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Abstract 

Drawings of graphs have many applications and they are nowadays well-established tools in 
computer science in general, and optimization in particular. Project scheduling is one of the 
many areas in which representation of graphs constitutes an important instrument. The 
experience shows that the main quality desired for drawings of graphs is readability, and 
crossing reduction is a fundamental aesthetic criterion to achieve it.  Incremental or dynamic 
graph drawing is an emerging topic in this context, where we seek to preserve the layout of a 
graph over successive drawings. In this paper, we target the edge crossing reduction in the 
context of incremental graph drawing. Specifically, we apply a mathematical programming 
formulation and several heuristic methods based on the tabu search methodology to solve it.  In 
line with the previous paper on this topic, we consider bipartite graphs in our experimentation. 
The extensive computational experiments with more than 1,000 instances show the superiority 
of our proposals in both, quality and computing time. 
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1. Introduction 
Information systems are nowadays commonly represented with a drawing, which makes them 
easier to interpret and understand. Graphs are the basic modeling unit in a wide variety of areas, 
like project management, production scheduling, line balancing, business plans or software 
visualization. This is why graph drawing has become an important research area, with a large 
number of related publications. We refer the reader to the book by Di Battista et al. (1999) for 
a survey on graph drawing techniques. In Gibson et al. (2012) and Beck et al. (2016) more recent 
studies on drawing conventions, models and aesthetic criteria can also be found.  

The selection of a measure or criterion to evaluate the quality of a graph drawing is somehow 
controversial given the many different approaches to this problem. However, the number of 
edge crossings is a widely-admitted criterion for evaluating the quality of a drawing.  As stated 
by Carpano (1980), the fewer crossings the better the drawing. Since this seminal work, many 
authors have proposed crossing minimization methods to improve the readability of the 
drawing. In particular, Garey and Johnson (1983) proved that the problem of minimizing the 
number of crossings is NP-hard, and Purchase (2002) proved it to be one of the most important 
measures among seven aesthetic metrics to evaluate the quality of a graph drawing. This author 
performed a thorough aesthetic analysis of graph drawings produced by traditional layout 
algorithms, where crossing reduction emerged as a key objective. 

Jünger and Mutzel (1997) presented several exact and heuristic algorithms for crossing 
minimization in bipartite graphs (also called 2-layered straight-line hierarchies). In particular, 
they compared the results obtained by fixing the ordering of the vertices in one layer and moving 
only the vertices in the other layer with the results of solving the general problem of moving 
(reordering) all the vertices in the graph. The authors also proposed a mathematical 
programming formulation to the general crossing minimization problem that we adapt in this 
paper to the dynamic case. 

 

1.1 Previous Studies on the Dynamic Problem. 

One of the most challenging areas in graph drawing is the one devoted to the so-called dynamic 
or incremental representations. As mentioned in Diehl and Görg (2002), in dynamic graph 
drawing we have to compute the layout of a graph evolving over time.  A graph is modified by 
adding and deleting vertices and edges and we have to represent both, the original and the 
resulting graph. The drawing of the new graph, after the modifications, as an independent 
problem (i.e., from scratch) would be inefficient, since the graph has been slightly modified from 
the original drawing. As pointed out by Eades et al. (1991), the user has built up a mental map 
when reading the original drawing, so he or she expects the new graph to be represented in a 
similar way (layout) than the original one. This is why researchers in the area (see for example 
Branke, 2001), established that it would be advantageous to minimize the effort of the user to 
become familiar with a graph, i.e., to build the mental map. Therefore, minimizing the changes 
between the original and the new graph is a desired objective in dynamic graph drawing. 

As it is well-known in this field, there are many different paradigms for graph drawing, being 
probably orthogonal and hierarchical the most popular ones. Special attention therefore 
deserves the paper by Görg et al. (2004), where drawing sequences of orthogonal and 
hierarchical graphs are studied. In this latter case of hierarchical graph, they proposed a way to 
capture the idea of preserving the mental map. Specifically, considering that the ordering of 
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vertices in each layer is responsible for the number of edge crossings, Görg et al. (2004) 
considered to preserve the relative order of the original vertices in the corresponding layer. 
Martí and Estruch (2001) proposed independently the same criterion to reflect the idea of 
stability across drawings: keep the relative ordering among the common vertices. These authors 
also proposed exact and heuristic methods to obtain solutions to this hard optimization 
problem. We follow these two works in our approach, and focus in this paper on preserving the 
relative order of the original vertices when drawing the new graph. 

Di Battista et al. (1999) used the term incremental construction in the context of planar graphs. 
Martí and Estruch (2001) introduced the term incremental graph drawing to describe their 
problem on 2-layered graphs.  Other authors, such as Branke (2001) and Görg et al. (2004), used 
the term dynamic graph drawing to refer to the same type of problems.  We propose to call this 
problem of incremental or dynamic edge crossing minimization in 2-layered graphs, simply as 
Dynamic Bipartite Drawing Problem (DBDP). Several algorithms were developed to handle 
dynamic graphs. For example, Diehl and Görg (2002); Kumar and Garland (2006); and Sallaberry 
et al. (2012) presented algorithmic techniques in the context of clustering dynamic graphs.  
Martí and Estruch (2001) proposed an exact procedure to target this NP-hard problem based on 
the branch and bound methodology, which explores the set of solutions (permutations of the 
vertices in each layer) with the so-called search tree. This method provides the optimal solution 
for small size instances of up to 32 vertices. The authors also proposed a heuristic based on 
Greedy Randomized Adaptive Search Procedure (GRASP) to solve large size instances. 

More recently, Burch et al. (2011) presented an eye tracking study for evaluating the quality of 
node-link tree layout representing hierarchies. They concluded that radial representations are 
the most space-efficient one, but they usually result in drawings that are difficult to interpret. 
These authors recommended a traditional tree-diagram with the root on the top, which is similar 
to bipartite graphs considered in this paper. Additionally, Van den Eltzen et al. (2013) developed 
an extension for Massive Sequence Views with the aim of analyzing the temporal and structural 
aspects of dynamic networks. This study allows the user to find anomalies in the network and 
analyze temporal properties. More recently, Burch et al. (2017) proposed a novel visualization 
technique for graphs with considerably large number of time steps (more than a thousand, as 
stated by the authors).  

In this paper, we limit our attention to hierarchical graphs, where vertices are arranged in layers 
(drawn in parallel lines) and edges are drawn as straight lines.  In line with Martí and Estruch 
(2001), we consider the case of two layers (bipartite graphs), where nodes and edges have been 
added to an original graph already drawn for crossing minimization.  The problem is then to 
insert the new nodes (and the corresponding edges) in the appropriate positions in order to 
minimize the total number of edge crossings in the final graph. As mentioned above, the relative 
order among the original nodes is kept. We compare our method, based on tabu search, with 
their GRASP algorithm on a large set of instances, as well as with the optimal solution for small 
size instances. 

Note that our method can be applied to the general case of a sequence of drawings, not only to 
the 2-step problem with an original drawing and an incremented one. As a matter of fact, the 
DBDP can be easily extended to a sequence of 𝑛𝑛 drawings by simply performing one-step 
optimization and then fix for the next step the new added nodes in the position obtained by the 
tabu search algorithm. Then, in the next step, we consider the new set of nodes as those that 
can be moved, and the ones added in the previous iterations as fixed that cannot be moved 
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again. The next subsection shows an example of a sequence of drawings to illustrate the general 
application of our method. 

 

1.2 Dynamic Graph Drawing Applications 

We can find many applications of dynamic graph drawing in Management Science. In the case 
of general digraphs, Project Management is probably one of the most well-known areas where 
this problem finds a very useful application. It has been well document that many changes occur 
during the development of a large project and they have to be reflected in the associated graph 
or chart. Dynamic graph drawing is a demand of project managers who need a stable sequence 
of drawings as the project evolves. 

In the context of bipartite graphs, the well-known assignment problem provides interesting 
applications of dynamic graph drawing. Figure 1 illustrates a so-called affiliation network, where 
individuals and groups are represented with nodes, and edges represent membership of 
individuals to that groups. Affiliation networks usually change during the time, since new groups 
and members are systematically added. Figure 1a shows the original graph in which we can see 
that individuals 1 and 2 belong to group A, and individual 3 belongs to groups B and C. Figure 1b 
shows the same network at a later stage where some additions have been performed (nodes 
highlighted in gray). Specifically, we can see a new individual, labeled as 5, belonging to group 
A. Additionally, a new group, labeled as D, has also been included. Note that the edge from 5 to 
A creates 3 crossings in this new graph.  It is worth mentioning that the new graph preserves the 
mental map of the original graph since the original vertices have not been moved. The challenge 
in this context is therefore to minimize the number of crossings while preserving the mental 
map. 

 

 
  

 
(a). Original graph (b). New graph 

Figure 1. Dynamic graph drawing illustration. 

