
1

Tabu Search for the Dynamic Bipartite Drawing Problem

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa,
Universidad de Valencia, Spain
Rafael.Marti@uv.es

ANNA MARTÍNEZ-GAVARA
Departamento de Estadística e Investigación Operativa,
Universidad de Valencia, Spain
gavara@uv.es

JESÚS SÁNCHEZ-ORO
Dept. Computer Sciences,
Universidad Rey Juan Carlos, Spain.
jesus.sanchezoro@urjc.es

ABRAHAM DUARTE
Dept. Computer Sciences,
Universidad Rey Juan Carlos, Spain.
Abraham.Duarte@urjc.es

Abstract

Drawings of graphs have many applications and they are nowadays well-established tools in
computer science in general, and optimization in particular. Project scheduling is one of the
many areas in which representation of graphs constitutes an important instrument. The
experience shows that the main quality desired for drawings of graphs is readability, and
crossing reduction is a fundamental aesthetic criterion to achieve it. Incremental or dynamic
graph drawing is an emerging topic in this context, where we seek to preserve the layout of a
graph over successive drawings. In this paper, we target the edge crossing reduction in the
context of incremental graph drawing. Specifically, we apply a mathematical programming
formulation and several heuristic methods based on the tabu search methodology to solve it. In
line with the previous paper on this topic, we consider bipartite graphs in our experimentation.
The extensive computational experiments with more than 1,000 instances show the superiority
of our proposals in both, quality and computing time.

Key Words: graph drawing, incremental drawing, bipartite graphs, dynamic representations.

Version: 27th October, 2017

mailto:Rafael.Marti@uv.es
mailto:gavara@uv.es
mailto:jesus.sanchezoro@urjc.es
mailto:Abraham.Duarte@urjc.es

2

1. Introduction
Information systems are nowadays commonly represented with a drawing, which makes them
easier to interpret and understand. Graphs are the basic modeling unit in a wide variety of areas,
like project management, production scheduling, line balancing, business plans or software
visualization. This is why graph drawing has become an important research area, with a large
number of related publications. We refer the reader to the book by Di Battista et al. (1999) for
a survey on graph drawing techniques. In Gibson et al. (2012) and Beck et al. (2016) more recent
studies on drawing conventions, models and aesthetic criteria can also be found.

The selection of a measure or criterion to evaluate the quality of a graph drawing is somehow
controversial given the many different approaches to this problem. However, the number of
edge crossings is a widely-admitted criterion for evaluating the quality of a drawing. As stated
by Carpano (1980), the fewer crossings the better the drawing. Since this seminal work, many
authors have proposed crossing minimization methods to improve the readability of the
drawing. In particular, Garey and Johnson (1983) proved that the problem of minimizing the
number of crossings is NP-hard, and Purchase (2002) proved it to be one of the most important
measures among seven aesthetic metrics to evaluate the quality of a graph drawing. This author
performed a thorough aesthetic analysis of graph drawings produced by traditional layout
algorithms, where crossing reduction emerged as a key objective.

Jünger and Mutzel (1997) presented several exact and heuristic algorithms for crossing
minimization in bipartite graphs (also called 2-layered straight-line hierarchies). In particular,
they compared the results obtained by fixing the ordering of the vertices in one layer and moving
only the vertices in the other layer with the results of solving the general problem of moving
(reordering) all the vertices in the graph. The authors also proposed a mathematical
programming formulation to the general crossing minimization problem that we adapt in this
paper to the dynamic case.

1.1 Previous Studies on the Dynamic Problem.

One of the most challenging areas in graph drawing is the one devoted to the so-called dynamic
or incremental representations. As mentioned in Diehl and Görg (2002), in dynamic graph
drawing we have to compute the layout of a graph evolving over time. A graph is modified by
adding and deleting vertices and edges and we have to represent both, the original and the
resulting graph. The drawing of the new graph, after the modifications, as an independent
problem (i.e., from scratch) would be inefficient, since the graph has been slightly modified from
the original drawing. As pointed out by Eades et al. (1991), the user has built up a mental map
when reading the original drawing, so he or she expects the new graph to be represented in a
similar way (layout) than the original one. This is why researchers in the area (see for example
Branke, 2001), established that it would be advantageous to minimize the effort of the user to
become familiar with a graph, i.e., to build the mental map. Therefore, minimizing the changes
between the original and the new graph is a desired objective in dynamic graph drawing.

As it is well-known in this field, there are many different paradigms for graph drawing, being
probably orthogonal and hierarchical the most popular ones. Special attention therefore
deserves the paper by Görg et al. (2004), where drawing sequences of orthogonal and
hierarchical graphs are studied. In this latter case of hierarchical graph, they proposed a way to
capture the idea of preserving the mental map. Specifically, considering that the ordering of

3

vertices in each layer is responsible for the number of edge crossings, Görg et al. (2004)
considered to preserve the relative order of the original vertices in the corresponding layer.
Martí and Estruch (2001) proposed independently the same criterion to reflect the idea of
stability across drawings: keep the relative ordering among the common vertices. These authors
also proposed exact and heuristic methods to obtain solutions to this hard optimization
problem. We follow these two works in our approach, and focus in this paper on preserving the
relative order of the original vertices when drawing the new graph.

Di Battista et al. (1999) used the term incremental construction in the context of planar graphs.
Martí and Estruch (2001) introduced the term incremental graph drawing to describe their
problem on 2-layered graphs. Other authors, such as Branke (2001) and Görg et al. (2004), used
the term dynamic graph drawing to refer to the same type of problems. We propose to call this
problem of incremental or dynamic edge crossing minimization in 2-layered graphs, simply as
Dynamic Bipartite Drawing Problem (DBDP). Several algorithms were developed to handle
dynamic graphs. For example, Diehl and Görg (2002); Kumar and Garland (2006); and Sallaberry
et al. (2012) presented algorithmic techniques in the context of clustering dynamic graphs.
Martí and Estruch (2001) proposed an exact procedure to target this NP-hard problem based on
the branch and bound methodology, which explores the set of solutions (permutations of the
vertices in each layer) with the so-called search tree. This method provides the optimal solution
for small size instances of up to 32 vertices. The authors also proposed a heuristic based on
Greedy Randomized Adaptive Search Procedure (GRASP) to solve large size instances.

More recently, Burch et al. (2011) presented an eye tracking study for evaluating the quality of
node-link tree layout representing hierarchies. They concluded that radial representations are
the most space-efficient one, but they usually result in drawings that are difficult to interpret.
These authors recommended a traditional tree-diagram with the root on the top, which is similar
to bipartite graphs considered in this paper. Additionally, Van den Eltzen et al. (2013) developed
an extension for Massive Sequence Views with the aim of analyzing the temporal and structural
aspects of dynamic networks. This study allows the user to find anomalies in the network and
analyze temporal properties. More recently, Burch et al. (2017) proposed a novel visualization
technique for graphs with considerably large number of time steps (more than a thousand, as
stated by the authors).

In this paper, we limit our attention to hierarchical graphs, where vertices are arranged in layers
(drawn in parallel lines) and edges are drawn as straight lines. In line with Martí and Estruch
(2001), we consider the case of two layers (bipartite graphs), where nodes and edges have been
added to an original graph already drawn for crossing minimization. The problem is then to
insert the new nodes (and the corresponding edges) in the appropriate positions in order to
minimize the total number of edge crossings in the final graph. As mentioned above, the relative
order among the original nodes is kept. We compare our method, based on tabu search, with
their GRASP algorithm on a large set of instances, as well as with the optimal solution for small
size instances.

Note that our method can be applied to the general case of a sequence of drawings, not only to
the 2-step problem with an original drawing and an incremented one. As a matter of fact, the
DBDP can be easily extended to a sequence of 𝑛𝑛 drawings by simply performing one-step
optimization and then fix for the next step the new added nodes in the position obtained by the
tabu search algorithm. Then, in the next step, we consider the new set of nodes as those that
can be moved, and the ones added in the previous iterations as fixed that cannot be moved

4

again. The next subsection shows an example of a sequence of drawings to illustrate the general
application of our method.

1.2 Dynamic Graph Drawing Applications

We can find many applications of dynamic graph drawing in Management Science. In the case
of general digraphs, Project Management is probably one of the most well-known areas where
this problem finds a very useful application. It has been well document that many changes occur
during the development of a large project and they have to be reflected in the associated graph
or chart. Dynamic graph drawing is a demand of project managers who need a stable sequence
of drawings as the project evolves.

In the context of bipartite graphs, the well-known assignment problem provides interesting
applications of dynamic graph drawing. Figure 1 illustrates a so-called affiliation network, where
individuals and groups are represented with nodes, and edges represent membership of
individuals to that groups. Affiliation networks usually change during the time, since new groups
and members are systematically added. Figure 1a shows the original graph in which we can see
that individuals 1 and 2 belong to group A, and individual 3 belongs to groups B and C. Figure 1b
shows the same network at a later stage where some additions have been performed (nodes
highlighted in gray). Specifically, we can see a new individual, labeled as 5, belonging to group
A. Additionally, a new group, labeled as D, has also been included. Note that the edge from 5 to
A creates 3 crossings in this new graph. It is worth mentioning that the new graph preserves the
mental map of the original graph since the original vertices have not been moved. The challenge
in this context is therefore to minimize the number of crossings while preserving the mental
map.

(a). Original graph (b). New graph

Figure 1. Dynamic graph drawing illustration.

