
Tabu Search for Min-Max Edge Crossing in Graphs

Tommaso Pastore1, Anna Mart́ınez-Gavara2, Antonio Napoletano3, Paola Festa1, and
Rafael Mart́ı2

1Department of Mathematics and Applications. University of Napoli Federico II, Italy.
{tommaso.pastore, paola.festa}@unina.it

2Department of Statistics and Operations Research. University of Valencia, Spain.
{gavara, rafael.marti}@uv.es

3Optit srl, Via Mazzini, 82, 40138 Bologna, Italy
{antonio.napoletano}@optit.net

September 2, 2019

Abstract

Graph drawing is a key issue in the field of data analysis, given the ever-growing
amount of information available today that require the use of automatic tools to represent
it. Graph Drawing Problems (GDP) are hard combinatorial problems whose applications
have been widely relevant in fields such as social network analysis and project manage-
ment. While classically in GDPs the main aesthetic concern is related to the minimization
of the total sum of crossing in the graph (min-sum), in this paper we focus on a particular
variant of the problem, the Min-Max GDP, consisting in the minimization of the maxi-
mum crossing among all egdes. Recently proposed in scientific literature, the Min-Max
GDP is a challenging variant of the original min-sum GDP arising in the optimization of
VLSI circuits and the design of interactive graph drawing tools. We propose a heuristic
algorithm based on the tabu search methodology to obtain high-quality solutions. Ex-
tensive experimentation on an established benchmark set with both previous heuristics
and optimal solutions shows that our method is able to obtain excellent solutions in short
computation time.

Keywords: combinatorial optimization, graph drawing, metaheuristics.

1 Introduction

Graph drawing problems consist in obtaining an automatic representation of a given graph,
described in terms of its vertices and edges. Many aesthetic criteria have been proposed to
identify the desirable properties that a good representation has to fulfill, with the most com-
mon being: edge crossings, graph area, edge length, edge bends, and symmetries. Their main
objective is to achieve readable drawings in which it is easy to obtain or extract information.
This goal is particularly critical in graphs with hundreds of vertices and edges, in which an
improper layout could be extremely hard to analyze. Graph drawing is an active area of
research. An excellent resource on the topic is the book by Di Battista et al. [3], where many
graph drawing models and related applications are introduced.

1

Figure 1: Circular representation of a graph [7].

There are different drawing conventions for representing a graph. In some settings, the
vertices of the graph are drawn with a circle, such as for example in genetic interaction
networks. Figure 1 represents the two hundred and forty-five interactions found among 16
micro-RNAs and 84 genes (see [7]). In other cases, the data has a clear sequential nature,
like in workforce scheduling problems, where a set of tasks cannot be undertaken before
the completion of some previous ones. Whenever the data is characterized by this kind of
precedence relationships, the natural representation for the corresponding network is given
by a layered graph. Practical applications fields which benefit from this graph layout can be
found in Table 1. For example, in the field of operational inter-period material activities, a
set of operational multi-period scenarios can be represented with a special graph rooted with
replicas of the related strategic node, as it can be seen in Figure 2.

The Layered Graph (LG) representation [3] is obtained by arranging the vertices on a
series of equidistant vertical lines called layers in such a way that all edges point in the same
direction. Note that working in layers is not a limitation, since there exists a number of
procedures to transform any directed acyclic graph (DAG) into a layered graph [2]. The
Sugiyama’s method to obtain a good representation of a graph has become a standard in the
field [32]. As pointed out in the excellent survey on graph drawing by Healy and Nikolov in
[16], Sugiyama’s framework is oriented to obtain a good drawing by representing the edges
according to certain aesthetics that induce readability. Specifically, the method arranges
vertices in such a way that the drawing has short straight lines, pointing in a uniform direction
with low number of crossings. To this end, the authors proposed a method with three steps:
assign vertices to layers, reduce edge crossings, and assign coordinates to vertices. We apply
this method to the graph in Figure 3 to illustrate its performance.

After a pre-processing to reverse the direction of some edges if needed, the first step,
called layer assignment, assigns vertices to layers. In this step, edges between vertices in non-
contiguous layers are replaced with a chain of dummy vertices and edges between consecutive
layers, thus obtaining a layering. Different objectives can be achieved in this initial step, such
as minimizing the number of dummy vertices, or reducing the number of layers. This step is
shown with an example in Figure 4. In the second step, called crossing minimization, vertices
are reordered within their corresponding layers to reduce the number of edge crossings, which

2

Context References Description

Workflow visualization [33] Representation of the work to be exe-
cuted by the project team.

Software engineering [8, 5] Representation of calling relationships
between subroutines in a computer pro-
gram.

Database modeling [17] Definition of data connections and sys-
tem processing and storing diagrams.

Bioinformatics [21] Representations of proteins and other
structured molecules with multiple func-
tional components.

Process modeling [15, 10] Analytical representation or illustration
of an organization’s business processes.

Network management [28, 20] Representation of the set of actions that
ensures that all network resources are put
to productive use as best as possible.

VLSI circuit design [4] Representation of the design of inte-
grated circuits (ICs) which are essential
to the production of new semiconductor
chips.

Decision diagrams [25, 26] Definition of logic synthesis and formal
verification of logic circuits.

Table 1: Layered Graphs applications as listed in [27].

is an NP-hard optimization problem (see Figure 5). Finally, in the third step called coordinate
assignment, vertices are moved within their layer to obtain a good final drawing, modifying
their coordinates without changing their order. The objectives are that long edges are straight
and vertices are centered among their neighbors. In this step, long length edges are brought
back from the chains of dummy vertices introduced in step 1 to model them, as shown in our
example in Figure 6.

The crossing minimization problem in layered digraphs has received a lot of attention.
The problem in bipartite graphs has been also extensively studied for more than 40 years,
beginning with the Relative Degree Algorithm introduced in Carpano [6]. Early heuristics
were based on simple ordering rules, reflecting the goal of researchers and practitioners of
quickly obtaining solutions of reasonable quality. However, the field of optimization has
recently introduced complex methods, both in exact and heuristic domains. The crossing
problem has benefited from these techniques, and advanced solution strategies have been
proposed in the last 20 years to solve it. We refer the reader to Mart́ı [23], Di Battista et al.
[3], or Chimani et al. [9] for relatively recent developments.

In this paper we focus on a variant of the crossing problem recently introduced in Stall-
mann [31]. In particular, this author identified some applications in the context of VLSI
circuits design in which it is more appropriate to minimize the maximum number of cross-
ings for any edge (min-max) rather than the sum of the edge crossings over all the graph
(min-sum). As stated in Bhatt and Leighton [4], an undesirable feature of VLSI layouts is the

3

Figure 2: Multistage scenario tree [1].

Figure 3: Input graph given to Sugiyama’s method.

presence of a large number of wire crossings. More specifically, wires that are crossed by many
others are susceptible to cross-talk, when all the crossing wires simultaneously carry the same
signal, thus deteriorating the circuit performance. On the other hand, if the number of wire
crossings is small, the number of contact-cuts is also small, thus providing a better signal.
Therefore, in order to attain a good performance over the network it is critical that no edge
has a large number of crossings, more than obtaining a small overall sum of crossings. This
application motivated the work by Stallman [31], where a heuristic algorithm is proposed to

4

Figure 4: Step 1 in Sugiyama’s method: layer assignment.