Assignment problems find nowadays many applications in Computer Science. For example, 
queries on online advertisement (Antonellis et al., 2008) have to be represented as a sequence 
of graphs for their analysis. In these bipartite graphs, the left layer represents queries performed 
by users, while the right layer represents advertisements (ads). A link between a query and an 
ad indicates that a query has been used to reach a specific ad. This kind of bipartite graphs are 
naturally dynamic, since users are continuously doing queries, and new ads are included by the 
companies. However, it is recommended by data analyzers to maintain the structure of the 
graph when new queries and ads are added, so previously performed queries and old ads remain 
in the same relative position. 
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Figure 2 shows a sequence of query-advertisement graphs with 9 original queries (numbered 
from 0 to 8) connected with 9 ads (numbered from 10 to 18). The first drawing in the left of 
Figure 2 shows the original 18 vertices with black circles where a new query and two ads are 
added (nodes 9, 19, and 20 represented with white circles). This drawing has 80 edge crossings. 

 

Figure 2. Dynamic graph drawing sequence. 

The left drawing in Figure 2 is optimized according to the dynamic graph drawing problem (i.e., 
by relocating the new three nodes in the position that minimizes the number of crossings while 
preserving the relative position of the original nodes), resulting in the drawing next to it with 67 
edge crossings. In the third drawing (starting from the left) two new vertices are added to the 
graph (vertex 10 representing a query and vertex 22 representing an ad), while the vertices 
added in the previous step are now represented with black color since they are now fixed and 
cannot be moved anymore. This drawing has 111 cuts. To simplify the notation, the label of the 
vertices in the first layer is always smaller than the ones in the second layer, so node 
renumbering is made on consecutive drawings. Finally, in the last drawing (the one in the right 
side of Figure 2) the algorithm is executed again obtaining a drawing with 101 cuts. 

In this paper, we first adapt the linear integer formulation proposed for the Bipartite Drawing 
Problem (Jünger and Mutzel, 1997) to the dynamic variant considered here (Section 2).  Then, 
we first describe the previous heuristic method for this problem (Section 3), and describe our 
algorithm based on the tabu search methodology (Section 4). In particular, we consider a greedy 
randomized construction with a short-term tabu search improvement method. We also consider 
several hybridizations of these methodologies with a path relinking post-processing (Section 5).  
Our extensive experimentation with more than 1,000 instances shows the superiority of this 
proposal with respect to the previous method (Section 6). The paper ends with the associated 
conclusions and future works (Section 7). 

2. Mathematical formulation  
Jünger and Mutzel (1997) proposed the following linear integer formulation of the bipartite 
drawing problem (BDP). Let 𝐺𝐺 = (𝑉𝑉1,𝑉𝑉2,𝐸𝐸) be a bipartite or 2-layered graph, with |𝑉𝑉1| = 𝑛𝑛1 and 
|𝑉𝑉2| = 𝑛𝑛2. A drawing 𝐷𝐷 (BDP solution), is determined by the ordering 𝜋𝜋1 of 𝑉𝑉1, and the ordering 
𝜋𝜋2 of 𝑉𝑉2, and it is denoted in mathematical terms as 𝐷𝐷 = (𝐺𝐺,𝜋𝜋1,𝜋𝜋2). The ordering 𝜋𝜋1 
(symmetrically 𝜋𝜋2) assigns a distinct integer from 1 to 𝑛𝑛1 (symmetrically to 𝑛𝑛2) to each node 𝑣𝑣 ∈
 𝑉𝑉1 (𝑤𝑤 ∈  𝑉𝑉2). For the sake of simplicity, we denote with 𝜋𝜋 the ordering of all vertices of the 
graph. The authors introduced the binary variable 𝑥𝑥𝑖𝑖𝑖𝑖 that takes the value 1 if vertex 𝑖𝑖 precedes 
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vertex 𝑘𝑘 in the ordering of 𝑉𝑉1 (𝜋𝜋1(𝑖𝑖) < 𝜋𝜋1(𝑘𝑘)), and 0 otherwise. Symmetrically, for a pair of 
vertices 𝑙𝑙, 𝑗𝑗 ∈ 𝑉𝑉2, the binary variable 𝑦𝑦𝑙𝑙𝑙𝑙 takes the value 1 when 𝑙𝑙 precedes 𝑗𝑗 (𝜋𝜋2(𝑙𝑙) < 𝜋𝜋2(𝑗𝑗)). 

 

 

Figure 3. Examples of crossings. 

As shown in Figure 3, a crossing between the edges (𝑖𝑖, 𝑗𝑗) and (𝑘𝑘, 𝑙𝑙) takes place when 𝜋𝜋1(𝑖𝑖) <
𝜋𝜋1(𝑘𝑘)  and 𝜋𝜋2(𝑙𝑙) < 𝜋𝜋2(𝑗𝑗) (see Figure 3a), or 𝜋𝜋1(𝑖𝑖) > 𝜋𝜋1(𝑘𝑘) and 𝜋𝜋2(𝑙𝑙) > 𝜋𝜋2(𝑗𝑗) (see Figure 3b). 
Jünger and Mutzel (1997) introduced the binary variable 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 that takes the value 1 when a 
crossing between these two edges occurs.  Note that constraints (1) and (2) below force 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 to 
take the value 1 when the variables 𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑦𝑦𝑙𝑙𝑙𝑙 indicate a crossing. 

(BDP)     𝑀𝑀𝑀𝑀𝑀𝑀 ∑    𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗),(𝑘𝑘,𝑙𝑙)∈𝐸𝐸  

𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1      (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙  (1) 

𝑥𝑥𝑘𝑘𝑘𝑘 + 𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1      (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙  (2) 

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑘𝑘𝑘𝑘 ≤ 2       1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛1  (3) 

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 + 𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 2       1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛2  (4) 

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 = 1                   1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛1  (5) 

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 = 1                   1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛2  (6) 

𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}   

 

Constraints (3) and (4) are the so-called 3-dicycle constraints, originally proposed for the Linear 
Ordering Problem by Grötschel et al. (1984), and adapted by Jünger and Mutzel (1997) to the 
bipartite drawing problem. Note that in this formulation only a fraction of the large number of 
3-dicycle inequalities are included (those with 1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛). These authors solved the 
formulation above with Cplex 4.0 and proposed a branch-and-cut approach. Within a time limit 
of 3,600 seconds on a SUN ULTRA2 (167MHZ) workstation they were able to solve to optimality 
small instances (with up to 44 vertices). 

Given a bipartite graph 𝐺𝐺 = (𝑉𝑉1,𝑉𝑉2,𝐸𝐸) and a drawing 𝐷𝐷 = (𝐺𝐺,𝜋𝜋1,𝜋𝜋2), we can consider the 
addition of some nodes and edges as described in the introduction, obtaining an incremental 
graph.  Martí and Estruch (2001) introduced it formally as 𝐼𝐼𝐼𝐼 = (𝐼𝐼𝑉𝑉1, 𝐼𝐼𝐼𝐼2, 𝐼𝐼𝐼𝐼) where 𝑉𝑉1 ⊆ 𝐼𝐼𝑉𝑉1, 
𝑉𝑉2 ⊆ 𝐼𝐼𝑉𝑉2, and 𝐸𝐸 ⊆ 𝐼𝐼𝐼𝐼 (|𝐼𝐼𝑉𝑉1| = 𝑚𝑚1, |𝐼𝐼𝑉𝑉2| = 𝑚𝑚2).  A drawing 𝐼𝐼𝐼𝐼 = (𝐼𝐼𝐼𝐼,𝜑𝜑1,𝜑𝜑2) is an incremental 
drawing of 𝐷𝐷 = (𝐺𝐺,𝜋𝜋1,𝜋𝜋2) if the original vertices (those in 𝑉𝑉 = 𝑉𝑉1 ∪ 𝑉𝑉2) preserve their relative 
ordering. In mathematical terms: 
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𝜑𝜑𝑖𝑖(𝑣𝑣) < 𝜑𝜑𝑖𝑖(𝑤𝑤)  ∀𝑣𝑣,𝑤𝑤 ∈ 𝑉𝑉𝑖𝑖  ⟺  𝜋𝜋𝑖𝑖(𝑣𝑣) < 𝜋𝜋𝑖𝑖(𝑤𝑤)   𝑖𝑖 = 1,2. (7) 
 

For the sake of brevity, we denote with 𝜑𝜑 the ordering of the whole set of vertices of the 
incremental graph. 

We can easily adapt the mathematical formulation above to tackle the dynamic bipartite 
drawing problem. In the DBDP, the relative position between each pair of original vertices (those 
in 𝑉𝑉) is already set; therefore, the associated 𝑥𝑥-variables or 𝑦𝑦-variables, depending on which 
layer they belong, can be fixed in the model.  Similarly, the 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 variables with (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸 
can be set as well.  