Assignment problems find nowadays many applications in Computer Science. For example,
queries on online advertisement (Antonellis et al., 2008) have to be represented as a sequence
of graphs for their analysis. In these bipartite graphs, the left layer represents queries performed
by users, while the right layer represents advertisements (ads). A link between a query and an
ad indicates that a query has been used to reach a specific ad. This kind of bipartite graphs are
naturally dynamic, since users are continuously doing queries, and new ads are included by the
companies. However, it is recommended by data analyzers to maintain the structure of the
graph when new queries and ads are added, so previously performed queries and old ads remain
in the same relative position.

5

Figure 2 shows a sequence of query-advertisement graphs with 9 original queries (numbered
from 0 to 8) connected with 9 ads (numbered from 10 to 18). The first drawing in the left of
Figure 2 shows the original 18 vertices with black circles where a new query and two ads are
added (nodes 9, 19, and 20 represented with white circles). This drawing has 80 edge crossings.

Figure 2. Dynamic graph drawing sequence.

The left drawing in Figure 2 is optimized according to the dynamic graph drawing problem (i.e.,
by relocating the new three nodes in the position that minimizes the number of crossings while
preserving the relative position of the original nodes), resulting in the drawing next to it with 67
edge crossings. In the third drawing (starting from the left) two new vertices are added to the
graph (vertex 10 representing a query and vertex 22 representing an ad), while the vertices
added in the previous step are now represented with black color since they are now fixed and
cannot be moved anymore. This drawing has 111 cuts. To simplify the notation, the label of the
vertices in the first layer is always smaller than the ones in the second layer, so node
renumbering is made on consecutive drawings. Finally, in the last drawing (the one in the right
side of Figure 2) the algorithm is executed again obtaining a drawing with 101 cuts.

In this paper, we first adapt the linear integer formulation proposed for the Bipartite Drawing
Problem (Jünger and Mutzel, 1997) to the dynamic variant considered here (Section 2). Then,
we first describe the previous heuristic method for this problem (Section 3), and describe our
algorithm based on the tabu search methodology (Section 4). In particular, we consider a greedy
randomized construction with a short-term tabu search improvement method. We also consider
several hybridizations of these methodologies with a path relinking post-processing (Section 5).
Our extensive experimentation with more than 1,000 instances shows the superiority of this
proposal with respect to the previous method (Section 6). The paper ends with the associated
conclusions and future works (Section 7).

2. Mathematical formulation
Jünger and Mutzel (1997) proposed the following linear integer formulation of the bipartite
drawing problem (BDP). Let 𝐺𝐺 = (𝑉𝑉1,𝑉𝑉2,𝐸𝐸) be a bipartite or 2-layered graph, with |𝑉𝑉1| = 𝑛𝑛1 and
|𝑉𝑉2| = 𝑛𝑛2. A drawing 𝐷𝐷 (BDP solution), is determined by the ordering 𝜋𝜋1 of 𝑉𝑉1, and the ordering
𝜋𝜋2 of 𝑉𝑉2, and it is denoted in mathematical terms as 𝐷𝐷 = (𝐺𝐺,𝜋𝜋1,𝜋𝜋2). The ordering 𝜋𝜋1
(symmetrically 𝜋𝜋2) assigns a distinct integer from 1 to 𝑛𝑛1 (symmetrically to 𝑛𝑛2) to each node 𝑣𝑣 ∈
 𝑉𝑉1 (𝑤𝑤 ∈ 𝑉𝑉2). For the sake of simplicity, we denote with 𝜋𝜋 the ordering of all vertices of the
graph. The authors introduced the binary variable 𝑥𝑥𝑖𝑖𝑖𝑖 that takes the value 1 if vertex 𝑖𝑖 precedes

6

vertex 𝑘𝑘 in the ordering of 𝑉𝑉1 (𝜋𝜋1(𝑖𝑖) < 𝜋𝜋1(𝑘𝑘)), and 0 otherwise. Symmetrically, for a pair of
vertices 𝑙𝑙, 𝑗𝑗 ∈ 𝑉𝑉2, the binary variable 𝑦𝑦𝑙𝑙𝑙𝑙 takes the value 1 when 𝑙𝑙 precedes 𝑗𝑗 (𝜋𝜋2(𝑙𝑙) < 𝜋𝜋2(𝑗𝑗)).

Figure 3. Examples of crossings.

As shown in Figure 3, a crossing between the edges (𝑖𝑖, 𝑗𝑗) and (𝑘𝑘, 𝑙𝑙) takes place when 𝜋𝜋1(𝑖𝑖) <
𝜋𝜋1(𝑘𝑘) and 𝜋𝜋2(𝑙𝑙) < 𝜋𝜋2(𝑗𝑗) (see Figure 3a), or 𝜋𝜋1(𝑖𝑖) > 𝜋𝜋1(𝑘𝑘) and 𝜋𝜋2(𝑙𝑙) > 𝜋𝜋2(𝑗𝑗) (see Figure 3b).
Jünger and Mutzel (1997) introduced the binary variable 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 that takes the value 1 when a
crossing between these two edges occurs. Note that constraints (1) and (2) below force 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 to
take the value 1 when the variables 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑙𝑙𝑙𝑙 indicate a crossing.

(BDP) 𝑀𝑀𝑀𝑀𝑀𝑀 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗),(𝑘𝑘,𝑙𝑙)∈𝐸𝐸

𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1 (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (1)

𝑥𝑥𝑘𝑘𝑘𝑘 + 𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1 (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (2)

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑘𝑘𝑘𝑘 ≤ 2 1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛1 (3)

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 + 𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 2 1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛2 (4)

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 = 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛1 (5)

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 = 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛2 (6)

𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}

Constraints (3) and (4) are the so-called 3-dicycle constraints, originally proposed for the Linear
Ordering Problem by Grötschel et al. (1984), and adapted by Jünger and Mutzel (1997) to the
bipartite drawing problem. Note that in this formulation only a fraction of the large number of
3-dicycle inequalities are included (those with 1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛). These authors solved the
formulation above with Cplex 4.0 and proposed a branch-and-cut approach. Within a time limit
of 3,600 seconds on a SUN ULTRA2 (167MHZ) workstation they were able to solve to optimality
small instances (with up to 44 vertices).

Given a bipartite graph 𝐺𝐺 = (𝑉𝑉1,𝑉𝑉2,𝐸𝐸) and a drawing 𝐷𝐷 = (𝐺𝐺,𝜋𝜋1,𝜋𝜋2), we can consider the
addition of some nodes and edges as described in the introduction, obtaining an incremental
graph. Martí and Estruch (2001) introduced it formally as 𝐼𝐼𝐼𝐼 = (𝐼𝐼𝑉𝑉1, 𝐼𝐼𝐼𝐼2, 𝐼𝐼𝐼𝐼) where 𝑉𝑉1 ⊆ 𝐼𝐼𝑉𝑉1,
𝑉𝑉2 ⊆ 𝐼𝐼𝑉𝑉2, and 𝐸𝐸 ⊆ 𝐼𝐼𝐼𝐼 (|𝐼𝐼𝑉𝑉1| = 𝑚𝑚1, |𝐼𝐼𝑉𝑉2| = 𝑚𝑚2). A drawing 𝐼𝐼𝐼𝐼 = (𝐼𝐼𝐼𝐼,𝜑𝜑1,𝜑𝜑2) is an incremental
drawing of 𝐷𝐷 = (𝐺𝐺,𝜋𝜋1,𝜋𝜋2) if the original vertices (those in 𝑉𝑉 = 𝑉𝑉1 ∪ 𝑉𝑉2) preserve their relative
ordering. In mathematical terms:

7

𝜑𝜑𝑖𝑖(𝑣𝑣) < 𝜑𝜑𝑖𝑖(𝑤𝑤) ∀𝑣𝑣,𝑤𝑤 ∈ 𝑉𝑉𝑖𝑖 ⟺ 𝜋𝜋𝑖𝑖(𝑣𝑣) < 𝜋𝜋𝑖𝑖(𝑤𝑤) 𝑖𝑖 = 1,2. (7)

For the sake of brevity, we denote with 𝜑𝜑 the ordering of the whole set of vertices of the
incremental graph.

We can easily adapt the mathematical formulation above to tackle the dynamic bipartite
drawing problem. In the DBDP, the relative position between each pair of original vertices (those
in 𝑉𝑉) is already set; therefore, the associated 𝑥𝑥-variables or 𝑦𝑦-variables, depending on which
layer they belong, can be fixed in the model. Similarly, the 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 variables with (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸
can be set as well.

(DBDP) 𝑀𝑀𝑀𝑀𝑀𝑀 ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗),(𝑘𝑘,𝑙𝑙)∈𝐼𝐼𝐼𝐼

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1 (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐼𝐼𝐼𝐼, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (8)

𝑥𝑥𝑘𝑘𝑘𝑘 + 𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1 (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐼𝐼𝐼𝐼, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (9)

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑘𝑘𝑘𝑘 ≤ 2 𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ 𝐼𝐼𝑉𝑉1 , 𝑖𝑖 < 𝑗𝑗, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑘𝑘 (10)

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 + 𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 2 𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ 𝐼𝐼𝑉𝑉2 , 𝑖𝑖 < 𝑗𝑗, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑘𝑘 (11)

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 = 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚1 (12)

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 = 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚2 (13)

𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉1 ∶ 𝜋𝜋1(𝑖𝑖) < 𝜋𝜋1(𝑗𝑗) (14)

𝑦𝑦𝑖𝑖𝑖𝑖 = 1 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉2 ∶ 𝜋𝜋2(𝑖𝑖) < 𝜋𝜋2(𝑗𝑗) (15)

𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}

Constraints (8) – (13) are straightforward adaptations of (1) – (6) in the BDP formulation
described above. New constraints (14) and (15) preserve the ordering of the original vertices.
We have empirically found that when (14) and (15) are included in this model, we also need to
include all the 3-dicycle constraints (now (10) and (11)) as in the original linear ordering
formulation. We will apply this model in our computational experience in Section 6.

