after all vertices 𝑣 ∈ 𝐼𝑉 are 

considered, no improvement move is found, the improvement phase terminates. 

 

4. Scatter Search 

Scatter search (SS) is so-called population-based metaheuristic that consists of five elements (Laguna 

& Martí, 2003): Diversification generation, Improvement, Reference set update, Subset generation, 

and Combination. Scatter search maintains a reference set of solutions (𝑅𝑒𝑓𝑆𝑒𝑡) of size 𝑏. The 

diversification generator is executed first to create a set of solutions 𝑃 and this is followed by the 

improvement method. The resulting improved set of solutions 𝑃∗ is used to initialize the 𝑅𝑒𝑓𝑆𝑒𝑡 by 

selecting the best 𝑏/2 in 𝑃∗ and then the most diverse 𝑏/2 from the remaining solutions in 𝑃∗. Quality 

is evaluated with the objective function, while diversity is measured against the reference solutions. 

In particular, we use a distance measure between two solutions that counts the number of vertices 

that occupy a different position. The distance between a candidate solution and a set of reference 

solutions is given by the minimum distance between the candidate solution and all of the reference 

solutions in the set. The subset generation consists of all pairs of reference solutions that have not 

been examined in previous iterations. Combinations are generated from each pair of reference 

solutions. The trial solutions are subjected to the improvement procedure. The reference set is then 

updated with the best solutions from the existing reference set and all the improved solutions 

generated by the combinations. The search terminates when no new solutions are admitted to the 
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reference set, that is, when the 𝑅𝑒𝑓𝑆𝑒𝑡 does not change in the current iteration. Algorithm 1 

summarizes the SS steps. 

Of the five SS elements, we have implemented two in their standard form. The 𝑅𝑒𝑓𝑆𝑒𝑡 is updated by 

solution quality and the subset generation is limited to all pairs for which at least one of the reference 

solution in the pair is new to the current iteration. The implementation of the remaining three 

elements is described below. 

𝑃 ← Diversification generation 

𝑃∗ ← Improvement(𝑃) 

𝑅𝑒𝑓𝑆𝑒𝑡 ← Reference set update(𝑃∗) 

do 

𝑃𝑎𝑖𝑟𝑠 ← Subset generation(𝑅𝑒𝑓𝑆𝑒𝑡) 

𝑇𝑟𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← Combinations(𝑃𝑎𝑖𝑟𝑠) 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← Improvement(𝑇𝑟𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 

𝑅𝑒𝑓𝑆𝑒𝑡 ← Reference set update(𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 

if 𝑅𝑒𝑓𝑆𝑒𝑡 changed then 

𝑁𝑒𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝑇𝑅𝑈𝐸  

else 

𝑁𝑒𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝐹𝐴𝐿𝑆𝐸  

end if 

while 𝑁𝑒𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

Algorithm 1. Basic scatter search. 

 

4.1 Diversification Generation and Improvement 

We propose two diversification generation methods based on GRASP constructions. Solutions are built 

one element at a time and the selection is guided by a greedy function. Diversification is induced by a 

random selection from a restricted candidate list (𝑅𝐶𝐿) that contains the most promising set of 

elements (Feo & Resende, 1995). 

The construction starts with 𝐼𝐷0 and it performs |𝑉̂| iterations, adding one vertex 𝑣 ∈ 𝑉̂ in each 

iteration. Limiting the insertions to the vertices 𝑣 ∈ 𝑉̂ is one of the main differences between our 

constructions and the constructions in the existing GRASP (Martí & Estruch, 2001). Initially, the 

candidate list 𝐶𝐿 contains all the incremental vertices in 𝑉̂, that is, 𝐶𝐿 = {𝑣 ∈ 𝑉̂}. The 𝑅𝐶𝐿 consists of 

all the vertices in 𝐶𝐿 with degrees that are at least as high as a threshold 𝜏. That is, 𝑅𝐶𝐿 =