 

(DBDP)     𝑀𝑀𝑀𝑀𝑀𝑀 ∑    𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑖𝑖,𝑗𝑗),(𝑘𝑘,𝑙𝑙)∈𝐼𝐼𝐼𝐼  

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1      (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐼𝐼𝐼𝐼, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙  (8) 

𝑥𝑥𝑘𝑘𝑘𝑘 + 𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1      (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐼𝐼𝐼𝐼, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙  (9) 

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑘𝑘𝑘𝑘 ≤ 2       𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ 𝐼𝐼𝑉𝑉1 , 𝑖𝑖 < 𝑗𝑗, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑘𝑘  (10) 

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 + 𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 2       𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ 𝐼𝐼𝑉𝑉2 , 𝑖𝑖 < 𝑗𝑗, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑘𝑘  (11) 

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 = 1                   1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚1  (12) 

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 = 1                   1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑚𝑚2  (13) 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1                              𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉1 ∶  𝜋𝜋1(𝑖𝑖) < 𝜋𝜋1(𝑗𝑗)  (14) 

𝑦𝑦𝑖𝑖𝑖𝑖 = 1                              𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉2 ∶  𝜋𝜋2(𝑖𝑖) < 𝜋𝜋2(𝑗𝑗)  (15) 

𝑥𝑥𝑖𝑖𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}   

 

Constraints (8) – (13) are straightforward adaptations of (1) – (6) in the BDP formulation 
described above. New constraints (14) and (15) preserve the ordering of the original vertices. 
We have empirically found that when (14) and (15) are included in this model, we also need to 
include all the 3-dicycle constraints (now (10) and (11)) as in the original linear ordering 
formulation.  We will apply this model in our computational experience in Section 6. 

3. Previous method 
Martí and Estruch (2001) proposed a GRASP method for the DBDP.  The GRASP methodology 
(Festa and Resende, 2011) is based on the statistical sampling of the solution space. The 
randomization component in the construction has the objective of obtaining relatively diverse 
solutions, thus having candidate solutions in different regions of the search space. These 
solutions are then submitted to a local search post-processing to obtain the so-called local 
optima. We now describe in detail their heuristic method. 

Constructive method 

The constructive method by Martí and Estruch (2001) starts by creating a list 𝐶𝐶𝐶𝐶 of unassigned 
vertices which, at the beginning, contains all the vertices of the graph. The first vertex 𝑣𝑣 is 
randomly selected from all those vertices in 𝐶𝐶𝐶𝐶 with maximum degree. As it is customary in 
GRASP, in subsequent construction steps, the next vertex 𝑣𝑣 is randomly selected from a restricted 
candidate list, 𝑅𝑅𝑅𝑅𝑅𝑅, which consists of those vertices in 𝐶𝐶𝐶𝐶 with a degree of no less than 𝛼𝛼 times 
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the maximum degree in 𝐶𝐶𝐶𝐶.  Vertex degree is calculated with respect to the partial subgraph 
under construction (i.e., in which only those vertices previously located are considered). 

A selected vertex 𝑣𝑣 is placed in its layer in the position prescribed by the barycenter calculation 
(Di Battista et al., 1999), except for the first vertex, which is placed in an arbitrary position. The 
barycenter of a vertex 𝑣𝑣 ∈ 𝐼𝐼𝑉𝑉1, 𝑏𝑏𝑏𝑏(𝑣𝑣), is the arithmetic mean of the current positions of the 
vertices 𝑤𝑤 ∈ 𝐼𝐼𝑉𝑉2 adjacent to 𝑣𝑣 (similarly for the barycenter of a vertex in 𝐼𝐼𝑉𝑉2). If vertex 𝑣𝑣 belongs 
to the original graph (i.e., 𝑣𝑣 ∈ 𝑉𝑉1 ∪ 𝑉𝑉2), then it can be allocated in positions that are feasible in 
terms of the original ordering 𝜋𝜋. In other words, this construction is creating an ordering 𝜑𝜑 that, 
as mentioned before, must verify that 𝜑𝜑𝑖𝑖(𝑣𝑣) < 𝜑𝜑𝑖𝑖(𝑤𝑤) for all vertices 𝑤𝑤 such that   𝜋𝜋𝑖𝑖(𝑣𝑣) <
𝜋𝜋𝑖𝑖(𝑤𝑤).  Then, 𝑣𝑣 is placed in the closest feasible position to 𝑏𝑏𝑏𝑏(𝑣𝑣) with respect to 𝜋𝜋𝑖𝑖. The method 
finishes when all the vertices have been allocated. 

Local search method 

Each step of the improvement phase is based on a probabilistic selection of the vertices, in order 
to place them in the position that produces the maximum reduction in the number of crossings. 
The probability P(𝑣𝑣) that a vertex 𝑣𝑣 is selected is proportional to its degree, 𝜌𝜌(𝑣𝑣) (i.e., higher 
degree vertices are more likely to be selected): 

P(𝑣𝑣) =
𝜌𝜌(𝑣𝑣)

∑ 𝜌𝜌(𝑢𝑢)𝑢𝑢∈𝐼𝐼𝐼𝐼
 

Then, if 𝑣𝑣∗ is the selected vertex, it is placed in the position that produces the minimum number 
of crossings considering these three moves: to insert the vertex one position before the 
barycenter (⌊𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌋ − 1), to insert the vertex at the barycenter position 
(⌊𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌋ 𝑜𝑜𝑜𝑜 ⌈𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌉), and finally to insert the vertex one position after the barycenter 
(⌈𝑏𝑏𝑏𝑏(𝑣𝑣∗)⌉+ 1). As in the constructive method, the procedure is limited to perform feasible 
moves with respect to the original ordering 𝜋𝜋. Therefore, if 𝑣𝑣∗ ∈ 𝑉𝑉, then its new position must 
be feasible according to constraint (7) of the mathematical programming formulation (i.e., the 
relative position of 𝑣𝑣∗ in the original drawing). The improvement phase finishes when all vertices 
𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼 are considered, and no improving move is found.  

 

4. A Hybrid tabu search method 
It must be noted that the construction method described above computes the positions of all 
vertices, original and added ones.  In our view, it involves a relatively large computational effort, 
considering that in the DBDP the ordering among the original vertices has to be kept. We 
therefore propose an alternative method in which we consider the vertices in 𝑉𝑉1 and 𝑉𝑉2 already 
allocated (according to 𝜋𝜋1,𝜋𝜋2 respectively), and explore where to allocate the new vertices to 
complete the solution.  

4.1 Constructive method 

The construction phase starts by considering the original drawing 𝐷𝐷 as a partial solution. In the 
constructive method by Martí and Estruch (2001), a selected vertex is placed in the position 
prescribed by the barycenter. We propose here a different approach; in which we explore all 
the possible insertions for a selected vertex.  
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Let 𝑁𝑁𝑁𝑁 be the set of new vertices (i.e, those added to the original graph). In mathematical terms, 
𝑁𝑁𝑁𝑁 = 𝐼𝐼𝐼𝐼 ∖ 𝑉𝑉, where 𝐼𝐼𝐼𝐼 = 𝐼𝐼𝐼𝐼1 ∪ 𝐼𝐼𝐼𝐼2 and 𝑉𝑉 = 𝑉𝑉1 ∪ 𝑉𝑉2. The constructive method basically selects 
an element in 𝑁𝑁𝑁𝑁 and inserts it in the partial solution under construction (initially 𝐷𝐷).  The 
procedure evaluates each candidate element 𝑣𝑣 with a greedy function 𝑔𝑔(𝑣𝑣) in order to identify 
the best elements, and adds them to the Restricted Candidate List (𝑅𝑅𝑅𝑅𝑅𝑅), where one of them 
will be randomly selected as it is customary in GRASP (Resende and Ribeiro, 2001). Initially, the 
candidate list consists in the set of new vertices (𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁). In subsequent iterations, when a 
vertex 𝑣𝑣 is selected and inserted in the partial solution, the candidate list is updated by removing 
it (𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣}). 

We propose the following greedy function to compute the increment in the objective function 
if a vertex 𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 is added to the partial solution.  We define 𝐶𝐶(𝑣𝑣,𝑝𝑝) as the number of crossings 
generated by inserting vertex 𝑣𝑣 in position 𝑝𝑝 (in its corresponding layer) in the partial solution. 
In other words, if the partial solution has 𝑐𝑐 crossings and we insert 𝑣𝑣 in position 𝑝𝑝, we obtain a 
partial solution with 𝑐𝑐 + 𝐶𝐶(𝑣𝑣,𝑝𝑝) crossings. We examine all the positions to insert 𝑣𝑣 and select 
the best one, 𝑝𝑝∗, minimizing the number of crossings: 

𝑔𝑔(𝑣𝑣) = 𝐶𝐶(𝑣𝑣,𝑝𝑝∗) = min
𝑝𝑝
𝐶𝐶(𝑣𝑣,𝑝𝑝), (16) 

In the case that several positions have the same minimum 𝐶𝐶-value, the position 𝑝𝑝∗ is selected at 
random among them. We compute 𝑔𝑔(𝑣𝑣) for all the candidate vertices (in 𝐶𝐶𝐶𝐶), and build 𝑅𝑅𝑅𝑅𝑅𝑅 
with those that, according to the greedy function, achieve a relatively low increment in the 
objective function value, 𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶: 𝑔𝑔(𝑣𝑣) ≤ 𝜏𝜏} , where  

𝜏𝜏 = min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑣𝑣) + 𝛼𝛼 �max
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑣𝑣) − min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑔𝑔(𝑣𝑣)� (17) 

 

and 𝛼𝛼 is a search parameter that we will empirically set in our experimentation (see Section 6). 
The process continues until all new vertices are included in the partial solution, thus obtaining a 
complete solution that we call incremental drawing 𝐼𝐼𝐼𝐼. This is the standard GRASP design in 
which, in short, we can say that we first apply greediness and then randomness. 

