
1

Heuristics for the Min-Max Arc Crossing

Problem in Graphs

Rafael Martí*
Universitat de València, Spain. Rafael.Marti@uv.es

Vicente Campos
Universitat de València, Spain. Vicente.Campos@uv.es

Arild Hoff
Molde University College, Norway. Arild.Hoff@hiMolde.no

Juanjo Peiró
Universitat de València, Spain. Juanjo.Peiro@uv.es

Abstract
In this paper we study the visualization of complex structures in the context of automatic graph
drawing. Constructing geometric representations of combinatorial structures, such as networks
or graphs, is a difficult task that requires an expert system. The automatic generation of
drawings of graphs finds many applications from software engineering to social media. The
objective of graph drawing expert systems is to generate layouts that are easy to read and
understand. This main objective is achieved by solving several optimization problems. In this
paper we focus on the most important one: reducing the number of arc crossings in the graph.
This hard optimization problem has been studied extensively in the last decade, proposing many
exact and heuristic methods to minimize the total number of arc crossings. However, despite its
practical significance, the min-max variant in which the maximum number of crossings over all
edges is minimized, has received very little attention. We propose new heuristic methods based
on the strategic oscillation methodology to solve this NP-hard optimization problem. Our
experimentation shows that the new method compares favorably with the existing ones,
implemented in current graph drawing expert systems. Therefore, a direct application of our
findings will improve these functionality (i.e., crossing reduction) of drawing systems.

KeyWords: Graph drawing expert system, metaheuristics, crossing reduction, iterated greedy.

Original Version: September 6th, 2017
Revised version: February 1st, 2018.

* Corresponding author: Rafael Martí. Universitat de València, Facultat de Ciències Matemàtiques.
Doctor Moliner, 50. 46100 – Burjassot (Valencia), Spain.

mailto:Rafael.Marti@uv.es
mailto:Vicente.Campos@uv.es
mailto:Arild.Hoff@hiMolde.no

2

1. Introduction

Graphs are nowadays a modeling tool to represent and analyze data in many areas from
production to business reengineering. The term graph drawing refers to the problem of
constructing geometric representations of graphs, where drawing conventions depend upon the
application and context in which the graph is used, and where arc crossing minimization is
probably the most important aesthetic criteria considered. As stated by Carpano (1980) in a
seminal paper in the graph drawing field, “the most crucial problem as far as readability of a
graph is that of arc crossing”.

In the last years, many areas in science, business and engineering have experienced an
enormous growth in terms of the amount of data that they analyze. As a matter of fact, the term
Big Data was recently coined to reflect this phenomenon. In this context, the representation of
large graphs, and in particular the development of graph drawing expert systems, has received
increasing interest. The first interactive system, called Grab (Rowe et al., 1987), was basically a
graph editor and it is usually referred to as a first-generation system. Tom Sawyer software
company (www.tomsawyer.com) created GraphEd (Himsolt, 1996), which can be considered the
first expert system in this context. It implements layout algorithms for automatic graph drawing.

Nowadays we can find different expert systems tailored for special types of graphs. Jünger and
Mutzel (2004) describe 14 software systems based on several standards. These authors
identified in their text different types of representations, such as circular, orthogonal (grid),
clustered, compound, and layered or hierarchical. Each application domain typically employs
one of these types. The book by Di Battista et al. (1999) is a reference in the area of graph
drawing and explains in detail these standards and their associated ascetic criteria to obtain a
readable layout. For example, in project management, activity networks are usually represented
as layered digraphs where vertices are constrained to lie on a set of equally spaced horizontal
or vertical lines, and edges flow in the same direction, as shown in Figure 1. In this paper we
focus on layered drawings.

Figure 1. Layered digraph.

The so-called Sugiyama’s method (1981) to represent digraphs according to the layered
standard, has led to several drawing expert systems. This method first assigns vertices to layers,
adding dummy vertices to model long edges. This first step is called Layer Assignment. Then, in
the second step, the method orders the vertices in each layer, usually with the barycenter
algorithm, for Arc Crossing Minimization (Martí and Laguna, 2003). Finally, in the third step called
Coordinate Assignment, it allocates the vertices in a specific position in their layer to reduce arc
length and bends of long edges. In this way, any digraph can be represented as a proper

http://www.tomsawyer.com/

3

hierarchical or layered graph. This makes this graphic convention (i.e., hierarchical graphs) a
popular standard in the field. In this paper we consider the second step of this graph drawing
system: the optimization problem consisting in the minimization of the number of arc crossings
in a layered graph. This is a difficult problem (it is NP-hard), and constitutes a challenge for
optimization methods.

If we restrict our attention to the layered representation of graphs (also called hierarchical), we
can identify several graph drawing expert systems that implement algorithms to obtain it. Table
1 summarizes the most popular ones in our opinion, specifying how they reduce arc crossings.

Drawing System Characteristic Crossing reduction
method

Graphviz

pygraphviz.github.io/

Hierarchical static graphs Median heuristic coupled
with local search
(exchanges)

Dynagraph

www.dynagraph.org

Dynamic graphs

Median heuristic (adapted
to incremental drawing)

yEd

www.yworks.com

Editor with layout
methods for different
representations.

Barycenter and median
heuristics

MSAGL

www.microsoft.com

Microsoft Graph Layout.
Constrained to given
space

Ordering rules

AGD

www.ads.tuwien.ac.at

Library of algorithms for
several classes of layouts

Multi-start barycenter
from random orderings.

Tom Sawyer

www.tomsawyer.com

Software development kit
for various layout styles

Ordering rules

Mathematica

www.wolfram.com/mathematica/

Wolfram Language for the
aesthetic drawing of
graphs.

LayeredGraphPlot ranks
vertices for arc crossing
minimization

Table 1. Graph Drawing Expert Systems for Layered Graphs

The problem of arc crossing minimization in hierarchical graphs has been extensively studied.
First efforts, such as Eades and Kelly (1986), restricted themselves to simple ordering rules and
graphs with only two layers. More elaborated procedures, based on metaheuristic
methodologies, such as tabu search (Laguna et al., 1997) or GRASP (Laguna and Martí, 1999),
were later introduced to obtain improved outcomes. A computational comparison of 16
procedures on 900 randomly generated bipartite graphs was presented by Martí and Laguna
(2003). This study shows that the procedures based on modern metaheuristics dominate those

4

based on ordering rules in terms of solution quality but at the expense of more computational
time. Early developments sacrificed solution quality in favor of speed, considering the latter a
critical factor in automated drawing systems. This is why, graph drawing expert systems, as
those shown in Table 1, implement simple heuristic procedures, such as the median or the
barycenter, to solve this difficult problem. So, in terms of crossing minimization, we can say that
these expert systems provide a very fast solution of medium quality. The contribution of this
paper is therefore to propose an efficient algorithm for crossing reduction to improve this
functionality of expert drawing systems.

Figure 2 shows a small size graph (100 vertices in 5 layers and 255 arcs) with an arbitrary node
ordering (i.e., without minimizing arc crossings). It clearly illustrates how hard can be to analyze
a “non-optimized” graph drawing.

Figure 2. An arbitrary drawing of a graph with 100 nodes and 255 arcs.

5

All the methods described above minimize the total number of arc crossings in a graph. There is
however a recent method devoted to minimize the maximum number of arc crossings among
all the edges of the graph. Stallmann (2012) identified some applications (i.e. Bhatt and
Leighton, 1984) in the context of VLSI circuits in which it is more appropriate to minimize the
maximum number of crossings over all edges (min-max problem) than minimizing the traditional
sum of crossings (min-sum problem). He calls this variant the bottleneck crossing problem and,
in line with his proposal, we have empirically found that solutions to the min-max problem
usually result in more readable graphs than solutions to the min-sum problem. This is especially
evident in graph drawing tools where zooming highlights a specific area of the graph and the
overall crossing reduction does not imply a low number of crossings in the zoomed area.
Stallmann proposed the maximum crossing edge (MCE) heuristic specifically designed for the
bottleneck problem, but his experimentation shows that this heuristic also obtains competitive
solutions with respect to the sum of crossings. In other words, this author considers the min-
max as the primary objective function, and the min-sum as the secondary one, reporting both
values in the experimentation to assess the merit of the MCE heuristic.

The main contributions of this work are:

1. Proposing, implementing and testing a new heuristic for crossing minimization
2. Proposing, implementing and testing a new mathematical model
3. Experimental comparison of the two new solving methods with an existing algorithm
4. Graphical comparison of the new solution method with graph drawing expert systems
5. Improvement of the state of the art in arc crossing minimization

Our new heuristic algorithm, based on the strategic oscillation (SO) methodology (Glover and
Laguna, 1997), minimizes the maximum number of crossings over the edges of a graph and, as
a subsidiary goal, the total (sum) number of crossings. As mentioned, we focus on hierarchical
directed acyclic graphs (HDAG) which are also known as layered graphs. Note that working with
HDAGs is not a limitation since there exists a number of procedures to transform a directed
acyclic graph (DAG) into a HDAG (Sugiyama et al., 1981).