Figure 5: Step 2 in Sugiyama’s method: crossing minimization.

minimize the maximum number of crossings among all edges. More recently, Mart́ı et al. [24]
applied a metaheuristic algorithm to solve the problem defined in Stallman’s work.

Note that the local nature of the min-max problem is also useful in any graph drawing
software, where zooming highlights a specific area. In this sense, the min-max objective
function reduces crossings for each zoomed edge, while the min-sum problem solution does
not imply a low number of crossings in the zoomed area. It is then clear that the min-
max problem deserves to be studied and heuristic methods are needed to obtain high-quality
solutions quickly. The objective of this paper is to propose a competitive method for this
problem.

The main contributions of this work are: (i) extension of the mathematical programming
model in the case of multilayer layered graphs, (ii) implementation of a Tabu Search heuristic
with a long term memory strategy, (iii) adaptation of specific move evaluation function pro-
posed for bandwidth minimization problems [29], and (iv) improvement of the state-of-the-art
in solving the min-max graph-drawing problem.

5

Figure 6: Step 3 in Sugiyama’s method: final drawing.

2 Mathematical Programming Model

Crossing minimization is a well-known problem in graph drawing [3], with many optimiza-
tion algorithms proposed over the last twenty years to obtain good solutions. As described in
the previous section, in this paper we consider a recent variant proposed by Stallmann [31],
where we seek to minimize the maximum number of crossings across all edges.

A layered graph H = (G, k, L) is a graph G = (V,E), where the set of vertices V and the
set of edges E are partitioned into k−layers as follows:

V =
⋃

l=1,...,k

V l; (1)

E =
⋃

l=1,...,k−1
El ⊂

⋃
1≤l<k

V l × V l+1, (2)

where all edges connect vertices on consecutive layers. Additionally, the function L : V →
{1, . . . , k} indicates the layer where each vertex v ∈ V resides, implicitly defining V l = {v ∈
V : L(v) = l}. Let nl be the number of elements in layer l (nl = |V l|). A drawing of H is
defined as D = (H,Φ), where Φ = {ϕ1, ϕ2, . . . , ϕk}, and ϕl is the ordering (permutation) of
the vertices in layer l. Let c(u, v) be the number of edges that cross edge e = (u, v) for a given
D, called the crossing number of e. Given a drawing D, the aim of the min-max crossing
problem is to minimize its maximum crossing number C(D),

C(D) = max{c(e) : e ∈ E}. (3)

For the sake of simplicity, we will use C instead of C(D) whenever there is no ambiguity
among different drawings.

6

The min-max crossing problem in a bipartite graph was formulated as a linear integer
model (Mart́ı et al. [24]) by adapting the classic formulation for the min-sum problem pro-
posed by Jünger and Mutzel [19].

We define binary variables xluu′ and cluvu′v′ such that

xluu′ =

{
1, if ϕl(u) < ϕl(u′);
0, otherwise,

and cluvu′v′ takes value 1 if edges (u, v) and (u′, v′) cross, i.e.,

cluvu′v′ =

{
1, if (ϕl(u)− ϕl(u′))(ϕl+1(v)− ϕl+1(v′)) < 0;
0, otherwise.

where u, u′ ∈ V l and v, v′ ∈ V l+1 for all layers l = 1, . . . , k − 1.
The classical formulation described in [18] (and [19]) models the traditional total crossing

minimization problem in multi-layer graphs as follows:

min

k−1∑
l=1

∑
(u,v),(u′,v′)∈E

cluvu′v′ (GDP)

s.t.

− cluvu′v′ ≤ xl+1
vv′ − x

l
uu′ ≤ cluvu′v′ (u, v), (u′, v′) ∈ El, u < u′, v < v′, l < k (4)

1− cluvu′v′ ≤ xl+1
v′v + xluu′ ≤ 1 + cluvu′v′ (u, v), (u′, v′) ∈ El, u < u′, v > v′, l < k (5)

0 ≤ xluv + xlvw − xluw ≤ 1 ∀ 1 ≤ u < v < w ≤ nl, ∀l (6)

xluu′ ∈ {0, 1} ∀ u, u′ ∈ V l, u < u′, ∀l (7)

cluvu′v′ ∈ {0, 1} ∀ (u, v), (u′, v′) ∈ El, u < u′, ∀l. (8)

In the model above, constraints (4) and (5) force cluvu′v′ to take the value 1 when the
variables xluu′ and xl+1

vv′ indicate a crossing. Constraints (6) guarantee that the x-variables
represent an ordering by introducing precedence relationships (i.e., if u precedes v, and v
precedes w, then u has to precede w). We adapt this formulation to the min-max objective
function, collecting the crossings for each edge (u, v) in the integer variable c(u, v), and
introducing the upper bound variable C. In this way, we replace the objective function
above with min C, and we add the following two constraints to the formulation:

c(u, v) =
∑

(u′,v′)∈El

u<u′

cluvu′v′ +
∑

(u′,v′)∈El

u′<u

clu′v′uv ∀(u, v) ∈ El (9)

c(u, v) ≤ C ∀(u, v) ∈ El (10)

When minimizing C, constraint (10) forces this variable to take the maximum of the
crossing numbers c(u, v), thus providing the objective function value of the min-max problem.
Table 2 summarizes the notation introduced in this section.

7

Symbol Definition

G Graph: G = (V,E)
V Set of vertices of G
E Set of edges of G
k Number of layers
H Layered graph: H = (V,E, k, L)
L Function that indicates the layer in which a vertex resides
V l Set of vertices in layer l in H
nl Number of vertices in layer l
D Drawing: D = (H,Φ)
Φ Set of permutation {ϕ1, . . . , ϕk}
c(e) Number of edges that cross edge e ∈ E
C(D) Maximum number of edge crossings of a drawing D

Table 2: Symbols and Definitions.

3 Solution Methods

In this section, we first review the state-of-the-art methods published to solve the min-max
crossing problem, and then we propose a new one. In particular, we describe a tabu search
method (TS) which implements the so-called short term and long term memory structures
and their associated strategies.

3.1 Previous algorithms

The min-max crossing problem is addressed by two earlier papers. The first is due to
Stallmann [31], who developed the MCE heuristic. It is a very efficient method based on the
shifting principle, which performs passes over the layers of the graph, until a termination
criterion is met. Stallman’s method considers the edges as the main element in its design,
in contrast to most classic crossing reduction methods [3], usually based on vertices. In
particular, MCE identifies the edge with the largest number of crossings and tries to reduce it,
reallocating its endpoint vertices in their layer. The method starts with an initial drawing
D, determined by the barycenter method. Then, it sorts the edges e ∈ E in descending order
according to their number of crossings c(e). At each step, following this order, each edge e is
examined, and its endpoints are checked in search for their best position.