4.2 Tabu Search 

Instead of the standard local search improvement method, we coupled our GRASP construction 
with a short term tabu search (TS). This methodology (Glover and Laguna, 1997) is a 
metaheuristic that guides a local search procedure to explore the solution space beyond local 
optimality. One of the main components of TS is the use of adaptive memory, which creates a 
flexible search behavior. Tabu search begins in the same way as ordinary local or neighborhood 
search, proceeding iteratively from one solution to another.  Each solution, called 𝐼𝐼𝐼𝐼 in our 
problem, has an associated neighborhood 𝑁𝑁(𝐼𝐼𝐼𝐼), containing the solutions 𝐼𝐼𝐼𝐼’ ∈ 𝑁𝑁(𝐼𝐼𝐼𝐼) that can 
be reached from 𝐼𝐼𝐼𝐼 by an operation called a move. We may contrast TS with a simple descent 
local search method that only permits moves to neighbor solutions that improve the current 
objective function value, ending when no further improvement is possible. On the contrary, TS 
permits moves that deteriorate the current objective function value. Moves are chosen from a 
modified neighborhood 𝑁𝑁∗(𝐼𝐼𝐼𝐼), which is the result of maintaining a selective history of the 
states encountered during the search. In this section, we limit ourselves to a short-term memory 
design, which specifies to record recent information (usually solution or moves attributes) to 
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exclude certain solutions to become part of 𝑁𝑁∗(𝐼𝐼𝐼𝐼). We refer the reader to Glover and Laguna 
(1997) for further details about this methodology and successful applications. 

Given a solution 𝐼𝐼𝐼𝐼, we propose a neighborhood 𝑁𝑁(𝐼𝐼𝐼𝐼) based on moving a vertex 𝑣𝑣 ∈ 𝑁𝑁𝑁𝑁 to a 
new position. Note that we only consider moving new vertices, since original vertices cannot 
change their relative position. In particular, we define 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) to insert vertex 𝑣𝑣 in a 
previous position to its current one.  In other words, if vertex 𝑢𝑢 precedes 𝑣𝑣 in its layer, this move 
swaps 𝑢𝑢 and 𝑣𝑣. Similarly, we define 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣) to insert vertex 𝑣𝑣 in a posterior position to 
its current one (i.e., if vertex 𝑤𝑤 succeeds 𝑣𝑣 in its layer, this move swaps 𝑣𝑣 and 𝑤𝑤). 

Given two vertices 𝑢𝑢 and 𝑣𝑣 in 𝐼𝐼𝐼𝐼1 (usually called the left layer) and a drawing 𝐼𝐼𝐼𝐼, let 𝑙𝑙𝑢𝑢𝑢𝑢 be the 
number of crossings between the edges incident to 𝑢𝑢 and the edges incident to 𝑣𝑣, when 𝑢𝑢 
precedes 𝑣𝑣 in its layer (i.e., when 𝜑𝜑1(𝑢𝑢) < 𝜑𝜑1(𝑣𝑣)). Note that this value depends on the ordering 
of their adjacent vertices in 𝐼𝐼𝐼𝐼2. Similarly, given two vertices 𝑢𝑢 and 𝑣𝑣 in 𝐼𝐼𝐼𝐼2 (usually called the 
right layer), we define 𝑟𝑟𝑢𝑢𝑢𝑢 as the number of crossing between their incident edges when 𝑢𝑢 
precedes 𝑣𝑣 (and 𝑟𝑟𝑣𝑣𝑣𝑣 when 𝑣𝑣 precedes 𝑢𝑢). 

To record this information, we define two matrices 𝐿𝐿 (left layer) and 𝑅𝑅 (right layer) with the 
number of edge crossings between two vertices as described above: 

𝐿𝐿 = (𝑙𝑙𝑢𝑢𝑢𝑢)   ∀𝑢𝑢, 𝑣𝑣 ∈ 𝐼𝐼𝑉𝑉1 
 

(18) 

𝑅𝑅 = (𝑟𝑟𝑢𝑢𝑢𝑢)   ∀𝑢𝑢, 𝑣𝑣 ∈ 𝐼𝐼𝑉𝑉2 
 

(19) 

Figure 4 shows these two matrices for the example depicted in Figure 1, considering the ordering 
shown there. Specifically, we can see in the graph drawing showed in Figure 1b that the number 
of crossings between the edge incident to vertex 4, (4,B), and the two edges incident to vertex 
5, (5,A) and (5,D), is 1, since edge (4, B) crosses edge (5,A). Therefor, 𝑙𝑙45 = 1, as shown in matrix 
𝐿𝐿 (row 4, column 5) of Figure 4. It is also easy to see in Figure 1b that if we swap the position of 
these two contiguous vertices, we obtain a new drawing in which edges (4,B) and (5,A) are not 
crossing anymore but, on the other hand, edges (4,B) and (5,D) are crossing now. This is why, in 
Figure 4, matrix 𝐿𝐿 (row 5, column 4) has 𝑙𝑙54 = 1. 

𝐿𝐿 =  

⎣
⎢
⎢
⎢
⎡
− 0 0 0 0
0 − 0 0 0
2 2 − 1 2
1 1 0 − 1
1 1 2 1 −⎦

⎥
⎥
⎥
⎤
 𝑅𝑅 =  �

− 2 1 0
4 − 1 0
2 0 − 0
2 2 1 −

� 

Figure 4. Number of edge crossing between pairs of nodes. 

Given a solution 𝐼𝐼𝐼𝐼 and a new vertex 𝑣𝑣 ∈ 𝐼𝐼𝐼𝐼1, we evaluate the change in the number of crossings 
if 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) is performed, as 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 𝑣𝑣) = 𝑙𝑙𝑢𝑢𝑢𝑢 − 𝑙𝑙𝑣𝑣𝑣𝑣, where 𝑢𝑢 is the vertex 
immediately preceding 𝑣𝑣 in 𝐼𝐼𝐼𝐼1. If 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 𝑣𝑣) > 0, it indicates that this is an 
improving move since the number of crossings of the edges incident with these two vertices in 
the current solution 𝑙𝑙𝑢𝑢𝑢𝑢 is larger than the number of crossings of these edges if we swap the 
vertices (𝑙𝑙𝑣𝑣𝑣𝑣). In short, the move reduces the number of crossings. A key aspect in this 
computation is that when we swap two consecutive vertices in a layer while keeping the 
ordering of the vertices in the other layer fixed, the change in the total number of crossing only 
depends on this amount. In mathematical terms, if 𝐶𝐶(𝐼𝐼𝐼𝐼) is the total number of edge crossings 
of drawing (or solution) 𝐼𝐼𝐼𝐼, and we perform 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣), the total number of crossings of the 
resulting solution is: 
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𝐶𝐶(𝐼𝐼𝐼𝐼) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 𝑣𝑣). (20) 
 
In a similar way, we evaluate 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣)  with the expression 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+(𝐼𝐼𝐼𝐼, 𝑣𝑣) = 𝑙𝑙𝑣𝑣𝑣𝑣 −
𝑙𝑙𝑤𝑤𝑤𝑤, where 𝑤𝑤 is the vertex immediately after 𝑣𝑣 in 𝐼𝐼𝐼𝐼1. As in the previous case, if the move value 
is positive, it indicates that if we apply the move, we will obtain a solution with a lower number 
of crossings. 

The move and the move value above were introduced for a vertex in the left layer (𝐼𝐼𝐼𝐼1) and, in 
a similar way, we now define the move and its associated value for a vertex in the right layer 
(𝐼𝐼𝐼𝐼2). Given a solution 𝐼𝐼𝐼𝐼, the neighbourhood 𝑁𝑁(𝐼𝐼𝐼𝐼) consists of all the solutions that can be 
obtained by inserting a new vertex in a previous or posterior position in its layer.  
Mathematically, 

∀𝑣𝑣 ∈ 𝑁𝑁𝑁𝑁 we consider 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣) and 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) 

and we select the best of them as the move to be performed. Note that if 𝑣𝑣 is the first vertex in 
its layer, we can only consider one move for it (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝐼𝐼𝐼𝐼, 𝑣𝑣)). Symmetrically, if it is the last 
one, only 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) can be considered. We implement the so-called best strategy, in which 
we explore the neighborhood of a solution and select the best solution in it. 