In the next section, we first introduce some notation and definitions, and in Section 3, we
describe the previous MCE heuristic. Section 4 is devoted to the description of our strategic
oscillation method for the min-max problem, which also considers the min-sum as a secondary
objective. The experimentation in Section 5 shows that our method is able to compete with the
previous method in both objectives. We apply statistical analysis to draw significant conclusions
to finish the paper.

2. Notation and Formulation

A hierarchical graph 𝐻𝐻 = (𝑉𝑉,𝐸𝐸,𝑘𝑘, 𝐿𝐿) is defined as a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 and 𝐸𝐸 represent
the set of vertices and edges, respectively, and the function 𝐿𝐿(𝑣𝑣): 𝑉𝑉 → {1,2, … ,𝑘𝑘} indicates the
index of the layer where 𝑣𝑣 resides. The literature in graph drawing usually does not distinguish
between the terms edge and arc, so we will use both to refer to the links in the graphs. The 𝐿𝐿
function implicitly defines the sets of vertices 𝐿𝐿𝑖𝑖 = { 𝑣𝑣 ∈ 𝑉𝑉 ∶ 𝐿𝐿(𝑣𝑣) = 𝑖𝑖 } for 𝑖𝑖 = 1,2, … ,𝑘𝑘 which
we refer to as layers. Since the edges in a HDAG are straight lines that join the vertices in two
contiguous layers, a drawing of a HDAG is given by the ordering of the vertices in each layer. In

6

mathematical terms, a drawing of 𝐻𝐻 is defined as 𝐷𝐷 = (𝐻𝐻,Φ), where Φ = { 𝜑𝜑1,𝜑𝜑2 , … ,𝜑𝜑𝑘𝑘} and
𝜑𝜑𝑖𝑖 is the ordering (permutation) of the vertices in layer 𝐿𝐿𝑖𝑖. That is, 𝜑𝜑𝑖𝑖(𝑗𝑗) is the vertex in position
𝑗𝑗 in layer 𝐿𝐿𝑖𝑖. The position of vertex 𝑣𝑣 in layer 𝐿𝐿𝑖𝑖 is defined as 𝜋𝜋𝑖𝑖(𝑣𝑣) in such a way that if 𝑣𝑣 = 𝜑𝜑𝑖𝑖(𝑗𝑗)
then 𝜋𝜋𝑖𝑖(𝑣𝑣) = 𝑗𝑗 and conversely.

Let 𝑐𝑐(𝑒𝑒) be the crossing number of edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) that represents the number of edges that
cross edge 𝑒𝑒 ∈ 𝐸𝐸. An arc crossing is produced between edges (𝑢𝑢, 𝑣𝑣) and (𝑢𝑢′, 𝑣𝑣′), where 𝑢𝑢,𝑢𝑢′ ∈
𝐿𝐿𝑖𝑖 and 𝑣𝑣, 𝑣𝑣′ ∈ 𝐿𝐿𝑖𝑖+1 when:

�𝜋𝜋(𝑢𝑢) < 𝜋𝜋(𝑢𝑢′) ∧ 𝜋𝜋(𝑣𝑣) > 𝜋𝜋(𝑣𝑣′)� ∨ �𝜋𝜋(𝑢𝑢) > 𝜋𝜋(𝑢𝑢′) ∧ 𝜋𝜋(𝑣𝑣) < 𝜋𝜋(𝑣𝑣′)�.

The maximum crossing number of a drawing 𝐷𝐷 = (𝐻𝐻,Φ), that we denote by 𝑚𝑚𝑚𝑚(𝐷𝐷), is the
maximum of 𝑐𝑐(𝑒𝑒) across all the edges in 𝐻𝐻, i.e.:

𝑚𝑚𝑚𝑚(𝐷𝐷) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒∈𝐸𝐸 𝑐𝑐(𝑒𝑒).

The min-max arc crossing problem in a HDAG may be formulated as the problem of finding the
ordering in each layer in such a way that 𝑚𝑚𝑚𝑚(𝐷𝐷) is minimum. An optimal drawing 𝐷𝐷⋆ is such that
no other 𝐷𝐷 has a lower value of 𝑚𝑚𝑚𝑚(𝐷𝐷). In Stallmann (2012), the min-max arc crossing problem
is called the bottleneck crossing problem.

The crossing number of a drawing 𝐷𝐷, 𝑐𝑐(𝐷𝐷), is the total (sum) number of crossings in the graph,
i.e.:

𝑐𝑐(𝐷𝐷) =
1
2
�𝑐𝑐(𝑒𝑒)
𝑒𝑒∈𝐸𝐸

,

and the classical edge crossing minimization problem, called here the min-sum problem, consists
of finding the ordering in each layer to minimize 𝑐𝑐(𝐷𝐷). Both combinatorial optimization
problems, minimizing 𝑚𝑚𝑐𝑐(𝐷𝐷) and minimizing 𝑐𝑐(𝐷𝐷), are NP-hard1 (Garey and Johnson, 1983).

The maximum crossing edge heuristic (MCE) proposed in Stallmann (2012) is specifically
designed to minimize 𝑚𝑚𝑚𝑚(𝐷𝐷) as described below. Additionally, this method also optimizes
𝑐𝑐(𝐷𝐷) as a secondary objective.

Jünger and Mutzel (1997) proposed a linear model based on binary variables for the min-sum
problem. For the sake of simplicity, we describe here the formulation for a 2-layered graph,
which can be easily generalized to an arbitrary layered graph. In this formulation, variable 𝑥𝑥𝑖𝑖𝑖𝑖 =
1 when node 𝑖𝑖 precedes node 𝑘𝑘 in the first layer (called the left layer in 2-layered graphs).
Similarly, 𝑦𝑦𝑙𝑙𝑙𝑙 = 1 when node 𝑙𝑙 precedes node 𝑗𝑗 in the second layer (called the right layer). The
variable definition is completed with the introduction of 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, which takes the value 1 when a
crossing between edges (𝑖𝑖, 𝑗𝑗) and (𝑘𝑘, 𝑙𝑙) occurs. To adapt this formulation to the min-max
problem, we added variable 𝑐𝑐(𝑖𝑖, 𝑗𝑗) which indicates the number of crossing of edge (𝑖𝑖, 𝑗𝑗); in other
words, what we defined as the crossing number of the edge. With this notation, we formulate
the problem as:

1 Stallmann (2012) states that the proof by Garey and Johnson for the min-sum can be adapted to the
min-max problem by using the bandwidth problem in place of the linear arrangement problem.

7

𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀

Subject to:

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1 (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (1)

𝑥𝑥𝑘𝑘𝑘𝑘 + 𝑦𝑦𝑗𝑗𝑗𝑗 − 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1 (𝑖𝑖, 𝑗𝑗), (𝑘𝑘, 𝑙𝑙) ∈ 𝐸𝐸, 𝑖𝑖 < 𝑘𝑘, 𝑗𝑗 ≠ 𝑙𝑙 (2)

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑘𝑘𝑘𝑘 ≤ 2 1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛1 (3)

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 + 𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 2 1 ≤ 𝑖𝑖 < 𝑗𝑗 < 𝑘𝑘 ≤ 𝑛𝑛2 (4)

𝑐𝑐(𝑖𝑖, 𝑗𝑗) = ∑ 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 +(𝑘𝑘,𝑙𝑙)∈𝐸𝐸 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 (5)

𝑐𝑐(𝑖𝑖, 𝑗𝑗) ≤ 𝑀𝑀 (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 (6)

𝑥𝑥𝑖𝑖𝑖𝑖 + 𝑥𝑥𝑗𝑗𝑗𝑗 = 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛1 (7)

𝑦𝑦𝑖𝑖𝑖𝑖 + 𝑦𝑦𝑗𝑗𝑗𝑗 = 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛2 (8)

𝑥𝑥𝑖𝑖𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ {0,1}

 𝑐𝑐(𝑖𝑖, 𝑗𝑗),𝑀𝑀 ∈ ℤ+.

In this model, constraints (1) and (2) force 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 to take the value 1 when the variables 𝑥𝑥𝑖𝑖𝑖𝑖 and
𝑦𝑦𝑙𝑙𝑙𝑙 indicate a crossing. Constraints (3) and (4) are the 3-dicycle constraints, which together with
(7) and (8) guarantee that the ordering variables (𝑥𝑥 and 𝑦𝑦 respectively) represent in fact an
ordering. We included the new constraints (5) to compute the crossing number of all arcs and
constraints (6) to force variable 𝑀𝑀 to take the maximum of these crossing numbers, since the
minimization of 𝑀𝑀 in the objective function tries to reduce it as much as possible, thus providing
the objective function value of the min-max problem. We will make use of this formulation in
Section 5 to obtain the optimal results of some instances.

