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Abstract

The bipartite drawing problem is a well-known NP-hard combinatorial op-

timization problem with numerous applications. Its aim is to minimize the

number of edge crossings in a two-layer graph where the edges are drawn as

straight lines. In this work, we tackle the dynamic variant of this problem,

which is called the dynamic bipartite drawing problem (DBDP), which con-

sists in adding or removing vertices and edges to a given bipartite drawing,

and drawing the resulting graph with a similar layout as the original one. To

solve this problem, we propose a Tabu Search method (Glover and Laguna,

1998) that incorporates adaptive memory, to search the solution space in an

efficient way. In this study, we compare the explicit memory in our solving

method (called iterated solution-based tabu search, ISB-TS) with the pre-

vious best method based on attributive memory, thus comparing these two

memory implementations. Starting from a semi-greedy initial solution, ISB-

TS iteratively explores the search space by combining a solution-based tabu

search with an adaptive perturbation mechanism to escape from local opti-
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ma. The extensive computational experiments on two sets of more than 1,000

problem instances indicate that the proposed ISB-TS is highly competitive

in comparison with existing methods. Key components of the approach are

analyzed to evaluate their impact on the proposed algorithm and learn which

search mechanisms are better suited for this type of problems. The scope

of this paper goes beyond the resolution of the DBDP, since the heuristic s-

trategies proposed here can be applied to other settings in the metaheuristic

field.

Keywords: Dynamic bipartite drawing problem; solution-based tabu

search; constrained neighborhood structure; adaptive perturbation

mechanism.

1. Introduction

With the advent of the era of big data, more and more complex informa-

tion systems require data visualization for analysis and presentation. Graphs

have become a fundamental modeling tool to represent and analyze data in

many fields such as software engineering (Burch et al. (2012)), VLSI cir-

cuit design (Wu et al. (2006)), or information visualization (Herman et al.

(2000)). Graph drawing addresses the problems of constructing geometric

representations of graphs in a way that they are easy to analyze. Although

the criteria used to judge the quality of a drawing is quite subjective, the goal

of minimizing the number of edge crossings is a widely accepted standard for

a good drawing. The problem to minimize the number of edge crossings in a

two-layer graph where the edges are drawn as straight lines is called bipar-

tite drawing problem (BDP), which is well-known to be NP-hard (Johnson

(1982)).

This research, as many others in the field, is built upon the so-called

Sugiyama’s framework. Given a directed graph, this framework or drawing

standard (Sugiyama et al. (1981)) arranges vertices on a series of equidistant
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parallel vertical lines called layers in such a way that the drawing has short

straight lines, pointing in a uniform direction with low number of crossings.

This drawing standard obtains a hierarchical or layered graph in which arc

crossing minimization only depends on the ordering of the vertices in each

layer.

The crossing minimization problem in hierarchical digraphs has received

a lot of attention given that with Sugiyamas framework any graph can be

transformed into a hierarchical graph, and therefore methods developed to

hierarchies can be applied to any general graph. In line with this, we can

find many papers on the particular case of bipartite graphs, since they can

be viewed as hierarchical graphs with 2 layers. Solving methods to minimize

the number of crossings in a 2-layered graph, can be easily adapted to the

general case of a hierarchical graph and thus to directed graphs. Note that

the problem of minimizing the number of arc-crossings is NP-Complete, even

when the graph consists of only two layers (Garey and Johnson (1983)).

The concept of dynamic or incremental graph drawing can be traced back

to 1991, when Eades et al. (1991) pointed out that the user usually builds

up a mental map when reading a drawing, so he or she expects that if new

vertices or arcs are added, the new graph has to be represented in a similar

way (layout) as the original one.

Erten et al. (2003) considered the dynamic graph drawing problem of a

graph evolving over time. A dynamic (or incremental) graph is modified from

an original graph by removing and adding edges and vertices. The challenge

in this context is to create a mathematical model addressing the idea that

the original elements are arranged in the final drawing in a similar way as in

the original one. In fact, in a wide variety of practical situations, it is helpful

to maintain the mental picture of the layout from a graph over successive

drawings. When the vertices are deleted from or added to a graph, the users

have to adjust their mental map to be familiar with the new modified graph
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(Napoletano et al., 2019). It is therefore desirable to draw the new drawing as

similar as possible to the original one, to help the user to adjust this mental

or abstract representation of the graph over successive drawings.

The edge crossing minimization has received lots of attention. Howev-

er, the dynamic graph drawing problem has more practical significance by

considering the real-time scenarios with removing and adding edges and ver-

tices for the original (or static) graph. In fact, the static bipartite drawing

problem can be considered as a special case of dynamic bipartite drawing

problem, when all the vertices in the graph are incremental vertices, which

can be placed arbitrarily. Hence in this study we focus on the general and

representative dynamic graph drawing problem.

Mart́ı and Estruch (2001) introduced the concept of the stability across

drawings by keeping the relative ordering among the common vertices in

the original graph and the new one. After that, the term dynamic bipartite

drawing problem (DBDP) was introduced by Mart́ı et al. (2018) to describe

the problem of incremental edge crossing minimization for bipartite graphs,

which is also NP-hard according to the crossing number theory by Garey and

Johnson (1983).

The literature on incremental bipartite graph drawing is quite scarce.