{𝑣 ∈ 𝐶𝐿: 𝜌(𝑣) ≥ 𝜏}. The degree 𝜌(𝑣) of a vertex 𝑣 ∈ 𝐶𝐿 is calculated considering the vertices in the 

partial solution. That is, 𝜌(𝑣) = |𝑢 ∈ 𝐼𝑉𝑡: 𝑢 ∈ 𝛬(𝑣)|.  The threshold represents a degree that is in the 

top 𝛼 percentil of the degree range for the vertices in 𝐶𝐿. That is, 𝜏 = min
𝑣∈𝐼𝑉𝑡

𝜌(𝑣) + 𝛼 (max
𝑣∈𝐼𝑉𝑡

𝜌(𝑣) −

min
𝑣∈𝐼𝑉𝑡

𝜌(𝑣)). The parameter 𝛼 controls the balance between diversity (as represented by the 

randomness proxy) and solution quality (as represented by the greedy function). A value of 𝛼 = 0 

induces a total random selection and a value 𝛼 = 1 turns the construction into a deterministic process. 

Let 𝑣 ∈ 𝐶𝐿 be the vertex selected for insertion in layer 𝐿(𝑣). The procedure calculates the barycenter 

of the selected vertex by taking into consideration both layer 𝐿(𝑣) − 1 and layer 𝐿(𝑣) + 1 in the 

partial drawing 𝐼𝐷𝑡: 
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𝑏𝑐(𝑣, 𝐼𝑉𝑡) =
∑ 𝜋(𝑢) + ∑ 𝜋(𝑢)𝑢∈𝛬𝐿(𝑣)+1(𝑣)∩𝐼𝑉𝑡𝑢∈𝛬𝐿(𝑣)−1(𝑣)∩𝐼𝑉𝑡

|𝛬(𝑣) ∩ 𝐼𝑉𝑡|
 

We refer to this construction procedure as C1. We also tested a procedure labeled C2 that operates 

in the same way as C1 but uses a different barycenter calculation. Instead of considering both layers 

around 𝐿(𝑣), the barycenter is calculated with layer 𝐿(𝑣) + 1 if 𝐿(𝑣) < 𝑘 and 𝐿(𝑣) − 1 if 𝐿(𝑣) = 𝑘: 

𝑏𝑐(𝑣, 𝐼𝑉𝑡) =

{
 
 

 
 
∑ 𝜋(𝑢)𝑢∈𝛬𝐿(𝑣)−1(𝑣)∩𝐼𝑉𝑡

|𝛬𝐿(𝑣)−1(𝑣) ∩ 𝐼𝑉𝑡|
𝑠𝑖 𝑖 = 𝑘

∑ 𝜋(𝑢)𝑢∈𝛬𝐿(𝑣)+1(𝑣)∩𝐼𝑉𝑡

|𝛬𝐿(𝑣)+1(𝑣) ∩ 𝐼𝑉𝑡|
𝑠𝑖 𝑖 < 𝑘

 

The construction process for both C1 and C2 terminates after |𝑉̂| iterations. Note that both procedures 

are equivalent in the case of bipartite graphs. Algorithm 2 summarizes the procedural steps. 

𝐼𝐷0 ← 𝐷; 𝐶𝐿 ← 𝑉̂; 𝑡 = 0  

for 𝑡 = 1,… , |𝑉̂| do 

𝑅𝐶𝐿 ← {𝑣 ∈ 𝐶𝐿: 𝜌(𝑣) ≥ 𝜏}  

𝑣 ← 𝑅𝑎𝑛𝑑𝑜𝑚(𝑅𝐶𝐿)  

𝐼𝐷𝑡 ← 𝐼𝑛𝑠𝑒𝑟𝑡(𝑣, 𝐼𝐷𝑡−1)  

𝐶𝐿 ← 𝐶𝐿 ∖ {𝑣}  

end for 

Algorithm 2. Diversification generation. 

The 𝑅𝑎𝑛𝑑𝑜𝑚 function in Algorithm 2 selects a vertex at random from the 𝑅𝐶𝐿. The Insert function 

calculates the barycenter (for C1 or C2) and then inserts 𝑣 in the previous drawing 𝐼𝐷𝑡−1. The results 

of the insertion is the current drawing 𝐼𝐷𝑡. 