3. Previous methods

Traditionally, the 2-layer crossing minimization problem is solved by fixing the permutation 𝜑𝜑𝑖𝑖
with 𝑖𝑖 = 1, 2 of the vertices in one of the two layers. Then, the permutation of vertices in the
other layer is adjusted to best meet the objective of minimizing 𝑐𝑐(𝐷𝐷). This principle is also
commonly used with multiple layers as the layers are considered one at a time and the position
of the vertices is determined by looking at one of the adjacent layers. Bachmaier et al. (2010)
and Matuszewski et al. (1999) describe the most popular of the classical heuristics: the
barycenter, the median and the sifting algorithms. These heuristics are performed iteratively
with three possible stopping criteria: either when no improvement is found in an iteration, after
a given number of iterations or eventually after a pre-established amount of time.

8

Both the barycenter and the median algorithm use a layer-by-layer sweep technique where, first,
an initial vertex ordering is determined for each layer {𝜑𝜑1,𝜑𝜑2 , … ,𝜑𝜑𝑘𝑘}. Then, starting at the
second layer, the permutation 𝜑𝜑2 is decided with respect to the fixed ordering of 𝜑𝜑1. Using the
barycenter, the position of a vertex 𝑣𝑣 in layer 𝐿𝐿2 is determined by calculating the mean position
of vertices adjacent to 𝑣𝑣 in layer 𝐿𝐿1 and sorting the vertices in 𝐿𝐿2 according to this number. This
procedure is continued for each new layer 𝐿𝐿𝑖𝑖 with respect to its previous layer 𝐿𝐿𝑖𝑖−1 and when
the last layer 𝐿𝐿𝑘𝑘 is sorted, the procedure is repeated in decreasing order, where layer 𝐿𝐿𝑗𝑗
considers the permutation in layer 𝐿𝐿𝑗𝑗+1 instead. The median algorithm is similar to the
barycenter with the exception that it uses the median instead of the mean of the adjacent
vertices to sort the current layer.

The sifting algorithm is somewhat different, as it is based on vertex insertion instead of sorting.
The vertices are chosen in a given order and inserted one by one sequentially. A chosen vertex
𝑣𝑣 is inserted at the best position in its layer 𝐿𝐿(𝑣𝑣) with respect to the already included vertices.
By using a given measure (initially 𝑐𝑐(𝐷𝐷)), the optimal position is calculated and the vertex is
inserted before the next one is handled in the same way. The degree of a vertex is defined as
the number of edges incident to it, and the best strategy is considered to be the one starting
with the vertex with highest degree and continues with the insertion of the following in a
decreasing order. A pass is defined as the completion of the procedure of inserting all nodes
once. After a pass, the sequence is reversed and each vertex is again inserted but now with
respect to the current position of the other vertices.

Stallmann (2012) developed the MCE heuristic based on the sifting principle but designed to
solve the bottleneck problem. He also showed that the MCE heuristic outperforms previous
algorithms for solving the min-sum problem for certain instances, especially those with a large
maximum vertex degree. MCE applies a different method than the classical sifting algorithm to
find the optimal position for the vertices, although it also repeats passes until no further
improvements can be found or another predefined stopping criterion is met.

The main principle of MCE is to use edges as basis for selecting vertices for insertion. Unlike the
traditional sifting algorithm, which selects vertices according to the number of edges adjacent
to them, MCE identifies the edge with the largest number of crossings and tries to reposition
the vertices at the endpoints of this edge. Thus, the method starts with an initial drawing 𝐷𝐷,
which can be determined by a complete random ordering of the vertices in each layer or with
another pre-processing strategy. Then, it sorts the edges 𝑒𝑒 ∈ 𝐸𝐸 in descending order according
to their current number of crossings 𝑐𝑐(𝑒𝑒). At each step, following this order, an edge 𝑒𝑒 is
examined, and its endpoint vertices are checked in search for their best position. Note that
instead of using the global 𝑐𝑐(𝐷𝐷) as the objective function to determine this best position, only
the edges incident to the chosen vertex are considered. Thus, MCE determines the best position
for a vertex 𝑣𝑣 as the one that minimizes the maximum number of crossings among the edges
incident to 𝑣𝑣. This means that a drawing could actually be poorer after a vertex insertion since
the number of crossings of a non-adjacent edge could eventually increase. The author however
explains that, as shown in the computational experiments, this strategy achieves good results,
since it works as a diversification method by encouraging a variety of movements, thus
preventing the search from being stuck in a local optimum. Stallmann (2012) also shows that
using the barycenter for determining the initial drawing 𝐷𝐷, from which to apply MCE, can obtain

9

significantly better results. A post-processing procedure of exchanging adjacent vertices is also
applied to further improve the solutions. The experimentation shows that, as expected, this
method obtains a very low 𝑚𝑚𝑚𝑚(𝐷𝐷) value, but additionally, it is also competitive with existing
algorithms to minimize 𝑐𝑐(𝐷𝐷).

4. Strategic oscillation heuristic

Heuristic search procedures that aspire to find globally optimal solutions to hard combinatorial
optimization problems usually require some type of diversification to overcome local optimality.
A way to achieve diversification that has proven to be very effective (see, for example, Corberán
et al., 2016) is to re-start the procedure from a new solution once a region has been explored.
This is the core of the so-called multi-start procedures (Martí et al., 2013). These methods have
become very popular in the last years, with probably the GRASP methodology (Festa and
Resende, 2011) being one of the most applied when solving combinatorial optimization
problems. Multi start methods usually alternate two phases, the first one in which a solution is
built, and the second one in which this solution is usually improved by applying a local search
procedure.

An interesting family within multi-start approaches is given by the rebuilding approaches in
which, instead of building a solution from scratch at each iteration, the method employs some
of the elements in the solution of the previous iteration to build a new one. As in multi-start
methods, after generating a solution, a local search post-processing is usually applied. This
rebuilding mechanism has revealed to be very effective to target hard optimization problems.
In particular, the Strategic Oscillation methodology applies it to efficiently search the solution
space. The generation of a solution by including certain elements from previous solutions
follows basic tabu search principles (Glover and Laguna, 1997) since it is based on memory
structures. In other words, it bases its exploration in recording certain information during the
search process to find new efficient solutions. This contrasts with memory-less designs, such as
GRASP, in which each iteration constitutes a new effort, not linked with the previous solutions.

In this paper we focus on a simplified version of the constructive and destructive processes,
known as iterated greedy (IG) (Ruiz and Stützle, 2008). This method generates a sequence of
solutions by iterating over a greedy constructive heuristic that, as in strategic oscillation, uses
two main phases: destruction and construction. The IG method starts from a complete initial
solution S and then iterates through a main loop. In this loop, it first generates a partial candidate
solution Sp by removing a certain number of elements (destruction phase) from the complete
candidate solution S and, next, reconstructs a complete solution starting from Sp (construction
phase). Additionally, a local search phase is applied to the reconstructed solution in order to
reach a local optimum. Before resorting to the next iteration in the main loop, an acceptance
criterion decides whether the solution returned by the local search procedure becomes the new
incumbent solution or not. The IG process alternates the destruction and construction phases
with the local search post-processing until a termination criterion is met.

As mentioned, given a hierarchical graph 𝐻𝐻 = (𝑉𝑉,𝐸𝐸,𝑘𝑘, 𝐿𝐿), a solution (or drawing) 𝐷𝐷 = (𝐻𝐻,Φ)
provides an ordering of its vertices. Considering that the objective function of the min-max arc

10

crossing problem is given by 𝑚𝑚𝑚𝑚(𝐷𝐷) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑒𝑒∈𝐸𝐸 𝑐𝑐(𝑒𝑒), we define the critical edges, 𝐶𝐶𝐶𝐶, to those
with a crossing number equal to the objective function value. In mathematical terms:

𝐶𝐶𝐶𝐶 = {𝑒𝑒 ∈ 𝐸𝐸: 𝑐𝑐(𝑒𝑒) = 𝑚𝑚𝑚𝑚(𝐷𝐷)}

It is clear that if we want to improve a solution 𝐷𝐷 with respect to 𝑚𝑚𝑚𝑚(𝐷𝐷), we have to reduce the
number of crossing of the critical edges. In this section, we propose both constructive and local
search methods to reduce it. Considering that the computation of 𝐶𝐶𝐶𝐶 is time-consuming since
it requires the exploration of all the edges in the graph, and that when we reduce the crossing
of the edges in this set, other edges will become critical, we define the set of near-critical edges,
𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝), to deal simultaneously with both edges that are now critical, and edges that we expect
to be critical in subsequent iterations of our algorithm. This set depends on a search parameter
𝑝𝑝 ∈ [0,1], measured as a percentage of the objective function value. In mathematical terms:

𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = {𝑒𝑒 ∈ 𝐸𝐸: 𝑐𝑐(𝑒𝑒) ≥ 𝑝𝑝 𝑚𝑚𝑚𝑚(𝐷𝐷)}.

Our constructive and local search phases have the primary objective of finding an ordering in
the layers to reduce the number of crossings of the edges in 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝), thus trying to improve the
objective function value 𝑚𝑚𝑚𝑚(𝐷𝐷). To do this, we define the set of near critical vertices, 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝),
as the set of vertices that are endpoints of the near critical edges, i.e.:

𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = {𝑣𝑣 ∈ 𝑉𝑉: (𝑢𝑢, 𝑣𝑣) ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) 𝑜𝑜𝑜𝑜 (𝑣𝑣,𝑢𝑢) ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝)}.