As pointed out by the author, an interesting feature of the MCE method is that it performs
improving moves (vertex relocation) based on a local principle. This means that, instead of
using the objective function value c(D) to determine the move, only the edges incident to
the chosen vertex are considered to find its best position. Thus, MCE determines the best
location for a vertex v as the one that minimizes the maximum number of crossings among
the edges incident to v. In practical terms, this implies that a drawing could be poorer after
a vertex reallocation since the number of crossings of a non-adjacent edge could eventually
increase. The experiments showed that this local strategy achieves good results, working as a
diversification element and preventing the search from being trapped in a local optimum. A
post-processing procedure of exchanging adjacent vertices is also applied to further improve
the solutions.

8

Mart́ı et al. [24] proposed an iterated greedy heuristic based on the Strategic Oscilla-
tion (SO) methodology [30]. After the construction and improvement of an initial solution,
this technique alternates between destructive and constructive phases. The SO algorithm is
based on the interaction of these three steps, constructive phase, neighborhood search and
destructive phase.

The construction step starts by randomly selecting a vertex v from all the vertices, and
placing it in an arbitrary position in its layer. In subsequent construction steps, the next
vertex v is randomly chosen from those in the restricted candidate list RCL, that consists in
all unassigned vertices with a degree of no less than a percentage of the maximum degree found
among unassigned vertices. Then, the selected vertex is placed in the position prescribed by
the barycenter, bc(v) in its layer. The barycenter is computed as the arithmetic mean of the
positions of the already adjacent vertices to the chosen vertex. The construction phase ends
when all the vertices have been positioned.

Important ingredients in this algorithm are the sets of near-critical edges (NCE(pIG)) and
vertices (NCV (pIG)). These sets depend on a search parameter pIG ∈ [0, 1], such that

NCE(pIG) = {e ∈ E : c(e) ≥ pIGC(D)}.

On the other hand, the set of near-critical vertices is defined as the set of vertices that are
endpoints of near-critical edges.

Once a solution D has been constructed, the neighborhood search is applied. This proce-
dure attempts to move each vertex v in NCV (pIG) in positions: bc(v) − 2, bc(v) − 1, bc(v),
bc(v) + 1, or bc(v) + 2, if they exist. The vertex is placed in the position that produces the
minimum of the total (sum) number of crossings. In order to save computational time, the
algorithm does not recompute the crossings after every move, and consequently does not up-
date near critical sets and the min-max objective function. This neighborhood search phase
ends when all vertices have been considered for insertions. Then, the objective function is
re-evaluated.

During the destructive phase, all the vertices in the set NCV (pIG) are removed from
drawing D. In order to achieve further diversification of the solution, an additional number
of vertices randomly selected from the set V \NCV (pIG) is removed.

A new iteration in the SO algorithm starts by reinserting the removed vertices in the
solution, according to the same greedy criterion used in the constructive phase. Then, as
final result, the algorithm returns the best solution found in the entire search process. See
[24] for further details.

3.2 A new Tabu Search algorithm

Tabu Search (TS) is a well-known metaheuristic for solving combinatorial optimization
problems designed to guide a search method to escape from local optimality. This methodol-
ogy was first proposed by Glover [11], and precise descriptions appeared in many studies, as
for example [12, 13, 14].

The TS framework is built from two main principles: intensification, in which the search
tries to achieve a local optimum, and diversification, applied to escape from the actual basin
of attraction to find a global optimum. These two strategies let the algorithm explore the
search space in different ways. In the intensification phase the movements are guided by
the objective function, to improve the current solution. Meanwhile, in the diversification
phase, movements are evaluated using both the objective function and frequency functions

9

recording past information, to guide the search towards unexplored regions. In this paper,
we implement these two concepts by incorporating memory functions of different time spans,
namely short and long term.

It is well documented, see [22], that min-max and max-min optimization problems are
a challenge for heuristic algorithms because those problems have many solutions with the
same objective value, thus making local search based methods relatively inefficient. Given a
solution, most of its neighbors have the same objective function value, thus making the local
search “almost blind” in terms of approaching a local optimum. To overcome this difficulty,
we consider in the intensification phase of our tabu search method, the δ function, proposed
by Rodriguez-Tello et al. [29] in the context of the Bandwidth Minimization problem (BMP).
The idea that motivates us to use this evaluation function lies in the similarities that both
problems share: (i) a min-max objective function, (ii) the correspondence between a solution
and a permutation of the vertices, and (iii) trivial feasibility.

In the cases of min-max crossing and BMP ([29]), the size of the solution space presents a
factorial growth in the size of the instance input. At the same time, in both problems, the
objective functions can be bounded from above by a polynomial in the size of the input. For
example, in the case of the min-max crossing problem, a trivial bound can be obtained by
counting the maximum number of edges among two consecutive layers minus one. Since, in
both min-max crossing minimization and BMP, the upper bound on the optimal solution is
small with respect to the size of the search space, there is a plethora of solutions with the
same cost. This means that, during the local search, a move evaluation function solely based
on the min-max objective hardly detects improving moves.

The δ-evaluation function for a Drawing D, depending on its ordering Φ, is defined in
equation (11), where dx is the number of edges with x crossings, ϑ an upper bound, and β
defines the maximum number of crossing (β = c(D), as defined in (3)). The upper bound on
the number of crossings, ϑ, is computed as the maximum number of edges between consecutive
layers minus one. We refer the reader to [29] for further details on this expression.

δ(D) = β + ϑ!

β∑
x=1

dx
(ϑ+ β − x+ 1)!

. (11)

Let us consider the graph in Figure 7 to illustrate the rationale behind the δ-evaluation
function (11). This drawing presents two edges with 3 crossings, which happens to be the
maximum: the edge that connects vertex 3 of the first layer and vertex 0 of the second,
and the edge connecting vertex 2 of the second layer with vertex 0 of the third layer. The
histogram on the right hand side of Figure 7 shows the number of crossings (cost) distribution
in the drawing, collecting for each possible cost value the number of edges with that number
of crossings. For this specific graph representation the objective function (maximum number
of crossings) is 3, and the δ function is 3.440476.

Swapping vertices 1 and 0 in the first and in the last layer of Figure 7, we achieve the
drawing depicted in Figure 8. As the previous one, this layered representation presents a
maximum crossing value of 3, corresponding to the edge connecting vertex 3 of the first layer
with vertex 0 of the second. The objective function in this drawing is therefore 3, however δ
function attains a value of 3.205357.

Regardless of the max-crossing, which gets the same value for both drawings, the repre-
sentation provided by Figure 8 is arguably clearer than the one of Figure 7. This feature can
be deduced by means of a comparison of the two cost distributions, since the number of edges

10

with a relatively high cost decreased. In this way, we can consider that in the neighborhood
of the new drawing it is more likely to find an improving solution. This important charac-
teristic for a local search method is properly detected by the decrease of the δ function, but
overlooked by the plain min-max objective function.

0

1

2

3

0

1

2

3

0

1

2

3

Figure 7: δ-evaluation function example.

1

0

2

3

0

1

2

3

1

0

2

3

Figure 8: δ-evaluation function example after swap.

Our two-phase TS method is outlined in Figure 9. The first phase, Short-Term TS, is
focused on an intensification strategy. The second phase, Long-Term TS, complements the
first one by performing search diversification to explore new regions of the solution space. Each
phase is executed for a maximum number of iterations without improving the current solution,
MaxIntensification and MaxDiversification respectively. The overall TS method stops
when the TimeLimit is reached.