3. Previous method
Martí and Estruch (2001) proposed a GRASP method for the DBDP. The GRASP methodology
(Festa and Resende, 2011) is based on the statistical sampling of the solution space. The
randomization component in the construction has the objective of obtaining relatively diverse
solutions, thus having candidate solutions in different regions of the search space. These
solutions are then submitted to a local search post-processing to obtain the so-called local
optima. We now describe in detail their heuristic method.

Constructive method

The constructive method by Martí and Estruch (2001) starts by creating a list 𝐶𝐶𝐶𝐶 of unassigned
vertices which, at the beginning, contains all the vertices of the graph. The first vertex 𝑣𝑣 is
randomly selected from all those vertices in 𝐶𝐶𝐶𝐶 with maximum degree. As it is customary in
GRASP, in subsequent construction steps, the next vertex 𝑣𝑣 is randomly selected from a restricted
candidate list, 𝑅𝑅𝑅𝑅𝑅𝑅, which consists of those vertices in 𝐶𝐶𝐶𝐶 with a degree of no less than 𝛼𝛼 times

8

the maximum degree in 𝐶𝐶𝐶𝐶. Vertex degree is calculated with respect to the partial subgraph
under construction (i.e., in which only those vertices previously located are considered).

A selected vertex 𝑣𝑣 is placed in its layer in the position prescribed by the barycenter calculation
(Di Battista et al., 1999), except for the first vertex, which is placed in an arbitrary position. The
barycenter of a vertex 𝑣𝑣 ∈ 𝐼𝐼𝑉𝑉1, 𝑏𝑏𝑏𝑏(𝑣𝑣), is the arithmetic mean of the current positions of the
vertices 𝑤𝑤 ∈ 𝐼𝐼𝑉𝑉2 adjacent to 𝑣𝑣 (similarly for the barycenter of a vertex in 𝐼𝐼𝑉𝑉2). If vertex 𝑣𝑣 belongs
to the original graph (i.e., 𝑣𝑣 ∈ 𝑉𝑉1 ∪ 𝑉𝑉2), then it can be allocated in positions that are feasible in
terms of the original ordering 𝜋𝜋. In other words, this construction is creating an ordering 𝜑𝜑 that,
as mentioned before, must verify that 𝜑𝜑𝑖𝑖(𝑣𝑣) < 𝜑𝜑𝑖𝑖(𝑤𝑤) for all vertices 𝑤𝑤 such that 𝜋𝜋𝑖𝑖(𝑣𝑣) <
𝜋𝜋𝑖𝑖(𝑤𝑤). Then, 𝑣𝑣 is placed in the closest feasible position to 𝑏𝑏𝑏𝑏(𝑣𝑣) with respect to 𝜋𝜋𝑖𝑖. The method
finishes when all the vertices have been allocated.

Local search method

Each step of the improvement phase is based on a probabilistic selection of the vertices, in order
to place them in the position that produces the maximum reduction in the number of crossings.
The probability P(𝑣𝑣) that a vertex 𝑣𝑣 is selected is proportional to its degree, 𝜌𝜌(𝑣𝑣) (i.e., higher
degree vertices are more likely to be selected):

P(𝑣𝑣) =
𝜌𝜌(𝑣𝑣)

∑ 𝜌𝜌(𝑢𝑢)𝑢𝑢∈𝐼𝐼𝐼𝐼

Then, if 𝑣𝑣∗ is the selected vertex, it is placed in the position that produces the minimum number
of crossings considering these three moves: to insert the vertex one position before the
barycenter (⌊𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌋ − 1), to insert the vertex at the barycenter position
(⌊𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌋ 𝑜𝑜𝑜𝑜 ⌈𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌉), and finally to insert the vertex one position after the barycenter
(⌈𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌉+ 1). As in the constructive method, the procedure is limited to perform feasible
moves with respect to the original ordering 𝜋𝜋. Therefore, if 𝑣𝑣∗ ∈ 𝑉𝑉, then its new position must
be feasible according to constraint (7) of the mathematical programming formulation (i.e., the
relative position of 𝑣𝑣∗ in the original drawing). The improvement phase finishes when all vertices
𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼 are considered, and no improving move is found.

4. A Hybrid tabu search method
It must be noted that the construction method described above computes the positions of all
vertices, original and added ones. In our view, it involves a relatively large computational effort,
considering that in the DBDP the ordering among the original vertices has to be kept. We
therefore propose an alternative method in which we consider the vertices in 𝑉𝑉1 and 𝑉𝑉2 already
allocated (according to 𝜋𝜋1,𝜋𝜋2 respectively), and explore where to allocate the new vertices to
complete the solution.

4.1 Constructive method

The construction phase starts by considering the original drawing 𝐷𝐷 as a partial solution. In the
constructive method by Martí and Estruch (2001), a selected vertex is placed in the position
prescribed by the barycenter. We propose here a different approach; in which we explore all
the possible insertions for a selected vertex.

9

Let 𝑁𝑁𝑁𝑁 be the set of new vertices (i.e, those added to the original graph). In mathematical terms,
𝑁𝑁𝑁𝑁 = 𝐼𝐼𝐼𝐼 ∖ 𝑉𝑉, where 𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼1 ∪ 𝐼𝐼𝐼𝐼2 and 𝑉𝑉 = 𝑉𝑉1 ∪ 𝑉𝑉2. The constructive method basically selects
an element in 𝑁𝑁𝑁𝑁 and inserts it in the partial solution under construction (initially 𝐷𝐷). The
procedure evaluates each candidate element 𝑣𝑣 with a greedy function 𝑔𝑔(𝑣𝑣) in order to identify
the best elements, and adds them to the Restricted Candidate List (𝑅𝑅𝑅𝑅𝑅𝑅), where one of them
will be randomly selected as it is customary in GRASP (Resende and Ribeiro, 2001). Initially, the
candidate list consists in the set of new vertices (𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁). In subsequent iterations, when a
vertex 𝑣𝑣 is selected and inserted in the partial solution, the candidate list is updated by removing
it (𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣}).

We propose the following greedy function to compute the increment in the objective function
if a vertex 𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 is added to the partial solution. We define 𝐶𝐶(𝑣𝑣,𝑝𝑝) as the number of crossings
generated by inserting vertex 𝑣𝑣 in position 𝑝𝑝 (in its corresponding layer) in the partial solution.
In other words, if the partial solution has 𝑐𝑐 crossings and we insert 𝑣𝑣 in position 𝑝𝑝, we obtain a
partial solution with 𝑐𝑐 + 𝐶𝐶(𝑣𝑣,𝑝𝑝) crossings. We examine all the positions to insert 𝑣𝑣 and select
the best one, 𝑝𝑝∗, minimizing the number of crossings:

𝑔𝑔(𝑣𝑣) = 𝐶𝐶(𝑣𝑣,𝑝𝑝∗) = min
𝑝𝑝
𝐶𝐶(𝑣𝑣,𝑝𝑝), (16)

In the case that several positions have the same minimum 𝐶𝐶-value, the position 𝑝𝑝∗ is selected at
random among them. We compute 𝑔𝑔(𝑣𝑣) for all the candidate vertices (in 𝐶𝐶𝐶𝐶), and build 𝑅𝑅𝑅𝑅𝑅𝑅
with those that, according to the greedy function, achieve a relatively low increment in the
objective function value, 𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶: 𝑔𝑔(𝑣𝑣) ≤ 𝜏𝜏} , where

𝜏𝜏 = min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑣𝑣) + 𝛼𝛼 �max
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑣𝑣) − min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑣𝑣)� (17)

and 𝛼𝛼 is a search parameter that we will empirically set in our experimentation (see Section 6).
The process continues until all new vertices are included in the partial solution, thus obtaining a
complete solution that we call incremental drawing 𝐼𝐼𝐼𝐼. This is the standard GRASP design in
which, in short, we can say that we first apply greediness and then randomness.

4.2 Tabu Search

Instead of the standard local search improvement method, we coupled our GRASP construction
with a short term tabu search (TS). This methodology (Glover and Laguna, 1997) is a
metaheuristic that guides a local search procedure to explore the solution space beyond local
optimality. One of the main components of TS is the use of adaptive memory, which creates a
flexible search behavior. Tabu search begins in the same way as ordinary local or neighborhood
search, proceeding iteratively from one solution to another. Each solution, called 𝐼𝐼𝐼𝐼 in our
problem, has an associated neighborhood 𝑁𝑁(𝐼𝐼𝐼𝐼), containing the solutions 𝐼𝐼𝐼𝐼’ ∈ 𝑁𝑁(𝐼𝐼𝐼𝐼) that can
be reached from 𝐼𝐼𝐼𝐼 by an operation called a move. We may contrast TS with a simple descent
local search method that only permits moves to neighbor solutions that improve the current
objective function value, ending when no further improvement is possible. On the contrary, TS
permits moves that deteriorate the current objective function value. Moves are chosen from a
modified neighborhood 𝑁𝑁∗(𝐼𝐼𝐼𝐼), which is the result of maintaining a selective history of the
states encountered during the search. In this section, we limit ourselves to a short-term memory
design, which specifies to record recent information (usually solution or moves attributes) to

10

exclude certain solutions to become part of 𝑁𝑁∗(𝐼𝐼𝐼𝐼). We refer the reader to Glover and Laguna
(1997) for further details about this methodology and successful applications.