The constructive mechanism applies the Iterated Greedy methodology, which as explained
above, partially destroys a solution to obtain a new one from it. In the following subsections, we
will describe how it operates. In short, given a solution, it basically removes the vertices in
𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) plus a random selection, and repositions them according to the barycenter.

4.1 Constructive heuristic

Our constructive heuristic, outlined in Algorithm 1, starts by creating a candidate list 𝐶𝐶𝐶𝐶 of
unassigned vertices, which at the beginning of the algorithm consists of all the vertices in the
graph. The initial position of each vertex is assigned a value of zero (𝜋𝜋𝑖𝑖(𝑣𝑣) = 0, ∀𝑣𝑣𝑣𝑣𝑣𝑣). The
heuristic starts by randomly selecting a vertex from the vertices in 𝐶𝐶𝐶𝐶 with maximum degree.
The vertex is placed in an arbitrary position (see steps 1 to 7 of Algorithm 1).

Once a selected vertex 𝑣𝑣 has been positioned in the partial solution, 𝐶𝐶𝐶𝐶 is updated by deleting
𝑣𝑣. In subsequent construction steps (9 to 16 of Algorithm 1), the next vertex 𝑣𝑣 is randomly
selected from a restricted candidate list 𝑅𝑅𝑅𝑅𝑅𝑅 that consists of vertices with a degree of no less
than 𝛼𝛼 (0 ≤ 𝛼𝛼 ≤ 1) of the maximum degree 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 in 𝐶𝐶𝐶𝐶. The vertex degree is calculated with
respect to the subgraph given by the partial solution obtained from previous vertex selections.
In mathematical terms 𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶: 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐶𝐶) ≥ 𝛼𝛼 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚}, where 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐶𝐶) is the
degree of vertex 𝑣𝑣 with respect to the vertices already positioned (i.e., with respect to the partial
solution under construction). In general terms, a selected vertex 𝑣𝑣 is placed in its layer in the
position prescribed by the barycenter, denoted by 𝑏𝑏𝑏𝑏(𝑣𝑣), computed as the arithmetic mean of
the positions of the already assigned adjacent vertices to 𝑣𝑣. The construction phase terminates
after |𝑉𝑉| steps, when all vertices have been selected and positioned.

11

Input: (𝐻𝐻,𝛼𝛼)
1 Define 𝐶𝐶𝐶𝐶 ≔ 𝑉𝑉
2 forall 𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 do
3 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 0
4 end forall
5 Randomly select 𝑣𝑣∗ ∈ 𝐶𝐶𝐶𝐶 according to a uniform distribution
6 Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣∗)
7 Set an arbitrary position 𝜋𝜋𝑖𝑖(𝑣𝑣∗)
8 Update 𝐶𝐶𝐶𝐶 ≔ 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣∗}
9 while 𝐶𝐶𝐶𝐶 ≠ ∅ do
10 Define 𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 ∶ 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐶𝐶) ≥ 𝛼𝛼𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚}
11 Randomly select 𝑣𝑣∗ ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 according to a uniform distribution
12 Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣∗)
13 Compute barycenter 𝑏𝑏𝑏𝑏(𝑣𝑣∗)
14 Set position 𝜋𝜋𝑖𝑖(𝑣𝑣∗) ≔ 𝑏𝑏𝑏𝑏(𝑣𝑣∗)
15 Update 𝐶𝐶𝐶𝐶 ≔ 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣∗}
16 end while

Output: 𝐷𝐷

Algorithm 1. GRASP constructive phase of the Strategic Oscillation procedure.

The first iteration of the constructive heuristic operates as described above and outlined in
Algorithm 1, which basically constitutes an implementation of a GRASP construction. In
subsequent iterations, following the Strategic Oscillation methodology and the Iterated Greedy
implementation, we feed the construction heuristic with a previous solution to keep the current
position of some of its vertices, as shown in Algorithm 2.

Input: (𝐷𝐷,𝑝𝑝,𝛽𝛽)
1 Define 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = {𝑒𝑒 ∈ 𝐸𝐸 ∶ 𝑐𝑐(𝑒𝑒) ≥ 𝑝𝑝 ∙ 𝑚𝑚𝑚𝑚(𝐷𝐷)}
2 Define 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = {𝑣𝑣 ∈ 𝑉𝑉 ∶ (𝑢𝑢, 𝑣𝑣) ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) or (𝑣𝑣,𝑢𝑢) ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝)}
3 forall 𝑣𝑣 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) do
4 Remove 𝑣𝑣 from 𝐷𝐷
5 Set 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 0
6 end forall
7 counter ≔ |𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝)|
8 while counter < ⌊ 𝛽𝛽|𝑉𝑉| ⌋ do
9 Randomly select 𝑣𝑣 ∈ 𝐷𝐷 ∖ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) according to a uniform distribution
10 Remove 𝑣𝑣 from 𝐷𝐷
11 Set 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 0
12 counter + +
13 end while
14 define 𝐶𝐶𝐶𝐶 = {𝑣𝑣 ∈ 𝑉𝑉 ∶ 𝜋𝜋𝑖𝑖(𝑣𝑣) = 0}
15 while 𝐶𝐶𝐶𝐶 ≠ ∅ do
16 Define 𝑅𝑅𝑅𝑅𝑅𝑅 = {𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 ∶ 𝑑𝑑(𝑣𝑣,𝑉𝑉 ∖ 𝐶𝐶𝐶𝐶) ≥ 𝛼𝛼𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚}
17 Randomly select 𝑣𝑣∗ ∈ 𝑅𝑅𝑅𝑅𝑅𝑅 according to a uniform distribution
18 Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣∗)
19 Compute barycenter 𝑏𝑏𝑏𝑏(𝑣𝑣∗)
20 Set position 𝜋𝜋𝑖𝑖(𝑣𝑣∗) ≔ 𝑏𝑏𝑏𝑏(𝑣𝑣∗)
21 Update 𝐶𝐶𝐶𝐶 ≔ 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣∗}
22 end while

Output: 𝐷𝐷

Algorithm 2. Iterated Greedy phase of the Strategic Oscillation procedure.

Algorithm 2 shows that given a solution 𝐷𝐷, the Iterated Greedy phase of the Strategic Oscillation
method starts by removing the associated set of near-critical vertices, 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) of 𝐷𝐷. Then, for
diversification purposes, it removes if necessary an additional number of vertices randomly

12

selected from 𝐷𝐷 ∖ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) up to the target amount of 𝛽𝛽|𝑉𝑉| . We consider that the position of
all these “removed” vertices is assigned to a value of zero (𝜋𝜋𝑖𝑖(𝑣𝑣) = 0). Then, we re-apply the
constructive method described above in Algorithm 1 to this partial solution by adding the
removed vertices. This modified construction phase terminates when all the “removed” vertices
have been selected and positioned, following the above-mentioned mechanisms, based on the
use of 𝑅𝑅𝑅𝑅𝑅𝑅 and the barycenter calculation. Once a solution 𝐷𝐷 is completed, we evaluate it
(compute the objective function value 𝑚𝑚𝑚𝑚(𝐷𝐷)), and submit it to the improvement heuristic.

Since we seek to optimize the 𝑚𝑚𝑚𝑚(𝐷𝐷) value, we consider a modification of the barycenter
calculation 𝑏𝑏𝑏𝑏(𝑣𝑣) in the algorithms above. Instead of computing the average of the position of
all its adjacent vertices, we compute in 𝑏𝑏𝑏𝑏(𝑣𝑣) the weighted average of the positions of its near
critical adjacent vertices (i.e., those in 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝)). Specifically, we consider the crossing number
𝑐𝑐(𝑣𝑣,𝑢𝑢) as the weight to multiply the position of each near critical vertex 𝑢𝑢.

4.2 Improvement heuristic

Given a solution 𝐷𝐷, each step of the improvement heuristic, outlined in Algorithm 3, consists of
selecting a vertex in the set of its near critical vertices 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) to be considered for a move.
Since both the evaluation of a solution and the computation of this set is time consuming, we
do not re-compute the solution value or the set after the application of a single move, but we
directly resort to the next element in the set to explore its associated move. Once all the
elements in 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) have been examined and eventually moved, we evaluate the resulting
solution and compute its near critical vertex set for the next iteration of the improvement
heuristic. One could argue that this implementation does not calculate the exact impact (or
influence) of a move in the objective function at the time we perform it (the so-called move
value). Although this is true, it is extremely fast in terms of computing time and can be indirectly
controlled with the number of iterations without updating the solution value. This is done by
adjusting the search parameter 𝑝𝑝, controlling the size of 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝). This candidate list strategy,
skipping the process of updating relevant information in each iteration of a method, has been
successfully applied in the context of the tabu search methodology (Glover and Laguna, 1997).

