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Abstract 
In this paper we study the visualization of complex structures in the context of automatic graph 
drawing. Constructing geometric representations of combinatorial structures, such as networks 
or graphs, is a difficult task that requires an expert system. The automatic generation of 
drawings of graphs finds many applications from software engineering to social media. The 
objective of graph drawing expert systems is to generate layouts that are easy to read and 
understand. This main objective is achieved by solving several optimization problems. In this 
paper we focus on the most important one: reducing the number of arc crossings in the graph. 
This hard optimization problem has been studied extensively in the last decade, proposing many 
exact and heuristic methods to minimize the total number of arc crossings. However, despite its 
practical significance, the min-max variant in which the maximum number of crossings over all 
edges is minimized, has received very little attention. We propose new heuristic methods based 
on the strategic oscillation methodology to solve this NP-hard optimization problem. Our 
experimentation shows that the new method compares favorably with the existing ones, 
implemented in current graph drawing expert systems. Therefore, a direct application of our 
findings will improve these functionality (i.e., crossing reduction) of drawing systems. 
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1. Introduction 

Graphs are nowadays a modeling tool to represent and analyze data in many areas from 
production to business reengineering.  The term graph drawing refers to the problem of 
constructing geometric representations of graphs, where drawing conventions depend upon the 
application and context in which the graph is used, and where arc crossing minimization is 
probably the most important aesthetic criteria considered. As stated by Carpano (1980) in a 
seminal paper in the graph drawing field, “the most crucial problem as far as readability of a 
graph is that of arc crossing”. 

In the last years, many areas in science, business and engineering have experienced an 
enormous growth in terms of the amount of data that they analyze. As a matter of fact, the term 
Big Data was recently coined to reflect this phenomenon. In this context, the representation of 
large graphs, and in particular the development of graph drawing expert systems, has received 
increasing interest. The first interactive system, called Grab (Rowe et al., 1987), was basically a 
graph editor and it is usually referred to as a first-generation system. Tom Sawyer software 
company (www.tomsawyer.com) created GraphEd (Himsolt, 1996), which can be considered the 
first expert system in this context. It implements layout algorithms for automatic graph drawing.  

Nowadays we can find different expert systems tailored for special types of graphs. Jünger and 
Mutzel (2004) describe 14 software systems based on several standards. These authors 
identified in their text different types of representations, such as circular, orthogonal (grid), 
clustered, compound, and layered or hierarchical. Each application domain typically employs 
one of these types. The book by Di Battista et al. (1999) is a reference in the area of graph 
drawing and explains in detail these standards and their associated ascetic criteria to obtain a 
readable layout. For example, in project management, activity networks are usually represented 
as layered digraphs where vertices are constrained to lie on a set of equally spaced horizontal 
or vertical lines, and edges flow in the same direction, as shown in Figure 1. In this paper we 
focus on layered drawings. 

 

 

Figure 1.  Layered digraph. 

The so-called Sugiyama’s method (1981) to represent digraphs according to the layered 
standard, has led to several drawing expert systems. This method first assigns vertices to layers, 
adding dummy vertices to model long edges. This first step is called Layer Assignment. Then, in 
the second step, the method orders the vertices in each layer, usually with the barycenter 
algorithm, for Arc Crossing Minimization (Martí and Laguna, 2003). Finally, in the third step called 
Coordinate Assignment, it allocates the vertices in a specific position in their layer to reduce arc 
length and bends of long edges. In this way, any digraph can be represented as a proper 

http://www.tomsawyer.com/


3 
 

 
 

hierarchical or layered graph. This makes this graphic convention (i.e., hierarchical graphs) a 
popular standard in the field. In this paper we consider the second step of this graph drawing 
system: the optimization problem consisting in the minimization of the number of arc crossings 
in a layered graph. This is a difficult problem (it is NP-hard), and constitutes a challenge for 
optimization methods. 

If we restrict our attention to the layered representation of graphs (also called hierarchical), we 
can identify several graph drawing expert systems that implement algorithms to obtain it. Table 
1 summarizes the most popular ones in our opinion, specifying how they reduce arc crossings.  

 

Drawing System Characteristic Crossing reduction 
method 

Graphviz 

pygraphviz.github.io/ 

Hierarchical static graphs Median heuristic coupled 
with local search 
(exchanges) 

Dynagraph 

www.dynagraph.org 

Dynamic graphs 

 

Median heuristic (adapted 
to incremental drawing) 

yEd 

www.yworks.com 

Editor with layout 
methods for different 
representations. 

Barycenter and median 
heuristics  

MSAGL 

www.microsoft.com 

Microsoft Graph Layout. 
Constrained to given 
space 

Ordering rules 

AGD 

www.ads.tuwien.ac.at 

Library of algorithms for 
several classes of layouts 

Multi-start barycenter 
from random orderings.  

Tom Sawyer 

www.tomsawyer.com 

Software development kit 
for various layout styles 

Ordering rules 

Mathematica 

www.wolfram.com/mathematica/ 

Wolfram Language for the 
aesthetic drawing of 
graphs. 

LayeredGraphPlot ranks 
vertices for arc crossing 
minimization 

Table 1. Graph Drawing Expert Systems for Layered Graphs 

 

The problem of arc crossing minimization in hierarchical graphs has been extensively studied. 
First efforts, such as Eades and Kelly (1986), restricted themselves to simple ordering rules and 
graphs with only two layers. More elaborated procedures, based on metaheuristic 
methodologies, such as tabu search (Laguna et al., 1997) or GRASP (Laguna and Martí, 1999), 
were later introduced to obtain improved outcomes. A computational comparison of 16 
procedures on 900 randomly generated bipartite graphs was presented by Martí and Laguna 
(2003). This study shows that the procedures based on modern metaheuristics dominate those 
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based on ordering rules in terms of solution quality but at the expense of more computational 
time. Early developments sacrificed solution quality in favor of speed, considering the latter a 
critical factor in automated drawing systems.  This is why, graph drawing expert systems, as 
those shown in Table 1, implement simple heuristic procedures, such as the median or the 
barycenter, to solve this difficult problem. So, in terms of crossing minimization, we can say that 
these expert systems provide a very fast solution of medium quality. The contribution of this 
paper is therefore to propose an efficient algorithm for crossing reduction to improve this 
functionality of expert drawing systems. 

Figure 2 shows a small size graph (100 vertices in 5 layers and 255 arcs) with an arbitrary node 
ordering (i.e., without minimizing arc crossings). It clearly illustrates how hard can be to analyze 
a “non-optimized” graph drawing. 

 
Figure 2.  An arbitrary drawing of a graph with 100 nodes and 255 arcs. 
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All the methods described above minimize the total number of arc crossings in a graph. There is 
however a recent method devoted to minimize the maximum number of arc crossings among 
all the edges of the graph.  Stallmann (2012) identified some applications (i.e. Bhatt and 
Leighton, 1984) in the context of VLSI circuits in which it is more appropriate to minimize the 
maximum number of crossings over all edges (min-max problem) than minimizing the traditional 
sum of crossings (min-sum problem).  He calls this variant the bottleneck crossing problem and, 
in line with his proposal, we have empirically found that solutions to the min-max problem 
usually result in more readable graphs than solutions to the min-sum problem. This is especially 
evident in graph drawing tools where zooming highlights a specific area of the graph and the 
overall crossing reduction does not imply a low number of crossings in the zoomed area. 
Stallmann proposed the maximum crossing edge (MCE) heuristic specifically designed for the 
bottleneck problem, but his experimentation shows that this heuristic also obtains competitive 
solutions with respect to the sum of crossings. In other words, this author considers the min-
max as the primary objective function, and the min-sum as the secondary one, reporting both 
values in the experimentation to assess the merit of the MCE heuristic. 

The main contributions of this work are: 

1. Proposing, implementing and testing a new heuristic for crossing minimization 
2. Proposing, implementing and testing a new mathematical model 
3. Experimental comparison of the two new solving methods with an existing algorithm 
4. Graphical comparison of the new solution method with graph drawing expert systems 
5. Improvement of the state of the art in arc crossing minimization 

Our new heuristic algorithm, based on the strategic oscillation (SO) methodology (Glover and 
Laguna, 1997), minimizes the maximum number of crossings over the edges of a graph and, as 
a subsidiary goal, the total (sum) number of crossings. As mentioned, we focus on hierarchical 
directed acyclic graphs (HDAG) which are also known as layered graphs. Note that working with 
HDAGs is not a limitation since there exists a number of procedures to transform a directed 
acyclic graph (DAG) into a HDAG (Sugiyama et al., 1981). 

In the next section, we first introduce some notation and definitions, and in Section 3, we 
describe the previous MCE heuristic. Section 4 is devoted to the description of our strategic 
oscillation method for the min-max problem, which also considers the min-sum as a secondary 
objective. The experimentation in Section 5 shows that our method is able to compete with the 
previous method in both objectives. We apply statistical analysis to draw significant conclusions 
to finish the paper. 