Given a solution 𝐼𝐼𝐼𝐼, we propose a neighborhood 𝑁𝑁(𝐼𝐼𝐼𝐼) based on moving a vertex 𝑣𝑣 ∈ 𝑁𝑁𝑁𝑁 to a
new position. Note that we only consider moving new vertices, since original vertices cannot
change their relative position. In particular, we define 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) to insert vertex 𝑣𝑣 in a
previous position to its current one. In other words, if vertex 𝑢𝑢 precedes 𝑣𝑣 in its layer, this move
swaps 𝑢𝑢 and 𝑣𝑣. Similarly, we define 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣) to insert vertex 𝑣𝑣 in a posterior position to
its current one (i.e., if vertex 𝑤𝑤 succeeds 𝑣𝑣 in its layer, this move swaps 𝑣𝑣 and 𝑤𝑤).

Given two vertices 𝑢𝑢 and 𝑣𝑣 in 𝐼𝐼𝐼𝐼1 (usually called the left layer) and a drawing 𝐼𝐼𝐼𝐼, let 𝑙𝑙𝑢𝑢𝑢𝑢 be the
number of crossings between the edges incident to 𝑢𝑢 and the edges incident to 𝑣𝑣, when 𝑢𝑢
precedes 𝑣𝑣 in its layer (i.e., when 𝜑𝜑1(𝑢𝑢) < 𝜑𝜑1(𝑣𝑣)). Note that this value depends on the ordering
of their adjacent vertices in 𝐼𝐼𝐼𝐼2. Similarly, given two vertices 𝑢𝑢 and 𝑣𝑣 in 𝐼𝐼𝐼𝐼2 (usually called the
right layer), we define 𝑟𝑟𝑢𝑢𝑢𝑢 as the number of crossing between their incident edges when 𝑢𝑢
precedes 𝑣𝑣 (and 𝑟𝑟𝑣𝑣𝑣𝑣 when 𝑣𝑣 precedes 𝑢𝑢).

To record this information, we define two matrices 𝐿𝐿 (left layer) and 𝑅𝑅 (right layer) with the
number of edge crossings between two vertices as described above:

𝐿𝐿 = (𝑙𝑙𝑢𝑢𝑢𝑢) ∀𝑢𝑢, 𝑣𝑣 ∈ 𝐼𝐼𝑉𝑉1

(18)

𝑅𝑅 = (𝑟𝑟𝑢𝑢𝑢𝑢) ∀𝑢𝑢, 𝑣𝑣 ∈ 𝐼𝐼𝑉𝑉2

(19)

Figure 4 shows these two matrices for the example depicted in Figure 1, considering the ordering
shown there. Specifically, we can see in the graph drawing showed in Figure 1b that the number
of crossings between the edge incident to vertex 4, (4,B), and the two edges incident to vertex
5, (5,A) and (5,D), is 1, since edge (4, B) crosses edge (5,A). Therefor, 𝑙𝑙45 = 1, as shown in matrix
𝐿𝐿 (row 4, column 5) of Figure 4. It is also easy to see in Figure 1b that if we swap the position of
these two contiguous vertices, we obtain a new drawing in which edges (4,B) and (5,A) are not
crossing anymore but, on the other hand, edges (4,B) and (5,D) are crossing now. This is why, in
Figure 4, matrix 𝐿𝐿 (row 5, column 4) has 𝑙𝑙54 = 1.

𝐿𝐿 =

⎣
⎢
⎢
⎢
⎡
− 0 0 0 0
0 − 0 0 0
2 2 − 1 2
1 1 0 − 1
1 1 2 1 −⎦

⎥
⎥
⎥
⎤
 𝑅𝑅 = �

− 2 1 0
4 − 1 0
2 0 − 0
2 2 1 −

�

Figure 4. Number of edge crossing between pairs of nodes.

Given a solution 𝐼𝐼𝐼𝐼 and a new vertex 𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼1, we evaluate the change in the number of crossings
if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) is performed, as 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 𝑣𝑣) = 𝑙𝑙𝑢𝑢𝑢𝑢 − 𝑙𝑙𝑣𝑣𝑣𝑣, where 𝑢𝑢 is the vertex
immediately preceding 𝑣𝑣 in 𝐼𝐼𝐼𝐼1. If 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 𝑣𝑣) > 0, it indicates that this is an
improving move since the number of crossings of the edges incident with these two vertices in
the current solution 𝑙𝑙𝑢𝑢𝑢𝑢 is larger than the number of crossings of these edges if we swap the
vertices (𝑙𝑙𝑣𝑣𝑣𝑣). In short, the move reduces the number of crossings. A key aspect in this
computation is that when we swap two consecutive vertices in a layer while keeping the
ordering of the vertices in the other layer fixed, the change in the total number of crossing only
depends on this amount. In mathematical terms, if 𝐶𝐶(𝐼𝐼𝐼𝐼) is the total number of edge crossings
of drawing (or solution) 𝐼𝐼𝐼𝐼, and we perform 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣), the total number of crossings of the
resulting solution is:

11

𝐶𝐶(𝐼𝐼𝐼𝐼) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 𝑣𝑣). (20)

In a similar way, we evaluate 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣) with the expression 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+(𝐼𝐼𝐼𝐼, 𝑣𝑣) = 𝑙𝑙𝑣𝑣𝑣𝑣 −
𝑙𝑙𝑤𝑤𝑤𝑤, where 𝑤𝑤 is the vertex immediately after 𝑣𝑣 in 𝐼𝐼𝐼𝐼1. As in the previous case, if the move value
is positive, it indicates that if we apply the move, we will obtain a solution with a lower number
of crossings.

The move and the move value above were introduced for a vertex in the left layer (𝐼𝐼𝐼𝐼1) and, in
a similar way, we now define the move and its associated value for a vertex in the right layer
(𝐼𝐼𝐼𝐼2). Given a solution 𝐼𝐼𝐼𝐼, the neighbourhood 𝑁𝑁(𝐼𝐼𝐼𝐼) consists of all the solutions that can be
obtained by inserting a new vertex in a previous or posterior position in its layer.
Mathematically,

∀𝑣𝑣 ∈ 𝑁𝑁𝑁𝑁 we consider 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣) and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣)

and we select the best of them as the move to be performed. Note that if 𝑣𝑣 is the first vertex in
its layer, we can only consider one move for it (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣)). Symmetrically, if it is the last
one, only 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) can be considered. We implement the so-called best strategy, in which
we explore the neighborhood of a solution and select the best solution in it.

In the example above (Figure 1b), we added two new vertices, 𝑁𝑁𝑁𝑁 = {5,𝐷𝐷}, to the graph shown
in Figure 1a. Since both vertices were in the last position of each layer respectively, it is only
possible to move them to a previous position (i.e., only 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) are feasible). It is easy to
compute their associated move values as: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 5) = −1 − 1 = 0 and
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼,𝐷𝐷) = 0 − 1 = −1. The neighborhood 𝑁𝑁(𝐼𝐼𝐼𝐼) is formed with these two
moves (inserting 5 in a previous position in the left layer, and inserting 𝐷𝐷 in a previous position
in the right layer), and the best one is 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 5) with a move value of 0, which indicates
that the number of crossings does not change if we apply it. In mathematical terms, the total
number of crossings of the resulting solution is computed as 𝐶𝐶(𝐼𝐼𝐼𝐼) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 5) =
4, as we can confirm in Figure 5.

Figure 5. New solution after a move.

Figure 5 shows the resulting solution after applying 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 5), where vertex 5 is now in
position 4 in the left layer. An interesting implementation detail of our algorithm is the update
of the matrices 𝐿𝐿 and 𝑅𝑅, which store the number of crossings, after performing a move. As
mentioned above, the number of crossings computed for the vertices in the left layer, stored in
𝐿𝐿, only depends on the ordering of the vertices in the right layer. Then, since the vertices in the
right layer did not change their position when applying this move, matrix 𝐿𝐿 does not change. We
only need to update matrix 𝑅𝑅.

12

Considering that we have moved two consecutive vertices, 𝑢𝑢 and 𝑣𝑣, in the left layer 𝐼𝐼𝐼𝐼1, to
update the matrix 𝑅𝑅 we need to check the vertices adjacent to them. Without loss of generality,
assume that initially 𝑢𝑢 preceded 𝑣𝑣, and after performing the move then 𝑣𝑣 precedes 𝑢𝑢. Thus, for
each vertex 𝑎𝑎 adjacent to 𝑢𝑢, and each vertex 𝑏𝑏 adjacent to 𝑣𝑣, we have to increase 𝑟𝑟𝑎𝑎𝑎𝑎 by one
unit, and decrease 𝑟𝑟𝑏𝑏𝑏𝑏 by one unit (i.e., 𝑟𝑟𝑎𝑎𝑎𝑎 = 𝑟𝑟𝑎𝑎𝑎𝑎 + 1 and 𝑟𝑟𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑏𝑏𝑏𝑏 − 1).