When reviewing previous local search methods for edge crossing minimization (see Martí and
Laguna, 2003), we found that some of them examine all the possible insertions for a vertex,
while others limit themselves to a single position, usually the one given by the barycenter. The
former methods require more computing time but usually find a better position than the latter
ones, which only try one position in their moves. Here, we propose a mixed strategy to
determine the position to insert a vertex in order to achieve a compromise between solution
quality and speed.

When a vertex 𝑣𝑣 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) is selected (see step 7 in Algorithm 3), we compute its barycenter,
𝑏𝑏𝑏𝑏(𝑣𝑣), with respect to the current ordering of its adjacent vertices. Then, the insertion move
considers five positions: 𝑏𝑏𝑏𝑏(𝑣𝑣), 𝑏𝑏𝑏𝑏(𝑣𝑣) + 1, 𝑏𝑏𝑏𝑏(𝑣𝑣) + 2, 𝑏𝑏𝑏𝑏(𝑣𝑣) − 1, and 𝑏𝑏𝑏𝑏(𝑣𝑣) − 2 (steps 10 to 15
in Algorithm 3). If some of these positions are not feasible (because of the size of the layer), we
discard them. The vertex 𝑣𝑣 is placed in the position, from these five, that produces the maximum
reduction in the total (sum) number of crossings 𝑐𝑐(𝐷𝐷). If no reduction is possible, then the
vertex is not moved. In any case, we resort to the next vertex in the near critical set. An
improvement step terminates when all vertices have been considered for insertion (some

13

vertices may be moved while others may stay in their original positions.) Then, the final solution
is evaluated (i.e. 𝑚𝑚𝑚𝑚(𝐷𝐷) is computed), and the following step is performed from the new near
critical set.

It must be noted that the selection of the vertices to be moved is computed based on the primary
objective function 𝑚𝑚𝑚𝑚(𝐷𝐷), and their insertion position is computed according to the secondary
objective function 𝑐𝑐(𝐷𝐷). Our experimental analysis will confirm that the interplay of both
evaluations is able to produce high quality solutions, in terms of both objectives, in short
computational times.

Input: (𝐷𝐷,𝑝𝑝)
1 do
2 Compute 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = {𝑒𝑒 ∈ 𝐸𝐸 ∶ 𝑐𝑐(𝑒𝑒) ≥ 𝑝𝑝 ∙ 𝑚𝑚𝑚𝑚(𝐷𝐷)}
3 Compute 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) = {𝑣𝑣 ∈ 𝑉𝑉 ∶ (𝑢𝑢, 𝑣𝑣) ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝) or (𝑣𝑣,𝑢𝑢) ∈ 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝)}
4 Define 𝐶𝐶𝐶𝐶 = 𝑁𝑁𝑁𝑁𝑁𝑁(𝑝𝑝)
5 while 𝐶𝐶𝐶𝐶 ≠ ∅ do
6 Define 𝐷𝐷′ ≔ 𝐷𝐷
7 Randomly select 𝑣𝑣 ∈ 𝐶𝐶𝐶𝐶 according to a uniform distribution
8 Identify layer 𝑖𝑖 = 𝐿𝐿(𝑣𝑣)
9 Set 𝜋𝜋𝑖𝑖∗(𝑣𝑣) ≔ 𝜋𝜋𝑖𝑖(𝑣𝑣)
10 for 𝑝𝑝𝑝𝑝𝑝𝑝 = −2 to 𝑝𝑝𝑝𝑝𝑝𝑝 = +2 do
11 In 𝐷𝐷′, set position 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 𝑏𝑏𝑏𝑏(𝑣𝑣) + 𝑝𝑝𝑝𝑝𝑝𝑝
12 if 𝜋𝜋𝑖𝑖(𝑣𝑣) is feasible and 𝑐𝑐(𝐷𝐷′) < 𝑐𝑐(𝐷𝐷) then
13 𝜋𝜋𝑖𝑖∗(𝑣𝑣) ≔ 𝜋𝜋𝑖𝑖(𝑣𝑣)
14 end if
15 end for
16 In 𝐷𝐷′, set position 𝜋𝜋𝑖𝑖(𝑣𝑣) ≔ 𝜋𝜋𝑖𝑖∗(𝑣𝑣)
17 Update 𝐶𝐶𝐶𝐶 ≔ 𝐶𝐶𝐶𝐶 ∖ {𝑣𝑣}
18 end while
19 Set 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≔ 0
20 if 𝑚𝑚𝑚𝑚(𝐷𝐷′) < 𝑚𝑚𝑚𝑚(𝐷𝐷) then
21 𝐷𝐷 ≔ 𝐷𝐷′
22 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≔ 1
23 end if
24 while 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 == 1

Output: 𝐷𝐷

Algorithm 3. Improvement method.

When Algorithm 3 finishes, we apply a post-processing to fine tune the solution and try to
further reduce its 𝑚𝑚𝑚𝑚(𝐷𝐷) value. In particular, we focus on the arc with maximum value (i.e. the
critical arc responsible for the objective function value). If there is more than one critical arc, we
chose one at random. Then, we scan all the possible positions for its end-nodes. We scan these
positions one by one in search for the one with a maximum reduction in the 𝑚𝑚𝑚𝑚(𝐷𝐷) value. To
do so, we need to compute the crossing number of all the arcs in the layer. If we reduce 𝑚𝑚𝑚𝑚(𝐷𝐷),
we identify the new critical arc and continue in this way; otherwise we stop this post-processing.
We only apply it selectively to promising solutions to reduce the total computational effort of
our method. Specifically, we apply it to solutions with a 𝑚𝑚𝑚𝑚(𝐷𝐷) value within 4 units of the best
𝑚𝑚𝑚𝑚(𝐷𝐷) found so far.

14

5. Computational Experiments

As we mentioned in Section 3, to the best of our knowledge, Stallmann (2012) is the only
previous work on the min-max arc crossing problem, so the primary purpose of our
experimentation is to compare our method with his MCE heuristic. However, before performing
this competitive testing, we undertake to explore the elements of our method in a scientific
testing. In this way, we can calibrate and adjust the search parameters and evaluate its influence
on the performance of the method. We employ 85 instances in our experimentation.

To follow-up on Stallmann’s work, we employ his generator of instances in our experimentation.
As he states, it is a challenge to obtain problem instances with varying degrees and possible
“shapes”. This author discards directed graphs as a source to obtain hierarchical graphs, since it
is difficult to control the degree when applying standard layering methods, which usually add
many “dummy” nodes. He considered a uniform random graph generator, where instances are
denoted as 𝑢𝑢(𝑙𝑙,𝑘𝑘,𝑑𝑑, 𝑏𝑏) where 𝑙𝑙 is the number of layers, 𝑘𝑘 the number of nodes per layer, 𝑑𝑑 is
the graph density (in terms of the number of edges per vertex), and 𝑏𝑏 is the bias in the random
number generator. We generate 20 small instances (10 with 𝑛𝑛 = 60, 𝑙𝑙 = 3, and 10 with 𝑛𝑛 =
100, 𝑙𝑙 = 5), 30 medium instances (𝑛𝑛 = 300, 𝑙𝑙 = 15 and different densities), and 20 large
instances (10 with 𝑛𝑛 = 800, 𝑙𝑙 = 40, and 10 with 𝑛𝑛 = 1000, 𝑙𝑙 = 50). Additionally to this testing
set, we generate 15 instances, the training set, to perform the calibration of our SO method.

To avoid the overtraining of the SO method, we consider a training set of 5 uniform instances
from Stallman’s uniform set, and 10 instances from a different source. In particular, we use the
random_bigraph code of the Standford GraphBase by Knuth (1993) to generate 10 graphs with
𝑛𝑛 = 100, and 𝑙𝑙 = 5. This set of instances has been employed previously in similar graphs
problems (Martí and Laguna, 2003). The entire set of instances (testing and training) is available
at http://www.optsicom.es.

The procedures in our method have been implemented in C and the integer linear programming
formulation described in Section 2 has been solved using CPLEX 12.6.1. Stallmann’s Java source
code of his procedures have been downloaded from https://people.engr.ncsu.edu/mfms and
have been compiled using Java 8. All the results reported in this section were obtained by
running our codes on an Intel Core i7 @ 2.8 GHz and 8GB of RAM computer with the Ubuntu
Linux 16.04.LTS – 64bits operating system. We use the following metrics to measure the
performance of the methods:

• 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉: Average objective value of the best solutions obtained by the procedure on the
instances considered in the experiment.

• 𝐷𝐷𝐷𝐷𝐷𝐷: Average percentage deviation from a reference solution, where the reference
solution depends on the testing (i.e., scientific or competitive).

• 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵: Number of instances in a set for which a procedure is able to match the reference
solution, where the reference solution depends on the testing (i.e. scientific or
competitive).

• 𝐶𝐶𝐶𝐶𝐶𝐶: Average computing time in seconds employed by the algorithm.

http://www.optsicom.es/
https://people.engr.ncsu.edu/mfms

15

5.1 Scientific testing

The goal of this scientific testing is to assess the merit of the elements in our methods as well as
to identify the best values for their search parameters. Since each of the following tests isolates
these elements, it is not expected that the quality of the solutions obtained by these partial
procedures rival those of the best-known (or optimal) solutions that could be found with
complete search processes. Therefore, for the purpose of scientific testing, we use as reference
solutions in the calculation of 𝐷𝐷𝐷𝐷𝐷𝐷 the best solutions in each experiment (that the elements
being tested are able to produce) in contrast with the best solution known that will be used in
the competitive testing reported in the next subsection. This enables the detection of statistical
differences between the performance of specific configurations of the elements under study.