The improving procedure is a simple local search based on a neighborhood that attempts to displace 

a vertex a single position. The method sweeps the entire solution, one vertex at a time, and probes 

the movement of vertices to their adjacent positions. Thus, a vertex 𝑣 currently in position 𝜋(𝑣) is 

evaluated for a possible move to position 𝜋(𝑣) − 1 and to 𝜋(𝑣) + 1. The move must be feasible with 

respect to the relative position of 𝑣 and the positions of other original vertices in the same layer. The 

procedure acts as a true local search in the sense that it only executes improving moves and it stops 

when no improving is possible. The best-move strategy is used, meaning that, in each iteration, all 

vertices are scanned to detect the most improving move. 

4.2 Combinations 

Path relinking (PR) is used as the main mechanism to combine solutions (Glover F. , 1997). PR was 

originally proposed as a strategy to integrate search diversification and intensification in the context 

of Tabu Search (Glover & Laguna, 1997). The technique was later adapted, in the context of graph 

drawing (Laguna & Martí, 1999), as an intensification strategy for GRASP, resulting in a family of 

procedures known as GRASP with PR (Resende & Ribeiro, 2005). It is based on the exploration of paths 

that connect high-quality solutions, by generating intermediate solutions that could be better or more 

diverse than the solutions being connected. These solutions are known as the initiating solution and 

the guiding solution. In our context, we refer to the initiating solution as the incremental drawing 𝐼𝐷𝑖  

and to the guiding solution as the incremental drawing 𝐼𝐷𝑔. 
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The path relinking process consists of replacing an entire layer from a current solution with a layer 

from 𝐼𝐷𝑔. The relinking is completed in 𝑘 steps and it generates 
𝑘(𝑘+1)

2
− 1 intermediate solutions. 

Figure 6 illustrates the path relining process for a drawing with 8 vertices and 3 layers.  

 

Figure 6. Illustration of path relinking. 

The white vertices correspond to the ordering in 𝐼𝐷𝑖  and the black vertices correspond to the ordering 

in 𝐼𝐷𝑔. The intermediate solution 𝐼𝐷1 is built by replacing the first layer in 𝐼𝐷𝑖  with the first layer in 

𝐼𝐷𝑔. Similarly, intermediate solutions 𝐼𝐷2 and 𝐼𝐷3 are constructed by replacing layers 2 and 3. The 

process continues from the best solution found, breaking ties arbitrarily. Since 𝐶(𝐼𝐷1) = 𝐶(𝐼𝐷2) =

2, then the process could continue from either one of these solutions. In our illustration, we select 

𝐼𝐷2. Solutions 𝐼𝐷4 and 𝐼𝐷5 are generated by replacing layer 1 and 3, respectively. The process 

terminates when layer 1 is replaced in solution 𝐼𝐷5. In this case, PR is able to find a solution (𝐼𝐷5) that 

is better than both 𝐼𝐷𝑖  and 𝐼𝐷𝑔. The best intermediate solution found during the PR process is 

subjected to the improvement method. This is standard procedure in SS implementations. 

 

5. Variable-Neighborhood Scatter Search 

In the previous section, we described the elements of a SS implementation that uses a local search 

with a simple neighborhood as the improvement method. In order to enhance the exploration around 

solutions that the SS creates with the diversification generator and the combination method, we 

expand the improvement method to include multiple nested neighborhoods. The expansion follows 

the variable neighborhood search (VNS) framework. VNS is a general metaheuristic methodology 

whose search trajectories are dictated by systematic changes of neighborhood structures (Mladenović 

& Hansen, 1997). Recently, a number of variants have been suggested, including variable 

neighborhood descent (Hansen, Mladenović, & Moreno-Pérez, 2008). 