In the example above (Figure 1b), we added two new vertices, 𝑁𝑁𝑁𝑁 =  {5,𝐷𝐷}, to the graph shown 
in Figure 1a. Since both vertices were in the last position of each layer respectively, it is only 
possible to move them to a previous position (i.e., only 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 𝑣𝑣) are feasible).  It is easy to 
compute their associated move values as: 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 5) = −1 − 1 = 0 and 
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼,𝐷𝐷) = 0 − 1 = −1. The neighborhood 𝑁𝑁(𝐼𝐼𝐼𝐼) is formed with these two 
moves (inserting 5 in a previous position in the left layer, and inserting 𝐷𝐷 in a previous position 
in the right layer), and the best one is 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 5) with a move value of 0, which indicates 
that the number of crossings does not change if we apply it. In mathematical terms, the total 
number of crossings of the resulting solution is computed as 𝐶𝐶(𝐼𝐼𝐼𝐼) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−(𝐼𝐼𝐼𝐼, 5) =
4, as we can confirm in Figure 5. 

 

Figure 5. New solution after a move. 

Figure 5 shows the resulting solution after applying 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−(𝐼𝐼𝐼𝐼, 5), where vertex 5 is now in 
position 4 in the left layer. An interesting implementation detail of our algorithm is the update 
of the matrices 𝐿𝐿 and 𝑅𝑅, which store the number of crossings, after performing a move. As 
mentioned above, the number of crossings computed for the vertices in the left layer, stored in 
𝐿𝐿, only depends on the ordering of the vertices in the right layer. Then, since the vertices in the 
right layer did not change their position when applying this move, matrix 𝐿𝐿 does not change. We 
only need to update matrix 𝑅𝑅. 
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Considering that we have moved two consecutive vertices, 𝑢𝑢 and 𝑣𝑣, in the left layer 𝐼𝐼𝐼𝐼1, to 
update the matrix 𝑅𝑅 we need to check the vertices adjacent to them. Without loss of generality, 
assume that initially 𝑢𝑢 preceded 𝑣𝑣, and after performing the move then 𝑣𝑣 precedes 𝑢𝑢. Thus, for 
each vertex 𝑎𝑎 adjacent to 𝑢𝑢, and each vertex 𝑏𝑏 adjacent to 𝑣𝑣, we have to increase 𝑟𝑟𝑎𝑎𝑎𝑎 by one 
unit, and decrease 𝑟𝑟𝑏𝑏𝑏𝑏 by one unit (i.e., 𝑟𝑟𝑎𝑎𝑎𝑎 = 𝑟𝑟𝑎𝑎𝑎𝑎 + 1 and 𝑟𝑟𝑏𝑏𝑏𝑏 = 𝑟𝑟𝑏𝑏𝑏𝑏 − 1). 

In our example in Figure 5, 𝑣𝑣 = 5 is in the left layer, so when performing the move matrix 𝐿𝐿 does 
not change. We have to add or subtract one unit to the elements in matrix 𝑅𝑅 corresponding to 
vertices incident to 𝑢𝑢 = 4 and 𝑣𝑣 = 5.  𝐵𝐵 is the adjacent vertex to vertex 𝑢𝑢 = 4, and 𝐴𝐴 and 𝐷𝐷 the 
adjacent vertices to vertex 𝑣𝑣 = 5. The new matrix is the result of adding 1 to the elements 𝑟𝑟𝐵𝐵𝐵𝐵 
and 𝑟𝑟𝐵𝐵𝐵𝐵, and subtracting 1 to the elements 𝑟𝑟𝐴𝐴𝐴𝐴 and 𝑟𝑟𝐷𝐷𝐷𝐷. Figure 6 shows the new matrix 𝑅𝑅. Note 
that only these four elements need to be updated. 

𝑅𝑅 =  �

− 1 1 0
5 − 1 1
2 0 − 0
2 1 1 −

� 

Figure 6. Crossing matrix after the move. 

Although moving an element to its consecutive position is somehow limited, our neighbor is 
formed by all the solutions that can be reached by moving any new element to the immediate 
previous or posterior position, to select the best of them. Therefore, the size of the 
neighborhood is large enough to permit an efficient exploration of the search space. 
Additionally, as shown above, moving continuous vertices permit a fast update of the 
information required to evaluate moves, and to compute the objective function in an 
incremental way (see Eq. 20). 

We include a memory structure in the local search algorithm to create a short-term tabu search 
method. In particular, when we select a new vertex 𝑣𝑣 and move it, we record in 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑣𝑣) the 
number of the current iteration, in order to prohibit to move it in the next iterations. In this way, 
in a given iteration 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, we only permit to select a new vertex 𝑢𝑢 for movement if the following 
condition is met: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑢𝑢) > 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (21) 
 
where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is a search parameter specifying the number of iterations that a tabu element 
cannot be selected. After these number of iterations, the tabu status of 𝑢𝑢 is released, and it can 
be selected again to be moved. As it is customary in tabu search, we modify the neighborhood 
described above by excluding from it those solutions involving to move a tabu element.  An 
important characteristic of tabu search is that the best solution in the neighborhood is always 
performed, even if it deteriorates the objective function (i.e., if the number of crossing 
increases). However, it is well documented that over a medium to large number of iterations 
this strategy permits to visit high-quality solutions. The tabu search method terminates after a 
specific number of iterations. 

5. A Path relinking post-processing 
Path relinking (Glover and Laguna, 1997) generates new solutions by exploring trajectories that 
connect elite solutions by starting from one of these solutions, called an initiating solution, and 
generating a path in the neighborhood space that leads toward the other solutions, called 
guiding solutions.  This is accomplished by selecting moves that introduce attributes contained 
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in the guiding solutions. Note that in standard local search, the move selection in the 
neighborhood is typically guided by the objective function (i.e., the method usually explores the 
entire neighborhood in search for an improving move). In path relinking (PR) however, the 
neighborhood of a solution is limited to the solutions that contain attributes present in the 
guiding solution. Therefore, although we consider the objective function when selecting a move, 
the primary objective is to get closer to the guiding solution. PR subordinates all other 
considerations to the goal of choosing moves that introduce the attributes of the guiding 
solutions, in order to create a “good attribute composition” in the current solution. 

The approach may be viewed as an extreme strategy that seeks to incorporate attributes of high 
quality solutions, by creating inducements to favor these attributes in the moves selected.  In 
evolutionary terms, we can call this strategy a combination method, since the final output is a 
set of solutions (those in the path) that can be viewed as the result of combining the initiating 
and the guiding solutions (called reference solutions). 

Path relinking gives a natural foundation for developing intensification and diversification 
strategies.  Intensification strategies in this setting typically choose reference solutions to be 
elite solutions that lie in a common region or that share common features.  Similarly, 
diversification strategies, based on path relinking characteristically, select reference solutions 
that come from different regions or that exhibit contrasting features.  Diversification strategies 
may also place more emphasis on paths that go beyond the reference points. 

Laguna and Martí (1999) adapted PR in the context of GRASP as a form of intensification. The 
relinking, in the context of multi-start algorithms, consists in finding a path between two 
solutions generated with the constructive method and, eventually, improve the solution in the 
path with a local search. Therefore, the relinking concept has a different interpretation within 
GRASP, since the solutions are not originally linked by a sequence of moves. The authors, 
however, kept the original name of the methodology in spite of the fact that the two solutions 
are linked for the first time. Resende et al. (2010) explored different implementations to 
hybridize these two methodologies: 

 Greedy path relinking. In this method, the moves in the path from a solution to another 
one are selected in a greedy fashion, according to the objective function value. 

 Greedy randomized path relinking. In this variant, the method creates a candidate list 
with the good intermediate solutions and randomly selects among them. 

 Truncated path relinking. In this application of PR, the path between two solutions is not 
completed. It is applied, for example, in problems where good solutions are found close 
to the end points (original solutions) in the path. 

In this paper, we consider the greedy randomized path relinking that has given excellent results 
in previous methods (Resende et al., 2010). Let 𝐼𝐼𝐼𝐼𝑥𝑥 = (𝐼𝐼𝐼𝐼,𝜑𝜑1𝑥𝑥 ,𝜑𝜑2𝑥𝑥) and 𝐼𝐼𝐼𝐼𝑦𝑦 = �𝐼𝐼𝐼𝐼,𝜑𝜑1

𝑦𝑦,𝜑𝜑2
𝑦𝑦� be 

two solutions of our problem. They are incremental drawings of the original drawing 𝐷𝐷 =
(𝐺𝐺,𝜋𝜋1,𝜋𝜋2). The path relinking procedure starts with the first solution 𝐼𝐼𝐼𝐼𝑥𝑥, called initiating 
solution, and gradually transforms it into the second solution 𝐼𝐼𝐼𝐼𝑦𝑦, called guiding solution, by 
selecting a new element in 𝑁𝑁𝑁𝑁 and inserting it in the position that occupies in 𝐼𝐼𝐼𝐼𝑦𝑦. Once a new 
element has been selected and inserted, we do not select it again. When all the new elements 
have been selected, the method finishes, since the path has reached the guiding solution. 