Intensification Phase

The exploration in the intensification phase is based on swapping vertices in the same
layer. As it is customary in tabu search, when a move is performed, the vertices involved
become tabu-active for a certain number of iterations, their tabu tenure, and we call them
simply tabu vertices. Tabu vertices cannot be moved during their tabu tenure. Non-tabu
vertices are then those that are not tabu-active (i.e., those that can be moved).

11

Data: HDAG D, α, TimeLimit, MaxIntensification, MaxDiversification
Result: Optimized design for the min-max crossing.

1 bestSolution = D;
2 noImprov = 0 ;
3 while time spent < TimeLimit do
4 if noImprov < MaxIntensification then
5 IntensificationPhase(D,α);
6 if the current best is improved then
7 noImprov = 0 ;
8 else
9 noImprov + + ;

10 else
11 Diversification(S, MaxDiversification);
12 noImprov = 0 ;

13 return bestSolution;

Figure 9: Main Tabu algorithm.

For each layer l, from l = 1 to l = k, we compute a list of candidate elements to be
swapped (CLl). This list collects all the non-tabu vertices in the layer with an edge with
number of crossing larger than or equal a threshold, computed as a percentage (α) of a
reference maximum cost clmax. The clmax value is the current maximum number of crossings
in edges incident with a non-tabu vertex in l:

CLl = {u ∈ V l non-tabu : cu ≥ α clmax}, (12)

with cu denoting the maximum number of crossings found in edges incident to vertex u,

cu = max{c(e) : e = (u, v) ∈ El},

and
clmax = max{cu : u ∈ V l non-tabu}.

Starting from a drawing D, for each u ∈ CLl, the method searches for its best swap with
another non-tabu vertex, and performs it whenever the move improves (i.e. decreases) the
δ-value of the current solution D. If for all the vertices no improving solution has been found,
the algorithm performs the least worsening swap. The swapped vertices become tabu-active
and remain in such a status for a specified number of iterations controlled by the search
parameter tenure. Swaps that involve tabu-active vertices are declared tabu and therefore
are not allowed. The intensification phase stops after MaxIntensification iterations without
improvement. The structure of our intensification phase is illustrated in Figure 10.

Diversification Phase

In some TS applications, short term memory strategies produce very high quality solutions
by themselves. However, in general, TS becomes significantly stronger by including longer term
memory, implementing diversification strategies that allow the search process to escape from
the current basin of attraction.

12

Data: HDAG D, α
Result: Locally optimal drawing.

1 for l = 1, . . . , k do
2 build CLl;

3 for u ∈ CLl do
4 v ← best swap vertex(u);
5 if swap(u,v) decreases δ then
6 update solution;
7 update δ;
8 declare tabu u, v;

9 if no swaps performed then
10 perform least worsening;
11 update tabu statuses;

12 return;

Figure 10: Pseudo-code of the Intensification Phase.

As in classical implementations, our diversification procedure is executed when the in-
tensification reaches the maximum number of iterations without improving the best-found
solution, i.e., when we consider that the search is trapped in a specific region of the solution
space. During both intensification and diversification the algorithm records, for each vertex
u, the number of times u has been moved. Two vertices are randomly selected for a swap with
bias related to this count. More specifically, let M l be the total number of swaps performed
in layer l, and let ml

u indicate the number of swaps involving vertex u of layer l. Since the
swap is a pairwise move, we have

∑
um

l
u = 2M l. We define the probability of being selected

for a swap in the diversification phase (prlu) as:

prlu =
M l −ml

u∑
v (M l −ml

v)
, ∀u ∈ V l. (13)

Given a vertex u in layer l, the lower its number of moves, ml
u, the larger the probability

prlu. In this way, the method favors the selection of vertices with low counts. The pseudo-code
of the diversification phase is shown in Figure 11. This phase is executed sweeping through the
layers of the graph for MaxDiversification iterations in each layer if no improving solution
is encountered. If the algorithm does encounter a better solution, the diversification phase
ends. In any case the TS method restarts with the intensification phase in order to obtain a
locally optimal solution in the new area under exploration.

Min-Sum post-processing

As discussed in Section 1, the optimization of the min-max crossing function can be
found in different real world scenarios, such as the VLSI circuit design or the development
of interactive graph drawing tools. As we pointed out in the introduction, the use of the
min-max objective function in comparison with the min-sum, reasonably guarantees that
edges with a high number of crossing are unlikely to be found in the layout. This feature is
particularly valuable when the algorithm is embedded in a drawing tool that allows to zoom
onto user-specified areas of the graph.

13

Data: HDAG D, MaxDiversification
1 step = 0 ;
2 while step < MaxDiversification do
3 for l = 0, . . . , k do
4 for u ∈ V l do
5 compute prlu ;

6 u←random node(prl);

7 v ←random node(prl);

8 swap(u, v) in V l ;
9 update swap frequencies;

10 update tabu statuses;
11 if the δ decreases then
12 return;

13 step+ + ;

14 return;

Figure 11: Pseudo-code of the Diversification Phase.

One of the main characteristics of the min-max problems is that we can find many solutions
with the same objective function value, so we can expect that it has many alternative optima.
Therefore, it is possible to consider a post-processing procedure to reduce the total (sum)
number of crossings, without increasing the min-max value. In this way, we are improving
the max-sum as a secondary objective function without deteriorating the primary objective
min-max function. Note that this approach is in line with Stallmann’s [31] and with classical
drawing approaches that make use of the min-sum as reference function.

Our post-processing consists of a local search method guided by the min-sum function with
a swap-based neighborhood structure. Note that the TS method described in the previous
subsections is guided by the min-max objective, and more specifically by the δ function. This
post-processing only considers moves that do not worsen the solution in terms of min-max,
thus preserving solution quality, while attaining better min-sum values. In particular, the
method sequentially sweeps layers (from 1 to k), and scans their vertices in search for an
improving swap with respect to the sum of crossings. This procedure stops whenever, after
an exploration of all the layers (and all the vertices in each one), no improving move is
performed.

4 Computational Experiments

In this section, we perform extensive computational experiments to analyze the key el-
ements in our proposed method (TS) and to compare it with previous methods. In par-
ticular, we compare TS with the maximum crossing edge heuristic method (MCE) by Stall-
mann [31] and the strategic oscillation method (SO) proposed by Mart́ı et al. [24]. MCE

and SO are implemented in C, and TS in C++, and the experiments are conducted on a
computer with a 2.6 GHz Intel Core i7 processor with 8 GB of RAM, and a three level
cache with levels of 32K, 256K, and 6144K. The MCE algorithm has been downloaded from
https://people.engr.ncsu.edu/mfms. The set of instances we use is available online in the
webpage http://grafo.etsii.urjc.es/optsicom/. This site also includes the individual