Mart́ı and Estruch (2001) proposed an exact algorithm based on the branch

and bound method that explores the set of solutions (permutations of the ver-

tices in each layer) with a combinatorial search tree. Additionally, they devel-

oped a heuristic procedure based on the greedy randomized adaptive search

procedure (GRASP) to provide high-quality solutions for medium and large

size instances, since the exact algorithm can only solve small instances with

less than 32 vertices. After that, Mart́ı et al. (2018) adapted the mathemati-

cal programming formulation originally developed for the standard bipartite

drawing problem (Jünger and Mutzel (1997)) to the incremental case of the

DBDP. Their experiments show that Gurobi (a general optimization solver)
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is able to solve in many case small and medium size instances with 50 and

100 vertices to optimality. In addition, they proposed a heuristic method to

solve large instances in short computational times. Their proposed hybrid

tabu search and path relinking algorithm is able to generate high-quality

solutions for larger instances with up to 471 vertices.

Heuristic methodologies can be classified in terms of their use of memo-

ry. This motivates the definition of the area called Adaptive Memory Pro-

gramming. Approaches such as Tabu Search (TS) or Path Relinking (PR)

(Glover et al., 2000) are memory oriented methods in which records about

past choices and decisions determine future strategies. Because of that, they

are also called intelligent methods. Other methodologies, such as Simulated

Annealing (SA) or Genetic Algorithms (GA), do not incorporate the explic-

it use of memory structures and are based on other efficient strategies and

search mechanisms. In this paper, we undertake to explore a key compo-

nent of memory-based methods related with the way in which memory is

implemented.

As one of the most successful metaheuristic methodologies for solving a

wide variety of combinatorial optimization problems (Zhou et al. (2016), Sil-

vestrin and Ritt (2017), Zhou et al. (2018), and Li et al. (2018)), Tabu Search

(Glover and Laguna, 1998) incorporates adaptive memory which allows the

implementation of procedures that are capable of searching the solution s-

pace in an efficient way. The memory used in tabu search can be explicit

or attributive. Explicit memory records complete solutions while attributive

memory records attributes or properties usually related with moves. Most

tabu search implementations are based on attributive memory structures

(Glover and Laguna (1998), Peng et al. (2015) and Zhou et al. (2016)). We

explore here an alternative based on the explicit use of memory, in which we

include hash functions to speed up the evaluation process associated with

recording complete solutions. In particular, we apply the solution-based
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tabu search, which usually implements a memory structure based on a hash

function to prevent the cycling in the search, which creates an efficient inten-

sification pattern (Woodruff and Zemel, 1993). Interestingly, solution-based

tabu search methods began to attract attention only very recently, and have

already presented competitive performance in several binary optimization

problems (such as minimum differential dispersion problem (Wang et al.,

2017), multidemand multidimensional knapsack problem (Lai et al., 2018a),

and maximum min-sum dispersion problem (Lai et al., 2018c)).

Although permutation problems can be formulated as binary problems,

they constitute a special class that preferably should be treated somewhat

differently (Glover and Hao (2017)). The research on solution-based tabu

search using hashing mechanism for permutation problems is relatively scare.

Fink and Voß (2003) defined the so-called hash code to prevent the search

to revisit the previously visited solutions for continuous flow-shop schedul-

ing problem. Liao and Huang (2011) employed the tabu search based on

hash mechanism for two-machine flowshop scheduling with batch processing

machines problems. Kulturel-Konak (2012) utilized the linear programming

embedded probabilistic tabu search based on hashing strategy for unequal-

area facility layout problem.

In this paper we undertake to explore the solution-based tabu search for

the DBDP. To the best of our knowledge, this method has never been used to

address other graph drawing problems. This work can be a guide to the re-

search based on solution-based tabu search for permutation problems. In par-

ticular, a dedicated hash function is proposed for DBDP. The hash function

values of the neighborhood solutions can be quickly calculated at constant

time complexity. In addition, we compare our explicit, or solution-based,

tabu search with the best previous method (i.e., an attributive tabu search

procedure) for the DBDP, providing the user with an empirical comparison

of these alternative ways to implement memory structures. Therefore, the
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aim of this study is to employ solution-based tabu search approach to tackle

an important permutation problem, the DBDP.

The main contributions of this paper are summarized as follows:

• We propose a constrained neighborhood structure with a fast evalua-

tion mechanism, and a new hash function embedded in the proposed

solution-based tabu method for search intensification.

• Our method includes an adaptive perturbation phase for effectively

escaping from local optima (search diversification).

• We perform extensive experimentation on previously reported instances

to compare our method with the best previous method. The compari-

son favors our proposal.

• Our study reveals that solution-based memory structures implemented

with hash functions are very fast and can be more efficient than the

traditional attributive structures in terms of search intensification in

comparison with the previous work (Mart́ı et al., 2018) for DBDP.

Given that the ideas of the iterative solution-based tabu search framework

and the proposed hash function are quite general for permutation problem-

s, they could be applied to solve other related combinatorial optimization

problems.

The rest of the paper is organized as follows. Section 2 presents the

problem description and mathematical model of the DBDP problem. Sec-

tion 3 describes the proposed iterative solution-based tabu search algorithm.

Section 4 reports experimental results and comparisons with state-of-the-art

algorithms from the literature. Section 5 evaluates the effectiveness of several

key ingredients of the proposed algorithm. Concluding remarks are given in

Section 6.
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2. Problem Description and Previous Methods

The classic bipartite drawing problem (BDP) has received a lot of atten-

tion since the seminal work by Eades and Kelly (1986) with heuristics based

on simple ordering rules, to the complex branch and cut proposed by Jünger

and Mutzel (1997). A bipartite (or two-layered) graph is defined as G =

(V1,V2,E) where V1, V2 and E, respectively denotes the vertices of the left

layer, the vertices of the right layer, and the edges in graph G. The number of

the vertices in each layer is denoted by |V1| = m1 and |V2| = m2. A drawing

D (BDP solution) is determined by the ordering π1 of V1, and the ordering

π2 of V2, which can be denoted by D = (π1, π2). The position of vertex u

in left layer and right layer are denoted by π1(u) and π2(u), respectively. If

vertex u precedes vertex v then π1(u) < π1(v). Likewise, π1(u) > π1(v) when

v precedes u.