In the first experiment, we study the construction methods described in Section 4.1 to calibrate
the parameter 𝑝𝑝, which determines the 𝑁𝑁𝑁𝑁𝑁𝑁 set. Then in the second experiment, we study the
parameter 𝛽𝛽, which determines the percentage of nodes that is removed in each destruction-
construction iteration.

𝒑𝒑 0.2 0.4 0.6 0.8

Value 76.3 76.2 76.7 78.3

Dev 8.7% 8.7% 9.2% 11.1%

Best 7 8 8 5

Table 2. Calibration of parameter 𝑝𝑝.

Table 2 shows the Value, Dev, and Best statistics corresponding to 𝑝𝑝 = 0.2, 0.4, 0.6, and 0.8.
Each metric is calculated over the 15 best solutions obtained with the constructive method, one
for each instance in the training set. The best solution for a problem instance is selected among
100 solutions generated by each method and parameter value. From Table 2, we can see that
the best results of these experiments with respect to Value, are obtained with 𝑝𝑝 = 0.4. We now
search for the most effective value of the parameter 𝛽𝛽, which controls the number of nodes to
be removed after each construction. To that end, we test 𝛽𝛽 = 0.3, 0.5 and 0.7. Here, the value
of 𝑝𝑝 is set to 0.4, according to the previous experiment. Table 3 shows the performance
measures associated with each value of 𝛽𝛽. In this table, we can observe that the procedures with
𝛽𝛽 = 0.5 and 0.7 obtain the best results in terms of Dev (1.57% and 1.39%, respectively).
However, the option of 𝛽𝛽 = 0.5 clearly obtains the best results in terms of Best. So we set 𝛽𝛽 to
0.5.

𝜷𝜷 0.3 0.5 0.7

Value 77.9 76.2 76.4

Dev 3.09% 1.57% 1.39%

Best 4 9 8

Table 3. Calibration of parameter 𝛽𝛽.

16

We now hypothesize about the benefits of choosing 𝑝𝑝 randomly, at each iteration of the
algorithm, instead of fixing it to a given value for the entire process. This randomization would
allow creating 𝑁𝑁𝑁𝑁𝑁𝑁 sets with different sizes, which could help to diversify the search. In this
sense, we have tested three possibilities for this experiment: to keep 𝑝𝑝 fixed to 0.4 (in line with
the first experiment), to vary 𝑝𝑝 in the range [0.4− 0.1, 0.4 + 0.1], which allows a controlled
randomization, and to leave 𝑝𝑝 freely in [0, 1]. Note however that we should be careful with the
randomization since very small values of 𝑝𝑝 may produce very large 𝑁𝑁𝑁𝑁𝑁𝑁 sets that could make
the exploration of new positions for its elements a time consuming task.

Table 4 shows the results obtained with these three alternatives where we can see that the
worst results in terms of the three metrics are obtained with the second option, 𝑝𝑝 ∈ [0.4 − 0.1,
0.4 + 0.1], as it obtains higher Dev and lower Best values than the other options. We can also
observe that the random option obtains similar results than the one obtained with the fixed
value 𝑝𝑝 = 0.4. Since the random option requires a larger computational effort, we set 𝑝𝑝 = 0.4
in our Strategic Oscillation method (SO).

𝒑𝒑 0.4 0.4±0.1 random

Value 76.2 76.7 76.3

Dev 8.7% 8.9% 8.6%

Best 9 6 9

Table 4. Randomization of parameter 𝑝𝑝.

In the fourth experiment, we generate 1,000 solutions with the SO procedure on a
representative instance and compute the two objective functions (max and sum). We undertake
to explore if solutions with similar max values (𝑚𝑚𝑚𝑚(𝐷𝐷)) have similar sum values (𝑐𝑐(𝐷𝐷)). In the
horizontal 𝑥𝑥-axis of Figure 3, we plotted the values of the max (bottleneck) objective that, in this
particular case, range from 175 to 207. In its vertical 𝑦𝑦-axis, the sum (crossing) values are plotted,
ranging from 22,900 to 24,600. Each solution is represented with a point, according to its two
objective values. The higher the solution is in a vertical line, the worse is its crossing number, so
less efficient they are with respect to the same bottleneck.

Figure 3. Max and Sum values of 1,000 SO solutions.

17

Figure 3 shows that for a given value of the max objective function, the method finds solutions
with very different values of the sum objective function. This implies that when we solve the
min-max problem, if we ignore the min-sum problem, we can obtain solutions with a relatively
bad value of this second objective. For example, if we consider in Figure 3 the max value of 195
(depicted in the 𝑥𝑥-axis), we can see in the 𝑦𝑦-axis that the sum value of the associated solutions
ranges from 23,000 to 24,200, which is relatively wide. This confirms the need of designing a
solving method such as the SO that we propose here, that optimize 𝑚𝑚𝑚𝑚(𝐷𝐷) as a primary
objective, but also optimizes 𝑐𝑐(𝐷𝐷) as a secondary objective. This experiment confirms
Stallmann’s proposal of optimizing both objectives for a good design of a graph drawing.
Otherwise, very inefficient solutions in terms of crossing numbers can be obtained for relatively
good values of the bottleneck.

5.2 Competitive testing

As described in Section 1, Martí and Laguna (2003) tested several procedures for the
minimization of the sum of crossings 𝑐𝑐(𝐷𝐷). In their study, the authors identified the BC+SW
method as a very efficient heuristic to optimize 𝑐𝑐(𝐷𝐷). It is based on constructing solutions using
the barycenter and on improving them using a local search procedure with a switching move.
This method can be considered a standard in arc crossing minimization, and it has been
implemented in many graph drawing systems, starting with the early works by Sugiyama et al.
(1981) and Eades and Kelly (1986), to mention a few. We argued that a solution procedure
designed for the min-sum is not capable of producing high quality solutions for the min-max.
Therefore, a specific algorithm needs to be proposed to solve the latter objective for those
applications where the min-max is an important factor. In the following, we provide
experimental evidence to support this point.

 MCE BC+SW SO
Instance 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU

1 280550 267 60 254605 280 1 254075 267 134
2 271078 288 60 246530 279 0 246117 262 61
3 274429 263 60 249272 282 0 249011 270 55
4 283292 269 60 257826 292 0 256924 276 104
5 267934 260 60 242783 272 0 242620 262 65
6 270549 264 60 244775 270 0 244231 259 115
7 276619 287 60 252317 279 0 252114 269 82
8 278208 265 60 252727 287 0 252338 268 74
9 279969 265 60 255047 286 0 254893 269 62

10 277780 265 60 251497 286 0 250908 270 54
Average 276041 269 60 250738 281 0 250323 267 81

Table 5. Results on the two objectives with the three methods

In our first experiment of the competitive testing, we compare our strategic oscillation method,
SO, with the BC+SW method implemented by Martí and Laguna (2003), BC+SW, and with the
MCE heuristic used by Stallmann (2012). We consider 10 instances from our test set with 𝑛𝑛 =
300, density (𝑚𝑚/𝑛𝑛) ≅ 14, and 15 layers, all of them generated with Stallmann's generator2 as

2 https://people.engr.ncsu.edu/mfms/Software/MinCrossings/MinCrossings.html

https://people.engr.ncsu.edu/mfms/Software/MinCrossings/MinCrossings.html

18

described above. We ran the three methods on each instance and evaluated both objectives,
min-sum and min-max, on their output solutions. Table 5 shows, for each instance and each
method, the 𝑐𝑐(𝐷𝐷) value, 𝑚𝑚𝑚𝑚(𝐷𝐷) value and the CPU time in seconds.

Table 5 shows that as expected, BC+SW, designed to optimize 𝑐𝑐(𝐷𝐷), is able to obtain very good
results in terms of this objective function, with an average value of 250,738. Since it is a simple
heuristic, it requires very short computing times (less than 1 second). However, it is not capable
of producing high quality solutions for 𝑚𝑚𝑚𝑚(𝐷𝐷) (with an average value of 281). On the other hand,
MCE, which focuses on optimizing 𝑚𝑚𝑚𝑚(𝐷𝐷), obtains in 60 seconds an average value of this
objective of 269 crossings. Despite that this method is supposed to obtain relatively good values
for the 𝑐𝑐(𝐷𝐷) objective, it exhibits a poor performance on it, with an average value of 276,041.
Our SO method performs remarkably well, with an average 𝑐𝑐(𝐷𝐷) value of 250,323, and an
average 𝑚𝑚𝑚𝑚(𝐷𝐷) value of 267, achieved on 81 seconds on average.