 

2. Notation and Formulation 

A hierarchical graph 𝐻𝐻 = (𝑉𝑉,𝐸𝐸,𝑘𝑘, 𝐿𝐿) is defined as a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 and 𝐸𝐸 represent 
the set of vertices and edges, respectively, and the function 𝐿𝐿(𝑣𝑣): 𝑉𝑉 → {1,2, … ,𝑘𝑘} indicates the 
index of the layer where 𝑣𝑣 resides. The literature in graph drawing usually does not distinguish 
between the terms edge and arc, so we will use both to refer to the links in the graphs. The 𝐿𝐿 
function implicitly defines the sets of vertices 𝐿𝐿𝑖𝑖 = { 𝑣𝑣 ∈  𝑉𝑉 ∶  𝐿𝐿(𝑣𝑣) = 𝑖𝑖 } for 𝑖𝑖 = 1,2, … ,𝑘𝑘 which 
we refer to as layers. Since the edges in a HDAG are straight lines that join the vertices in two 
contiguous layers, a drawing of a HDAG is given by the ordering of the vertices in each layer. In 
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mathematical terms, a drawing of 𝐻𝐻 is defined as 𝐷𝐷 = (𝐻𝐻,Φ), where Φ =  { 𝜑𝜑1,𝜑𝜑2 , … ,𝜑𝜑𝑘𝑘} and 
𝜑𝜑𝑖𝑖  is the ordering (permutation) of the vertices in layer 𝐿𝐿𝑖𝑖. That is, 𝜑𝜑𝑖𝑖(𝑗𝑗) is the vertex in position 
𝑗𝑗 in layer 𝐿𝐿𝑖𝑖. The position of vertex 𝑣𝑣 in layer 𝐿𝐿𝑖𝑖 is defined as 𝜋𝜋𝑖𝑖(𝑣𝑣) in such a way that if 𝑣𝑣 = 𝜑𝜑𝑖𝑖(𝑗𝑗) 
then 𝜋𝜋𝑖𝑖(𝑣𝑣) = 𝑗𝑗 and conversely. 

Let 𝑐𝑐(𝑒𝑒) be the crossing number of edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) that represents the number of edges that 
cross edge 𝑒𝑒 ∈ 𝐸𝐸.  An arc crossing is produced between edges (𝑢𝑢, 𝑣𝑣) and (𝑢𝑢′, 𝑣𝑣′), where 𝑢𝑢,𝑢𝑢′ ∈
𝐿𝐿𝑖𝑖 and 𝑣𝑣, 𝑣𝑣′ ∈  𝐿𝐿𝑖𝑖+1 when: 

�𝜋𝜋(𝑢𝑢) < 𝜋𝜋(𝑢𝑢′) ∧ 𝜋𝜋(𝑣𝑣) > 𝜋𝜋(𝑣𝑣′)� ∨ �𝜋𝜋(𝑢𝑢) > 𝜋𝜋(𝑢𝑢′) ∧ 𝜋𝜋(𝑣𝑣) < 𝜋𝜋(𝑣𝑣′)�. 

The maximum crossing number of a drawing 𝐷𝐷 = (𝐻𝐻,Φ), that we denote by 𝑚𝑚𝑐𝑐(𝐷𝐷), is the 
maximum of 𝑐𝑐(𝑒𝑒) across all the edges in 𝐻𝐻, i.e.: 

𝑚𝑚𝑐𝑐(𝐷𝐷) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒∈𝐸𝐸  𝑐𝑐(𝑒𝑒). 

The min-max arc crossing problem in a HDAG may be formulated as the problem of finding the 
ordering in each layer in such a way that 𝑚𝑚𝑐𝑐(𝐷𝐷) is minimum. An optimal drawing 𝐷𝐷⋆ is such that 
no other 𝐷𝐷 has a lower value of 𝑚𝑚𝑐𝑐(𝐷𝐷). In Stallmann (2012), the min-max arc crossing problem 
is called the bottleneck crossing problem. 

The crossing number of a drawing 𝐷𝐷, 𝑐𝑐(𝐷𝐷), is the total (sum) number of crossings in the graph, 
i.e.: 

𝑐𝑐(𝐷𝐷) =
1
2
�𝑐𝑐(𝑒𝑒)
𝑒𝑒∈𝐸𝐸

, 

and the classical edge crossing minimization problem, called here the min-sum problem, consists 
of finding the ordering in each layer to minimize 𝑐𝑐(𝐷𝐷). Both combinatorial optimization 
problems, minimizing 𝑚𝑚𝑐𝑐(𝐷𝐷) and minimizing 𝑐𝑐(𝐷𝐷), are NP-hard1 (Garey and Johnson, 1983).  

The maximum crossing edge heuristic (MCE) proposed in Stallmann (2012) is specifically 
designed to minimize 𝑚𝑚𝑐𝑐(𝐷𝐷) as described below. Additionally, this method also optimizes 
𝑐𝑐(𝐷𝐷) as a secondary objective. 

Jünger and Mutzel (1997) proposed a linear model based on binary variables for the min-sum 
problem. For the sake of simplicity, we describe here the formulation for a 2-layered graph, 
which can be easily generalized to an arbitrary layered graph. In this formulation, variable 𝑚𝑚𝑖𝑖𝑘𝑘 =
1 when node 𝑖𝑖 precedes node 𝑘𝑘 in the first layer (called the left layer in 2-layered graphs). 
Similarly, 𝑦𝑦𝑙𝑙𝑙𝑙 = 1  when node 𝑙𝑙 precedes node 𝑗𝑗 in the second layer (called the right layer). The 
variable definition is completed with the introduction of 𝑐𝑐𝑖𝑖𝑙𝑙𝑘𝑘𝑙𝑙, which takes the value 1 when a 
crossing between edges (𝑖𝑖, 𝑗𝑗) and (𝑘𝑘, 𝑙𝑙) occurs. To adapt this formulation to the min-max 
problem, we added variable 𝑐𝑐(𝑖𝑖, 𝑗𝑗) which indicates the number of crossing of edge (𝑖𝑖, 𝑗𝑗); in other 
words, what we defined as the crossing number of the edge. With this notation, we formulate 
the problem as: 

 

                                                           
1 Stallmann (2012) states that the proof by Garey and Johnson for the min-sum can be adapted to the 
min-max problem by using the bandwidth problem in place of the linear arrangement problem. 
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𝑀𝑀𝑖𝑖𝑀𝑀 𝑀𝑀 

 

Subject to: 

𝑚𝑚𝑖𝑖𝑘𝑘 + 𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑖𝑖𝑙𝑙𝑘𝑘𝑙𝑙 ≤ 1      (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (1) 

𝑚𝑚𝑘𝑘𝑖𝑖 + 𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑖𝑖𝑙𝑙𝑘𝑘𝑙𝑙 ≤ 1      (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (2) 

𝑚𝑚𝑖𝑖𝑙𝑙 + 𝑚𝑚𝑙𝑙𝑘𝑘 + 𝑚𝑚𝑘𝑘𝑖𝑖 ≤ 2       1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑀𝑀1  (3) 

𝑦𝑦𝑖𝑖𝑙𝑙 + 𝑦𝑦𝑙𝑙𝑘𝑘 + 𝑦𝑦𝑘𝑘𝑖𝑖 ≤ 2       1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑀𝑀2  (4) 

𝑐𝑐(𝑖𝑖, 𝑗𝑗) = ∑ 𝑐𝑐𝑖𝑖𝑙𝑙𝑘𝑘𝑙𝑙 +(𝑘𝑘,𝑙𝑙)∈𝐸𝐸  𝑐𝑐𝑘𝑘𝑙𝑙𝑖𝑖𝑙𝑙            (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸  (5) 

𝑐𝑐(𝑖𝑖, 𝑗𝑗) ≤  𝑀𝑀                      (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸   (6) 

𝑚𝑚𝑖𝑖𝑙𝑙 + 𝑚𝑚𝑙𝑙𝑖𝑖 = 1                   1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑀𝑀1   (7) 

𝑦𝑦𝑖𝑖𝑙𝑙 + 𝑦𝑦𝑙𝑙𝑖𝑖 = 1                   1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑀𝑀2   (8) 

𝑚𝑚𝑖𝑖𝑙𝑙,𝑦𝑦𝑖𝑖𝑙𝑙 , 𝑐𝑐𝑖𝑖𝑙𝑙𝑘𝑘𝑙𝑙 ∈  {0,1} 

  𝑐𝑐(𝑖𝑖, 𝑗𝑗),𝑀𝑀 ∈ ℤ+. 