Table 1: Symbols and definitions.

Symbol Definition

G Original graph G = (V1,V2,E)

V Set of original vertices in G

E Set of original edges in G

D Original drawing D = (π1, π2) for G

πk(u) Position of vertex u in its layer k (k = 1,2) of G

IG Incremental graph IG = (IV1,IV2, IE)

IVk Set of all the vertices in layer k of IG, and IV = IV1 ∪ IV2

AVk Set of incremental vertices in layer k of IG, and AV = IV1 ∪ IV2

IE Set of incremental edges in IG

lf(u) Label of the layer (first or second layer) containing vertex u

nk Number of vertices in layer k (k = 1,2) for IG, and n = n1 + n2

S Incremental drawing (i.e., solution) S = (Π1, Π2) for IG

Πk(u) Position of vertex u in its layer k of IG

ωk(i) Vertex locating ith position in layer k (k = 1,2) for IG

A(u) Set of all vertices adjacent to u, i.e., A(u) = {v: (u,v) ∈ IE }
IM(u, v) All the intermediate vertices between vertices u and v in the same layer,

i.e., IM(u,v) = { u′
: Π(u) < Π(u

′
) < Π(v) or Π(u) > Π(u

′
) > Π(v); lf(u) = lf(v) =

lf(u
′
)}

In this study, we tackle an extended version of the DBP called the dy-
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namic bipartite drawing problem (DBDP) proposed by Mart́ı et al. (2018),

which results from adding two sets of vertices AVk, with their corresponding

edges AEk (k = 1, 2) into two layers for obtaining an incremental graph.

Formally, the incremental graph is denoted by IG = (IV1, IV2, IE) where

IVk = Vk ∪ AVk, IE = Ek ∪ AEk and |IVk| = nk (k = 1, 2). In this study,

we call each vertex in original graph G, as original vertex, while the vertex

added to the incremental graph IG, as incremental vertex. The goal of the

DBDP is to find a drawing with the minimum number of edge crossings while

preserving the relative position of the original vertices. Obviously, the BDP

problem can be considered as a special case of the DBDP problem if there

exist no original vertices (i.e., the set of original vertices is null). We denote

by S = (Π1,Π2) to a solution of the DBDP over graph IG, where Π1 and

Π2 respectively denote the permutation of the vertices in IV1 and IV2. In

addition, the position of vertices u and v in the ordering of Π1 and Π2 can

be denoted by Π1(u) and Π2(v), respectively. Table 1 summarizes all the

symbols and definitions introduced in this study.

2.1. Problem motivation

It is well documented that incremental drawing is a very important area

in graph representations. We can find lots of references highlighting this

problem, or family of problems (Pinaud et al., 2004). In affiliation networks,

individuals and groups are depicted with vertices, and edges represent the

membership of individuals to those groups. These networks usually change

in time, since new groups and members are systematically added. When

these additions occur, it is desirable that the new layout is both aesthetically

pleasing and preserves dynamic stability (i.e., it stands well into the sequence

of drawings). Hence we can handle these vertices as the incremental vertices.

The situation “dynamic stability” we deal with in this study is therefore very

representative.

9



(a) The first drawing (79 edge

crossings)

(b) The second drawing (44 edge

crossings)

Figure 1: An example (GB 1 rnd1 01 0001 20 instance) for two drawings

of a two-layered graph for the incremental bipartite drawing problem.
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Figure 1 shows an example of two drawings (i.e., solutions) of a bipartite

graph with 21 vertices for the incremental bipartite drawing problem. The

black vertices denote the original elements that should keep the relative po-

sition in graph while the white vertices denote the new (incremental) ones

added which can be arbitrarily moved. The number of the edge crossings in

the original graph (without the incremental elements) is equal to 33. The first

drawing in Figure 1 has 79 edge crossings, and can be optimized according to

the dynamic graph drawing problem (i.e., by relocating the new white nodes

in the position that minimizes the number of crossings while preserving the

relative position of the original nodes), resulting in the second drawing with

44 edges crossings by moving the incremental (or white) vertices.

In some real dynamic scenarios, there exist not only the cases of adding

vertices, but also the cases of deleting vertices from the original graph. The

situation with only deleting some vertices from the original graph can be

considered as the classic bipartite drawing problem, since the elements in the

final graph do not have any additional constraint, which has been extensively

studied in the literature (Eades and Wormald (1994), Valls et al. (1996),

Mart́ı (1998)). In this study, we consider both adding and deleting vertices

in the original graph, which can be called the decremental bipartite drawing

problem. Note that this is the first time that the decremental problem is

studied.

Since the first procedure developed by Carpano (1980), most heuristics

for the BDP are structured in a similar way. Specifically, the procedures

first order one layer employing a simple rule, while keeping the position of

the vertices in the other layer fixed. Then, the other layer is ordered and

the process repeats until two successive iterations occur in which the relative

positions of the vertices remain the same. The best-known approach to solve

the BDP is the so-called Barycenter Method (Battista et al., 1998), which is

similar to Carpano’s algorithm. In this method, the position of a given vertex
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is calculated as the arithmetic mean of the positions of its adjacent vertices.