In the second competitive experiment, we compare MCE and SO with the optimal solution
corresponding to minimize 𝑚𝑚𝑚𝑚(𝐷𝐷). We apply the mathematical programming formulation
described in Section 2, on the well-known IBM CPLEX solver. Table 6 shows the results of this
experiment, where each row corresponds to an instance of the problem. Note that due to the
enumeration procedure in CPLEX, we can only target small size instances in this experiment (it
is indicated in the second column of this table).

In this experiment, we provided the mathematical model to CPLEX using its Callable Library with
off-the-shelf configurations, and set a time limit of 3,600 seconds. If the solver is able to provide
the optimal value within the time limit, this optimal value and its corresponding CPU time are
depicted in columns 𝑚𝑚𝑚𝑚(𝐷𝐷) and CPU, respectively. Otherwise, we provide the lower and upper
bounds that CPLEX reports when the time limit is reached in the form of an interval. Regarding
the heuristic methods, Table 6 reports the objective 𝑚𝑚𝑚𝑚(𝐷𝐷) value, its deviation with respect to
the CPLEX optimal value, the associated computing time, as well as the value of the sum
crossings 𝑐𝑐(𝐷𝐷).

 CPLEX MCE SO
𝒏𝒏 𝒎𝒎 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU 𝒎𝒎𝒎𝒎(𝑫𝑫) Dev mc CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) Dev mc CPU 𝒄𝒄(𝑫𝑫)
53 51 2 5 2 0% 60 6 2 0% 1 5
53 50 2 12 3 50% 60 28 2 0% 1 9
59 63 3 49 5 67% 60 46 3 0% 1 11
49 90 [16.7 , 21] 3600 27 - 60 474 25 - 7 384
59 96 12 2551 15 25% 60 267 14 17% 8 227
33 64 12 137 13 8% 60 192 13 8% 2 185
33 69 13 62 15 15% 60 223 15 15% 3 204
55 171 [11.3 , 49] 3600 45 - 60 1846 43 - 28 1682
59 139 [10.49 , 29] 3600 32 - 60 978 31 - 20 879
33 126 32 1476 46 44% 60 1024 37 16% 9 878

Table 6. Comparison with optimal solutions

Table 6 shows that CPLEX is only able to solve seven out of the ten small instances considered.
Note that, for the same number of nodes and layers, the mathematical model becomes difficult

19

to solve when the number of edges increases (i.e., when the graph is denser). See that the
interval of the 𝑚𝑚𝑚𝑚(𝐷𝐷) values for the three unsolved instances is relatively wide, providing poor
information about the optimal values. On the other hand, both heuristics perform considerably
well in terms of the 𝑚𝑚𝑚𝑚(𝐷𝐷) objective function and CPU time, being SO better than MCE. In
particular, MCE exhibits an average percentage deviation of 29.85% on the 7 instances with
optimum known, while SO only has an 8%. With respect to the 𝑐𝑐(𝐷𝐷) value, for which we do not
know the optimal value, MCE has an average value of 564.22 and SO has an average of 446.40
(note that SO always obtains a better 𝑐𝑐(𝐷𝐷) value than MCE).

We now perform an exhaustive comparison of SO and MCE on different types of instances. Table
7 shows the first results of these final experiments with a comparison on a set of small instances
(𝑛𝑛 ≤ 100). The first row shows the average results of 10 instances with 𝑛𝑛 = 60, number of
layers 𝑘𝑘 = 3, and density 𝑑𝑑 ≅ 10. The second group also contains 10 instances, with 𝑛𝑛 = 100,
𝑘𝑘 = 5, and 𝑑𝑑 ≅ 12. By columns, for each of the two methods, the table shows the averaged
values of both objective functions (columns 𝑐𝑐(𝐷𝐷) and 𝑚𝑚𝑚𝑚(𝐷𝐷), respectively) and the CPU time.
Note that for each objective the table shows the average value and in brackets the average
percentage deviation with respect to the best known value). We calibrate the SO method to run
for a similar CPU time than MCE. In particular, we set the maximum number of iterations to
5000, and an additional criterion that if in 1000 consecutive iterations the best solution does not
improve, the method stops.

 MCE SO
𝒏𝒏 𝒌𝒌 𝒅𝒅 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU
60 3 10 37765 (9%) 247 (3%) 60 34821 (0%) 242 (1%) 32

100 5 12 76644 (9%) 254 (0%) 60 70594 (0%) 255 (1%) 69
Average 57204 (9%) 250 (2%) 60 52708 (0%) 248 (1%) 50

Table 7. Comparison of the two methods on 20 small size instances.

Table 7 shows that our SO method performs very well on the small instances considered,
obtaining results that exhibit an average 𝑚𝑚𝑚𝑚(𝐷𝐷) value slightly better than MCE (with the
exception of some instances where MCE obtains the best values). Regarding the sum of
crossings, 𝑐𝑐(𝐷𝐷), Stallmann’s MCE algorithm performs poorer, obtaining an average deviation of
9%, while SO exhibits a remarkable 0%. We perform a Wilcoxon non-parametric test for paired
samples to compare the results of both methods. Considering the 𝑚𝑚𝑚𝑚(𝐷𝐷) values, we obtain a 𝑝𝑝-
value of 0.2 which indicates that, in general, there are no significant differences between the
methods with respect to this objective. On the contrary, when we consider the 𝑐𝑐(𝐷𝐷) values, the
𝑝𝑝-value of this test is 0.000089, which confirms the superiority of the SO method in terms of the
min-sum objective.

In the experiment shown in Table 7 we considered instances with a density value close to 12. In
the next experiment we undertake to compare both methods for different values of the
instances density. In particular, we solve 30 mid-sized instances (𝑛𝑛 = 300) divided into three
groups, each one with 10 instances and a density value equal to 9.4, 14.1 and 16.8 on average
respectively. Table 8 summarizes the results of both heuristics, where each row shows average
results over the 10 instances in each group.

20

 MCE SO
Density (𝒅𝒅) 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU

9.4
116369
(18.6%)

168
(0.0%) 60

98696
(0.0%)

173
(2.9%) 70

14.1
276041
(10.3%)

269
(1.9%) 60

250323
(0.0%)

267
(1.1%) 81

16.8
402368
(5.9%)

328
(0.5%) 60

380061
(0.0%)

331
(1.6%) 250

Table 8. Comparison of the two methods on medium size instances

Table 8 shows that MCE is able to obtain the best results for the min-max objective, 𝑚𝑚𝑚𝑚(𝐷𝐷),
since it presents lower average deviations than SO. This has an exception in two instances with
density 14.1 in which SO obtains better values, which causes the average deviation of MCE to
increase to 1.9%. In general terms we can say that both methods present on average similar
results, being MCE slightly better. We cannot identify a different performance depending on the
density of the instances. Regarding the min-sum objective, 𝑐𝑐(𝐷𝐷), it is clear that SO performs
much better than MCE, since the former always obtains the best known solution. The Wilcoxon
test on the results of this table exhibits similar results than those obtained for the previous table:
a 𝑝𝑝-value > 0.05 for the 𝑚𝑚𝑚𝑚(𝐷𝐷) objective, and a 𝑝𝑝-value < 0.05 for the 𝑐𝑐(𝐷𝐷) objective.

In our last competitive experiment, we test the two methods and compare their results on 30
large instances, (500 ≤ 𝑛𝑛 ≤ 1000, and up to 50 layers). We ran the methods for longer (and
similar) running times for these large instances. Table 9 shows the results of this experiment.

 MCE SO
𝒏𝒏 𝒌𝒌 𝒅𝒅 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU 𝒄𝒄(𝑫𝑫) 𝒎𝒎𝒎𝒎(𝑫𝑫) CPU

500 25 14.5
475970
(11%) 270 (1%) 60

429656
(0%) 273 (2%) 146

800 40 9.8
334285
(20%) 175 (0%) 300

278458
(0%) 181 (3%) 313

1000 50 9.8
421128
(20%) 176 (0%) 300

349641
(0%) 183 (4%) 476

Average
410461
(17%) 207 (0%) 220

352585
(0%) 212 (3%) 312

Table 9. Comparison of the two methods on large size instances

Each row in Table 9 corresponds to a set of 10 instances with characteristics described in the
first three columns. We can see that Stallmann’s method, MCE, is able to achieve slightly better
results than our proposed method SO in terms of maximum crossings on large size instances. In
particular MCE presents a remarkable 0% while SO has a 3% of average deviation with respect
to the best known 𝑚𝑚𝑚𝑚(𝐷𝐷) values. However, with respect to the secondary objective 𝑐𝑐(𝐷𝐷), SO
clearly outperforms MCE since it always matches the best known solution, and MCE presents an
average percent deviation of 17%. To sum it up, SO is able to compete with MCE in terms of
minimizing the maximum number of crossings and improves it when minimizing the total (sum)
number of crossings, thus it constitutes a very good method to generate readable drawings.