14

results of the methods and their associated running times for future comparisons.
We divide the experimentation into two main parts, preliminary experiments and compar-

ative study. In the first one we set the values of the search parameters and finish with a study
of the δ-function contribution in the search process. As mentioned above, in our comparative
study we consider CPLEX, and the two previous heuristics. The benchmark set of instances
is created with the Stallmann’s generators [31], uniform and connected, and two well-known
public domain sets of instances in graph drawing: Rome and North. The uniform generator
has four parameters: number of layers, l, number of nodes per layer, ni, graph density, d, and
the bias in the random number generator, b. The uniform generator has four param-
eters: number of layers, l, number of nodes per layer, ni, the probability that a
potential edge between two layers exists p, and a bias value, b. We generate 299
instances with the uniform generator with similar parameter values as in [24] and [31], which
are detailed in Table 3. The bias takes the values b = 1, 5, 20, and 40 as in [31]. The connected
generator also has four parameters: number of nodes, n, number of edges, m, number of lay-
ers, l, and skew factor, σ. We generated 95 instances with this generator with the same skew
values as in [31], σ = 2, 4, and 8. Both bias and skew introduce irregularities in the uniform
and connected graphs, respectively: in each layer the bias favors the introduction of edges ad-
jacent to a small subset of the nodes, thus affecting the max degree of the generated uniform
graph. On the other hand the skew controls the different sizes of the layers of a connected
graph, the lower σ the closer the graph is to a uniform network. See [31] for further details.
Additionally, we consider 58 instances from the North set and 88 from the Rome set. Note
that the three methods in our comparison, tabu search, SO, and MCE, minimize crossings
in layers; we therefore transformed these general graphs into layered graphs by first applying
Sugiyama’s method. We classified these instances in Table 3 according to the experiments
where u(ni, l, d) is the set of uniform instances with ni number of nodes per layer, l number
of layers, and d approximately(≈) the graph density. Similarly, let c(ni, l, d) be the set of
connected instances.

Note that CPLEX is only able to target medium size instances, and for the heuristic com-
parison we consider the 301 instances already used and described in [24]. Regarding the
δ-function experimentation, we consider three subsets of instances generated varying three
independent parameters, namely: the number of vertices per layers ni, the number of layers
l, and edge-density d. The first subset, called var-density, has 70 instances obtained con-
sidering a fixed number of vertices and layers, and different densities. In the second subset,
var-nodes, 60 instances are collected with the same density and number of layers, but they
differ in terms of number of vertices per layer, ni ∈ {10, 15, 20, 25}. The third subset, called
var-layers, has 60 instances generated fixing d and ni, and varying the number of layers in
the graph. Moreover, whenever fixed ni, l and d, are approximately equal to their median
value in, respectively, var-nodes, var-layers, and var-density. The aim of the δ test is to study
the impact of the δ-evaluation function on a broad set of different graphs, and possibly relate
the usefulness of this move evaluation with d, l, and ni.

We evaluate the results of our experiments with the following statistics:

• C̄: the average of the max edge-crossing value;

• s: standard deviation value;

• Best : the number of best solutions found;

• Opt : the number of optimal solutions found;

15

Type #inst. Vertices (n) ni Layers (l) Density (d) Class

49 instances solved with CPLEX

uniform 29 100− 200 10 10− 20 ≈ 1.5 Low
uniform 20 450 15 30 ≈ 1.7− 3.6 Low

301 instances in the heuristic comparison
uniform 60 60− 1000 20 3− 50 ≈ 10.0− 14.0 High
connected 95 1000 10− 40 25− 100 ≈ 2.0− 5.0 Low
North 58 30− 553 1− 51 2− 39 ≈ 1.0 Low
Rome 88 12− 102 1− 16 5− 19 ≈ 1.0 Low

190 uniform instances in the δ test
var-density 70 450 15 30 1.70− 10.85 All
var-nodes 60 300− 750 10− 25 30 ≈ 5.0 Medium
var-layers 60 150− 900 15 10− 60 ≈ 5.0 Medium

Table 3: Benchmark set.

• % dev: the average percent deviation with respect to the best solution found in the
experiment. The deviation (in %) is computed as

ch − cbest
cbest

· 100,

where ch is the cost of the solution of the heuristic algorithm evaluated and cbest is the
cost of the best solution found on a given instance. This measure shows how far the
heuristic is to the best value. Smaller percent deviations therefore mean better results.

• % gap: the average percent deviation of C value of the heuristic method with respect
to the CPLEX solution found in the experiment;

• Time: average total time in seconds to execute the method.

4.1 Preliminary Experiments

In this section we first perform a preliminary test to fine tune the parameters of the
algorithm. To avoid the over training of the methods, we consider a fraction of the instances
(26 graphs) with different number of layers and densities. We call this subset the training set,
as opposed to the entire set of instances called the testing set.

The first tuning experiment is devoted to the study of the parameters used in the in-
tensification phase, α and tenure. The first parameter considered is α, which controls the
construction of the vertex candidate list in our intensification phase. We evaluate the results
obtained by considering five different values of α: 0, 0.1, 0.5, 0.9 and 1, while tenure is initially
fixed to a reference value of 5.

Table 4 shows the average results over the 26 instances obtained on the training set with
a time limit of 60 seconds for each execution. In particular, it shows the average number of
crossing (C), the average percentage deviation (% dev), the number of instances for which
the method is able to match the best solution found (Best), and the CPU time in seconds.
It is clear from these results that the best setup is obtained with α = 1, in terms of number
of best solution found, and in terms of both average max-crossings and deviations.

16

training set, 26 instances

α C % dev Best T ime

0 143.69 4.20 7 63.20
0.1 143.77 5.43 6 62.50
0.5 143.62 4.30 7 62.53
0.9 141.04 3.61 9 61.30
1 139.96 2.21 18 60.75

Table 4: Fine-Tune parameter α for the TS procedure.

Figure 12: Biplot of the PCA performed in the analysis of the parameter α.

Additionally, to have a better understanding of how the value of α affects the algorithm
performance, we conduct a principal component analysis (PCA) on the results reported in
Table 4. More specifically, for each instance and each configuration of α, we consider the
outcomes of the algorithms as features: C(D), best, and %dev. Where C(D) is the maximum
number of crossing found, while best and %dev are used to relate the performance of a
specific configuration with the others. Namely, best is a boolean variable that is equal to
1 when that specific configuration reaches the best objective function value on that specific
instance, and %dev measures the percentage deviation from the best value. As shown in this
table, all configurations have comparable computing times, so Time is not included in this
experiment. The PCA is performed with the prcomp function of the stats R package. The
results collected in the PCA assess how two principal components are able to explain over
90% of the total variance. Moreover, in accordance to the performances evidenced in Table 4,
we can observe in the biplot of the PCA, shown in Figure 12, how the cluster corresponding to
the value α = 1, represented by the blue ellipse, evidences a strong positive correlation with
the boolean variable best. Likewise, we can observe how this same cluster exhibits negative
correlations with respect to %dev and C(D).

17

In our second preliminary experiment, we test the short term TS method described in
Section 3.2 with several tenure values. The competing configuration tested are tenure = 2,
3, 5 and 10. The results in Table 5 show that there is not a clear winner. Small values of the
tenure appear to lead to better results with tenure = 3 (highlighted in bold in the table),
providing the best combination of minimum C and standard deviation and this is the value
we use in our experiments.

training set, 26 instances

tenure C % dev Best T ime

2 139.58 2.41 14 61.04
3 139.42 1.68 15 60.86
5 139.77 4.89 10 60.83
10 142.31 17.93 2 60.63

Table 5: Fine-Tune parameter tenure for the TS procedure.