In our example in Figure 5, 𝑣𝑣 = 5 is in the left layer, so when performing the move matrix 𝐿𝐿 does
not change. We have to add or subtract one unit to the elements in matrix 𝑅𝑅 corresponding to
vertices incident to 𝑢𝑢 = 4 and 𝑣𝑣 = 5. 𝐵𝐵 is the adjacent vertex to vertex 𝑢𝑢 = 4, and 𝐴𝐴 and 𝐷𝐷 the
adjacent vertices to vertex 𝑣𝑣 = 5. The new matrix is the result of adding 1 to the elements 𝑟𝑟𝐵𝐵𝐵𝐵
and 𝑟𝑟𝐵𝐵𝐵𝐵, and subtracting 1 to the elements 𝑟𝑟𝐴𝐴𝐴𝐴 and 𝑟𝑟𝐷𝐷𝐷𝐷. Figure 6 shows the new matrix 𝑅𝑅. Note
that only these four elements need to be updated.

𝑅𝑅 = �

− 1 1 0
5 − 1 1
2 0 − 0
2 1 1 −

�

Figure 6. Crossing matrix after the move.

Although moving an element to its consecutive position is somehow limited, our neighbor is
formed by all the solutions that can be reached by moving any new element to the immediate
previous or posterior position, to select the best of them. Therefore, the size of the
neighborhood is large enough to permit an efficient exploration of the search space.
Additionally, as shown above, moving continuous vertices permit a fast update of the
information required to evaluate moves, and to compute the objective function in an
incremental way (see Eq. 20).

We include a memory structure in the local search algorithm to create a short-term tabu search
method. In particular, when we select a new vertex 𝑣𝑣 and move it, we record in 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑣𝑣) the
number of the current iteration, in order to prohibit to move it in the next iterations. In this way,
in a given iteration 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, we only permit to select a new vertex 𝑢𝑢 for movement if the following
condition is met:

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑢𝑢) > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (21)

where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a search parameter specifying the number of iterations that a tabu element
cannot be selected. After these number of iterations, the tabu status of 𝑢𝑢 is released, and it can
be selected again to be moved. As it is customary in tabu search, we modify the neighborhood
described above by excluding from it those solutions involving to move a tabu element. An
important characteristic of tabu search is that the best solution in the neighborhood is always
performed, even if it deteriorates the objective function (i.e., if the number of crossing
increases). However, it is well documented that over a medium to large number of iterations
this strategy permits to visit high-quality solutions. The tabu search method terminates after a
specific number of iterations.

5. A Path relinking post-processing
Path relinking (Glover and Laguna, 1997) generates new solutions by exploring trajectories that
connect elite solutions by starting from one of these solutions, called an initiating solution, and
generating a path in the neighborhood space that leads toward the other solutions, called
guiding solutions. This is accomplished by selecting moves that introduce attributes contained

13

in the guiding solutions. Note that in standard local search, the move selection in the
neighborhood is typically guided by the objective function (i.e., the method usually explores the
entire neighborhood in search for an improving move). In path relinking (PR) however, the
neighborhood of a solution is limited to the solutions that contain attributes present in the
guiding solution. Therefore, although we consider the objective function when selecting a move,
the primary objective is to get closer to the guiding solution. PR subordinates all other
considerations to the goal of choosing moves that introduce the attributes of the guiding
solutions, in order to create a “good attribute composition” in the current solution.

The approach may be viewed as an extreme strategy that seeks to incorporate attributes of high
quality solutions, by creating inducements to favor these attributes in the moves selected. In
evolutionary terms, we can call this strategy a combination method, since the final output is a
set of solutions (those in the path) that can be viewed as the result of combining the initiating
and the guiding solutions (called reference solutions).

Path relinking gives a natural foundation for developing intensification and diversification
strategies. Intensification strategies in this setting typically choose reference solutions to be
elite solutions that lie in a common region or that share common features. Similarly,
diversification strategies, based on path relinking characteristically, select reference solutions
that come from different regions or that exhibit contrasting features. Diversification strategies
may also place more emphasis on paths that go beyond the reference points.

Laguna and Martí (1999) adapted PR in the context of GRASP as a form of intensification. The
relinking, in the context of multi-start algorithms, consists in finding a path between two
solutions generated with the constructive method and, eventually, improve the solution in the
path with a local search. Therefore, the relinking concept has a different interpretation within
GRASP, since the solutions are not originally linked by a sequence of moves. The authors,
however, kept the original name of the methodology in spite of the fact that the two solutions
are linked for the first time. Resende et al. (2010) explored different implementations to
hybridize these two methodologies:

 Greedy path relinking. In this method, the moves in the path from a solution to another
one are selected in a greedy fashion, according to the objective function value.

 Greedy randomized path relinking. In this variant, the method creates a candidate list
with the good intermediate solutions and randomly selects among them.

 Truncated path relinking. In this application of PR, the path between two solutions is not
completed. It is applied, for example, in problems where good solutions are found close
to the end points (original solutions) in the path.

In this paper, we consider the greedy randomized path relinking that has given excellent results
in previous methods (Resende et al., 2010). Let 𝐼𝐼𝐼𝐼𝑥𝑥 = (𝐼𝐼𝐼𝐼,𝜑𝜑1𝑥𝑥 ,𝜑𝜑2𝑥𝑥) and 𝐼𝐼𝐼𝐼𝑦𝑦 = �𝐼𝐼𝐼𝐼,𝜑𝜑1

𝑦𝑦,𝜑𝜑2
𝑦𝑦� be

two solutions of our problem. They are incremental drawings of the original drawing 𝐷𝐷 =
(𝐺𝐺,𝜋𝜋1,𝜋𝜋2). The path relinking procedure starts with the first solution 𝐼𝐼𝐼𝐼𝑥𝑥, called initiating
solution, and gradually transforms it into the second solution 𝐼𝐼𝐼𝐼𝑦𝑦, called guiding solution, by
selecting a new element in 𝑁𝑁𝑁𝑁 and inserting it in the position that occupies in 𝐼𝐼𝐼𝐼𝑦𝑦. Once a new
element has been selected and inserted, we do not select it again. When all the new elements
have been selected, the method finishes, since the path has reached the guiding solution.

Let 𝐼𝐼𝐼𝐼0 = 𝐼𝐼𝐼𝐼𝑥𝑥 be the initiating solution in the path. As mentioned, we consider for each new
vertex, 𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁, its insertion in its position according to the guiding solution (𝜑𝜑1

𝑦𝑦(𝑣𝑣) if 𝑣𝑣 is

14

in the left layer, and 𝜑𝜑2
𝑦𝑦(𝑣𝑣) if it is in the right layer). Let 𝑝𝑝𝑝𝑝(𝐼𝐼𝐷𝐷0,𝑣𝑣) be the move value (change

in number of crossings) of performing this insertion in 𝐼𝐼𝐼𝐼0. If 𝐶𝐶(𝐼𝐼𝐼𝐼0) is the total number of edge
crossings of the initial solution in the path, and we move 𝑣𝑣 as indicated above, the number of
crossings of the resulting solution 𝐼𝐼𝐼𝐼1 is 𝐶𝐶(𝐼𝐼𝐼𝐼1) = 𝐶𝐶(𝐼𝐼𝐼𝐼0) − 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣). Then, if 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) >
0, it indicates that this is an improving move.

We compute 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) for all the candidate vertices (𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶), and build the restricted
candidate list 𝑅𝑅𝑅𝑅𝑅𝑅 with those that according to the greedy function 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) achieve a
relatively large reduction in the number of crossings: 𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶: 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) ≥ 𝛾𝛾} where:

𝛾𝛾 = min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) + 𝛽𝛽 �max
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) − min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣)� (22)

and 𝛽𝛽 is a search parameter indicating the degree of randomization that we want to include in
the process. Following the GRASP methodology, we randomly select a vertex 𝑣𝑣∗ in 𝑅𝑅𝑅𝑅𝑅𝑅 and
move it, obtaining 𝐼𝐼𝐼𝐼1. Then, we update the candidate list of vertices, 𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣∗}, and
repeat the steps above replacing 𝐼𝐼𝐼𝐼0 with 𝐼𝐼𝐼𝐼1. In short, we build a new 𝑅𝑅𝑅𝑅𝑅𝑅 from which to select
a vertex whose insertion will result in 𝐼𝐼𝐼𝐼2. In this way, we obtain a path of solutions, 𝐼𝐼𝐷𝐷0, 𝐼𝐼𝐼𝐼1,
𝐼𝐼𝐼𝐼2, and so on, up to we reach the guiding solution. The best solution found in the path is
returned as the output of this path relinking step.

Figure 6. Path generation between initial solution 𝐼𝐼𝐷𝐷𝑥𝑥 and guiding one 𝐼𝐼𝐷𝐷𝑔𝑔.