The basic principle of this rule is that crossings are likely to be minimized

by increasing the number of horizontal arcs. Mäkinen (1989) then developed

the Median heuristic. This ordering rule is similar to the barycenter method,

with the difference that it employs the median instead of the average to

compute the position of each vertex. After that, Mart́ı and Laguna (2003)

proposed two metaheuristics, tabu search and GRASP to tackle the dense

and low-density graph, respectively. Although these methods are proposed

very early, part of them are still being used nowadays.

Recently, in the scientific literature, some efforts were carried out in order

to solve dynamic (incremental) graph drawing problems. Mart́ı and Estruch

(2001) proposed a GRASP method based on the statistical sampling of the

solution space for the DBDP. A randomization component in the construction

phase has the objective of obtaining relatively diverse solutions, thus having

candidate solutions in different regions of the search space. These solutions

are then submitted to a local search to locate the corresponding local optima.

Very recently, Mart́ı et al. (2018) proposed a method combining tabu search

and path relinking for the same problem obtaining better solutions than the

previous GRASP. As it is customary in tabu search procedures, when the

method selects a new vertex v and moves it, it is recorded in a dedicated

memory structure (the so called tabu list), in order to prohibit to move it

in the next iterations. In addition, the tabu search method is coupled with

path relinking for creating paths between two high quality drawings in order

to generate new and better solutions.

3. The Tabu Search Method

Solution-based tabu search approach is able to obtain a stronger inten-

sification ability, which is crucial for locating good local optima, since it

usually relies on a hash function and a hash vector to record the whole in-
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formation of a solution instead of one move or its attribute typical in the

standard attributive tabu search, thus reducing the probability of revisiting

the same solution and inducing a strong intensification pattern. We propose

an iterative solution-based tabu search (ISB-TS) combined with an adaptive

perturbation mechanism for solving the DBDP. Its general scheme and key

components are presented in the following subsections.

3.1. General scheme

Our ISB-TS algorithm follows the basic scheme of the iterated local search

(ILS) (Lourenco et al., 2010). The basic idea is to apply a solution-based

tabu search procedure to intensify the search in a given search space region,

and to employ an adaptive perturbation mechanism to move to a new search

region once a local optimum is attained. Inspired by the breakout local search

(Benlic and Hao (2013); Fu and Hao (2014)), ISB-TS has a particular focus

on the importance of the perturbation mechanism to introduce a suitable

degree of diversification at a certain stage of search.

More precisely, the general scheme of ISB-TS presented in Algorithm 1

can be described as follows: Starting from an initial solution constructed by a

dedicated constructive procedure (line 1), ISB-TS initializes parameters, i.e.,

the best-found solution Sbest, the perturbation strength L and the counter ξ

for consecutive non-improving local optima (lines 2-4). After the initializa-

tion, it applies a solution-based tabu search method to reach a local optimum

S (line 6). Then the best solution Sbest found so far, and the counter ξ of

consecutive non-improving local optima are updated (lines 7-12). After each

local optimization, ISB-TS tries to move from local optimum to another one

by employing varying perturbations, depending on the state of the search. If

the search finds a better local optima S than Sp, ISB-TS switches to weaker

perturbations subsequently due to the search escaped from the previous local

optimum (lines 13-14). Otherwise, ISB-TS perturbs S more strongly by in-
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creasing the perturbation strength L since the search returns to the previous

local optima Sp (lines 15-16). After visiting a certain number ξmax of local

optima without improving the best solution found so far, ISB-TS applies a

significantly stronger perturbation in order to drive definitively the search

towards a new and more distant region in the search space (lines 17-20).

When the perturbation strength is determined, the perturbation operator

is employed to generate a new solution in a different area of the search s-

pace, and the symbol Sp preserves the previous solution (lines 21-22). The

solution-based tabu search and adaptive perturbation mechanism iterative-

ly alternate until the stopping criterion (i.e., the maximum computing time

Tmax) is met, and finally returns the best found solution Sbest as the final

result (line 24).

The performance of the proposed ISB-TS algorithm relies on three key

factors. First, the initialization procedure should be able to generate dif-

ferent solutions of reasonable quality, which serve as the restarting points of

independent runs of ISB-TS. Second, the local optimization procedure is also

a key component because different local optimization search strategies lead

to different search trajectories, thus solutions of different qualities. Third,

we should control the perturbation strength, denoted by L, which determines

the perturbation intensity applied to the current solution. In our case, this

corresponds to decide how many vertices to delete when perturbing the in-

cumbent solution. Indeed, if L is too small, the search usually returns to the

original local optimum, leading to search stagnation. Otherwise, if L is too

large, the perturbation is reduced to random restarting. The components of

the proposed ISB-TS algorithm for the DBDP are described in the following

subsections.
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Algorithm 1: Framework of the iterative solution-based tabu search
Input: Benchmark instance (B); The maximum computing time (Tmax)

Output: Best-found solution (Sbest)

1 S ← GenerateInitialSolution(B) ;

2 Sbest ← S ;

3 L ← Lmin /* L records the perturbation strength */ ;

4 ξ ← 0 /* ξ denotes the counter for consecutive non-improving local optima */ ;

5 while The maximum computing time Tmax is not reached do

6 S ← SolutionbasedTabuSearch(S) ;

// Update the best solution S∗ found so far, and increase the counter ξ of

consecutive non-improving best found solution.