In the last tuning experiment, we compare different configurations for the parameters
MaxIntensification and MaxDiversification, used to measure, respectively, the max-
imum lengths of the intensification and diversification phases. To achieve the right bal-
ance between intensification and diversification, we test the parameters coupled in pairs
(MaxIntensification, MaxDiversification), generating four different configurations: (10, 3),
(20, 10), (30, 15), and (50, 20). Since the training set is extremely diverse in terms of density
and size of the graph, as can be observed in Table 3, in this experiment we divide the training
instances into two classes: low-density graphs and high density graphs.

MaxIntensification MaxDiversification C % dev Best T ime

10 3 15.70 6.96 3 60.14
20 10 15.30 3.11 6 60.27
30 15 15.50 7.39 5 60.27
50 20 15.20 1.11 7 60.20

Table 6: TS fine-tune on 10 low density instances.

MaxIntensification MaxDiversification C % dev Best T ime

10 3 216.75 0.66 9 61.53
20 10 218.06 1.18 6 62.50
30 15 217.44 0.74 7 61.18
50 20 219.31 1.73 6 61.20

Table 7: TS fine-tune on 16 high density instances.

As expected, the differences found in the training set are reflected in tuning results shown
in Table 6 (low density) and Table 7 (high density). In particular, the best parameters

18

combination seems to be (50, 20) in the case of low density graphs, and (10, 3) for high
density graphs. In smaller graphs, characterized by low density, the algorithm is able to
perform more intensification steps within the same time limits. Moreover, when the density
is low, even with an high number of diversification steps, random swaps can strongly diversify
the solution but at the same time worsening its quality in a way that can still be repaired in
the next intensification phase. On the other hand, on high density graphs, a large number
of random swaps could generate a worsening in the solution quality that the intensification
phase can not significantly improve.

We conclude our preliminary experimentation with an empirical study on the contribution
of the δ-evaluation function in the search efficiency. The tests are designed to run the TS with
two different move evaluation functions in the intensification phase: the δ-function, and the
plain min-max objective function. More specifically, with the former evaluation, the algorithm
performs a move from solution D to the neighboring drawing D̄ if δ(D̄) < δ(D). On the other
hand, in the latter move evaluation setup, intensification moves are performed only when the
objective function value decreases. We study in this experiment the percentage of the relative
difference of the two solution values:

% rel =
C(DmM)− C(Dδ)

C(Dδ)
· 100, (14)

where Dδ and DmM are the optimized drawings obtained respectively by using the δ function
and the plain min-max objective as move evaluation functions.

As discussed in Section 3.2, the evaluation of neighboring solutions is particularly hard
in large sparse graphs, so we firstly perform our comparison with respect to the density of
the graph. Henceforth, to properly relate the performances of the two setups with network
density, in this experimental phase we address 70 instances (var-density set) with increasing
density and fixed size, both in terms of total vertices and layers. For a summary of the
network features used in these experiments see Table 3. The algorithm is executed in both
setups for a total time of 60 seconds and using the same parameter configuration for both
cases.

As expected, the results in Figure 13-(a) show that the δ-evaluation function is of critical
importance for drawing graphs with low density. Moreover, we can remarkably observe how
the percentage ratio between the two solutions is always greater than zero, meaning that in
all instances the use of δ as evaluation function is always favorable. In addition, Figure 13-(b)
depicts an example of the two search profiles obtained for an instance in our benchmark set.
We can note how the use of δ as evaluation function lets the algorithm improve when the
plain min-max stalls, as well as allowing the procedure to reach earlier good quality solution,
as argued in Section 3.2.

We now study of the effectiveness of δ with respect to the variation of the number of
vertices in each layer (ni), and the number of layers (l). As can be observed in the two scatter
plots of Figure 14, the advantages related to the use of δ as move evaluation function in the
local search are positively correlated with the number of layers and number of vertices in each
layer. Additionally, as in the case of the var-density instances, all the %rel values observed
are greater than zero, which confirms that in all the instances tested, it is better to perform
the exploration in the search space based on the δ function than on the standard min-max
objective function.

19

(a) Scatter plot: var-density instances. Comparison of two search profiles.

Figure 13: Comparison of δ and min-max evaluation functions on instances of variable density

(a) Scatter plot: var-layers instances. (b) Scatter plot: var-nodes instances.

Figure 14: Comparison of δ and min-max evaluation functions on the var-layers and var-nodes
subsets.

4.2 Comparative Testing

In this section, we first compare our TS method with MCE and SO heuristics, and the
solutions obtained with CPLEX (v 12.8) with the linear integer formulation. The two heuristic
algorithms are executed with a time limit of 60 seconds, and CPLEX is configured to stop
after 1 hour. Note that when CPLEX employs the entire 1 hour of running time, and we force

20

its early termination, the returning solution is not necessarily optimal. We consider in this
experiment the 49 instances of small-to-medium size and low density in the testing set. For a
better analysis of the results, the graphs considered in this testing are divided into a sequence
of six different groups, growing both in size and density.

As can be seen in Table 8, CPLEX is able to optimally solve almost all the smallest instances
belonging to the class u(10, 10, 1.5) and u(10, 20, 1.5). On the other hand, the two heuristics
can reach sub-optimal solution in the very short running time of 60 seconds considered in
this experiment (which is in line with graph drawing applications). When we move to larger
graphs with increasing density, then CPLEX is not able to obtain competitive results while
the heuristics are still obtaining good drawings. Note that the negative values of % gap in
this table, indicate that heuristics outperforms CPLEX on average in those set of instances. In
particular, TS clearly outperforms MCE in the three sets with the largest densities (last three
columns in the table), as it is shown by the lower percentage deviations from the best known
solutions. On small density graphs, u(15, 30, 1.7), MCE performs slightly better than TS.

In our second experiment in this section, we undertake to evaluate the performance of
our TS with respect to the two previous heuristics, MCE and SO. We consider 60 instances of
mixed size and high density of the testing set (uniform set in our benchmark), so according
to our previous results, we cannot include CPLEX in this experiment. Our TS is run for 60
seconds in all the cases (i.e., in each instance of the testing set). Table 9 reports the solutions
of this round of experiments, summed up in Table 10. For the three algorithms we report the
average number of crossings (C), the average total time, the number of best solutions found,
and the average percentage deviation from the best solution found.

Analyzing the computational results, we can see how TS obtains the best solution in 57
out of the 60 instances, and shows the minimum average number of crossings among the three
procedures. These remarkable performance is reflected in the average percent deviation, which
amounts to zero percent in 5 out of 6 instance types, and always lower than 0.60 percent.
In particular, we can see in Table 10 how the average deviation over the uniform set is 0.01
percent, compared to 4.77 and 5.76, respectively for MCE and SO. Moreover, we observe how
TS achieves high quality solutions in the case of graphs of large size.