Figure 6 shows a path constructed between the initial solution 𝐼𝐼𝐷𝐷𝑥𝑥 and the guiding solution 𝐼𝐼𝐷𝐷𝑔𝑔.
The original nodes (that must preserve their relative ordering) are depicted in white, while the
new nodes, which can be moved, are represented in light gray, medium gray, and black. The
number under each solution represents its number of crossings. Starting in 𝐼𝐼𝐷𝐷𝑥𝑥, the procedure
generates the solutions that can be reached from it by locating one of the new nodes in its
position in 𝐼𝐼𝐷𝐷𝑔𝑔. In particular, solution 𝐼𝐼𝐷𝐷1 is generated by inserting the light gray node (the one
in the first layer of 𝐼𝐼𝐷𝐷𝑥𝑥) in the first position, while solution 𝐼𝐼𝐷𝐷2 is generated after the insertion
of the medium gray node in the first position of second layer. The black node is located at the
same position in 𝐼𝐼𝐷𝐷𝑥𝑥 and 𝐼𝐼𝐷𝐷𝑔𝑔, so we do not consider to move it. At the next step, the method
selects one of the best solutions to continue the search. In this case, both 𝐼𝐼𝐷𝐷1 and 𝐼𝐼𝐷𝐷2 exhibit
the same number of crossings, so one of them is selected at random, say 𝐼𝐼𝐷𝐷2. The search

15

continues generating solutions 𝐼𝐼𝐷𝐷3 and 𝐼𝐼𝐷𝐷4 by locating the light gray node and the black one at
their 𝐼𝐼𝐷𝐷𝑔𝑔 position, respectively. Finally, 𝐼𝐼𝐷𝐷𝑔𝑔 is directly reached from 𝐼𝐼𝐷𝐷3, thus ending the path.
The best solution found during the search (𝐼𝐼𝐷𝐷3) is returned as the output of this path
construction.

Path relinking operates on a set of solutions, called elite set (ES), constructed with the
application of a previous method. In this paper, we apply the hybrid tabu search algorithm
described in Section 4 to build ES with the best 10 solutions found. Then, we apply the PR
described in this section to all pairs of solutions in ES, returning the best solution found as the
output of the method.

6. Computational experiments
The computational experiments described in this section were performed to test the
effectiveness and efficiency of the procedures discussed above. The previous GRASP method,
called prev_GRASP, by Martí and Estruch (2001), and our new procedures were implemented in
Java SE 8, and the experiments were conducted on a computer with a 2.8 GHz Intel Core i7
processor with 16 GB of RAM. In particular, we report the results obtained with our constructive
method, tabu search, and path relinking post-processing. Additionally, the mathematical
programming formulation described in Section 2 was solved with Gurobi1.

We employed two sets of instances in our experimentation. The first one contains 120 instances
generated according to Martí and Estruch (2001), while the second one has 1000 instances and
was proposed by Stallmann et al. (2001). In line with previous papers, we generated the first set
of instances based on the original number of vertices in each layer, (𝑛𝑛1,𝑛𝑛2), and the graph
density 𝑑𝑑 in the interval [0.065, 0.175]. Additionally, as in Martí and Estruch (2001), the instances
are incremented adding vertices and edges up to pre-established numbers. These numbers are
calculated as a percentage 𝛿𝛿 of the quantities in the original graph (|𝐼𝐼𝑉𝑉𝑖𝑖| = 𝛿𝛿|𝑉𝑉𝑖𝑖| for each 𝑖𝑖 =
1, 2, and |𝐼𝐼𝐼𝐼| = 𝛿𝛿|𝐸𝐸|). We consider the following values in our experiments:

 (𝑛𝑛1,𝑛𝑛2) = (25, 25), (25, 50), (50, 25), and (50, 50).
 𝑑𝑑 = 0.065, 0.175, and 0.300.
 𝛿𝛿 = 1.2 and 1.6.

The generator to create our first set of instances is described in Martí and Estruch (2001). For
each vertex 𝑢𝑢 in the left layer, an edge to a randomly chosen vertex 𝑣𝑣 in the right layer is
included. Additional edges are added by randomly choosing two vertices of left and right layer.
The process is repeated until all additional edges have been included to meet the desired
density. Once the original graph has been created, we applied the well-known barycenter
algorithm (Di Battista et al., 1999) to obtain the original drawing. Then, it is incremented by
adding vertices and edges randomly up to the pre-established numbers. For each new vertex in
𝑁𝑁𝑉𝑉1 an edge to a randomly chosen vertex in 𝐼𝐼𝑉𝑉2 is included. Similarly, for each new vertex 𝑁𝑁𝑉𝑉2
an edge to a randomly chosen vertex in 𝐼𝐼𝑉𝑉1 is included. This guarantees that each new vertex
has a degree of at least one. Additional edges are added by randomly choosing two vertices up
to the desired number.

1 http://www.gurobi.com/

16

The second set contains 1000 instances obtained with the generator described in Stallmann et
al. (2001), which is publicly available2. The size of the first layer is in the range [10, 377], while
the size of second layer ranges from 10 to 190 nodes. The number of edges is in the range [20,
950]. These instances are bipartite graphs, and we convert them in incremental bipartite graphs
by considering a percentage of their nodes as the new nodes added to the original graph. In this
way, we kept the structure and density of the instance. In particular, for each original instance
we have generated three new instances obtained by selecting as new nodes the 10%, 20%, and
30% percent of the original nodes. To facilitate future comparisons, these instances are publicly
available at www.optsicom.es/dbdp.

6.1 Preliminary experimentation

First experiments are devoted to select the best values of the key search parameters of the
algorithms to configure our final method. We perform these experiments on a subset of 22
representative instances in the first set, and we do not include instances of the second set. In
this way, we avoid over-training of our method in the final comparison with the previous method
(prev_GRASP). For each experiment, we report the following metrics to measure the merit of
each procedure when generating 10 constructions for each instance: Average number of
crossings, Cross., computing time in seconds, Time (s), average percent deviation from the best
solution found in the experiment, Dev(%), and the number of best solutions found in the
experiment, #Best.

The first experiment is intended to select the best value of the parameter 𝛼𝛼 to determine the
greediness of the constructive method. We have tested the following 𝛼𝛼 values: 0.25, 0.50, 0.75.
Additionally, we tested a variant (labelled RND) in which at each iteration 𝛼𝛼 is randomly selected
between 0 and 1. Table 1 reports the solutions of this experiment.

𝜶𝜶 value Cross. Time (s) Dev (%) #Best
RND 89515.23 40.84 0.20% 10
0.25 89741.32 38.23 0.93% 3
0.50 89518.27 39.57 0.36% 7
0.75 89409.95 40.16 0.38% 6

Table 1. Constructive method on training instances with different 𝛼𝛼 values.

The values in Table 1 show that the best results are obtained when considering 𝛼𝛼 at random in
each iteration (first row in the table), which favors the randomness part of the algorithm, thus
generating more diverse solutions.

In the second preliminary experiment, we test the effectiveness of the tabu search method. In
particular, we generate 10 solutions with the best constructive method identified above, and
then apply the tabu search algorithm to them. We stop the tabu search method after 50
iterations without improvement (we will study in the next experiment the influence of this
parameter). In this experiment, we consider several values of the tenure parameter. In line with
previous tabu search experiments (Glover and Laguna, 1997), we consider 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5, 10, 15,

2 https://people.engr.ncsu.edu/mfms/Software/SBG_Software/index.html

17

and 20. We do not reproduce the results of this experiment to limit the extension of the paper.
Experimentally, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5 provides the most effective variant since with this value the
algorithm is able to match 55% of best solutions with an average percent deviation of 0.16%,
while the other tenure values match less than 41% of best solutions and exhibit percent
deviations larger than 0.22%.

In the experiment above, we stopped the tabu search after a certain number of iterations
without improvement, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, which is a standard way to finish a method. Specifically, we
consider 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 50 consecutive iterations without improvement. We extended this
experiment and tested different values of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 to stop the tabu search. Table 2 shows the
results of this extended study in which we can see that with 50 iterations without improvement
the method is able to achieve the best results.

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Cross. Time (s) Dev (%) #Best
10 89333.82 41.68 0.08% 17
25 89330.05 40.53 0.03% 19
50 89326.73 41.91 0.00% 21
100 89335.14 42.96 0.09% 19

Table 2. Tabu search with different stopping values.

An important question when applying tabu search is the contribution of the memory structure
to the quality of the final solution. In other words, we create our tabu search method by adding
a memory structure (a tabu list) to a standard local search. We can then consider what would
be the result if, instead of applying the tabu search to the 10 constructed solution, we apply to
them the local search that only performs improving moves. The results of this experiment
confirm the contribution of the memory structure. In particular, the version with local search
exhibits a lower number of best solutions (11) than the tabu search version (21). From now on,
we label as TS our method that first constructs 10 solutions (with the random variant), and then
improves them with the tabu search method with 𝑀𝑀𝑀𝑀𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 50 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5.

In our last preliminary experiment, we test the path relinking post-processing. Specifically, we
apply TS and collect the 10 best solutions found (forming the elite set). Then, we apply path
relinking to all pairs in the elite set. Table 3 reports the solutions considering the different values
of the 𝛽𝛽 parameter (between 0 and 1) defining the restricted candidate list in this method.

𝜷𝜷 Cross. Time (s) Dev (%) #Best
RND 89302.77 52.26 0.03% 15
0.25 89307.45 52.32 0.03% 18
0.50 89305.14 52.33 0.01% 14
0.75 89312.32 52.47 0.02% 14

Table 3. Tabu search with different stopping values.