Let 𝐼𝐼𝐼𝐼0 = 𝐼𝐼𝐼𝐼𝑥𝑥 be the initiating solution in the path. As mentioned, we consider for each new 
vertex, 𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁, its insertion in its position according to the guiding solution (𝜑𝜑1

𝑦𝑦(𝑣𝑣) if 𝑣𝑣 is 
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in the left layer, and 𝜑𝜑2
𝑦𝑦(𝑣𝑣) if it is in the right layer). Let 𝑝𝑝𝑝𝑝(𝐼𝐼𝐷𝐷0,𝑣𝑣) be the move value (change 

in number of crossings) of performing this insertion in 𝐼𝐼𝐼𝐼0. If 𝐶𝐶(𝐼𝐼𝐼𝐼0) is the total number of edge 
crossings of the initial solution in the path, and we move 𝑣𝑣 as indicated above, the number of 
crossings of the resulting solution 𝐼𝐼𝐼𝐼1 is 𝐶𝐶(𝐼𝐼𝐼𝐼1) = 𝐶𝐶(𝐼𝐼𝐼𝐼0) − 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣). Then, if 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) >
0, it indicates that this is an improving move. 

We compute 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) for all the candidate vertices (𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶), and build the restricted 
candidate list 𝑅𝑅𝑅𝑅𝑅𝑅 with those that according to the greedy function 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) achieve a 
relatively large reduction in the number of crossings:  𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶: 𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) ≥ 𝛾𝛾} where:  

𝛾𝛾 = min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) + 𝛽𝛽 �max
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣) − min
𝑣𝑣∈𝐶𝐶𝐶𝐶

𝑝𝑝𝑝𝑝(𝐼𝐼𝐼𝐼0,𝑣𝑣)� (22) 

 

and 𝛽𝛽 is a search parameter indicating the degree of randomization that we want to include in 
the process. Following the GRASP methodology, we randomly select a vertex 𝑣𝑣∗ in  𝑅𝑅𝑅𝑅𝑅𝑅 and 
move it, obtaining 𝐼𝐼𝐼𝐼1. Then, we update the candidate list of vertices, 𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣∗}, and 
repeat the steps above replacing 𝐼𝐼𝐼𝐼0 with 𝐼𝐼𝐼𝐼1. In short, we build a new 𝑅𝑅𝑅𝑅𝑅𝑅 from which to select 
a vertex whose insertion will result in 𝐼𝐼𝐼𝐼2. In this way, we obtain a path of solutions, 𝐼𝐼𝐷𝐷0, 𝐼𝐼𝐼𝐼1, 
𝐼𝐼𝐼𝐼2, and so on, up to we reach the guiding solution. The best solution found in the path is 
returned as the output of this path relinking step.  

 

Figure 6. Path generation between initial solution 𝐼𝐼𝐷𝐷𝑥𝑥 and guiding one 𝐼𝐼𝐷𝐷𝑔𝑔. 

Figure 6 shows a path constructed between the initial solution 𝐼𝐼𝐷𝐷𝑥𝑥 and the guiding solution 𝐼𝐼𝐷𝐷𝑔𝑔. 
The original nodes (that must preserve their relative ordering) are depicted in white, while the 
new nodes, which can be moved, are represented in light gray, medium gray, and black. The 
number under each solution represents its number of crossings. Starting in 𝐼𝐼𝐷𝐷𝑥𝑥, the procedure 
generates the solutions that can be reached from it by locating one of the new nodes in its 
position in 𝐼𝐼𝐷𝐷𝑔𝑔. In particular, solution 𝐼𝐼𝐷𝐷1 is generated by inserting the light gray node (the one 
in the first layer of 𝐼𝐼𝐷𝐷𝑥𝑥) in the first position, while solution 𝐼𝐼𝐷𝐷2 is generated after the insertion 
of the medium gray node in the first position of second layer. The black node is located at the 
same position in 𝐼𝐼𝐷𝐷𝑥𝑥 and 𝐼𝐼𝐷𝐷𝑔𝑔, so we do not consider to move it. At the next step, the method 
selects one of the best solutions to continue the search. In this case, both 𝐼𝐼𝐷𝐷1 and 𝐼𝐼𝐷𝐷2 exhibit 
the same number of crossings, so one of them is selected at random, say 𝐼𝐼𝐷𝐷2. The search 
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continues generating solutions 𝐼𝐼𝐷𝐷3 and 𝐼𝐼𝐷𝐷4 by locating the light gray node and the black one at 
their 𝐼𝐼𝐷𝐷𝑔𝑔 position, respectively. Finally, 𝐼𝐼𝐷𝐷𝑔𝑔 is directly reached from 𝐼𝐼𝐷𝐷3, thus ending the path. 
The best solution found during the search (𝐼𝐼𝐷𝐷3) is returned as the output of this path 
construction. 

Path relinking operates on a set of solutions, called elite set (ES), constructed with the 
application of a previous method. In this paper, we apply the hybrid tabu search algorithm 
described in Section 4 to build ES with the best 10 solutions found. Then, we apply the PR 
described in this section to all pairs of solutions in ES, returning the best solution found as the 
output of the method. 

 

6. Computational experiments 
The computational experiments described in this section were performed to test the 
effectiveness and efficiency of the procedures discussed above. The previous GRASP method, 
called prev_GRASP, by Martí and Estruch (2001), and our new procedures were implemented in 
Java SE 8, and the experiments were conducted on a computer with a 2.8 GHz Intel Core i7 
processor with 16 GB of RAM. In particular, we report the results obtained with our constructive 
method, tabu search, and path relinking post-processing. Additionally, the mathematical 
programming formulation described in Section 2 was solved with Gurobi1. 

We employed two sets of instances in our experimentation. The first one contains 120 instances 
generated according to Martí and Estruch (2001), while the second one has 1000 instances and 
was proposed by Stallmann et al. (2001). In line with previous papers, we generated the first set 
of instances based on the original number of vertices in each layer, (𝑛𝑛1,𝑛𝑛2), and the graph 
density 𝑑𝑑 in the interval [0.065, 0.175]. Additionally, as in Martí and Estruch (2001), the instances 
are incremented adding vertices and edges up to pre-established numbers. These numbers are 
calculated as a percentage 𝛿𝛿 of the quantities in the original graph (|𝐼𝐼𝑉𝑉𝑖𝑖| = 𝛿𝛿|𝑉𝑉𝑖𝑖| for each 𝑖𝑖 =
1, 2, and |𝐼𝐼𝐼𝐼| = 𝛿𝛿|𝐸𝐸|). We consider the following values in our experiments: 

 (𝑛𝑛1,𝑛𝑛2) = (25, 25), (25, 50), (50, 25), and (50, 50). 
 𝑑𝑑 = 0.065, 0.175, and 0.300. 
 𝛿𝛿 = 1.2 and 1.6. 

The generator to create our first set of instances is described in Martí and Estruch (2001). For 
each vertex 𝑢𝑢 in the left layer, an edge to a randomly chosen vertex 𝑣𝑣 in the right layer is 
included. Additional edges are added by randomly choosing two vertices of left and right layer. 
The process is repeated until all additional edges have been included to meet the desired 
density. Once the original graph has been created, we applied the well-known barycenter 
algorithm (Di Battista et al., 1999) to obtain the original drawing. Then, it is incremented by 
adding vertices and edges randomly up to the pre-established numbers. For each new vertex in 
𝑁𝑁𝑉𝑉1 an edge to a randomly chosen vertex in 𝐼𝐼𝑉𝑉2 is included. Similarly, for each new vertex 𝑁𝑁𝑉𝑉2 
an edge to a randomly chosen vertex in 𝐼𝐼𝑉𝑉1 is included. This guarantees that each new vertex 
has a degree of at least one. Additional edges are added by randomly choosing two vertices up 
to the desired number. 

                                                           
1 http://www.gurobi.com/ 
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The second set contains 1000 instances obtained with the generator described in Stallmann et 
al. (2001), which is publicly available2. The size of the first layer is in the range [10, 377], while 
the size of second layer ranges from 10 to 190 nodes. The number of edges is in the range [20, 
950]. These instances are bipartite graphs, and we convert them in incremental bipartite graphs 
by considering a percentage of their nodes as the new nodes added to the original graph. In this 
way, we kept the structure and density of the instance. In particular, for each original instance 
we have generated three new instances obtained by selecting as new nodes the 10%, 20%, and 
30% percent of the original nodes. To facilitate future comparisons, these instances are publicly 
available at www.optsicom.es/dbdp. 
 

6.1 Preliminary experimentation 

First experiments are devoted to select the best values of the key search parameters of the 
algorithms to configure our final method. We perform these experiments on a subset of 22 
representative instances in the first set, and we do not include instances of the second set. In 
this way, we avoid over-training of our method in the final comparison with the previous method 
(prev_GRASP). For each experiment, we report the following metrics to measure the merit of 
each procedure when generating 10 constructions for each instance: Average number of 
crossings, Cross., computing time in seconds, Time (s), average percent deviation from the best 
solution found in the experiment, Dev(%), and the number of best solutions found in the 
experiment, #Best. 