On most instances, either MCE or TS performs at least as well as SO. Therefore, to simplify
the comparison, we report in Table 11 the results of TS and MCE run for 60 seconds over the
four sets of instances in our heuristic benchmark: uniform, connected, North, and Rome. This
table shows that, in general terms, we can say that TS improves upon MCE. Specifically, in the
uniform set, described in the previous experiment, TS is able to obtain a significant larger
number of best solutions and lower deviation than MCE. This is also true in the connected set
with low skew. However, in the connected set with higher skew, MCE is better than TS by a
close margin. In the small instances in this comparison, North and Rome sets, both methods
are comparable, being TS slightly better than MCE. In particular, in the 58 North instances,
MCE obtains 46 best solutions and TS 41, but their average percent deviations are 16.0 for MCE
and 14.7 for TS. Finally, in the Rome instances, both statistics, number of best solutions and
average percent deviation, favor TS.

To complement the information in Table 11, we analyze the percentage deviation as a
function of the density and type of instance. In particular, Figure 15 shows a scatter-plot of
the connected instances (a) and the uniform instances (b). For each instance, these diagrams
show the percentage deviation value (y-axis) of the two solutions obtained with MCE and TS

respectively, represented in the corresponding density column of the instance (x-axis). In
this way, we can observe that both methods present different patterns when comparing their

21

Instance Class

u(10, 10, 1.5) u(10, 20, 1.5) u(15, 30, 1.7) u(15, 30, 2.3) u(15, 30, 2.9) u(15, 30, 3.6)
C

CPLEX 4.33 5.64 26.00 42.20 53.40 64.60
MCE 5.20 6.36 9.20 18.80 29.80 41.00
SO 5.47 7.36 15.40 23.40 32.80 42.40
TS 5.27 6.50 11.20 17.80 26.00 34.40

s

CPLEX 0.62 1.15 6.75 4.09 3.58 4.10
MCE 0.68 1.28 1.10 1.64 2.39 1.58
SO 0.74 1.01 0.89 1.34 1.10 1.95
TS 0.80 0.94 1.10 2.95 1.41 1.82

Best

CPLEX 15/15 14/14 0/5 0/5 0/5 0/5
MCE 4/15 4/14 5/5 1/5 0/5 0/5
SO 4/15 3/14 0/5 0/5 0/5 0/5
TS 3/15 3/14 0/5 4/5 5/5 5/5

Opt

CPLEX 14/15 7/14 0/5 0/5 0/5 0/5
MCE 4/15 1/14 - - - -
SO 4/15 1/14 - - - -
TS 3/15 1/14 - - - -

% gap

MCE 21.44 13.06 -60.67 -55.32 -44.22 -36.44
SO 29.00 33.45 -35.66 -44.29 -38.45 -34.24
TS 22.22 16.55 -52.40 -57.99 -51.27 -46.66

% dev

MCE 21.44 13.06 0.00 8.61 14.53 19.30
SO 29.00 33.45 68.81 35.65 26.33 23.31
TS 22.22 16.55 22.25 2.00 0.00 0.00

Time

CPLEX 449.04 2487.51 3600.00 3600.00 3600.00 3600.00
MCE 60.00 60.00 60.00 60.00 60.00 60.00
SO 60.00 60.00 60.00 60.00 60.00 60.00
TS 60.07 60.14 60.21 60.26 60.32 60.70

Table 8: Comparison of TS, SO, MCE, and CPLEX on 49 instances (low density).

deviation values with the density. Specifically, MCE exhibits a similar variability of % dev in
all density values, but TS reduces its variability with larger density values. These results are
in line with the previous experiments in which we already observed that MCE performs better
in lower density values, while TS is better suited for medium density instances.

22

Instance Class

u(20, 15, 14) u(20, 3, 10) u(20, 5, 12) u(20, 25, 14.5) u(20, 40, 10) u(20, 50, 10)
C

MCE 269.30 246.80 254.00 270.30 175.00 177.50
SO 267.20 241.80 254.70 273.30 181.80 184.70
TS 259.30 238.20 247.80 261.80 164.10 163.00

s

MCE 9.88 11.24 4.81 5.52 2.12 2.46
SO 4.96 7.61 6.90 2.83 1.69 2.21
TS 2.16 7.91 4.98 4.24 3.73 3.20

Best

MCE 0/10 2/10 1/10 1/10 0/10 0/10
SO 0/10 2/10 1/10 0/10 0/10 0/10
TS 10/10 7/10 10/10 10/10 10/10 10/10

% dev

MCE 3.85 4.31 2.51 3.27 6.99 8.92
SO 3.04 2.12 2.79 4.41 10.84 13.34
TS 0.00 0.59 0.00 0.00 0.00 0.00

Time

MCE 60.00 60.00 60.00 60.00 60.00 60.00
SO 80.60 32.20 68.50 145.80 63.90 40.60
TS 61.25 60.53 60.74 62.02 62.02 61.87

Table 9: Comparison of MCE, SO, and TS on 60 instances (high density).

Procedure C s % dev Best T ime

MCE 232.23 41.13 4.98 4 60.00
SO 233.92 37.78 6.09 3 71.93
TS 222.37 42.90 0.09 57 61.40

Table 10: Summary of heuristics performance.

5 Conclusions

We had a twofold goal for this work: to experiment with the implementation of tabu
search on a min-max problem and, in the process, to develop a state-of-the-art procedure for
the crossing reduction problem. The framework that we consider in this work is based on
edge-crossing minimization, as this is one of the most common ways of creating good graph
representations. In particular, we target a hard graph drawing variant recently proposed:
minimizing the maximum number of edge crossings in layered graphs. Additionally, we adapt
a mathematical formulation to model the problem in the multilayer case.

23

Instance Class

uniform connected connected North Rome
σ = 2 σ = 4, 8

C

MCE 232.23 62.34 139.52 3.05 1.63
TS 222.37 55.23 157.72 2.90 1.51

s

MCE 41.13 48.58 122.99 3.87 1.05
TS 42.90 46.31 151.44 2.82 0.80

Best

MCE 6/60 3/35 36/60 46/58 67/88
TS 57/60 35/35 25/60 41/58 74/88

% dev

MCE 4.77 14.69 4.81 16.0 10.5
TS 0.01 0.00 13.08 14.7 8.7

Table 11: Comparison between MCE and TS on the heuristic benchmark.

(a) Scatter plot: connected instances. (b) Scatter plot: uniform instances.

Figure 15: Comparison of density and the percentage of deviation on connected and uniform
subsets.

The emphasis on responsive exploration in tabu search derives from the supposition that,
in a system that uses memory, a bad choice based on strategy can often yield more information
about how the strategy may advantageously change than a good random choice, [13]. Our tabu
search method implements two memory structures, short term and long term, for an efficient
search exploration based on the search history. The experimentation shows that they are
indeed very effective compared with the randomized design of the previous heuristic SO. The
use of an auxiliary evaluation function to guide the search in the flat landscape presented by

24

Instance Class

u(20, 15, 14) u(20, 3, 10) u(20, 5, 12) u(20, 25, 14.5) u(20, 40, 10) u(20, 50, 10)
cross-sum

MCE 276040.8 37764.6 76643.5 475970.2 334284.9 421127.6
SO 250323.1 34821.3 70594.3 429655.6 278458.1 349641.2
TS-p 254133.4 35704.0 72282.8 434861.6 286283.5 260115.7

% devs

MCE 10.28 8.55 8.58 10.78 20.05 20.21
SO 0.00 0.00 0.00 0.00 0.00 0.00
TS-p 1.52 2.54 2.39 1.21 2.81 3.00

Table 12: Analysis of the performances of the post-processing procedure on 60 high-density
instances.

the min-max crossing problem is a key feature of our heuristic, as our preliminary experiments
confirm. Our testings also confirms that it is responsible of reaching high-quality solutions in
the search method. The comparison with two previous heuristics, with moves are based only
on the objective function, demonstrates the good performance of our tabu search method.
The experimentation also reveals that CPLEX, using our mathematical formulation, is able
to solve only instances with low density and very small size, and, as expected, requires long
running times.