7 if S is better than Sbest then

8 Sbest ← S ;

9 ξ ← 0 ;

10 else

11 ξ ← ξ + 1 ;

12 end

// Determine the perturbation strength L adaptively.

13 if S is better than Sp then

// Search escaped from the previous local optimum, re-initialize

perturbation strength.

14 L ← Lmin ;

15 else if S is not better than Sp and ξ < ξmax then

// Search returned to the previous local optimum, increment perturbation

strength.

16 L ← Min(L+ 1, Lmax) ;

17 else if ξ ≥ ξmax then

// Search seems to be stagnating, strong perturbation required.

18 L ← Lmax;

19 ξ ← 0 ;

20 end

// Perturb the current local optimum S with perturbation strength L.

21 Sp ← S;

22 S ← Perturb(L, S) ;

23 end

24 return Sbest
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3.2. Initial solution procedure

The ISB-TS algorithm uses a greedy randomized strategy to construct

the initial solution. We basically implement a GRASP constructive method

(Festa and Resende, 2010). Starting from a partial solution only containing

all the original vertices, the constructive procedure iteratively inserts each

incremental vertex into the initial partial solution to make it complete. The

initial solution procedure is presented in Algorithm 2. More precisely, we

first generate the initial partial solution S0 consisting of the permutations π1

and π2 of original vertices V1 and V2 in the bipartite graph, and assign all

the incremental vertices from AV1 and AV2 into AV (lines 1-3). Then, we

iteratively insert each incremental vertex v from AV into the position p of the

partial solution S0 until S0 becomes complete (lines 4-10). At each iteration,

the set CL (i.e., candidate list) records all the couples of remaining vertices in

AV and its corresponding feasible positions (line 5). The restricted candidate

list RCL is created, which contains the max{1, α ∗ |CL|} vertices with the

minimum incremental objective value δ in CL (line 6). We randomly choose

a vertex vc and insert it into the determined position pc (line 7). The partial

solution S0 and the remaining vertex set AV are updated (lines 8-9). Note

that, the notation ⊕ used in this study indicates the operation of applying

the underlying move operator on solution S0 to produce the corresponding

neighboring solution. Hence, S0 ⊕ (vc, pc) in line 8 denotes that we randomly

choose a vertex vc and insert it into the position pc of the initial solution S0.

When vertex set AV becomes empty, the initial solution phase terminates

and the complete solution S0 found during the search process is returned as

the output of the initial solution procedure (line 11).

3.3. Tabu search phase

Our ISB-TS algorithm adopts a solution-based tabu search procedure to

locate local optima by employing a constrained neighborhood structure with
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Algorithm 2: Initial solution procedure GenerateInitialSolution(B)
Input: Benchmark instance (B);

Output: Initial solution (S0)

1 Generate π1, π2, AV1 and AV2 from benchmark instance B;

2 S0 = (π1, π2) ;

3 AV ← AV1 ∪ AV2 ;

4 ‘ while Solution S0 is not a complete solution i.e., |AV | > 0 do

5 CL ← {(v, p) : v ∈ AV, p denotes each feasible position of incremental vertex v};
6 RCL ← {(v, p) ∈ CL : |{(v′

, p
′
) : δ(v

′
, p

′
) ≥ δ(v, p)}| ≤ max{1, α ∗ |CL|}};

7 /*Randomly choose a vertex vc and insert it into the position pc of the initial solution S0

(i.e., (vc, pc) ∈ RCL)*/;

8 S0 ← S0 ⊕ (vc, pc);

9 AV ← AV \ {vc};
10 end

11 return S0

its fast evaluation mechanism and the dedicated solution-based tabu strategy.

The details of the solution-based tabu search phase are described as follows.

3.3.1. Neighborhood structure

To move from one solution to another one in search space, the previous

work by Mart́ı et al. (2018) only considers to insert one vertex from its

current position to the previous position or the posterior position, which is

too limited to search extensively. On the other hand, moving a vertex to a

new position that is far from its current position usually cannot significantly

improve solution quality, we thus utilize the distance restriction technique

to guide the constrained neighborhood search also based on the widely-used

insertion move, i.e., removing a vertex from its position and inserting it into

a new position.

To be specific, we first define the distance for an insert move as the

number of vertices between the previous position and the new position to

be inserted. Then, we introduce a distance threshold Φ for the insert move,

such that moves with a distance larger than this threshold are not considered.
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These move restrictions help us to save a large amount of computing time

without sacrificing much of solution quality.

Given an incremental graph IG = (IV1, IV2, IE), a candidate solution S

and two vertices u and v, the proposed constrained neighborhood structure

(i.e., set of partial neighbor solutions) consists of the following two neigh-

borhood operators (i.e., CN(S) = N1(S) ∪ N2(S)) which can be defined as

follows:

• Neighborhood operator N1: Insert an incremental vertex upwards (or

downwards) another vertex under the distance restriction. Formally,

the corresponding neighborhood can be written as follows:

N1(S) = {S ⊕ Insert(v, u) : v ∈ AV, u ∈ IV, u ̸= v; |Π(u)− Π(v)|≤Φ}
(1)

• Neighborhood operator N2: Insert one original vertex upwards (or

downwards) any other incremental vertex, while keeping the ordering

of the original vertices under the distance restriction. Formally, the

corresponding neighborhood can be given by:

N2(S) = {S ⊕ Insert(v, u) : v ∈ V, u ∈ AV ; IM(v, u) ∩ AV = ∅;

|Π(u)− Π(v)|≤Φ}
(2)

where IM(v, u) denotes all intermediate vertices between vertices u and v in

the same layer.