In this model, constraints (1) and (2) force 𝑐𝑐𝑖𝑖𝑙𝑙𝑘𝑘𝑙𝑙 to take the value 1 when the variables 𝑚𝑚𝑖𝑖𝑘𝑘 and 
𝑦𝑦𝑙𝑙𝑙𝑙 indicate a crossing. Constraints (3) and (4) are the 3-dicycle constraints, which together with 
(7) and (8) guarantee that the ordering variables (𝑚𝑚 and 𝑦𝑦 respectively) represent in fact an 
ordering. We included the new constraints (5) to compute the crossing number of all arcs and 
constraints (6) to force variable 𝑀𝑀 to take the maximum of these crossing numbers, since the 
minimization of 𝑀𝑀 in the objective function tries to reduce it as much as possible, thus providing 
the objective function value of the min-max problem. We will make use of this formulation in 
Section 5 to obtain the optimal results of some instances. 

 

3. Previous methods 

Traditionally, the 2-layer crossing minimization problem is solved by fixing the permutation 𝜑𝜑𝑖𝑖  
with 𝑖𝑖 = 1, 2 of the vertices in one of the two layers. Then, the permutation of vertices in the 
other layer is adjusted to best meet the objective of minimizing 𝑐𝑐(𝐷𝐷). This principle is also 
commonly used with multiple layers as the layers are considered one at a time and the position 
of the vertices is determined by looking at one of the adjacent layers. Bachmaier et al. (2010) 
and Matuszewski et al. (1999) describe the most popular of the classical heuristics: the 
barycenter, the median and the sifting algorithms. These heuristics are performed iteratively 
with three possible stopping criteria: either when no improvement is found in an iteration, after 
a given number of iterations or eventually after a pre-established amount of time. 
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Both the barycenter and the median algorithm use a layer-by-layer sweep technique where, first, 
an initial vertex ordering is determined for each layer {𝜑𝜑1,𝜑𝜑2 , … ,𝜑𝜑𝑘𝑘}. Then, starting at the 
second layer, the permutation 𝜑𝜑2 is decided with respect to the fixed ordering of 𝜑𝜑1. Using the 
barycenter, the position of a vertex 𝑣𝑣 in layer 𝐿𝐿2 is determined by calculating the mean position 
of vertices adjacent to 𝑣𝑣 in layer 𝐿𝐿1 and sorting the vertices in 𝐿𝐿2 according to this number. This 
procedure is continued for each new layer 𝐿𝐿𝑖𝑖 with respect to its previous layer 𝐿𝐿𝑖𝑖−1 and when 
the last layer 𝐿𝐿𝑘𝑘 is sorted, the procedure is repeated in decreasing order, where layer 𝐿𝐿𝑙𝑙 
considers the permutation in layer 𝐿𝐿𝑙𝑙+1 instead. The median algorithm is similar to the 
barycenter with the exception that it uses the median instead of the mean of the adjacent 
vertices to sort the current layer.  

The sifting algorithm is somewhat different, as it is based on vertex insertion instead of sorting. 
The vertices are chosen in a given order and inserted one by one sequentially. A chosen vertex 
𝑣𝑣 is inserted at the best position in its layer 𝐿𝐿(𝑣𝑣) with respect to the already included vertices. 
By using a given measure (initially 𝑐𝑐(𝐷𝐷)), the optimal position is calculated and the vertex is 
inserted before the next one is handled in the same way. The degree of a vertex is defined as 
the number of edges incident to it, and the best strategy is considered to be the one starting 
with the vertex with highest degree and continues with the insertion of the following in a 
decreasing order. A pass is defined as the completion of the procedure of inserting all nodes 
once. After a pass, the sequence is reversed and each vertex is again inserted but now with 
respect to the current position of the other vertices. 

Stallmann (2012) developed the MCE heuristic based on the sifting principle but designed to 
solve the bottleneck problem. He also showed that the MCE heuristic outperforms previous 
algorithms for solving the min-sum problem for certain instances, especially those with a large 
maximum vertex degree. MCE applies a different method than the classical sifting algorithm to 
find the optimal position for the vertices, although it also repeats passes until no further 
improvements can be found or another predefined stopping criterion is met. 

The main principle of MCE is to use edges as basis for selecting vertices for insertion. Unlike the 
traditional sifting algorithm, which selects vertices according to the number of edges adjacent 
to them, MCE identifies the edge with the largest number of crossings and tries to reposition 
the vertices at the endpoints of this edge. Thus, the method starts with an initial drawing 𝐷𝐷, 
which can be determined by a complete random ordering of the vertices in each layer or with 
another pre-processing strategy. Then, it sorts the edges 𝑒𝑒 ∈  𝐸𝐸 in descending order according 
to their current number of crossings 𝑐𝑐(𝑒𝑒). At each step, following this order, an edge 𝑒𝑒 is 
examined, and its endpoint vertices are checked in search for their best position. Note that 
instead of using the global 𝑐𝑐(𝐷𝐷) as the objective function to determine this best position, only 
the edges incident to the chosen vertex are considered. Thus, MCE determines the best position 
for a vertex 𝑣𝑣 as the one that minimizes the maximum number of crossings among the edges 
incident to 𝑣𝑣. This means that a drawing could actually be poorer after a vertex insertion since 
the number of crossings of a non-adjacent edge could eventually increase. The author however 
explains that, as shown in the computational experiments, this strategy achieves good results, 
since it works as a diversification method by encouraging a variety of movements, thus 
preventing the search from being stuck in a local optimum. Stallmann (2012) also shows that 
using the barycenter for determining the initial drawing 𝐷𝐷, from which to apply MCE, can obtain 
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significantly better results. A post-processing procedure of exchanging adjacent vertices is also 
applied to further improve the solutions. The experimentation shows that, as expected, this 
method obtains a very low 𝑚𝑚𝑐𝑐(𝐷𝐷) value, but additionally, it is also competitive with existing 
algorithms to minimize 𝑐𝑐(𝐷𝐷). 

 

4. Strategic oscillation heuristic 

Heuristic search procedures that aspire to find globally optimal solutions to hard combinatorial 
optimization problems usually require some type of diversification to overcome local optimality. 
A way to achieve diversification that has proven to be very effective (see, for example, Corberán 
et al., 2016) is to re-start the procedure from a new solution once a region has been explored. 
This is the core of the so-called multi-start procedures (Martí et al., 2013).  These methods have 
become very popular in the last years, with probably the GRASP methodology (Festa and 
Resende, 2011) being one of the most applied when solving combinatorial optimization 
problems. Multi start methods usually alternate two phases, the first one in which a solution is 
built, and the second one in which this solution is usually improved by applying a local search 
procedure. 

An interesting family within multi-start approaches is given by the rebuilding approaches in 
which, instead of building a solution from scratch at each iteration, the method employs some 
of the elements in the solution of the previous iteration to build a new one. As in multi-start 
methods, after generating a solution, a local search post-processing is usually applied. This 
rebuilding mechanism has revealed to be very effective to target hard optimization problems. 
In particular, the Strategic Oscillation methodology applies it to efficiently search the solution 
space. The generation of a solution by including certain elements from previous solutions 
follows basic tabu search principles (Glover and Laguna, 1997) since it is based on memory 
structures. In other words, it bases its exploration in recording certain information during the 
search process to find new efficient solutions. This contrasts with memory-less designs, such as 
GRASP, in which each iteration constitutes a new effort, not linked with the previous solutions. 

In this paper we focus on a simplified version of the constructive and destructive processes, 
known as iterated greedy (IG) (Ruiz and Stützle, 2008). This method generates a sequence of 
solutions by iterating over a greedy constructive heuristic that, as in strategic oscillation, uses 
two main phases: destruction and construction. The IG method starts from a complete initial 
solution S and then iterates through a main loop. In this loop, it first generates a partial candidate 
solution Sp by removing a certain number of elements (destruction phase) from the complete 
candidate solution S and, next, reconstructs a complete solution starting from Sp (construction 
phase). Additionally, a local search phase is applied to the reconstructed solution in order to 
reach a local optimum. Before resorting to the next iteration in the main loop, an acceptance 
criterion decides whether the solution returned by the local search procedure becomes the new 
incumbent solution or not. The IG process alternates the destruction and construction phases 
with the local search post-processing until a termination criterion is met. 

As mentioned, given a hierarchical graph 𝐻𝐻 = (𝑉𝑉,𝐸𝐸,𝑘𝑘, 𝐿𝐿), a solution (or drawing) 𝐷𝐷 = (𝐻𝐻,Φ) 
provides an ordering of its vertices. Considering that the objective function of the min-max arc 
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crossing problem is given by 𝑚𝑚𝑐𝑐(𝐷𝐷) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒∈𝐸𝐸  𝑐𝑐(𝑒𝑒), we define the critical edges, 𝐶𝐶𝐸𝐸, to those 
with a crossing number equal to the objective function value. In mathematical terms: 

𝐶𝐶𝐸𝐸 = {𝑒𝑒 ∈ 𝐸𝐸: 𝑐𝑐(𝑒𝑒) = 𝑚𝑚𝑐𝑐(𝐷𝐷)} 

It is clear that if we want to improve a solution 𝐷𝐷 with respect to 𝑚𝑚𝑐𝑐(𝐷𝐷), we have to reduce the 
number of crossing of the critical edges.  In this section, we propose both constructive and local 
search methods to reduce it.  Considering that the computation of 𝐶𝐶𝐸𝐸 is time-consuming since 
it requires the exploration of all the edges in the graph, and that when we reduce the crossing 
of the edges in this set, other edges will become critical, we define the set of near-critical edges, 
𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝), to deal simultaneously with both edges that are now critical, and edges that we expect 
to be critical in subsequent iterations of our algorithm. This set depends on a search parameter 
𝑝𝑝 ∈ [0,1], measured as a percentage of the objective function value. In mathematical terms: 

𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝) = {𝑒𝑒 ∈ 𝐸𝐸: 𝑐𝑐(𝑒𝑒) ≥ 𝑝𝑝 𝑚𝑚𝑐𝑐(𝐷𝐷)}. 