The first experiment is intended to select the best value of the parameter 𝛼𝛼 to determine the 
greediness of the constructive method. We have tested the following 𝛼𝛼 values: 0.25, 0.50, 0.75. 
Additionally, we tested a variant (labelled RND) in which at each iteration 𝛼𝛼 is randomly selected 
between 0 and 1. Table 1 reports the solutions of this experiment. 

𝜶𝜶 value Cross. Time (s) Dev (%) #Best 
RND 89515.23 40.84 0.20% 10 
0.25 89741.32 38.23 0.93% 3 
0.50 89518.27 39.57 0.36% 7 
0.75 89409.95 40.16 0.38% 6 

Table 1. Constructive method on training instances with different 𝛼𝛼 values. 

The values in Table 1 show that the best results are obtained when considering 𝛼𝛼 at random in 
each iteration (first row in the table), which favors the randomness part of the algorithm, thus 
generating more diverse solutions.  

In the second preliminary experiment, we test the effectiveness of the tabu search method. In 
particular, we generate 10 solutions with the best constructive method identified above, and 
then apply the tabu search algorithm to them. We stop the tabu search method after 50 
iterations without improvement (we will study in the next experiment the influence of this 
parameter). In this experiment, we consider several values of the tenure parameter. In line with 
previous tabu search experiments (Glover and Laguna, 1997), we consider 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5, 10, 15, 

                                                           
2 https://people.engr.ncsu.edu/mfms/Software/SBG_Software/index.html 
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and 20. We do not reproduce the results of this experiment to limit the extension of the paper. 
Experimentally, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5 provides the most effective variant since with this value the 
algorithm is able to match 55% of best solutions with an average percent deviation of 0.16%, 
while the other tenure values match less than 41% of best solutions and exhibit percent 
deviations larger than 0.22%. 

In the experiment above, we stopped the tabu search after a certain number of iterations 
without improvement, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, which is a standard way to finish a method. Specifically, we 
consider 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 50 consecutive iterations without improvement. We extended this 
experiment and tested different values of 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 to stop the tabu search. Table 2 shows the 
results of this extended study in which we can see that with 50 iterations without improvement 
the method is able to achieve the best results. 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 Cross. Time (s) Dev (%) #Best 
10 89333.82 41.68 0.08% 17 
25 89330.05 40.53 0.03% 19 
50 89326.73 41.91 0.00% 21 
100 89335.14 42.96 0.09% 19 

Table 2. Tabu search with different stopping values. 

An important question when applying tabu search is the contribution of the memory structure 
to the quality of the final solution. In other words, we create our tabu search method by adding 
a memory structure (a tabu list) to a standard local search. We can then consider what would 
be the result if, instead of applying the tabu search to the 10 constructed solution, we apply to 
them the local search that only performs improving moves. The results of this experiment 
confirm the contribution of the memory structure. In particular, the version with local search 
exhibits a lower number of best solutions (11) than the tabu search version (21). From now on, 
we label as TS our method that first constructs 10 solutions (with the random variant), and then 
improves them with the tabu search method with 𝑀𝑀𝑀𝑀𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 50 and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 5. 

In our last preliminary experiment, we test the path relinking post-processing. Specifically, we 
apply TS and collect the 10 best solutions found (forming the elite set). Then, we apply path 
relinking to all pairs in the elite set. Table 3 reports the solutions considering the different values 
of the 𝛽𝛽 parameter (between 0 and 1) defining the restricted candidate list in this method.  

𝜷𝜷 Cross. Time (s) Dev (%) #Best 
RND 89302.77 52.26 0.03% 15 
0.25 89307.45 52.32 0.03% 18 
0.50 89305.14 52.33 0.01% 14 
0.75 89312.32 52.47 0.02% 14 

Table 3. Tabu search with different stopping values. 

Table 3 includes a variant in which the parameter is randomly selected in each iteration (RND). 
If we compare the results in Table 3 with those in Table 2, where path relinking was not applied, 
we can see that the average number of crossing (Cross.) takes now lower values, showing the 
contribution of this method. The results in this table indicate that there are small differences 
among the variants tested, being 𝛽𝛽 = 0.25 the one which is able to obtain the largest number 
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of best solutions. We therefore select this variant, simply labelled as TS+PR, to perform the 
competitive experiments below. 

    prev_GRASP TS+PR Gurobi 

𝒏𝒏𝟏𝟏 𝒏𝒏𝟐𝟐 𝒅𝒅 𝜹𝜹 Cross. Time Dev Cross. Time Dev Cross. Time Dev 
25 25 0.065 0.2 316 6.1 3.6% 305 0.4 0.0% 305 0.4 0.0% 
25 25 0.065 0.6 1131 34.5 15.5% 1106 1.8 13.0% 979 237.7 0.0% 
25 25 0.175 0.2 4037 36.9 2.9% 3927 0.4 0.1% 3922 1.4 0.0% 
25 25 0.175 0.6 12374 120.0 3.3% 11982 3.8 0.0% 12444 1800.6 3.9% 
25 25 0.300 0.2 15185 60.9 1.0% 15067 0.6 0.2% 15036 9.6 0.0% 
25 25 0.300 0.6 40538 252.2 2.2% 39657 7.7 0.0% 41705 1801.6 5.2% 
25 50 0.065 0.2 2218 27.8 2.1% 2185 0.7 0.6% 2173 1.5 0.0% 
25 50 0.175 0.2 20112 201.7 1.6% 19861 2.1 0.3% 19794 193.3 0.0% 
25 50 0.300 0.2 64113 495.3 1.8% 63312 4.8 0.5% 62986 1802.3 0.0% 
25 50 0.300 0.6 175764 519.0 0.0% 176909 52.8 0.0% 184788 1831.6 4.5% 
50 25 0.065 0.2 2230 42.2 2.8% 2191 0.8 1.0% 2169 1.6 0.0% 
50 25 0.065 0.6 6459 267.3 10.8% 5828 12.4 0.0% 6155 1801.0 5.6% 
50 25 0.175 0.2 20265 228.9 2.2% 19890 2.0 0.3% 19831 336.2 0.0% 
50 25 0.175 0.6 57004 517.7 5.6% 54004 31.3 0.0% 63287 1802.4 17.2% 
50 25 0.300 0.2 66253 502.8 1.0% 65593 4.4 0.0% 66319 1802.0 1.1% 
50 25 0.300 0.6 186429 538.6 4.0% 179282 58.6 0.0% 189119 1805.3 5.5% 
50 50 0.065 0.2 7859 297.3 2.9% 7664 3.9 0.4% 7637 3.5 0.0% 
50 50 0.065 0.6 25545 506.5 2.5% 24933 67.0 0.0% 27110 1802.8 8.7% 
50 50 0.175 0.2 78717 505.5 1.9% 77253 14.3 0.0% 77480 1802.7 0.3% 
50 50 0.175 0.6 238979 504.1 2.4% 233326 209.3 0.0% 256917 1808.6 10.1% 
50 50 0.300 0.2 251277 536.8 1.1% 248454 26.1 0.0% 258330 1806.3 4.0% 
50 50 0.300 0.6 728794 575.7 2.3% 712459 416.7 0.0% 757750 1800.3 6.4% 
  Avg. 91163.6 308.1 3.3% 89326.7 41.9 0.7% 94374.4 1102.4 3.3% 

Table 4. Comparison among Prev_GRASP, Tabu Search with Path Relinking and Gurobi. 

 

6.2 Competitive testing 

In the first experiment of this subsection, we test the ability of the previous heuristic 
(prev_GRASP) and our TS+PR method to match the optimal solutions of the problem. To this 
end, we solve the mathematical programming formulation described in Section 2 with Gurobi, 
for a maximum time of 1,800 seconds in each instance. Table 4 reports the individual results on 
the 22 instances in our training set, where the bold font indicates the best value found for each 
instance. Note that when Gurobi finds the best value in a running time lower than 1800 seconds 
we can certify the optimality of the solution found.  However, when a heuristic method 
outperforms Gurobi on an instance, we cannot assure that the best solution found is the optimal 
one. 

Table 4 shows that Gurobi is able to obtain the optimal solution in 10 instances out of the 22 
considered, although this method exhibits a relatively long average computational time (1102.4 
seconds).  The previous heuristic considered, prev_GRASP, is only able to produce one best 
solution in this experiment, although it is very fast compared with Gurobi (308 seconds, on 
average). Our heuristic method, TS+PR, obtains 12 best known solutions in an average running 
time of 41.9 seconds. Considering the average percentage deviations from the best-known 
solution, the ranking of the methods is TS+PR (0.7%), prev_GRASP (3.3%), and Gurobi (3.3%). 
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We now compare these three methods on the entire first set of 120 instances. As in the previous 
experiment, we limit the execution of the methods to a maximum of 1,800 seconds. Additionally, 
we report two versions of our TS+PR method. The first one, in which 10 constructed solutions 
are improved with TS+PR, and the second one, labeled TS(500)+PR, in which 500 solutions are 
constructed and improved with TS+PR if the time limit allows it. Table 5 shows the results on the 
instances incremented on a 20% of the original size (𝛿𝛿 = 1.2), and Table 6 the results with those 
incremented on a 60% (𝛿𝛿 = 1.6). 