Variable neighborhood descent (VND) is based on the notion that the exploration from a given solution 

should start in the smallest neighborhood (𝑁𝑠). If no improvement is found, then the search should be 
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expanded to a larger neighborhood. This continues until the search reaches the largest neighborhood 

available (𝑁𝑙). If at any point, for example during the exploration of 𝑁𝑞, an improved solution is found, 

then the process is reinitiated in the smallest neighborhood (𝑁𝑠). On the other hand, the process stops 

if all the neighborhoods (from 𝑁𝑠 to 𝑁𝑙) have been explored and no improvement is found. In nested 

neighborhoods, such as the ones used in this work, 𝑁𝑞 ⊆ 𝑁𝑞+1 for 𝑞 = 𝑠,… , 𝑙 − 1.  

We define 𝑁𝑞 as the neighborhood obtained by inserting vertex 𝑣, currently in 𝜋(𝑣), in positions 

𝜋(𝑣) − 𝑞 and 𝜋(𝑣) + 𝑞. The nested nature of the neighborhoods is such that at most 2|𝐼𝑉| solutions 

need to be considered in each of them since the procedure discards infeasible moves. Recall that 

infeasibility is produced by the desire to preserve the relative order of the vertices in 𝑉. In addition, 

moves that result in positions outside the range of 1 and |𝐿𝑖| in any given layer 𝑖 are also discarded. 

Algorithm 3 summarizes the steps in the VND improvement method. 

𝑞 ← 𝑠  

do 

𝐼𝐷∗ ← arg min
𝐼𝐷∗∈𝑁𝑞

𝐶(𝐼𝐷)  

if 𝐶(𝐼𝐷∗) < 𝐶(𝐼𝐷) then 

𝐼𝐷 ← 𝐼𝐷∗ 

𝑞 ← 𝑠 

else 

𝑞 ← 𝑞 + 1 

end if 

while 𝑞 < 𝑙 

Algorithm 3. VND improvement method. 

The move value calculations can be performed very efficiently because the change in the number of 

arc crossings produced from moving vertex 𝑣 from its current position 𝜋(𝑣) to position 𝜋(𝑣) + 𝑞 (or 

𝜋(𝑣) − 𝑞) depends on the changes produced from moving vertex 𝑣 to positions 𝜋(𝑣) + 𝑗 (or 𝜋(𝑣) −

𝑗) for 𝑗 = 1, … , 𝑞 − 1. Therefore, the move value calculations for 𝑁𝑞 are the basis for the move-value 

calculations for 𝑁𝑞+1. 

Our variable-neighborhood scatter search (VNSS) is the result of embedding VND in SS. Instead of 

simply replacing the local search with VND, we create a fuller integration of the two methodologies. 

In a typical SS implementation, the search stops when no new solutions are admitted in the reference 

set. The decision at that point is either to stop completely or to restart the search by introducing new 

(diverse) solutions in the reference set. Instead of restarting after failing to update the reference set, 

VNSS increases the size of the neighborhood. Upon success, the neighborhood goes back to the 

smallest size. If a SS iteration with the largest neighborhood 𝑁𝑙 does not produce new reference 

solutions, the procedure stops. Algorithm 4 summarizes the VNSS logic. 
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𝑞 ← 𝑠  

𝑃 ← Diversification generation 

𝑃∗ ← VND(𝑃, 𝑞) 

𝑅𝑒𝑓𝑆𝑒𝑡 ← Reference set update(𝑃∗) 

do 

do 

𝑃𝑎𝑖𝑟𝑠 ← Subset generation(𝑅𝑒𝑓𝑆𝑒𝑡) 

𝑇𝑟𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← Combinations(𝑃𝑎𝑖𝑟𝑠) 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← VND(𝑇𝑟𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠, 𝑞) 

𝑅𝑒𝑓𝑆𝑒𝑡 ←Reference set update(𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠) 

if 𝑅𝑒𝑓𝑆𝑒𝑡 changed then 

𝑁𝑒𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝑇𝑅𝑈𝐸  

𝑞 ← 𝑠  

else 

𝑁𝑒𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ← 𝐹𝐴𝐿𝑆𝐸  

end if 

while 𝑁𝑒𝑤𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 

 𝑞 ← 𝑞 + 1  

while 𝑞 < 𝑙 

Algorithm 4. Variable-neighborhood scatter search. 