Our constructive and local search phases have the primary objective of finding an ordering in 
the layers to reduce the number of crossings of the edges in 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝), thus trying to improve the 
objective function value 𝑚𝑚𝑐𝑐(𝐷𝐷). To do this, we define the set of near critical vertices, 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝), 
as the set of vertices that are endpoints of the near critical edges, i.e.: 

𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) = {𝑣𝑣 ∈ 𝑉𝑉: (𝑢𝑢, 𝑣𝑣) ∈ 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝) 𝑜𝑜𝑜𝑜 (𝑣𝑣,𝑢𝑢) ∈ 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝)}. 

The constructive mechanism applies the Iterated Greedy methodology, which as explained 
above, partially destroys a solution to obtain a new one from it. In the following subsections, we 
will describe how it operates. In short, given a solution, it basically removes the vertices in 
𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) plus a random selection, and repositions them according to the barycenter. 

 

4.1 Constructive heuristic 

Our constructive heuristic, outlined in Algorithm 1, starts by creating a candidate list 𝐶𝐶𝐿𝐿 of 
unassigned vertices, which at the beginning of the algorithm consists of all the vertices in the 
graph.  The initial position of each vertex is assigned a value of zero ( 𝜋𝜋𝑖𝑖(𝑣𝑣) = 0, ∀𝑣𝑣𝑣𝑣𝑉𝑉).  The 
heuristic starts by randomly selecting a vertex from the vertices in 𝐶𝐶𝐿𝐿 with maximum degree. 
The vertex is placed in an arbitrary position (see steps 1 to 7 of Algorithm 1). 

Once a selected vertex 𝑣𝑣 has been positioned in the partial solution, 𝐶𝐶𝐿𝐿 is updated by deleting 
𝑣𝑣.  In subsequent construction steps (9 to 16 of Algorithm 1), the next vertex 𝑣𝑣 is randomly 
selected from a restricted candidate list 𝑅𝑅𝐶𝐶𝐿𝐿 that consists of vertices with a degree of no less 
than 𝛼𝛼 (0 ≤ 𝛼𝛼 ≤ 1) of the maximum degree 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 in 𝐶𝐶𝐿𝐿.  The vertex degree is calculated with 
respect to the subgraph given by the partial solution obtained from previous vertex selections. 
In mathematical terms 𝑅𝑅𝐶𝐶𝐿𝐿 = {𝑣𝑣 ∈ 𝐶𝐶𝐿𝐿: 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐿𝐿) ≥ 𝛼𝛼 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚}, where 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐿𝐿) is the 
degree of vertex 𝑣𝑣 with respect to the vertices already positioned (i.e., with respect to the partial 
solution under construction). In general terms, a selected vertex 𝑣𝑣 is placed in its layer in the 
position prescribed by the barycenter, denoted by 𝑏𝑏𝑐𝑐(𝑣𝑣), computed as the arithmetic mean of 
the positions of the already assigned adjacent vertices to 𝑣𝑣. The construction phase terminates 
after |𝑉𝑉| steps, when all vertices have been selected and positioned. 
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Input: (𝐻𝐻,𝛼𝛼) 
1 Define 𝐶𝐶𝐿𝐿 ≔ 𝑉𝑉 
2 forall 𝑣𝑣 ∈ 𝐶𝐶𝐿𝐿 do 
3   𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 0 
4 end forall 
5 Randomly select 𝑣𝑣∗ ∈ 𝐶𝐶𝐿𝐿 according to a uniform distribution 
6 Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣∗) 
7 Set an arbitrary position 𝜋𝜋𝑖𝑖(𝑣𝑣∗) 
8 Update 𝐶𝐶𝐿𝐿 ≔ 𝐶𝐶𝐿𝐿 ∖ {𝑣𝑣∗} 
9 while 𝐶𝐶𝐿𝐿 ≠ ∅ do 
10   Define 𝑅𝑅𝐶𝐶𝐿𝐿 = {𝑣𝑣 ∈ 𝐶𝐶𝐿𝐿 ∶ 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐿𝐿) ≥ 𝛼𝛼𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚} 
11   Randomly select 𝑣𝑣∗ ∈ 𝑅𝑅𝐶𝐶𝐿𝐿 according to a uniform distribution 
12   Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣∗) 
13   Compute barycenter 𝑏𝑏𝑐𝑐(𝑣𝑣∗) 
14   Set position 𝜋𝜋𝑖𝑖(𝑣𝑣∗) ≔ 𝑏𝑏𝑐𝑐(𝑣𝑣∗) 
15   Update 𝐶𝐶𝐿𝐿 ≔ 𝐶𝐶𝐿𝐿 ∖ {𝑣𝑣∗} 
16 end while 

Output: 𝐷𝐷 

Algorithm 1. GRASP constructive phase of the Strategic Oscillation procedure. 

The first iteration of the constructive heuristic operates as described above and outlined in 
Algorithm 1, which basically constitutes an implementation of a GRASP construction. In 
subsequent iterations, following the Strategic Oscillation methodology and the Iterated Greedy 
implementation, we feed the construction heuristic with a previous solution to keep the current 
position of some of its vertices, as shown in Algorithm 2. 

Input: (𝐷𝐷,𝑝𝑝,𝛽𝛽) 
1 Define 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝) = {𝑒𝑒 ∈ 𝐸𝐸 ∶ 𝑐𝑐(𝑒𝑒) ≥ 𝑝𝑝 ∙ 𝑚𝑚𝑐𝑐(𝐷𝐷)} 
2 Define 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) = {𝑣𝑣 ∈ 𝑉𝑉 ∶ (𝑢𝑢, 𝑣𝑣) ∈ 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝) or (𝑣𝑣,𝑢𝑢) ∈ 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝)} 
3 forall 𝑣𝑣 ∈ 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) do 
4   Remove 𝑣𝑣 from 𝐷𝐷 
5   Set 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 0 
6 end forall 
7 counter ≔ |𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝)| 
8 while counter < ⌊ 𝛽𝛽|𝑉𝑉| ⌋ do 
9   Randomly select 𝑣𝑣 ∈ 𝐷𝐷 ∖ 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) according to a uniform distribution 
10  Remove 𝑣𝑣 from 𝐷𝐷 
11   Set 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 0 
12   counter + + 
13 end while 
14 define 𝐶𝐶𝐿𝐿 = {𝑣𝑣 ∈ 𝑉𝑉 ∶ 𝜋𝜋𝑖𝑖(𝑣𝑣) = 0}  
15 while 𝐶𝐶𝐿𝐿 ≠ ∅ do 
16   Define 𝑅𝑅𝐶𝐶𝐿𝐿 = {𝑣𝑣 ∈ 𝐶𝐶𝐿𝐿 ∶ 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐿𝐿) ≥ 𝛼𝛼𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚} 
17   Randomly select 𝑣𝑣∗ ∈ 𝑅𝑅𝐶𝐶𝐿𝐿 according to a uniform distribution 
18   Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣∗) 
19   Compute barycenter 𝑏𝑏𝑐𝑐(𝑣𝑣∗) 
20   Set position 𝜋𝜋𝑖𝑖(𝑣𝑣∗) ≔ 𝑏𝑏𝑐𝑐(𝑣𝑣∗) 
21   Update 𝐶𝐶𝐿𝐿 ≔ 𝐶𝐶𝐿𝐿 ∖ {𝑣𝑣∗} 
22 end while 

Output: 𝐷𝐷 

Algorithm 2. Iterated Greedy phase of the Strategic Oscillation procedure. 

Algorithm 2 shows that given a solution 𝐷𝐷, the Iterated Greedy phase of the Strategic Oscillation 
method starts by removing the associated set of near-critical vertices, 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) of 𝐷𝐷. Then, for 
diversification purposes, it removes if necessary an additional number of vertices randomly 



12 
 

 
 

selected from 𝐷𝐷 ∖ 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) up to the target amount of 𝛽𝛽|𝑉𝑉| . We consider that the position of 
all these “removed” vertices is assigned to a value of zero (𝜋𝜋𝑖𝑖(𝑣𝑣) = 0). Then, we re-apply the 
constructive method described above in Algorithm 1 to this partial solution by adding the 
removed vertices. This modified construction phase terminates when all the “removed” vertices 
have been selected and positioned, following the above-mentioned mechanisms, based on the 
use of 𝑅𝑅𝐶𝐶𝐿𝐿 and the barycenter calculation. Once a solution 𝐷𝐷 is completed, we evaluate it 
(compute the objective function value 𝑚𝑚𝑐𝑐(𝐷𝐷)), and submit it to the improvement heuristic. 