Acknowledgments. This work has been partially supported by the Spanish Ministerio
de Ciencia, Innovación y Universidades (MCIU/AEI/FEDER, UE) with grant ref. PGC2018-
095322-B-C21.

References

[1] A. Alonso-Ayuso, L. F. Escudero, M. Guignard, and A. Weintraub. On dealing with
strategic and tactical decision levels in forestry management under uncertainty. Submit-
ted.

[2] O. Bastert and C. Matuszewski. Layered Drawings of Digraphs, pages 87–120. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

[3] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st
edition, 1999.

[4] S. Bhatt and F. T. Leighton. A framework for solving vlsi graph layout problems. Journal
of Computer and System Sciences, 28:300–343, 1984.

[5] M. Burch, C. Müller, G. Reina, H. Schmauder, M. Greis, and D. Weiskopf. Visualizing
Dynamic Call Graphs. In M. Goesele, T. Grosch, H. Theisel, K. Toennies, and B. Preim,
editors, Vision, Modeling and Visualization. The Eurographics Association, 2012.

25

[6] M-J. Carpano. Automatic display of hierarchized graphs for computer-aided decision
analysis. IEEE Transactions on Systems, Man, and Cybernetics, 10(11):705–715, 1980.

[7] L. De Cecco, M. Giannoccaro, E. Marchesi, P. Bossi, F. Favales, L.D. Locati, L. Licitra,
S. Pilotti, and S. Canevari. Integrative mirna-gene expression analysis enables refinement
of associated biology and prediction of response to cetuximab in head and neck squamous
cell cancer. Genes, 8(1):35, 2017.

[8] J. Chen and I. T. Chau. The hierarchical dependence diagram: improving design for reuse
in object-oriented software development. In Proceedings of 1996 Australian Software
Engineering Conference, pages 155–166, Jul 1996.

[9] M. Chimani, C. Gutwenger, P. Mutzel, M. Spönemann, and H. Wong. Crossing min-
imization and layouts of directed hypergraphs with port constraints. Lecture Notes in
Computer Science 6502 LNCS, pages 141–152, 2011.

[10] M. Fernández-Ropero, R. Pérez-Castillo, and M. Piattini. Graph-based business process
model refactoring. In SIMPDA, pages 16–30, 2013.

[11] F. Glover. Heuristics for integer programming using surrogate constraints. Decision
Science, 8:156–166, 1977.

[12] F. Glover. Tabu search: Part i. ORSA Journal on Computing, 1(3):190–206, 1989.

[13] F. Glover and M. Laguna. Tabu Search, pages 70–150. Blackwell Scientific Publications,
Oxford, 1993.

[14] F. Glover, M. Laguna, E. Taillard, and D. de Werra. Tabu search. Annals of Operations
Research, 41, 1993.

[15] T. Gschwind, J. Pinggera, S. Zugal, H. A. Reijers, and B. Weber. A linear time layout
algorithm for business process models. J. Vis. Lang. Comput., 25(2):117–132, April 2014.

[16] P. Helay and N. S. Nikolov. Hierarchical Drawing Algorithms, pages 409–453. Chapman
and Hall/CRC, 2013.

[17] C. Hu, Y. Li, X. Cheng, and Z. Liu. A virtual dataspaces model for large-scale materials
scientific data access. Future Generation Computer Systems, 54:456 – 468, 2016.

[18] M. Jünger, E. K. Lee, P. Mutzel, and T. Odenthal. A polyhedral approach to the multi-
layer crossing minimization problem. In International Symposium on Graph Drawing,
pages 13–24. Springer, 1997.

[19] M. Jünger and P. Mutzel. 2-layer straightline crossing minimization: Performance of
exact and heuristic algorithms. Journal of Graph Algorithms and Applications, 1:Paper
1, 25 p., 1997.

[20] H-P. Kriegel, P. Kröger, M. Renz, and T. Schmidt. Hierarchical graph embedding for
efficient query processing in very large traffic networks. In B. Ludäscher and N. Mamoulis,
editors, Scientific and Statistical Database Management, pages 150–167. Springer Berlin
Heidelberg, 2008.

26

[21] N. W. Lemons, B. Hu, and W. S. Hlavacek. Hierarchical graphs for rule-based modeling
of biochemical systems. BMC Bioinformatics, 12(1):45, Feb 2011.

[22] M. Lozano, A. Duarte, F. Gortázar, and R. Mart́ı. Variable neighborhood search with
ejection chains for the antibandwidth problem. Journal of Heuristics, 18(6):919–938,
2012.

[23] R. Mart́ı. A tabu search algorithm for the bipartite drawing problem. European Journal
of Operational Research, 106:558–569, 1998.

[24] R. Mart́ı, V. Campos, A. Hoff, and J. Peiró. Heuristics for the min-max arc crossing
problem in graphs. Expert Systems with Applications, 2018.

[25] R. Mateescu, R. Dechter, and R. Marinescu. And/or multi-valued decision diagrams
(aomdds) for graphical models. J. Artif. Int. Res., 33(1):465–519, December 2008.

[26] C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline
crossing minimization. In J. Kratochv́ıyl, editor, Graph Drawing, pages 217–224, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[27] A. Napoletano, A. Mart́ınez-Gavara, P. Festa, T. Pastore, and R. Mart́ı. Heuristics for
the constrained incremental graph drawing problem. European Journal of Operational
Research, 2018.

[28] B. Oselio, A. Kulesza, and A. O. Hero. Multi-layer graph analytics for social networks.
In 2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), pages 284–287, Dec 2013.

[29] E. Rodriguez-Tello, J. K. Hao, and J. Torres-Jimenez. An improved simulated anneal-
ing algorithm for bandwidth minimization. European Journal of Operation Research,
185(3):1319–1335, 2008.

[30] R. Ruiz and T. Stützle. An iterated greedy heuristic for the sequence dependent setup
times flowshop problem with makespan and weighted tardiness objectives. European
Journal of Operational Research, 187(3):1143–1159, 2008.

[31] M. F. Stallmann. A heuristic for bottleneck crossing minimization and its performance
on general crossing minimization: Hypothesis and experimental study. ACM Journal of
Experimental Algorithms, 17(1):1–30, 2012.

[32] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical
system structures. IEEE Trans. Syst. Man, Cybern., 11:109–125, 1981.

[33] J. Vanhatalo, H. Völzer, F. Leymann, and S. Moser. Automatic workflow graph refactor-
ing and completion. In A. Bouguettaya, I. Krueger, and T. Margaria, editors, Service-
Oriented Computing – ICSOC 2008, pages 100–115. Springer Berlin Heidelberg, 2008.

27