There are two important differences between Algorithm 1 and 4. The first one is that the improvement 

method has been replaced with the VND method. The second one is that in Algorithm 1 the search 

terminates when no new solutions are admitted in the reference set. In Algorithm 4 the search 

continues at this stage, as long as parameter 𝑞 is lower than 𝑙. Table 2 summarizes the search 

parameters of the entire VNSS method. 

 Search Parameters 

𝛼 Used in construction methods (C1, C2) to trade off randomization and 
greediness 

𝜏 Threshold that represents a degree that is in the top 𝛼 percentile of the degree 
range for the vertices in the Candidate List (CL)  

𝑠 Smallest neighborhood in the VNSS method 
𝑙 Largest neighborhood in the VNSS method 

Table 2. Parameters in the VNSS method. 

 

6. Computational Experiments 

This section describes the computational experiments that we performed to test the effectiveness and 

efficiency of the procedures discussed above. The GRASP (Section 3) was implemented in C++. The 

scatter search (Section 4) and the variable neighborhood scatter search (Section 5) were implemented 

in Java. All experiments were conducted on a 2.8 Ghz Intel Core i7 processor with 8 GB RAM. 

For each experiment, we report the following performance measures: Average number of crossings 

(𝐶̅), computing time in seconds (Time), average deviation with respect to the best solution found in 
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the experiment (Dev), and number of best solutions found in the experiment (Best). Note that both 

Dev and Best refer to the solutions found within the experiment and not the best solutions known for 

these problems. 

6.1 Problem Instances 

We employed 240 instances in our experimentation. This set of instances, referred to as IGDPLIB, is 

available at http://www.optsicom.es/igdp. The hierarchical graphs were generated following the 

guidelines in the literature (Laguna, Marti, & Valls, 1997). The number of layers is an input to the graph 

generator and the number of vertices in each layer is randomly chosen between 5 and 30. For each 

vertex 𝑢 in layer 𝐿𝑖, an arc to a randomly chosen vertex 𝑣 in layer 𝐿𝑖+1 is included. This guarantees 

that all vertices in layers 𝐿1 to 𝐿𝑘−1 have a degree of at least one. In addition, the generator checks 

that all vertices in the last layer have a degree of at least one. If a vertex in layer 𝐿𝑘  is found with a 

degree of zero, an arc is added to a randomly chosen vertex in layer 𝐿𝑘−1. Next, the generator 

compares the current number of arcs with the number of arcs that are required to meet the desired 

density. The generator then adds enough arcs to cover the difference between the current number 

and the number that results from the desired density. The additional arcs are added by randomly 

choosing two vertices in consecutive layers. We used the generator to create 240 instances with the 

following characteristics. For each combination of 2, 6, 13, and 20 layers and 0.065, 0.175 and 0.3 

graph densities, 20 instances were generated. We then applied the barycenter algorithm described in 

Section 2 to obtain a drawing 𝐷 for each graph.  

The set 𝑉̂ of incremental vertices is created according to a parameter 𝛿  that establishes the 

percentage of additional vertices to be added to each layer. Thus, each layer in the augmented 

problem has (1 + 𝛿)𝐿𝑖 vertices and |𝑉̂| = 𝛿|𝑉|. For each vertex in 𝑉̂ ∩ 𝐿𝑖 (𝑖 = 1,… 𝑘 − 1), that is, for 

each incremental vertex in all but the last layer, an arc is added to a randomly selected vertex in 𝐿𝑖+1. 

Similarly, for each vertex in 𝑉̂ ∩ 𝐿𝑘  an arc is added to a randomly chosen vertex in 𝐿𝑘−1. This 

guarantees that each new vertex has a degree of at least one. Additional arcs are added by randomly 

choosing two vertices in consecutive layers, up to the desired number dictated by 𝛿. Of the 20 

instances generated for each combination of number of layers and density, 10 are augmented by 20 

% (𝛿 = 1.2) and 10 are augmented by 60% (𝛿 = 1.6). 