Since we seek to optimize the 𝑚𝑚𝑐𝑐(𝐷𝐷) value, we consider a modification of the barycenter 
calculation 𝑏𝑏𝑐𝑐(𝑣𝑣) in the algorithms above.  Instead of computing the average of the position of 
all its adjacent vertices, we compute in 𝑏𝑏𝑐𝑐(𝑣𝑣) the weighted average of the positions of its near 
critical adjacent vertices (i.e., those in 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝)). Specifically, we consider the crossing number 
𝑐𝑐(𝑣𝑣,𝑢𝑢) as the weight to multiply the position of each near critical vertex 𝑢𝑢. 

4.2 Improvement heuristic 

Given a solution 𝐷𝐷, each step of the improvement heuristic, outlined in Algorithm 3, consists of 
selecting a vertex in the set of its near critical vertices 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) to be considered for a move. 
Since both the evaluation of a solution and the computation of this set is time consuming, we 
do not re-compute the solution value or the set after the application of a single move, but we 
directly resort to the next element in the set to explore its associated move. Once all the 
elements in 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) have been examined and eventually moved, we evaluate the resulting 
solution and compute its near critical vertex set for the next iteration of the improvement 
heuristic. One could argue that this implementation does not calculate the exact impact (or 
influence) of a move in the objective function at the time we perform it (the so-called move 
value). Although this is true, it is extremely fast in terms of computing time and can be indirectly 
controlled with the number of iterations without updating the solution value. This is done by 
adjusting the search parameter 𝑝𝑝, controlling the size of 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝). This candidate list strategy, 
skipping the process of updating relevant information in each iteration of a method, has been 
successfully applied in the context of the tabu search methodology (Glover and Laguna, 1997). 

When reviewing previous local search methods for edge crossing minimization (see Martí and 
Laguna, 2003), we found that some of them examine all the possible insertions for a vertex, 
while others limit themselves to a single position, usually the one given by the barycenter.  The 
former methods require more computing time but usually find a better position than the latter 
ones, which only try one position in their moves.  Here, we propose a mixed strategy to 
determine the position to insert a vertex in order to achieve a compromise between solution 
quality and speed. 

When a vertex 𝑣𝑣 ∈ 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) is selected (see step 7 in Algorithm 3), we compute its barycenter, 
𝑏𝑏𝑐𝑐(𝑣𝑣), with respect to the current ordering of its adjacent vertices. Then, the insertion move 
considers five positions: 𝑏𝑏𝑐𝑐(𝑣𝑣), 𝑏𝑏𝑐𝑐(𝑣𝑣) + 1, 𝑏𝑏𝑐𝑐(𝑣𝑣) + 2, 𝑏𝑏𝑐𝑐(𝑣𝑣) − 1, and 𝑏𝑏𝑐𝑐(𝑣𝑣) − 2 (steps 10 to 15 
in Algorithm 3). If some of these positions are not feasible (because of the size of the layer), we 
discard them.  The vertex 𝑣𝑣 is placed in the position, from these five, that produces the maximum 
reduction in the total (sum) number of crossings 𝑐𝑐(𝐷𝐷).  If no reduction is possible, then the 
vertex is not moved.  In any case, we resort to the next vertex in the near critical set.  An 
improvement step terminates when all vertices have been considered for insertion (some 
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vertices may be moved while others may stay in their original positions.) Then, the final solution 
is evaluated (i.e. 𝑚𝑚𝑐𝑐(𝐷𝐷) is computed), and the following step is performed from the new near 
critical set. 

It must be noted that the selection of the vertices to be moved is computed based on the primary 
objective function 𝑚𝑚𝑐𝑐(𝐷𝐷), and their insertion position is computed according to the secondary 
objective function 𝑐𝑐(𝐷𝐷). Our experimental analysis will confirm that the interplay of both 
evaluations is able to produce high quality solutions, in terms of both objectives, in short 
computational times. 

 

Input: (𝐷𝐷,𝑝𝑝) 
1 do 
2   Compute 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝) = {𝑒𝑒 ∈ 𝐸𝐸 ∶ 𝑐𝑐(𝑒𝑒) ≥ 𝑝𝑝 ∙ 𝑚𝑚𝑐𝑐(𝐷𝐷)} 
3   Compute 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) = {𝑣𝑣 ∈ 𝑉𝑉 ∶ (𝑢𝑢, 𝑣𝑣) ∈ 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝) or (𝑣𝑣,𝑢𝑢) ∈ 𝑁𝑁𝐶𝐶𝐸𝐸(𝑝𝑝)} 
4   Define 𝐶𝐶𝐿𝐿 = 𝑁𝑁𝐶𝐶𝑉𝑉(𝑝𝑝) 
5   while 𝐶𝐶𝐿𝐿 ≠ ∅ do 
6    Define 𝐷𝐷′ ≔ 𝐷𝐷 
7    Randomly select 𝑣𝑣 ∈ 𝐶𝐶𝐿𝐿 according to a uniform distribution 
8    Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣) 
9    Set 𝜋𝜋𝑖𝑖∗(𝑣𝑣) ≔ 𝜋𝜋𝑖𝑖(𝑣𝑣) 
10    for 𝑝𝑝𝑜𝑜𝑝𝑝 = −2  to  𝑝𝑝𝑜𝑜𝑝𝑝 = +2 do 
11     In 𝐷𝐷′, set position 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 𝑏𝑏𝑐𝑐(𝑣𝑣) + 𝑝𝑝𝑜𝑜𝑝𝑝 
12     if 𝜋𝜋𝑖𝑖(𝑣𝑣) is feasible  and  𝑐𝑐(𝐷𝐷′) < 𝑐𝑐(𝐷𝐷) then 
13     𝜋𝜋𝑖𝑖∗(𝑣𝑣) ≔ 𝜋𝜋𝑖𝑖(𝑣𝑣) 
14    end if 
15    end for 
16    In 𝐷𝐷′, set position 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 𝜋𝜋𝑖𝑖∗(𝑣𝑣) 
17    Update 𝐶𝐶𝐿𝐿 ≔ 𝐶𝐶𝐿𝐿 ∖ {𝑣𝑣} 
18   end while 
19   Set 𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝑒𝑒𝑚𝑚𝑒𝑒𝑀𝑀𝑖𝑖 ≔ 0 
20  if 𝑚𝑚𝑐𝑐(𝐷𝐷′) < 𝑚𝑚𝑐𝑐(𝐷𝐷) then 
21    𝐷𝐷 ≔ 𝐷𝐷′ 
22    𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝑒𝑒𝑚𝑚𝑒𝑒𝑀𝑀𝑖𝑖 ≔ 1 
23   end if 
24 while 𝑖𝑖𝑚𝑚𝑝𝑝𝑜𝑜𝑜𝑜𝑣𝑣𝑒𝑒𝑚𝑚𝑒𝑒𝑀𝑀𝑖𝑖 == 1 

Output: 𝐷𝐷 

Algorithm 3. Improvement method. 

When Algorithm 3 finishes, we apply a post-processing to fine tune the solution and try to 
further reduce its 𝑚𝑚𝑐𝑐(𝐷𝐷) value. In particular, we focus on the arc with maximum value (i.e. the 
critical arc responsible for the objective function value). If there is more than one critical arc, we 
chose one at random. Then, we scan all the possible positions for its end-nodes. We scan these 
positions one by one in search for the one with a maximum reduction in the 𝑚𝑚𝑐𝑐(𝐷𝐷) value. To 
do so, we need to compute the crossing number of all the arcs in the layer. If we reduce 𝑚𝑚𝑐𝑐(𝐷𝐷), 
we identify the new critical arc and continue in this way; otherwise we stop this post-processing. 
We only apply it selectively to promising solutions to reduce the total computational effort of 
our method. Specifically, we apply it to solutions with a 𝑚𝑚𝑐𝑐(𝐷𝐷) value within 4 units of the best 
𝑚𝑚𝑐𝑐(𝐷𝐷) found so far. 
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5. Computational Experiments 

As we mentioned in Section 3, to the best of our knowledge, Stallmann (2012) is the only 
previous work on the min-max arc crossing problem, so the primary purpose of our 
experimentation is to compare our method with his MCE heuristic. However, before performing 
this competitive testing, we undertake to explore the elements of our method in a scientific 
testing. In this way, we can calibrate and adjust the search parameters and evaluate its influence 
on the performance of the method. We employ 85 instances in our experimentation. 