The neighborhood move can be defined by vertex v removing from its

current position in the solution S and inserting immediately upwards (or

downwards) another vertex u if vertex v is downwards (or upwards) u (u

̸= v), denoted by Insert(v, u). If vertex v is an incremental vertex, the

neighborhood move produces a total of n1 - 1 (or n2 − 1) possible candidate
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positions (i.e., solutions) for each vertex. In this case, all the neighboring

solutions produced should be feasible. Nevertheless, if vertex v is an origi-

nal vertex, the new generated solution has to keep the relative order of the

original vertices. To exploit the above defined neighborhoods, our ISB-TS

employs the best-improvement mechanism to accept the best one among the

neighboring solutions each time.

If all the vertices in the incremental graph are incremental vertices, there

would be n1 (or n2) candidate vertices to be moved in the first (or second)

layer, and n1−1 (or n2−1) possible positions for each candidate vertex. The

corresponding size of the neighborhood can be denoted by SN = n1 × (n1 −
1) + n2 × (n2 − 1). Note that there usually exist some original vertices in

the graph, and in this study we only explore a fraction of these solutions due

to the distance constraint imposed in the exploration, Therefore, the size of

the neighborhood employed in our method is less than SN . The complexity

of both two neighborhood operators employed in our method is bounded by

O(n2).

3.3.2. Fast neighborhood evaluation strategy

As stated above, there exist a number of candidate neighborhood solu-

tions to be evaluated due to the corresponding neighborhood moves. In fact,

after the neighborhood move, the crossing numbers of most vertices in graph

remain unchanged thus it is unnecessary to recalculate the sum of the cross-

ing numbers for all the vertices. In order to efficiently evaluate the changes

of the objective values of the candidate neighborhood moves, we utilize two

matrices to record the information with the number of edge crossings for two

vertices.

Given two vertices u and v in the same layer of the graph, let NCuv denote

the number of crossings for the edges incident to u and the edges incident

to v, when u precedes v in the same layer (i.e., Πk(u) < Πk(v), k = lf(v)
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= lf(u)) (and NCvu when v precedes u). The matrices Mk in the kth layer

(i.e., first layer or second layer) thus can be given as follows:

Mk(u, v) = [NCuv]; ∀u ∈ IVk, v ∈ IVk, u ̸= v, k ∈ {1, 2} (3)

Figure 2: An example for one drawing for a two-layered graph with nine

vertices.

(a) The first matrix (b) The second matrix

Figure 3: The number of edge crossing for pairs of vertices in matrices

Figure 3 depicts the matrices of the example in Figure 2 to illustrate how

they save the information with the number of edge crossing for each pair of

vertices. The first matrix M1 records the number of crossings for the edges
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incident to the vertices in the first layer. Clearly, we can observe that the

number of crossings for two edges incident to vertex 3 (i.e., (3, C) and (3, D))

and the edge incident to vertex 5 (i.e., (5, B)) is 2, since both edges (3, C) and

(3, D) cross edge (5, B). Therefore, NC35 = 2 and M1(3, 5) = 2, as shown in

Figure 3(a) (row 3, column 5 in matrix M1). On the other hand, edges (3, C)

and (3, D) would not cross edge (5, B) if we insert vertex 5 upwards vertex 3

(i.e., after vertex 5 precedes vertex 3). That is why, in Figure 3(a), the value

of row 5 and column 3 in matrix M1 is 0 (i.e., M1(5, 3) = 0), which means

the number of crossings for the edges incident to 5 and the edges incident to

3 is 0, when vertex 5 precedes vertex 3 in the first layer.

Similarly, the second matrix M2 records the number of crossings for the

edges incident to the vertices in the second layer. NCAB = 0 since the edge

incident to vertex A (i.e., (1, A)) does not cross two edges incident to vertex

B (i.e., (2, B) and (5, B)). As shown in Figure 3(b), the value of row 1 and

column 2 in matrix M2 is 0 (i.e., M2(1, 2) = 0), which means the number of

crossings for the edges incident to A and the edges incident to B is 0, when

A precedes B in the second layer. Note that, A-D corresponds to 1 − 4 in

the matrix. When vertex B precedes vertex A (i.e., after vertex B is inserted

upwards vertex A), the edge incident to vertex A (i.e., (1, A)) would cross

two edges incident to vertex B (i.e., (2, B) and (5, B)). This is the reason

why NCBA = 2 and M2(2, 1) = 2, as shown in Figure 3(b) (row 2, column 1

in matrix M2). Note that the precedence between original vertices must be

kept unchanged. Therefore M1(u, v) or M2(u, v) (∀u, v ∈ V ) is denoted by

the symbol ‘-’, which means that its value does not matter.

Making use of these two matrices, we propose a fast neighborhood e-

valuation mechanism to efficiently obtain the objective value of each move.

For example, we insert vertex v immediately before (upwards) uj−1 or uj in

Figure 4. Comparing these two moves, the positions of the vertices marked

in the two black boxes are the same, hence we only need to consider the
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S S  Insert(v,uj−1) S  Insert(v,uj)

Figure 4: Insert vertex v immediately before (upwards) vertex uj−1 or uj.

difference between uj−1 and v as the changed objective value with the t-

wo neighborhood moves. Given that the current solution can be denoted

by S and the objective value of its neighboring solution can be denoted by

f(S ⊕ Insert(v, uj−1)) when vertex v is inserted immediately before uj−1,

while becoming f(S ⊕ Insert(v, uj)) after being inserted immediately be-

fore uj, then we can calculate the objective value f(S ⊕ Insert(v, uj)) of

the generated solution based on the neighborhood move Insert(v, uj) by the

following formula:

f(S ⊕ Insert(v, uj)) = f(S ⊕ Insert(v, uj−1))−M(uj, v) +M(v, uj) (4)

Where M denotes the corresponding evaluation matrix of vertex v.