Algorithm Cross. Time (s) Dev (%) #Best #Opt 
small size (𝑛𝑛1 + 𝑛𝑛2 = 50) 

Gurobi 6230.00 27.18 0.00% 15 15 
prev_GRASP 6317.47 33.23 2.17% 0 0 
TS(500)+PR 6232.20 48.76 0.10% 5 5 
TS+PR 6234.33 8.15 0.16% 4 4 

medium size (𝑛𝑛1 + 𝑛𝑛2 = 75) 
Gurobi 28522.20 781.71 0.24% 22 21 
prev_GRASP 28776.57 228.98 2.52% 0 0 
TS(500)+PR 28379.10 621.53 0.16% 9 1 
TS+PR 28390.17 61.11 0.21% 2 0 

large size (𝑛𝑛1 + 𝑛𝑛2 = 100) 
Gurobi 112572.27 1207.01 1.10% 6 5 
prev_GRASP 111381.07 423.60 1.94% 0 0 
TS(500)+PR 110214.33 1516.66 0.08% 7 0 
TS+PR 110233.07 292.30 0.12% 3 0 

Table 5. Final comparison of best methods in the first set (𝛿𝛿 = 1.2). 

 

Algorithm Cross. Time (s) Dev (%) #Best #Opt 
small size (𝑛𝑛1 + 𝑛𝑛2 = 50) 

Gurobi 18553.53 1224.33 4.24% 5 5 
prev_GRASP 18056.27 141.83 7.44% 0 0 
TS(500)+PR 17459.13 1039.53 1.01% 10 0 
TS+PR 17489.07 90.12 1.71% 2 0 

medium size (𝑛𝑛1 + 𝑛𝑛2 = 75) 
Gurobi 84088.57 1808.00 7.50% 2 0 
prev_GRASP 80917.97 409.31 5.15% 2 0 
TS(500)+PR 78959.23 1718.27 0.27% 19 0 
TS+PR 79161.07 386.90 0.61% 10 0 

large size (𝑛𝑛1 + 𝑛𝑛2 = 100) 
Gurobi 343478.67 1891.89 8.70% 0 0 
prev_GRASP 328878.53 532.43 3.86% 0 0 
TS(500)+PR 322528.33 1687.68 0.00% 15 0 
TS+PR 322831.60 514.51 0.23% 0 0 

Table 6. Final comparison of best methods in the first set (𝛿𝛿 = 1.6). 
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Results in Tables 5 and 6 confirm the superiority of our proposal with respect to previous 
methods. As expected, the performance of Gurobi quickly deteriorates when the size of the 
instances increases. If we focus on the largest instances in Table 5, with 𝛿𝛿 = 1.2, TS+PR has an 
average percent deviation of 0.12%, which compares favorably with Gurobi (1.10%) and 
prev_GRASP (1.94%). Note additionally that TS+PR is the fastest method since it only requires 
292.30 seconds on average, while Gurobi and prev_GRASP run for 1207.01 and 423.60 seconds 
respectively.  Table 5 also shows the result of our method run for more iterations. In particular, 
TS(500)+PR exhibits a remarkable average percentage value of 0.08%, but it also requires the 
longest execution time (1516.66 seconds on average). Results in Table 6 are in line with those 
commented on Table 5. 

The last two columns in these tables show the number of instances in which the method is able 
to obtain the best solution (#Best), and the number of instances in which we know that the 
method matches the optimal solution (#Opt).  In Table 5, where we only add a small fraction of 
new vertices, Gurobi is able to obtain some optimal solutions. Note that for the other instances 
reported in this table, we do not know how far the heuristic solutions are from the optimal ones. 
In medium and large instances of Table 6, where a larger fraction of new vertices is added to the 
original instances, no method is able to certify the optimality of the solutions. 

We then applied the Wilcoxon test to compare prev_GRASP and TS+PR on the results reported 
in Tables 5 and 6. This statistical test answers the question: Do the two samples (solutions 
obtained with the methods) represent two different populations? The obtained 𝑝𝑝-value < 0.001 
confirms that there are significant performance differences between these two heuristic 
methods. 

We now perform our main experiment in the competitive testing. In particular, we compare our 
best algorithm, TS+PR, with the best previous heuristic, prev_GRASP, in the second set of 1,000 
instances. Note that this set of instances was not used to tune any method, so this experiment 
tests the adaptability and scalability of both heuristics. 

Algorithm Cross. Time (s) Dev (%) #Best 
small size  

prev_GRASP 510.82 0.40 4.09% 119 
TS+PR 497.77 0.09 2.03% 293 

medium size  
prev_GRASP 22742.99 18.83 4.69% 25.00 
TS+PR 22394.12 7.80 0.06% 278.00 

large size  
prev_GRASP 87844.49 319.53 4.97% 6.00 
TS+PR 85816.74 232.27 0.01% 344.00 

Table 7. Final comparison of best heuristic methods in the second set of instances. 

Table 7 shows the results of each algorithm over the Stallmann et al. (2001) set of instances. We 
can see that the computing time of both algorithms are equivalent, although our proposal is 
slightly faster. Notice that both algorithms were executed in the same computer platform, and 
implemented by using the same programming language. If we analyze the quality of the 
solutions generated by each algorithm, we can clearly see that TS+PR is able to obtain the best 
solution in 915 out of 1000 instances, while prev_GRASP only reaches the best solution in 150 
instances. This difference is smaller in the case of small instances (with number of vertices 
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ranging from 21 to 57), where prev_GRASP finds 119 best solutions and TS+PR 293. However, in 
medium and large instances (with number of vertices ranging from 111 to 471), the superiority 
of TS+PR is evident, with a number of best solutions found with an order of magnitude larger 
than those in the previous method. Furthermore, the overall average deviation of TS+PR is close 
to 0, which means that in the 85 out of 1000 instances in which it is not able to obtain the best 
value, it is close to it. This compares favorably with the overall deviation of prev_GRASP of 
4.58%. The 𝑝𝑝-value < 0.0001 obtained in the Wilcoxon test performed between both 
algorithms confirms the superiority of our proposal. 

To complete the experimentation, we finally consider a real application in an assignment graph. 
In particular, we target the 2-layered graph of search queries on online advertisement 
(Antonellis et al., 2008). The graph in Figure 7 represents the assignment of 24 original queries 
(in the left layer) to 25 advertisements (in the right layer), where three additional queries (25, 
26, and 27) and three ads (Z, a, and b) have been added. It has 311 edge crossings. 

 

Figure 7. Assignments of queries to advertisements. 

We apply our TS+PR procedure to the graph in Figure 7 with 311 edge crossings, and obtain the 
drawing shown in Figure 8 with 210 crossings. Note that the relative ordering among the original 
nodes is kept, thus helping the user to easily read the new graph. 

 

Figure 8. Assignment graph optimized with TS+PR. 
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7. Conclusions 
In this paper, we have considered the dynamic bipartite graph drawing problem, also called 
incremental bipartite drawing problem in the literature. We propose new heuristic methods 
based on the tabu search methodology. Our extensive computation shows that the proposed 
method is able to outperform the previous heuristic for this problem. It is worth mentioning an 
implementation detail of our method that makes it especially fast. In particular, the update of 
the objective function when a move is performed is computed by means of two matrices, which 
store the number of crossings for each pair of vertices. The tabu search method efficiently 
updates these matrices after each move. On the other hand, we adapted the mathematical 
programming formulation originally proposed for the bipartite drawing problem to the dynamic 
case. Our experiments with Gurobi show that it is able to solve small and medium size instances 
to optimality. 

An interesting point when designing a tabu search method is the memory contribution. We can 
say in plain words that a short term tabu search is simply a local search method in which we 
added a memory structure (the so-called tabu list). Therefore, one could ask what is the 
incremental contribution obtained with this addition. Our preliminary experimentation confirms 
that the tabu search clearly performs better than the simple local search which it is based on. 
Thus, the hybridization of a constructive GRASP method with a tabu search turns out to be a 
very effective method to target this problem. Additionally, we learnt that using a combination 
method such as path relinking for creating paths between two high quality drawings is a good 
technique to generate new and better solutions. We believe that this approach can be tested in 
other graph drawing problems. 

In this paper we have formulated the stability across a sequence of graph drawings in terms of 
the relative ordering of their vertices, in line with some previous papers. However, alternative 
ways to approach stability would be also of interest.  We are indeed starting to work on a 
formulation based on the absolute ordering of the original nodes. Another extensions and future 
lines of research include dynamic drawings in hierarchies with more than 2 layers, as well as a 
comparison of the different variants of path relinking for the DBDP. 
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