To follow-up on Stallmann’s work, we employ his generator of instances in our experimentation. 
As he states, it is a challenge to obtain problem instances with varying degrees and possible 
“shapes”. This author discards directed graphs as a source to obtain hierarchical graphs, since it 
is difficult to control the degree when applying standard layering methods, which usually add 
many “dummy” nodes.  He considered a uniform random graph generator, where instances are 
denoted as 𝑢𝑢(𝑙𝑙,𝑘𝑘,𝑑𝑑, 𝑏𝑏) where 𝑙𝑙 is the number of layers, 𝑘𝑘 the number of nodes per layer, 𝑑𝑑 is 
the graph density (in terms of the number of edges per vertex), and 𝑏𝑏 is the bias in the random 
number generator. We generate 20 small instances (10 with 𝑀𝑀 = 60, 𝑙𝑙 = 3, and 10 with 𝑀𝑀 =
100, 𝑙𝑙 = 5), 30 medium instances (𝑀𝑀 = 300, 𝑙𝑙 = 15 and different densities), and 20 large 
instances (10 with 𝑀𝑀 = 800, 𝑙𝑙 = 40, and 10 with 𝑀𝑀 = 1000, 𝑙𝑙 = 50). Additionally to this testing 
set, we generate 15 instances, the training set, to perform the calibration of our SO method. 

To avoid the overtraining of the SO method, we consider a training set of 5 uniform instances 
from Stallman’s uniform set, and 10 instances from a different source. In particular, we use the 
random_bigraph code of the Standford GraphBase by Knuth (1993) to generate 10 graphs with 
𝑀𝑀 = 100, and 𝑙𝑙 = 5. This set of instances has been employed previously in similar graphs 
problems (Martí and Laguna, 2003). The entire set of instances (testing and training) is available 
at http://www.optsicom.es. 

The procedures in our method have been implemented in C and the integer linear programming 
formulation described in Section 2 has been solved using CPLEX 12.6.1. Stallmann’s Java source 
code of his procedures have been downloaded from https://people.engr.ncsu.edu/mfms and 
have been compiled using Java 8. All the results reported in this section were obtained by 
running our codes on an Intel Core i7 @ 2.8 GHz and 8GB of RAM computer with the Ubuntu 
Linux 16.04.LTS – 64bits operating system. We use the following metrics to measure the 
performance of the methods:  

• 𝑉𝑉𝑚𝑚𝑙𝑙𝑢𝑢𝑒𝑒: Average objective value of the best solutions obtained by the procedure on the 
instances considered in the experiment. 

• 𝐷𝐷𝑒𝑒𝑣𝑣: Average percentage deviation from a reference solution, where the reference 
solution depends on the testing (i.e., scientific or competitive). 

• 𝐵𝐵𝑒𝑒𝑝𝑝𝑖𝑖: Number of instances in a set for which a procedure is able to match the reference 
solution, where the reference solution depends on the testing (i.e. scientific or 
competitive). 

• 𝐶𝐶𝐶𝐶𝐶𝐶: Average computing time in seconds employed by the algorithm. 

 

http://www.optsicom.es/
https://people.engr.ncsu.edu/mfms
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5.1 Scientific testing 

The goal of this scientific testing is to assess the merit of the elements in our methods as well as 
to identify the best values for their search parameters. Since each of the following tests isolates 
these elements, it is not expected that the quality of the solutions obtained by these partial 
procedures rival those of the best-known (or optimal) solutions that could be found with 
complete search processes. Therefore, for the purpose of scientific testing, we use as reference 
solutions in the calculation of 𝐷𝐷𝑒𝑒𝑣𝑣 the best solutions in each experiment (that the elements 
being tested are able to produce) in contrast with the best solution known that will be used in 
the competitive testing reported in the next subsection. This enables the detection of statistical 
differences between the performance of specific configurations of the elements under study. 

In the first experiment, we study the construction methods described in Section 4.1 to calibrate 
the parameter 𝑝𝑝, which determines the 𝑁𝑁𝐶𝐶𝐸𝐸 set. Then in the second experiment, we study the 
parameter 𝛽𝛽, which determines the percentage of nodes that is removed in each destruction-
construction iteration. 

𝒑𝒑 0.2 0.4 0.6 0.8 

Value 76.3 76.2 76.7 78.3 

Dev 8.7% 8.7% 9.2% 11.1% 

Best 7 8 8 5 

Table 2. Calibration of parameter 𝑝𝑝. 

Table 2 shows the Value, Dev, and Best statistics corresponding to 𝑝𝑝 = 0.2, 0.4, 0.6, and 0.8. 
Each metric is calculated over the 15 best solutions obtained with the constructive method, one 
for each instance in the training set. The best solution for a problem instance is selected among 
100 solutions generated by each method and parameter value. From Table 2, we can see that 
the best results of these experiments with respect to Value, are obtained with 𝑝𝑝 = 0.4. We now 
search for the most effective value of the parameter 𝛽𝛽, which controls the number of nodes to 
be removed after each construction. To that end, we test 𝛽𝛽 = 0.3, 0.5 and 0.7. Here, the value 
of 𝑝𝑝 is set to 0.4, according to the previous experiment. Table 3 shows the performance 
measures associated with each value of 𝛽𝛽. In this table, we can observe that the procedures with 
𝛽𝛽 = 0.5 and 0.7 obtain the best results in terms of Dev (1.57% and 1.39%, respectively). 
However, the option of 𝛽𝛽 = 0.5 clearly obtains the best results in terms of Best. So we set 𝛽𝛽 to 
0.5. 

𝜷𝜷 0.3 0.5 0.7 

Value 77.9 76.2 76.4 

Dev 3.09% 1.57% 1.39% 

Best 4 9 8 

Table 3. Calibration of parameter 𝛽𝛽. 
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We now hypothesize about the benefits of choosing 𝑝𝑝 randomly, at each iteration of the 
algorithm, instead of fixing it to a given value for the entire process. This randomization would 
allow creating 𝑁𝑁𝐶𝐶𝐸𝐸 sets with different sizes, which could help to diversify the search. In this 
sense, we have tested three possibilities for this experiment: to keep 𝑝𝑝 fixed to 0.4 (in line with 
the first experiment), to vary 𝑝𝑝 in the range [0.4− 0.1, 0.4 + 0.1], which allows a controlled 
randomization, and to leave 𝑝𝑝 freely in [0, 1]. Note however that we should be careful with the 
randomization since very small values of 𝑝𝑝 may produce very large 𝑁𝑁𝐶𝐶𝐸𝐸 sets that could make 
the exploration of new positions for its elements a time consuming task. 

Table 4 shows the results obtained with these three alternatives where we can see that the 
worst results in terms of the three metrics are obtained with the second option,  𝑝𝑝 ∈ [0.4 − 0.1,
0.4 + 0.1], as it obtains higher Dev and lower Best values than the other options. We can also 
observe that the random option obtains similar results than the one obtained with the fixed 
value 𝑝𝑝 = 0.4. Since the random option requires a larger computational effort, we set 𝑝𝑝 = 0.4 
in our Strategic Oscillation method (SO). 

𝒑𝒑 0.4 0.4±0.1 random 

Value 76.2 76.7 76.3 

Dev 8.7% 8.9% 8.6% 

Best 9 6 9 

Table 4. Randomization of parameter 𝑝𝑝. 

In the fourth experiment, we generate 1,000 solutions with the SO procedure on a 
representative instance and compute the two objective functions (max and sum). We undertake 
to explore if solutions with similar max values (𝑚𝑚𝑐𝑐(𝐷𝐷)) have similar sum values (𝑐𝑐(𝐷𝐷)). In the 
horizontal 𝑚𝑚-axis of Figure 3, we plotted the values of the max (bottleneck) objective that, in this 
particular case, range from 175 to 207. In its vertical 𝑦𝑦-axis, the sum (crossing) values are plotted, 
ranging from 22,900 to 24,600. Each solution is represented with a point, according to its two 
objective values. The higher the solution is in a vertical line, the worse is its crossing number, so 
less efficient they are with respect to the same bottleneck. 

 

Figure 3. Max and Sum values of 1,000 SO solutions. 
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Figure 3 shows that for a given value of the max objective function, the method finds solutions 
with very different values of the sum objective function. This implies that when we solve the 
min-max problem, if we ignore the min-sum problem, we can obtain solutions with a relatively 
bad value of this second objective. For example, if we consider in Figure 3 the max value of 195 
(depicted in the 𝑚𝑚-axis), we can see in the 𝑦𝑦-axis that the sum value of the associated solutions 
ranges from 23,000 to 24,200, which is relatively wide. This confirms the need of designing a 
solving method such as the SO that we propose here, that optimize 𝑚𝑚𝑐𝑐(𝐷𝐷) as a primary 
objective, but also optimizes 𝑐𝑐(𝐷𝐷) as a secondary objective. This experiment confirms 
Stallmann’s proposal of optimizing both objectives for a good design of a graph drawing. 
Otherwise, very inefficient solutions in terms of crossing numbers can be obtained for relatively 
good values of the bottleneck. 