Table 3 includes a variant in which the parameter is randomly selected in each iteration (RND).
If we compare the results in Table 3 with those in Table 2, where path relinking was not applied,
we can see that the average number of crossing (Cross.) takes now lower values, showing the
contribution of this method. The results in this table indicate that there are small differences
among the variants tested, being 𝛽𝛽 = 0.25 the one which is able to obtain the largest number

18

of best solutions. We therefore select this variant, simply labelled as TS+PR, to perform the
competitive experiments below.

 prev_GRASP TS+PR Gurobi

𝒏𝒏𝟏𝟏 𝒏𝒏𝟐𝟐 𝒅𝒅 𝜹𝜹 Cross. Time Dev Cross. Time Dev Cross. Time Dev
25 25 0.065 0.2 316 6.1 3.6% 305 0.4 0.0% 305 0.4 0.0%
25 25 0.065 0.6 1131 34.5 15.5% 1106 1.8 13.0% 979 237.7 0.0%
25 25 0.175 0.2 4037 36.9 2.9% 3927 0.4 0.1% 3922 1.4 0.0%
25 25 0.175 0.6 12374 120.0 3.3% 11982 3.8 0.0% 12444 1800.6 3.9%
25 25 0.300 0.2 15185 60.9 1.0% 15067 0.6 0.2% 15036 9.6 0.0%
25 25 0.300 0.6 40538 252.2 2.2% 39657 7.7 0.0% 41705 1801.6 5.2%
25 50 0.065 0.2 2218 27.8 2.1% 2185 0.7 0.6% 2173 1.5 0.0%
25 50 0.175 0.2 20112 201.7 1.6% 19861 2.1 0.3% 19794 193.3 0.0%
25 50 0.300 0.2 64113 495.3 1.8% 63312 4.8 0.5% 62986 1802.3 0.0%
25 50 0.300 0.6 175764 519.0 0.0% 176909 52.8 0.0% 184788 1831.6 4.5%
50 25 0.065 0.2 2230 42.2 2.8% 2191 0.8 1.0% 2169 1.6 0.0%
50 25 0.065 0.6 6459 267.3 10.8% 5828 12.4 0.0% 6155 1801.0 5.6%
50 25 0.175 0.2 20265 228.9 2.2% 19890 2.0 0.3% 19831 336.2 0.0%
50 25 0.175 0.6 57004 517.7 5.6% 54004 31.3 0.0% 63287 1802.4 17.2%
50 25 0.300 0.2 66253 502.8 1.0% 65593 4.4 0.0% 66319 1802.0 1.1%
50 25 0.300 0.6 186429 538.6 4.0% 179282 58.6 0.0% 189119 1805.3 5.5%
50 50 0.065 0.2 7859 297.3 2.9% 7664 3.9 0.4% 7637 3.5 0.0%
50 50 0.065 0.6 25545 506.5 2.5% 24933 67.0 0.0% 27110 1802.8 8.7%
50 50 0.175 0.2 78717 505.5 1.9% 77253 14.3 0.0% 77480 1802.7 0.3%
50 50 0.175 0.6 238979 504.1 2.4% 233326 209.3 0.0% 256917 1808.6 10.1%
50 50 0.300 0.2 251277 536.8 1.1% 248454 26.1 0.0% 258330 1806.3 4.0%
50 50 0.300 0.6 728794 575.7 2.3% 712459 416.7 0.0% 757750 1800.3 6.4%
 Avg. 91163.6 308.1 3.3% 89326.7 41.9 0.7% 94374.4 1102.4 3.3%

Table 4. Comparison among Prev_GRASP, Tabu Search with Path Relinking and Gurobi.

6.2 Competitive testing

In the first experiment of this subsection, we test the ability of the previous heuristic
(prev_GRASP) and our TS+PR method to match the optimal solutions of the problem. To this
end, we solve the mathematical programming formulation described in Section 2 with Gurobi,
for a maximum time of 1,800 seconds in each instance. Table 4 reports the individual results on
the 22 instances in our training set, where the bold font indicates the best value found for each
instance. Note that when Gurobi finds the best value in a running time lower than 1800 seconds
we can certify the optimality of the solution found. However, when a heuristic method
outperforms Gurobi on an instance, we cannot assure that the best solution found is the optimal
one.

Table 4 shows that Gurobi is able to obtain the optimal solution in 10 instances out of the 22
considered, although this method exhibits a relatively long average computational time (1102.4
seconds). The previous heuristic considered, prev_GRASP, is only able to produce one best
solution in this experiment, although it is very fast compared with Gurobi (308 seconds, on
average). Our heuristic method, TS+PR, obtains 12 best known solutions in an average running
time of 41.9 seconds. Considering the average percentage deviations from the best-known
solution, the ranking of the methods is TS+PR (0.7%), prev_GRASP (3.3%), and Gurobi (3.3%).

19

We now compare these three methods on the entire first set of 120 instances. As in the previous
experiment, we limit the execution of the methods to a maximum of 1,800 seconds. Additionally,
we report two versions of our TS+PR method. The first one, in which 10 constructed solutions
are improved with TS+PR, and the second one, labeled TS(500)+PR, in which 500 solutions are
constructed and improved with TS+PR if the time limit allows it. Table 5 shows the results on the
instances incremented on a 20% of the original size (𝛿𝛿 = 1.2), and Table 6 the results with those
incremented on a 60% (𝛿𝛿 = 1.6).

Algorithm Cross. Time (s) Dev (%) #Best #Opt
small size (𝑛𝑛1 + 𝑛𝑛2 = 50)

Gurobi 6230.00 27.18 0.00% 15 15
prev_GRASP 6317.47 33.23 2.17% 0 0
TS(500)+PR 6232.20 48.76 0.10% 5 5
TS+PR 6234.33 8.15 0.16% 4 4

medium size (𝑛𝑛1 + 𝑛𝑛2 = 75)
Gurobi 28522.20 781.71 0.24% 22 21
prev_GRASP 28776.57 228.98 2.52% 0 0
TS(500)+PR 28379.10 621.53 0.16% 9 1
TS+PR 28390.17 61.11 0.21% 2 0

large size (𝑛𝑛1 + 𝑛𝑛2 = 100)
Gurobi 112572.27 1207.01 1.10% 6 5
prev_GRASP 111381.07 423.60 1.94% 0 0
TS(500)+PR 110214.33 1516.66 0.08% 7 0
TS+PR 110233.07 292.30 0.12% 3 0

Table 5. Final comparison of best methods in the first set (𝛿𝛿 = 1.2).

Algorithm Cross. Time (s) Dev (%) #Best #Opt
small size (𝑛𝑛1 + 𝑛𝑛2 = 50)

Gurobi 18553.53 1224.33 4.24% 5 5
prev_GRASP 18056.27 141.83 7.44% 0 0
TS(500)+PR 17459.13 1039.53 1.01% 10 0
TS+PR 17489.07 90.12 1.71% 2 0

medium size (𝑛𝑛1 + 𝑛𝑛2 = 75)
Gurobi 84088.57 1808.00 7.50% 2 0
prev_GRASP 80917.97 409.31 5.15% 2 0
TS(500)+PR 78959.23 1718.27 0.27% 19 0
TS+PR 79161.07 386.90 0.61% 10 0

large size (𝑛𝑛1 + 𝑛𝑛2 = 100)
Gurobi 343478.67 1891.89 8.70% 0 0
prev_GRASP 328878.53 532.43 3.86% 0 0
TS(500)+PR 322528.33 1687.68 0.00% 15 0
TS+PR 322831.60 514.51 0.23% 0 0

Table 6. Final comparison of best methods in the first set (𝛿𝛿 = 1.6).

20

Results in Tables 5 and 6 confirm the superiority of our proposal with respect to previous
methods. As expected, the performance of Gurobi quickly deteriorates when the size of the
instances increases. If we focus on the largest instances in Table 5, with 𝛿𝛿 = 1.2, TS+PR has an
average percent deviation of 0.12%, which compares favorably with Gurobi (1.10%) and
prev_GRASP (1.94%). Note additionally that TS+PR is the fastest method since it only requires
292.30 seconds on average, while Gurobi and prev_GRASP run for 1207.01 and 423.60 seconds
respectively. Table 5 also shows the result of our method run for more iterations. In particular,
TS(500)+PR exhibits a remarkable average percentage value of 0.08%, but it also requires the
longest execution time (1516.66 seconds on average). Results in Table 6 are in line with those
commented on Table 5.

The last two columns in these tables show the number of instances in which the method is able
to obtain the best solution (#Best), and the number of instances in which we know that the
method matches the optimal solution (#Opt). In Table 5, where we only add a small fraction of
new vertices, Gurobi is able to obtain some optimal solutions. Note that for the other instances
reported in this table, we do not know how far the heuristic solutions are from the optimal ones.
In medium and large instances of Table 6, where a larger fraction of new vertices is added to the
original instances, no method is able to certify the optimality of the solutions.

We then applied the Wilcoxon test to compare prev_GRASP and TS+PR on the results reported
in Tables 5 and 6. This statistical test answers the question: Do the two samples (solutions
obtained with the methods) represent two different populations? The obtained 𝑝𝑝-value < 0.001
confirms that there are significant performance differences between these two heuristic
methods.

We now perform our main experiment in the competitive testing. In particular, we compare our
best algorithm, TS+PR, with the best previous heuristic, prev_GRASP, in the second set of 1,000
instances. Note that this set of instances was not used to tune any method, so this experiment
tests the adaptability and scalability of both heuristics.

Algorithm Cross. Time (s) Dev (%) #Best
small size

prev_GRASP 510.82 0.40 4.09% 119
TS+PR 497.77 0.09 2.03% 293

medium size
prev_GRASP 22742.99 18.83 4.69% 25.00
TS+PR 22394.12 7.80 0.06% 278.00

large size
prev_GRASP 87844.49 319.53 4.97% 6.00
TS+PR 85816.74 232.27 0.01% 344.00

Table 7. Final comparison of best heuristic methods in the second set of instances.