6.2 Algorithm Configuration and Fine-Tuning 

The goal of our preliminary experimentation is to find effective configurations for SS and VNSS and to 

fine tune their algorithmic parameters. Our training set consists of 24 representative instances form 

the set of 240. We first test the constructive methods C1 and C2, described in Section 3.1. The 

performance of these procedures depends on the parameter 𝛼, which balances greediness and 

randomness. We tested three values of 𝛼 on each procedure (0.25, 0.50, and 0.75) and determined 

that the best performance for C1 is achieved with 𝛼 = 0.5 and the best performance for C2 is achieved 

with 𝛼 = 0.75. Computational effort does not play a role because both procedures build solutions in 

a negligible amount of time. So, our conclusions are based on average quality and number of best 

solutions found when generating 100 constructions for each instances in the training set. 

Using these parameter values, we tested C1 and C2 against the construction procedure of the 

published GRASP (Martí & Estruch, 2001). We refer to this procedure as M&E 2001. We use the 

training set and generate 100 solutions, with each procedure, for each of the 24 instances in the 

training set. Table 3 shows the summary of the results. This table reveals that both C1 and C2 

outperform M&E 2001 in average solution quality and average deviation with respect to the best 
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solution. In terms of number of best solutions found, C1 is clearly superior to the other two 

alternatives. Finally, notice that as we mentioned above, the associated computing time is almost 

negligible. These results support the selection of C1 with 𝛼 = 0.5 as the construction to use to 

generate solutions in the initial step of our scatter search. 

Procedure 𝑪̅ Dev (%) Best Time (s) 

C1(0.50) 14234.29 1.58 17 0.14 
C2(0.75) 14391.96 4.84 4 0.15 
M&E 2001 15238.71 24.52 4 0.31 

Table 3. Comparison of the proposed constructive methods and the best in the literature. 

The next fine-tuning experiment is devoted to the VNSS parameters, 𝑠 and 𝑙. These parameters 

indicate the smallest and the largest neighborhoods, respectively, to be used in the VND improvement 

method.  The goal is to find values for 𝑠 and 𝑙 that result in an effective tradeoff between solution 

quality and computational effort. The experiment consists of, for each of the 24 instances in the 

training set, generating 100 solutions with C1(0.5), improving these solutions with VND, and then 

recording the best solution found for each instance. This is done for several values of 𝑞. In particular, 

we run VND(100, 𝑞) for 𝑞 ranging from 1 to 10. Figure 7 presents the scatter plot of the results, 

reporting the average number of crossings of the best solutions found (y-axis) and the total computing 

time, which includes both construction and improvement (x-axis). 

 

Figure 7. Solution quality vs. computational time for VND(𝑞) 

 

As expected, Figure 7 shows that the quality of the solutions can be improved by using larger 

neighborhoods and therefore more computational time. In terms of speed, not surprisingly, 𝑞 = 1 

results in the fastest method, but it also yields the lowest solution quality. Improvement in solution 

quality is achieved by increasing 𝑞. The largest improvements are from 𝑞 = 1 to 𝑞 = 2 and from 𝑞 =

2 to 𝑞 = 3. The graph shows diminishing quality improvement for larger 𝑞 values and almost no 

improvement after 𝑞 = 7. Therefore, we choose 𝑠 = 3 and 𝑙 = 7. 
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6.2 Competitive Testing 

For the competitive testing, we compare the procedures that we developed (SS and VNSS) and the 

adaptation of GRASP (Martí and Estruch, 2001) to the multilayered problem. This experiment consists 

of executing the three procedures on the entire set of 240 instances. We report the results in 4 tables, 

two tables for the instances generated with 𝛿 = 1.2 and two tables for instances generated with 𝛿 =

1.6. The tables focus on solution quality, as measured by average deviation from the best and number 

of best solutions found. There is one table for each of these metrics and for each 𝛿. Each cell in the 

table reports the results obtained by the three procedures. The columns in the tables correspond to 

the graph densities and the rows to the number of layers. Therefore, each cell in a table represents 10 

problem instances. Figures 8 and 9 summarize these results. Figure 8 shows for each density value the 

average deviation that each method exhibits in the set of instances, while Figure 9 shows the number 

of instances in which each method is able to match the best solution known. Since the differences 

among the three methods are large, we use a logarithmic scale in the 𝑦-axis. Both diagrams clearly 

show the superiority of the results obtained with the VNSS method. 