5.2 Competitive testing 

As described in Section 1, Martí and Laguna (2003) tested several procedures for the 
minimization of the sum of crossings 𝑐𝑐(𝐷𝐷). In their study, the authors identified the BC+SW 
method as a very efficient heuristic to optimize 𝑐𝑐(𝐷𝐷).  It is based on constructing solutions using 
the barycenter and on improving them using a local search procedure with a switching move. 
This method can be considered a standard in arc crossing minimization, and it has been 
implemented in many graph drawing systems, starting with the early works by Sugiyama et al. 
(1981) and Eades and Kelly (1986), to mention a few. We argued that a solution procedure 
designed for the min-sum is not capable of producing high quality solutions for the min-max. 
Therefore, a specific algorithm needs to be proposed to solve the latter objective for those 
applications where the min-max is an important factor. In the following, we provide 
experimental evidence to support this point. 

 MCE BC+SW SO 
Instance 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 

1 280550 267 60 254605 280 1 254075 267 134 
2 271078 288 60 246530 279 0 246117 262 61 
3 274429 263 60 249272 282 0 249011 270 55 
4 283292 269 60 257826 292 0 256924 276 104 
5 267934 260 60 242783 272 0 242620 262 65 
6 270549 264 60 244775 270 0 244231 259 115 
7 276619 287 60 252317 279 0 252114 269 82 
8 278208 265 60 252727 287 0 252338 268 74 
9 279969 265 60 255047 286 0 254893 269 62 

10 277780 265 60 251497 286 0 250908 270 54 
Average 276041 269 60 250738 281 0 250323 267 81 

Table 5. Results on the two objectives with the three methods 

In our first experiment of the competitive testing, we compare our strategic oscillation method, 
SO, with the BC+SW method implemented by Martí and Laguna (2003), BC+SW, and with the 
MCE heuristic used by Stallmann (2012). We consider 10 instances from our test set with 𝑀𝑀 =
300, density (𝑚𝑚/𝑀𝑀) ≅ 14, and 15 layers, all of them generated with Stallmann's generator2 as 

                                                           
2 https://people.engr.ncsu.edu/mfms/Software/MinCrossings/MinCrossings.html 

https://people.engr.ncsu.edu/mfms/Software/MinCrossings/MinCrossings.html
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described above. We ran the three methods on each instance and evaluated both objectives, 
min-sum and min-max, on their output solutions. Table 5 shows, for each instance and each 
method, the 𝑐𝑐(𝐷𝐷) value, 𝑚𝑚𝑐𝑐(𝐷𝐷) value and the CPU time in seconds. 

Table 5 shows that as expected, BC+SW, designed to optimize 𝑐𝑐(𝐷𝐷), is able to obtain very good 
results in terms of this objective function, with an average value of 250,738. Since it is a simple 
heuristic, it requires very short computing times (less than 1 second). However, it is not capable 
of producing high quality solutions for 𝑚𝑚𝑐𝑐(𝐷𝐷) (with an average value of 281). On the other hand, 
MCE, which focuses on optimizing 𝑚𝑚𝑐𝑐(𝐷𝐷), obtains in 60 seconds an average value of this 
objective of 269 crossings. Despite that this method is supposed to obtain relatively good values 
for the 𝑐𝑐(𝐷𝐷) objective, it exhibits a poor performance on it, with an average value of 276,041. 
Our SO method performs remarkably well, with an average 𝑐𝑐(𝐷𝐷) value of 250,323, and an 
average 𝑚𝑚𝑐𝑐(𝐷𝐷) value of 267, achieved on 81 seconds on average. 

In the second competitive experiment, we compare MCE and SO with the optimal solution 
corresponding to minimize 𝑚𝑚𝑐𝑐(𝐷𝐷). We apply the mathematical programming formulation 
described in Section 2, on the well-known IBM CPLEX solver. Table 6 shows the results of this 
experiment, where each row corresponds to an instance of the problem. Note that due to the 
enumeration procedure in CPLEX, we can only target small size instances in this experiment (it 
is indicated in the second column of this table). 

In this experiment, we provided the mathematical model to CPLEX using its Callable Library with 
off-the-shelf configurations, and set a time limit of 3,600 seconds. If the solver is able to provide 
the optimal value within the time limit, this optimal value and its corresponding CPU time are 
depicted in columns 𝑚𝑚𝑐𝑐(𝐷𝐷) and CPU, respectively. Otherwise, we provide the lower and upper 
bounds that CPLEX reports when the time limit is reached in the form of an interval. Regarding 
the heuristic methods, Table 6 reports the objective 𝑚𝑚𝑐𝑐(𝐷𝐷) value, its deviation with respect to 
the CPLEX optimal value, the associated computing time, as well as the value of the sum 
crossings 𝑐𝑐(𝐷𝐷). 

  CPLEX MCE SO 
𝒏𝒏 𝒎𝒎 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 𝒎𝒎𝒄𝒄(𝑫𝑫) Dev mc CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) Dev mc CPU 𝒄𝒄(𝑫𝑫) 
53 51 2 5 2 0% 60 6 2 0% 1 5 
53 50 2 12 3 50% 60 28 2 0% 1 9 
59 63 3 49 5 67% 60 46 3 0% 1 11 
49 90 [16.7 , 21] 3600 27 - 60 474 25 - 7 384 
59 96 12 2551 15 25% 60 267 14 17% 8 227 
33 64 12 137 13 8% 60 192 13 8% 2 185 
33 69 13 62 15 15% 60 223 15 15% 3 204 
55 171 [11.3 , 49] 3600 45 - 60 1846 43 - 28 1682 
59 139 [10.49 , 29] 3600 32 - 60 978 31 - 20 879 
33 126 32 1476 46 44% 60 1024 37 16% 9 878 

Table 6. Comparison with optimal solutions 

Table 6 shows that CPLEX is only able to solve seven out of the ten small instances considered. 
Note that, for the same number of nodes and layers, the mathematical model becomes difficult 
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to solve when the number of edges increases (i.e., when the graph is denser). See that the 
interval of the 𝑚𝑚𝑐𝑐(𝐷𝐷) values for the three unsolved instances is relatively wide, providing poor 
information about the optimal values. On the other hand, both heuristics perform considerably 
well in terms of the 𝑚𝑚𝑐𝑐(𝐷𝐷) objective function and CPU time, being SO better than MCE. In 
particular, MCE exhibits an average percentage deviation of 29.85% on the 7 instances with 
optimum known, while SO only has an 8%. With respect to the 𝑐𝑐(𝐷𝐷) value, for which we do not 
know the optimal value, MCE has an average value of 564.22 and SO has an average of 446.40 
(note that SO always obtains a better 𝑐𝑐(𝐷𝐷) value than MCE). 

We now perform an exhaustive comparison of SO and MCE on different types of instances. Table 
7 shows the first results of these final experiments with a comparison on a set of small instances 
(𝑀𝑀 ≤ 100). The first row shows the average results of 10 instances with 𝑀𝑀 = 60, number of 
layers 𝑘𝑘 = 3, and density 𝑑𝑑 ≅ 10. The second group also contains 10 instances, with 𝑀𝑀 = 100, 
𝑘𝑘 = 5, and 𝑑𝑑 ≅ 12. By columns, for each of the two methods, the table shows the averaged 
values of both objective functions (columns 𝑐𝑐(𝐷𝐷) and 𝑚𝑚𝑐𝑐(𝐷𝐷), respectively) and the CPU time. 
Note that for each objective the table shows the average value and in brackets the average 
percentage deviation with respect to the best known value). We calibrate the SO method to run 
for a similar CPU time than MCE. In particular, we set the maximum number of iterations to 
5000, and an additional criterion that if in 1000 consecutive iterations the best solution does not 
improve, the method stops. 

 MCE SO 
𝒏𝒏 𝒌𝒌 𝒅𝒅 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 
60 3 10 37765 (9%) 247 (3%) 60 34821 (0%) 242 (1%) 32 

100 5 12 76644 (9%) 254 (0%) 60 70594 (0%) 255 (1%) 69 
Average 57204 (9%) 250 (2%) 60 52708 (0%) 248 (1%) 50 

Table 7. Comparison of the two methods on 20 small size instances. 

Table 7 shows that our SO method performs very well on the small instances considered, 
obtaining results that exhibit an average 𝑚𝑚𝑐𝑐(𝐷𝐷) value slightly better than MCE (with the 
exception of some instances where MCE obtains the best values). Regarding the sum of 
crossings, 𝑐𝑐(𝐷𝐷), Stallmann’s MCE algorithm performs poorer, obtaining an average deviation of 
9%, while SO exhibits a remarkable 0%. We perform a Wilcoxon non-parametric test for paired 
samples to compare the results of both methods. Considering the 𝑚𝑚𝑐𝑐(𝐷𝐷) values, we obtain a 𝑝𝑝-
value of 0.2 which indicates that, in general, there are no significant differences between the 
methods with respect to this objective. On the contrary, when we consider the 𝑐𝑐(𝐷𝐷) values, the 
𝑝𝑝-value of this test is 0.000089, which confirms the superiority of the SO method in terms of the 
min-sum objective. 