Table 7 shows the results of each algorithm over the Stallmann et al. (2001) set of instances. We
can see that the computing time of both algorithms are equivalent, although our proposal is
slightly faster. Notice that both algorithms were executed in the same computer platform, and
implemented by using the same programming language. If we analyze the quality of the
solutions generated by each algorithm, we can clearly see that TS+PR is able to obtain the best
solution in 915 out of 1000 instances, while prev_GRASP only reaches the best solution in 150
instances. This difference is smaller in the case of small instances (with number of vertices

21

ranging from 21 to 57), where prev_GRASP finds 119 best solutions and TS+PR 293. However, in
medium and large instances (with number of vertices ranging from 111 to 471), the superiority
of TS+PR is evident, with a number of best solutions found with an order of magnitude larger
than those in the previous method. Furthermore, the overall average deviation of TS+PR is close
to 0, which means that in the 85 out of 1000 instances in which it is not able to obtain the best
value, it is close to it. This compares favorably with the overall deviation of prev_GRASP of
4.58%. The 𝑝𝑝-value < 0.0001 obtained in the Wilcoxon test performed between both
algorithms confirms the superiority of our proposal.

To complete the experimentation, we finally consider a real application in an assignment graph.
In particular, we target the 2-layered graph of search queries on online advertisement
(Antonellis et al., 2008). The graph in Figure 7 represents the assignment of 24 original queries
(in the left layer) to 25 advertisements (in the right layer), where three additional queries (25,
26, and 27) and three ads (Z, a, and b) have been added. It has 311 edge crossings.

Figure 7. Assignments of queries to advertisements.

We apply our TS+PR procedure to the graph in Figure 7 with 311 edge crossings, and obtain the
drawing shown in Figure 8 with 210 crossings. Note that the relative ordering among the original
nodes is kept, thus helping the user to easily read the new graph.

Figure 8. Assignment graph optimized with TS+PR.

22

7. Conclusions
In this paper, we have considered the dynamic bipartite graph drawing problem, also called
incremental bipartite drawing problem in the literature. We propose new heuristic methods
based on the tabu search methodology. Our extensive computation shows that the proposed
method is able to outperform the previous heuristic for this problem. It is worth mentioning an
implementation detail of our method that makes it especially fast. In particular, the update of
the objective function when a move is performed is computed by means of two matrices, which
store the number of crossings for each pair of vertices. The tabu search method efficiently
updates these matrices after each move. On the other hand, we adapted the mathematical
programming formulation originally proposed for the bipartite drawing problem to the dynamic
case. Our experiments with Gurobi show that it is able to solve small and medium size instances
to optimality.

An interesting point when designing a tabu search method is the memory contribution. We can
say in plain words that a short term tabu search is simply a local search method in which we
added a memory structure (the so-called tabu list). Therefore, one could ask what is the
incremental contribution obtained with this addition. Our preliminary experimentation confirms
that the tabu search clearly performs better than the simple local search which it is based on.
Thus, the hybridization of a constructive GRASP method with a tabu search turns out to be a
very effective method to target this problem. Additionally, we learnt that using a combination
method such as path relinking for creating paths between two high quality drawings is a good
technique to generate new and better solutions. We believe that this approach can be tested in
other graph drawing problems.

In this paper we have formulated the stability across a sequence of graph drawings in terms of
the relative ordering of their vertices, in line with some previous papers. However, alternative
ways to approach stability would be also of interest. We are indeed starting to work on a
formulation based on the absolute ordering of the original nodes. Another extensions and future
lines of research include dynamic drawings in hierarchies with more than 2 layers, as well as a
comparison of the different variants of path relinking for the DBDP.

8. Acknowledgments

This work has been partially supported by the Spanish “Ministerio de Economía y
Competitividad” and by “Comunidad de Madrid,” grants refs. TIN2015-65460-C02 and
S2013/ICE-2894, respectively. We would like to thank the Walnut Brew-Lab in Boulder (CO), and
the Spanish researchers there, for the discussions to conceive this paper.

References

Antonellis, I., H.G. Molina, and C. Chao (2008). Simrank++: query rewriting through link analysis of the
click graph. 1(1):408-421.

Beck, F., M. Burch S. Diehl, and D, Weiskopf (2016). A Taxonomy and Survey of Dynamic Graph
Visualization. Computer Graphics forum. 36(1): 133–159.

Branke, J. (2001). Dynamic Graph Drawing. In: Drawing Graphs. Methods and Models. Kaufmann, M., and
Wagner, D. (Eds.), Springer LNCS. 2025: 228-246.

23

Burch, M., J. Heinrich, N. Konevtsova, M. Höferlin, and D. Weiskopf (2011). Evaluation of Traditional,
Orthogonal, and Radial Tree Diagrams by an Eye Tracking Study. IEEE Transactions on Visualization and
Computer Graphics. 17(12): 2440-2448.

Burch, M., M. Hlawatsch, and D. Weiskopf (2017). Visualizing a Sequence of a Thousand Graphs (or Even
More). Computer Graphics Forum. 36(3):261-271.

Carpano, M. J. (1980). Automatic Display of Hierarchized Graphs for Computer-Aided Decision Analysis.
IEEE Transactions on Systems, Man, and Cybernetics. 10(11): 705–715.

Di Battista, G., P. Eades, R. Tamassia, and I. G. Tollis (1999). Graph Drawing: Algorithms for the
Visualization of Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition.

Diehl, S., and C. Görg (2002). Graphs, they are changing. In: 10th International Symposium on Graph
Drawing GD 2002. Kobourov, S. G., and Goodrich, M. T. (Eds.), Springer LNCS. 2528: 23–30. 

Duarte, A., J. Sánchez-Oro, M. Resende, F. Glover, and R. Martí (2015). GRASP with Exterior Path Relinking
for Differential Dispersion Minimization. Information Sciences. 296: 46-60.

Eades, P., W. Lai, K. Misue, and K. Sugiyama (1991). Preserving the Mental Map of a Diagram. Proc. of
Compugraphics. 91: 24-33.

Festa, P., and M. G. C. Resende (2011). GRASP: basic components and enhancements. Telecommunication
Systems. 46(3): 253–271.

Garey, M. R., and D. S. Johnson (1983). Crossing Number is NP-Complete. SIAM Journal on Algebraic
Discrete Methods. 4(3): 312–316.

Gibson, H., J. Faith, and P. Vickers (2012). A survey of two-dimensional graph layout techniques for
information visualization. Information Visualization. 12(3-4) 324–357

Glover, F., and Laguna, M. (1997). Tabu search. Kluwer, Norwell, MA.

Görg, C., P. Birke, M. Pohl, and S. Diehl (2004). Dynamic graph drawing of sequences of orthogonal and
hierarchical graphs. In: 12th International Symposium on Graph Drawing, GD 2004. Pach, J. (Eds), Springer
LNCS. 3383: 228–238.

Grötschel, M., M. Jünger, and G. Reinelt (1984). A Cutting Plane Algorithm for the Linear Ordering
Problem. Operations Research. 32(6), 1195-1220.

Jünger, M., and P. Mutzel (1997). 2-Layer Straightline Crossing Minimization: Performance of Exact and
Heuristic Algorithms. Journal of Graph Algorithms and Applications. 1(1): 1-25.

Kumar G., and M. Garland (2006). Visual exploration of complex time-varying graphs. IEEE Transactions
on Visualization and Computer Graphics. 12(5): 805–812. doi:10.1109/TVCG. 2006.193.  

Laguna, M., and R. Martí (1999). GRASP and path relinking for 2-layer straight line crossing minimization.
INFORMS Journal on Computing. 11: 44–52.

Martí, R., and V. Estruch (2001). Incremental Bipartite Drawing Problem. Computers and Operations
Research. 28: 1287-1298.

Martí, R. (2001). Arc Crossing Minimization in Graphs with GRASP, IIE Transactions. 33 (10): 913-919.

Purchase, H.C. (2002). Metrics for Graph Drawing Aesthetics, Journal of Visual Languages and Computing.
13: 501-516.

Resende, M.G.C., and C.C. Ribeiro (2001). Greedy randomized adaptive search procedures. In:
Metaheuristics. Glover, F., Kochen-Berger, G. (Eds.), Kluwer Academic Publishers. 219-270.

Resende, M. G. C., M. Gallego, A. Duarte, and R. Martí (2010). GRASP and Path Relinking for the Max-Min
Diversity Problem. Computers and Operations Research. 37: 498–508.

Sallaberry, A., C. Muelder, and K. Ma. Clustering, visualizing, and navigating for large dynamic graphs
(2012). In: 20th International Symposium on Graph Drawing. Didimo W., and Patrignani,

Stallmann, M., F. Brglez, and D. Ghosh (2001). Heuristics, Experimental Subjects, and Treatment
Evaluation in Bigraph Crossing Minimization. Journal of Experimental Algorithmics, 6-8.

Van der Elzen, S., D. Holten, J. Blaas, and J.J. van Wijk (2013). Dynamic Network Visualization with
Extended Massive Sequence Views. IEEE Trans. on Visualization and Comp. Graphics. 20(8): 1087-1099.

	1. Introduction
	2. Mathematical formulation
	3. Previous method
	4. A Hybrid tabu search method
	5. A Path relinking post-processing
	6. Computational experiments
	7. Conclusions
	8. Acknowledgments