 

Figure 8. Average deviation w.r.t. best known solutions. 

 

 

Figure 9. Number of best solutions found with each method. 
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Layers 
Graph Density 

0.065 0.175 0.3 

2  VNSS 63.05 
 SS 51.45 
 GRASP 198.25 

 VNSS 23.39 
 SS 18.29 
 GRASP 2.21 

 VNSS 10.79 
 SS 8.17 
 GRASP 1.31 

6  VNSS 0.00 
 SS 5.48 
 GRASP 69.60 

 VNSS 0.00 
 SS 1.32 
 GRASP 7.63 

 SS 0.62 
 VNSS 2.19 
 GRASP 2.66 

13  VNSS 0.00 
 SS 3.97 
 GRASP 34.50 

 VNSS 0.00 
 SS 1.91 
 GRASP 7.16 

 VNSS 0.00 
 SS 0.80 
 GRASP 3.46 

20  VNSS 0.00 
 SS 4.68 
 GRASP 34.94 

 VNSS 0.00 
 SS 1.26 
 GRASP 8.07 

 VNSS 0.00 
 SS 0.82 
 GRASP 3.52 

Table 4. Average deviation from best for instances generated with 𝛿 = 1.2. 

 

Layers 
Graph Density 

0.065 0.175 0.3 

2  VNSS 4 
 SS 5 
 GRASP 4 

 VNSS 2 
 SS 5 
 GRASP 5 

 VNSS 3 
 SS 5 
 GRASP 3 

6  VNSS 10 
 SS 1 
 GRASP 0 

 VNSS 10 
 SS 1 
 GRASP 0 

 VNSS 7 
 SS 3 
 GRASP 0 

13  VNSS 10 
 SS 0 
 GRASP 0 

 VNSS 10 
 SS 0 
 GRASP 0 

 VNSS 10 
 SS 0 
 GRASP 0 

13  VNSS 10 
 SS 0 
 GRASP 0 

 VNSS 10 
 SS 0 
 GRASP 0 

 VNSS 10 
 SS 0 
 GRASP 0 

Table 5. Number of best solutions (out of 10) for instances generated with 𝛿 = 1.2. 

Layers 
Graph Density 

0.065 0.175 0.3 

2  VNSS 47.50 
 SS 17.52 
 GRASP 1076.26 

 VNSS 0.00 
 SS 2.15 
 GRASP 32.75 

 VNSS 0.00 
 SS 1.87 
 GRASP 15.13 

6  VNSS 0.00 
 SS 9.44 
 GRASP 122.48 

 VNSS 0.00 
 SS 4.67 
 GRASP 23.14 

 VNSS 0.00 
 SS 2.80 
 GRASP 11.04 

13  VNSS 0.00 
 SS 11.03 
 GRASP 79.97 

 VNSS 0.00 
 SS 4.61 
 GRASP 19.03 

 VNSS 0.00 
 SS 3.11 
 GRASP 11.07 

20  VNSS 0.00 
 SS 9.99 
 GRASP 70.54 

 VNSS 0.00 
 SS 4.95 
 GRASP 20.59 

 VNSS 0.00 
 SS 3.00 
 GRASP 11.99 

Table 6. Average deviation from best for instances generated with 𝛿 = 1.6. 
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Layers 
Graph Density 

0.065 0.175 0.3 

2  VNSS 9 
 SS 7 
 GRASP 0 

 VNSS 10 
 SS 4 
 GRASP 0 

 VNSS 10 
 SS 0 
 GRASP 0 

6, 12, 13, 
and 20 

 VNSS 10 
 SS 0 
 GRASP 0 

 VNSS 10 
 SS 0 
 GRASP 0 

 VNSS 10 
 SS 0 
 GRASP 0 

Table 7. Number of best solutions (out of 10) for instances generated with 𝛿 = 1.6. 