21

5.3 Graph Drawing Expert Systems

In this subsection we complement the experimentation above by drawing the output of our
method and comparing it with those obtained with well-known graph drawing systems. In
particular, we apply the SO method to the example depicted in Figure 2 in an arbitrary node
ordering. We can see that In Figure 2 𝑚𝑚𝑚𝑚(𝐷𝐷) = 73 and 𝑐𝑐(𝐷𝐷) = 2647, which makes the drawing
very difficult to analyze. Figure 4 shows the output of our method on the same example. It is a
much more readable drawing, where 𝑚𝑚𝑚𝑚(𝐷𝐷) = 36 and 𝑐𝑐(𝐷𝐷) = 1675. It is still a complex
drawing since the graph has 255 arcs; but there is no doubt that the solution of the min-max
problem is simply better to capture the graph information.

Figure 4. Optimized drawing with our method of the example in Figure 2.

22

Figure 5. Optimized drawing with yEd (left) and Mathematica (right) of the example in Figure 2.

We now consider two graph drawing expert systems among those listed in Table 1. Note that all
of them implement simple rules for crossing reduction (based on the barycenter or median
heuristics). Specifically, we apply yEd and Mathematica to the same graph represented in
Figures 2 and 4, and analyze the automatic drawings obtained with these systems in terms of
arc crossings. Although yEd does not provide a direct evaluation of the number of crossings, we
have identified in its output represented in Figure 5 (left) that arc (22 , 47) has more than 60

23

crossings. Mathematica provides a tool for arc crossing computation, which returns for this
drawing (Figure 5 right) the maximum value 𝑚𝑚𝑚𝑚(𝐷𝐷) = 49, and the sum value 𝑐𝑐(𝐷𝐷) = 1822.
Therefore, regarding the maximum number of crossings among all its arcs, we can conclude that
these drawings are worse than our proposal shown in Figure 4, which has a maximum crossing
value of 36.

We also address an interesting point in the context of graph drawing systems: the influence of
the graphic standard on the number of crossings. Although in this paper we restrict our attention
to hierarchical (or layered) drawings, it is indeed interesting to compare this drawing convention
with another representation on the same graph. To this end, we run yEd to obtain a circular
layout of the graph depicted in the previous figures. The result, shown in Figure 6, confirms that
in terms of arc crossing the hierarchical layout is a good choice, since the circular layout contains,
in general, many more crossings. For example, arc (22, 59) in Figure 6 has close to 100 crossings,
indicating that its maximum number of crossings, 𝑚𝑚𝑚𝑚(𝐷𝐷), is larger than 100, and therefore this
can be considered much worse than our layered drawing shown in Figure 4 with 𝑚𝑚𝑚𝑚(𝐷𝐷) = 36.

Figure 6. Circular drawing obtained with yEd Expert System of the example in previous figures.

6. Conclusions

In this paper, we investigate the adaptation of the Greedy Randomized Adaptive Search
Procedure (GRASP) and Strategic Oscillation (Iterated Greedy) methodologies to the Graph
Drawing Problem. In particular, we focus on the effect of the balance between randomization

24

and greediness on the performance of these multi-start heuristic search methods when solving
this NP-hard problem.

We target here a very interesting variant in arc crossing minimization recently proposed. We
consider two objective functions, the min-max, as a primary objective, and the min-sum, as a
secondary objective. Our proposal is able to compete with the previous method in the primary
objective and outperforms it in the secondary one. In practical terms our achievements are very
appealing since they show that our method is able to provide very good drawings.

After exhaustive experimentation we can conclude that our SO method obtains solutions of
better quality (lower number of arc crossings) than those obtained with existing methods. This
comparison includes the recent MCE method for crossing reduction and two expert systems for
graph drawing (yEd and Mathematica). Note however, that when solving large instances, our
method requires slightly longer computational times than MCE. This was expected since
advanced search mechanisms require greater computational effort than simple ordering rules
in which most of the previous methods rely. A direct application of our findings is to implement
the SO method in commercial graph drawing expert systems to improve their functionality in
terms of crossing reduction. Nowadays computers permit to execute complex metaheuristics in
reasonable CPU time, thus expert systems can replace its simple heuristic rules, such as the
barycenter or the median, with efficient metaheuristics such as the SO proposed here.

A natural extension of our work is to apply metaheuristic methodologies to solve other
optimization problems in the context of graph drawing. In particular, within the layered standard
that we consider in this paper, the first step of the so-called Sugiyama’s method is to assign
vertices to layers. Graph drawing expert systems referenced here perform this task with a well-
known method, the Coffman-Graham layering, obtaining relatively good solutions in short
computational time. However, the layering problem is indeed NP-hard, and we believe that
better solutions can be obtained with modern metaheuristics. This also holds for other
optimization problems in the drawing process, such as cycle removal, dummy vertices
minimization, or coordinate assignment.

Acknowledgements

This work was supported by the Spanish Ministerio de Economía y Competividad and Fondo
Europeo de Desarrollo Regional (MINECO/FEDER) (TIN-2015-65460-C02-01, project MTM-2015-
68097, and PhD. grant BES-2013-064245). Authors wish to thank Prof. Stallmann for providing
us with the MCE code and instances to perform the experiments reported in this paper. Authors
also want to thank the anonymous referees to help them to connect their findings with graph
drawing expert systems.

25

References
Bachmaier, C., F. J. Brandenburg, W. Brunner, and F. Hübner (2010). “A global k-level crossing reduction
algorithm.” In “Proceedings of the 4th International Workshop on Algorithms and Computation
(WALCOM’10)”. Lecture Notes in Computer Science 5942, 70-81.
Bhatt, S. N. and F. T. Leighton (1984). “A Framework for Solving VLSI Graph Layout Problems”. Journal of
Computer and System Sciences 28, 300-343.
Carpano, M. J. (1980). “Automatic Display of Hierarchized Graphs for Computer Aided Decision Analysis”,
IEEE Transactions on Systems, Man, and Cybernetics 10 (11), 705-715.
Corberán, A., J. Peiró, F. Glover, V. Campos, and R. Martí (2016). “Strategic Oscillation for the capacitated
hub location problem with modular links”. Journal of Heuristics 22 (2), 221-244.
Di Battista, G. D., P. Eades, R. Tamassia, and I. G. Tollis (1999). “Graph Drawing. Algorithms for the
Visualization of Graphs”. Prentice Hall, New Jersey.
Eades, P. and D. Kelly (1986) “Heuristics for Drawing 2-Layered Networks”. Ars Combinatoria 21, 89-98.
Festa, P. and M. G. C. Resende (2011). “GRASP: basic components and enhancements”.
Telecommunication Systems 46 (3), 253–271.
Garey, M.R. and D.S. Johnson (1983) “Crossing number is NP-complete”. SIAM Journal on Algebraic
Discrete Methods 4, 312-316.
Glover, F. and M. Laguna (1997). “Tabu search”. Kluwer, Norwell, MA.
Himsolt, M. (1996). “GraphEd: an interactive graph editor” , Proc. STACS 89 (349) of Lecture Notes in
Computer Science , Berlín, 532-533.
Jünger, M. and P. Mutzel (1997). “2-Layer Straightline Crossing Minimization: Performance of Exact and
Heuristic Algorithms”. Journal of Graph Algorithms and Applications 1(1), 1-25.
Jünger, M. and P. Mutzel (2004). “Graph drawing software”, Springer, Berlín.
Knuth, D. E. (1993). “The Stanford GraphBase: A platform for combinatorial computing”. Addison Wesley,
New York.
Laguna M. and R. Martí (1999). “GRASP and Path Relinking for 2-Layer Straight Line Crossing
Minimization”. INFORMS Journal on Computing 11 (1), 44-52.
Laguna M., R. Martí and V. Valls (1997) “Arc Crossing Minimization in Hierarchical Digraphs with Tabu
Search”, Computers and Operations Research 24 (12), 1175-1186.
Martí, R. and M. Laguna (2003). “Heuristics and Meta-Heuristics for two layer straight line crossing
minimization”. Discrete Applied Mathematics 127 (3), 665-678.
Martí, R., M. Resende, and C. Ribeiro (2013). “Multi-Start Methods for Combinatorial Optimization”.
European Journal of Operational Research 226, 1-8.
Matuszewski, C., R. Schönfeld, and P. Molitor (1999). “Using sifting for k-layer straightline crossing
minimization”. In “Proceedings of the 8th International Symposium on Graph Drawing”. Lecture Notes in
Computer Science 1731, 217-224.
Ruiz, R., and T. Stützle (2008). “An iterated greedy heuristic for the sequence dependent setup times
flowshop problem with makespan and weighted tardiness objectives”. European Journal of Operational
Research 187 (3), 1143-1159.
Rowe, L.A., M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan (1987) A browser for directed
graphs”, Software, Practice and Experience 17(1), 61-76.
Stallmann, M.F. (2012) “A Heuristic for Bottleneck Crossing Minimization and Its Performance on General
Crossing Minimization: Hypothesis and Experimental Study”. ACM Journal of Experimental Algorithms
17(1), 1 – 30.
Sugiyama, K., S. Tagawa, and M. Toda (1981) “Methods for Visual Understanding of Hierarchical System
Structures”. IEEE Transactions on Systems, Man, and Cybernetics SMC-11 (2), 109-125.