To efficiently evaluate all the neighboring solutions, we can first calculate

the objective value (i.e., f(S ⊕ Insert(v, u1))) of the neighboring solution

when vertex v is moved to the previous position of vertex u1 from its current
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one, according to the following equation:

f(S ⊕ Insert(v, u1)) = f(S)−M(u1, v) +M(v, u1) (5)

Afterwards, making use of Equation 4 iteratively, we can quickly calculate

the other objective values when vertex v is inserted immediately before other

vertices. Likewise, the evaluation results of objective value downwards moves

of vertex v immediately after other vertices can be iteratively calculated in

a similar manner.

Algorithm 3: The procedure of updating the evaluation matrix for

neighborhood move Insert(v, u)
Input: The previous evaluation matrix M

Output: The new evaluation matrix M after updating strategy, where the matrix M

corresponds to the opposite layer of vertex v

1 for i ∈ Q where Q = {IM(v, u) ∪ {u}} do
2 for j ∈ A(i) do

3 count(j) ← count(j) + 1 ;

4 end

5 end

6 for i ∈ A(v) do

7 for j ∈ A(Q) do

8 M(i, j) ← M(i, j) - count(j);

9 M(j, i) ← M(j, i) + count(j);

10 /*The M matrix can be denoted by the number of crossings for the edges incident to

two vertices according to the Equation 3.*/

11 end

12 end

13 return M

It is intuitive to obtain the objective value of each neighboring solution

by the evaluation mechanism presented above. Nevertheless, how to update

the values maintained in two evaluation matrices is another issue in this

procedure. In fact, the matrix of the layer in which the moving vertex is

located will remain unchange, while the move may affect that of its adjacent

vertices. For example, when we insert vertex v immediately before vertex u,
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we need to consider the adjacent vertices of the specific vertices, where the

specific vertices consist of u, v and all the intermediate vertices IM(u, v).

Precisely, Algorithm 3 presents the updating procedure of two evaluation

matrices for the neighborhood move Insert(v, u). The set Q records all

the intermediate vertices IM(u, v) and vertex u, and A(Q) reserves all the

vertices adjacent to vertices in Q. The number of vertices in Q adjacent to

vertex j in A(Q) are thus maintained in counter count(j) (lines 1-5). After

that, we update the matrix of the opposite layer to the vertex v according

to the counter count(j) (lines 6-12).

3.3.3. Solution-based tabu strategy

In our tabu search method, we propose a solution-based strategy to de-

termine the tabu status of neighboring solutions. Specifically, the tabu list

is based on one hash vector HV of length λ, where each position represents

a binary variable, and the hash vector is associated with a hash function hf .

In particular, the hash function maps a candidate solution S of the search

space Ω to an index of hash vector as follows:

hf : S ∈ Ω → {0, 1, 2, . . . , λ− 1} (6)

Based on the hash vector and the corresponding hash function, we deter-

mine the tabu status of candidate solutions by the following rule. Given a

candidate solution S, the hash vector HV and the associated hash function

hf , S is identified as a tabu solution if HV (hf(S)) = 1. Otherwise, S is

determined as a non-tabu solution.

The previous hash functions proposed based on the binary decision vari-

ables in the literature (Wang et al. (2017), Lai et al. (2018a), Lai et al.

(2018b), and Lai et al. (2018c)) are suitable for the associated binary prob-

lems. Unlike the binary optimization problems, the permutation problems

constitute a special class that preferably should be treated somewhat differ-

ently. Indeed, a good hash function is able to distinguish different solutions
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and avoid hash conflict with maximum probability and based on it the hash

value of the neighboring solution should be easily evaluated. Considering

these factors, we propose the following hash function for the DBDP, which

can be also applied to other permutation problems. Let S be a candidate

solution, the proposed hash function hf can be formally defined as follows:

hf(S) = (
n1∑
i=1

(ω1(i)− ω1(i− 1))κ +
n2∑
j=1

(ω2(j)− ω2(j − 1))κ) mod λ (7)

where parameter κ is used to define the hash function and λ is the length of

hash vector that is set to 107 in line with the previous studies.

For the example depicted in Figure 4 (i.e., moving vertex v upwards vertex

uj−1), the hash value can be quickly calculated according to the following

equation:

hf(S ⊕ Insert(v, uj−1)) =(hf(S)− (v − u1)
κ − (u0 − v)κ + (u0 − u1)

κ

+ (v − uj−1)
κ + (uj − v)κ − (uj − uj−1)

κ) mod λ

(8)

Thus, the time complexity of determining the tabu status of a neighboring

solution is O(1).

The procedure of the solution-based tabu search phase is given in Algo-

rithm 4. The hash vector HV is initialized for only once in the whole ISB-TS

algorithm (lines 1-6). After that, the procedure performs a number of iter-

ations to improve the current solution until the consecutive non-improving

local optima θ reaches the maximum threshold Θ (lines 9-27). At each it-

eration, the algorithm replaces the current solution S by a best non-tabu

neighboring solution S
′
chosen from the constrained neighborhood structure

CN(S) according to the proposed tabu rule mentioned above (lines 10-12).