The results in the tables show the advantage of VNSS over SS and GRASP. GRASP is only able to 

produce better results than VNSS in 2-layer graphs with 𝛿 = 1.2 and densities of 0.175 and 0.3 (see 

Table 4). There are 12 cases in each table and a total of 4 tables. Out of these 48 cases, VNSS produces 

the best results in 41. VNSS is particularly effective in graphs with 𝛿 = 1.6.  

Statistical test 𝒑 𝒗𝒂𝒍𝒖𝒆 Statistical differences? 

Friedman’s test to VNSS, SS and GRASP < 0.001 YES 

Wilcoxon’s test to VNSS and SS < 0.001 YES 

Table 8. Statistical tests summary. 

We applied Friedman’s test using the results obtained for all 240 instances. This test computes, for 

each instance, the rank value of each method according to solution quality. Then, it calculates the 

average rank values of each method across all the instances solved. If the averages differ greatly, the 

associated 𝑝 value will be small. The 𝑝 value of less than 0.001 indicates significant differences among 

the average rank of the methods, which were 1.20, 1.93, and 2.68 for VNSS, SS, and GRASP, 

respectively. We also applied Wilcoxon’s test to VNSS and SS, which in general terms answers the 

question: Do the two samples (solutions obtained with the methods) represent two different 

populations? The obtained 𝑝 value less than 0.001 indicates a significance difference between the 

quality of the results of VNSS and SS. Table 8 summarizes these tests. 

 

 

Figure 10. Original drawing. 
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To complement our empirical analysis, we illustrate now the performance or the VNSS method when 

solving an instance with 6 layers, 181 vertices, and 242 arcs. Figure 10 represents the initial drawing 

in which we can identify the original vertices (in grey), and the added vertices (in black), located in the 

bottom part of the diagram. After applying the VNSS method, vertices are rearranged to minimize the 

number of arc crossings, as shown in Figure 11. It is clear that the output of our method with 634 

crossings provides a much readable diagram than the original graph with 1,531 crossings. 

 

Figure 11. Drawing obtained with VNSS 

 

The test instances considered in this section range from 25 to 676 vertices, so an interesting question 

is how would perform our algorithm on larger instances.  It is always interesting to investigate the 

scalability of a heuristic method with respect to its running time. To do so, we performed a linear 

regression between the running time (𝑦 variable) and the number of vertices (𝑥 variable). We obtained 

a correlation coefficient of 0.75 and a regression line of 𝑦 = −13.3 + 0.1𝑥.  The statistical test on the 

slope indicates that the line fits well on the data, so we can expect a linear growth of the running time 

with respect to the instance size. 

7. Conclusions 

We had a twofold goal for this work, to experiment with the hybridization of VNS and SS and, in the 

process, to develop a state-of-the-art procedure for the multilayered incremental graph-drawing 

problem. We believe that we have achieved the first goal with the VNSS design. The merit of this 

hybrid method is that it preserves the main characteristics of both VNS and SS. The design is simple 

but effective. SS implementations reported in the literature use restarting to induce diversity when 

the search fails to update the reference set. Instead of restarting, diversity in VNSS is achieved by 

following the VNS strategy of expanding the neighborhood. Upon success (i.e., when new solutions 
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are admitted in the reference set), the neighborhood search is contracted. This also follows the VNS 

philosophy and provides an excellent balance between intensification and diversification within the 

framework of SS. 

In terms of our second goal, the results reported in Tables 4 to 7 are very strong in favor of VNSS. We 

have established benchmarks for the instances that we created and we believe that they will help 

other researchers test additional search strategies on this interesting combinatorial optimization 

problem. 
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