In the experiment shown in Table 7 we considered instances with a density value close to 12. In 
the next experiment we undertake to compare both methods for different values of the 
instances density. In particular, we solve 30 mid-sized instances (𝑀𝑀 = 300) divided into three 
groups, each one with 10 instances and a density value equal to 9.4, 14.1 and 16.8 on average 
respectively. Table 8 summarizes the results of both heuristics, where each row shows average 
results over the 10 instances in each group.  
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 MCE SO 
Density (𝒅𝒅) 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 

9.4 
116369 
(18.6%) 

168 
(0.0%) 60 

98696 
(0.0%) 

173 
(2.9%) 70 

14.1 
276041 
(10.3%) 

269 
(1.9%) 60 

250323 
(0.0%) 

267 
(1.1%) 81 

16.8 
402368 
(5.9%) 

328 
(0.5%) 60 

380061 
(0.0%) 

331 
(1.6%) 250 

Table 8. Comparison of the two methods on medium size instances 

Table 8 shows that MCE is able to obtain the best results for the min-max objective, 𝑚𝑚𝑐𝑐(𝐷𝐷), 
since it presents lower average deviations than SO. This has an exception in two instances with 
density 14.1 in which SO obtains better values, which causes the average deviation of MCE to 
increase to 1.9%. In general terms we can say that both methods present on average similar 
results, being MCE slightly better. We cannot identify a different performance depending on the 
density of the instances. Regarding the min-sum objective, 𝑐𝑐(𝐷𝐷), it is clear that SO performs 
much better than MCE, since the former always obtains the best known solution. The Wilcoxon 
test on the results of this table exhibits similar results than those obtained for the previous table: 
a 𝑝𝑝-value > 0.05 for the 𝑚𝑚𝑐𝑐(𝐷𝐷)  objective, and a 𝑝𝑝-value < 0.05 for the 𝑐𝑐(𝐷𝐷) objective. 

In our last competitive experiment, we test the two methods and compare their results on 30 
large instances, (500 ≤ 𝑀𝑀 ≤ 1000, and up to 50 layers). We ran the methods for longer (and 
similar) running times for these large instances. Table 9 shows the results of this experiment.  

 MCE SO 
𝒏𝒏 𝒌𝒌 𝒅𝒅 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒄𝒄(𝑫𝑫) CPU 

500 25 14.5 
475970 
(11%) 270 (1%) 60 

429656 
(0%) 273 (2%) 146 

800 40 9.8 
334285 
(20%) 175 (0%) 300 

278458 
(0%) 181 (3%) 313 

1000 50 9.8 
421128 
(20%) 176 (0%) 300 

349641 
(0%) 183 (4%) 476 

Average 
410461 
(17%) 207 (0%) 220 

352585 
(0%) 212 (3%) 312 

Table 9. Comparison of the two methods on large size instances 

Each row in Table 9 corresponds to a set of 10 instances with characteristics described in the 
first three columns. We can see that Stallmann’s method, MCE, is able to achieve slightly better 
results than our proposed method SO in terms of maximum crossings on large size instances. In 
particular MCE presents a remarkable 0% while SO has a 3% of average deviation with respect 
to the best known 𝑚𝑚𝑐𝑐(𝐷𝐷) values. However, with respect to the secondary objective 𝑐𝑐(𝐷𝐷), SO 
clearly outperforms MCE since it always matches the best known solution, and MCE presents an 
average percent deviation of 17%. To sum it up, SO is able to compete with MCE in terms of 
minimizing the maximum number of crossings and improves it when minimizing the total (sum) 
number of crossings, thus it constitutes a very good method to generate readable drawings. 

 



21 
 

 
 

5.3 Graph Drawing Expert Systems 

In this subsection we complement the experimentation above by drawing the output of our 
method and comparing it with those obtained with well-known graph drawing systems. In 
particular, we apply the SO method to the example depicted in Figure 2 in an arbitrary node 
ordering. We can see that In Figure 2 𝑚𝑚𝑐𝑐(𝐷𝐷) = 73 and 𝑐𝑐(𝐷𝐷) = 2647, which makes the drawing 
very difficult to analyze. Figure 4 shows the output of our method on the same example. It is a 
much more readable drawing, where 𝑚𝑚𝑐𝑐(𝐷𝐷) = 36 and 𝑐𝑐(𝐷𝐷) = 1675. It is still a complex 
drawing since the graph has 255 arcs; but there is no doubt that the solution of the min-max 
problem is simply better to capture the graph information. 

 
Figure 4.  Optimized drawing with our method of the example in Figure 2. 
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Figure 5.  Optimized drawing with yEd (left) and Mathematica (right) of the example in Figure 2. 

We now consider two graph drawing expert systems among those listed in Table 1. Note that all 
of them implement simple rules for crossing reduction (based on the barycenter or median 
heuristics). Specifically, we apply yEd and Mathematica to the same graph represented in 
Figures 2 and 4, and analyze the automatic drawings obtained with these systems in terms of 
arc crossings. Although yEd does not provide a direct evaluation of the number of crossings, we 
have identified in its output represented in Figure 5 (left) that arc (22 , 47) has more than 60 
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crossings. Mathematica provides a tool for arc crossing computation, which returns for this 
drawing (Figure 5 right) the maximum value 𝑚𝑚𝑐𝑐(𝐷𝐷) = 49, and the sum value 𝑐𝑐(𝐷𝐷) = 1822. 
Therefore, regarding the maximum number of crossings among all its arcs, we can conclude that 
these drawings are worse than our proposal shown in Figure 4, which has a maximum crossing 
value of 36. 

We also address an interesting point in the context of graph drawing systems: the influence of 
the graphic standard on the number of crossings. Although in this paper we restrict our attention 
to hierarchical (or layered) drawings, it is indeed interesting to compare this drawing convention 
with another representation on the same graph. To this end, we run yEd to obtain a circular 
layout of the graph depicted in the previous figures. The result, shown in Figure 6, confirms that 
in terms of arc crossing the hierarchical layout is a good choice, since the circular layout contains, 
in general, many more crossings. For example, arc (22, 59) in Figure 6 has close to 100 crossings, 
indicating that its maximum number of crossings, 𝑚𝑚𝑐𝑐(𝐷𝐷), is larger than 100, and therefore this 
can be considered much worse than our layered drawing shown in Figure 4 with 𝑚𝑚𝑐𝑐(𝐷𝐷) = 36. 

 

Figure 6.  Circular drawing obtained with yEd Expert System of the example in previous figures. 

 

6. Conclusions 

In this paper, we investigate the adaptation of the Greedy Randomized Adaptive Search 
Procedure (GRASP) and Strategic Oscillation (Iterated Greedy) methodologies to the Graph 
Drawing Problem. In particular, we focus on the effect of the balance between randomization 
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and greediness on the performance of these multi-start heuristic search methods when solving 
this NP-hard problem. 

We target here a very interesting variant in arc crossing minimization recently proposed. We 
consider two objective functions, the min-max, as a primary objective, and the min-sum, as a 
secondary objective. Our proposal is able to compete with the previous method in the primary 
objective and outperforms it in the secondary one. In practical terms our achievements are very 
appealing since they show that our method is able to provide very good drawings. 

After exhaustive experimentation we can conclude that our SO method obtains solutions of 
better quality (lower number of arc crossings) than those obtained with existing methods. This 
comparison includes the recent MCE method for crossing reduction and two expert systems for 
graph drawing (yEd and Mathematica). Note however, that when solving large instances, our 
method requires slightly longer computational times than MCE. This was expected since 
advanced search mechanisms require greater computational effort than simple ordering rules 
in which most of the previous methods rely. A direct application of our findings is to implement 
the SO method in commercial graph drawing expert systems to improve their functionality in 
terms of crossing reduction. Nowadays computers permit to execute complex metaheuristics in 
reasonable CPU time, thus expert systems can replace its simple heuristic rules, such as the 
barycenter or the median, with efficient metaheuristics such as the SO proposed here. 

A natural extension of our work is to apply metaheuristic methodologies to solve other 
optimization problems in the context of graph drawing. In particular, within the layered standard 
that we consider in this paper, the first step of the so-called Sugiyama’s method is to assign 
vertices to layers. Graph drawing expert systems referenced here perform this task with a well-
known method, the Coffman-Graham layering, obtaining relatively good solutions in short 
computational time. However, the layering problem is indeed NP-hard, and we believe that 
better solutions can be obtained with modern metaheuristics. This also holds for other 
optimization problems in the drawing process, such as cycle removal, dummy vertices 
minimization, or coordinate assignment.  
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