During the search, the local optimum encountered S∗ is updated each time

a better solution is found (lines 13-18). To reduce the negative effects of

hash conflict, ISB-TS allows to accept the tabu solution if it is better than
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the best found solution Sbest so far (i.e., so-called tabu aspiration criterion)

(lines 19-25). The hash vector is accordingly updated by the new solution

(line 26). Finally, the algorithm terminates if the threshold Θ is reached,

and then returns the local optimum S∗ found during this search process (line

28).

3.4. Adaptive perturbation mechanism

The purpose of the perturbation mechanism is to allow ISB-TS to escape

from the current local optima in order to discover other local optima with

better solution quality. For this purpose, we apply an adaptive perturbation

mechanism which varies the perturbation intensity, depending on the search

status.

In addition to the dynamic perturbation strength (described in Section

3.1) to be applied for each perturbation, we also focus on the type of per-

turbation move (i.e., how to perturb based on the determined perturbation

strength). The perturbation move consists of two procedures, the destruction

procedure that removes some incremental vertices from the solution S, and

the reconstruction procedure that iteratively reinserts them into the incum-

bent solution. The number of removed vertices is equal to the perturbation

strength L and the rule for reinserting them is similar to the initial solution

procedure presented in Section 2.

The perturbation operator is presented in Algorithm 5. First, we gener-

ate a partial solution Sc by randomly removing a number L of incremental

vertices RV from local optimum S (line 1). Then, we iteratively insert each

incremental vertex v from RV into the position p of the partial solution Sc

until solution Sc becomes complete (lines 2-8). At each iteration, the set

CL records all the couples of remaining incremental vertices in RV and its

corresponding feasible positions (line 3). The restricted candidate list RCL

is created in line 4, which contains the max{1, β ∗ |CL|} vertices with the
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Algorithm 4: Solution-based tabu search phase

SolutionbasedTabuSearch(S)
Input: Initial solution S, hash vector HV of length λ, hash function hf , depth Θ of tabu search,

the best-found solution Sbest so far

Output: The local optima S∗ found so far

// Initialize the hash vector for only once in the whole ISB-TS algorithm.

1 if Initial hash bool is False then

2 for i ← 0 to L− 1 do

3 HV [i] ← 0;

4 end

5 Initial hash bool ← True;

6 end

7 θ ← 0 ;

8 S∗ ← S ;

// Main search procedure

9 while The maximum threshold Θ is not reached, i.e., θ ≤ Θ do

// Find a best neighborhood solution S
′
satisfying that this solution is not in

the tabu list.

10 S
′ ← arg min

s∈CN(S)
{s : HV (hf(s)) = 0};

11 /* where CN(S) is the combination of two neighborhood operator N1(S) ∪N2(S) according

to the Equations 1 and 2, and hf function can be calculated according to the Equations 7

and 8.*/;

12 S ← S
′
;

13 if f(S) < f(S∗) then

14 S∗ ← S ;

15 θ ← 0 ;

16 else

17 θ ← θ + 1;

18 end

// Tabu aspiration criterion: accept the neighboring solution with the better

objective value than all previously visited solutions even if it is in tabu

status.

19 Sa ← arg min
s∈CN(S)

{s};

20 /* where CN(S) is the combination of two neighborhood operator N1(S) ∪N2(S) according

to the Equations 1 and 2.*/;

21 if f(Sa) < f(Sbest) then

22 S∗ ← Sa ;

23 S ← Sa ;

24 θ ← 0 ;

25 end

26 HV [hf(S)] ← 1;

27 end

28 return S∗
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Algorithm 5: Perturbation operator Perturb(S, L)
Input: Local optimum S, perturbation strength L

Output: A perturbed solution Sc

// Destruction procedure

1 Generate a partial solution Sc by randomly removing a set of incremental vertices RV from

solution S;

// Reconstruction procedure

2 ‘ while the solution Sc is not a complete solution, i.e., |RV | = L > 0 do

3 CL ← {(v, p) : v ∈ RV, p denotes each feasible position of vertex v};
4 RCL ← {(v, p) ∈ RV : |{(v′

, p
′
) : δ(v

′
, p

′
) ≥ δ(v, p)}| ≤ max{1, β ∗ |CL|}};

5 Randomly choose a vertex vc and insert it into the position pc (where (vc, pc) ∈ RCL);

6 Sc ← Sc ⊕ (vc, pc);

7 RV ← RV \ {vc};
8 end

9 return Sc

minimum incremental objective values δ in CL. The value of β can be set

as L/Lmax to balance the weight between greedy and random strategies ac-

cording to the perturbation strength. When L becomes larger, the procedure

tends to be more random, and on the contrary, it tends to be more greedy.

We randomly choose a vertex vc and insert it into the determined position

pc (line 5). The partial solution S0 and the remaining vertex set RV are

updated in lines 6 and 7. When the vertex set RV becomes empty, the per-

turbation procedure terminates and the complete solution Sc is returned as

the result of the perturbation operator (line 9).

In general, the proposed perturbation phase is controlled by the parame-

ter L of the jump magnitude by determining the number of removed vertices

in the destruction procedure and the balance ratio between random and

greedy strategies in the reconstruction procedure, i.e., the larger the magni-

tude L, the stronger the perturbation.
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4. Computational Results

In this section, we report extensive computational experiments conducted

to assess the performance of the proposed iterative solution-based tabu search

algorithm (ISB-TS). Moreover, we compare our proposed ISB-TS algorithm

with the state-of-the-art reference algorithms on solving public benchmark

instances of DBDP.

4.1. Benchmark instances and experimental protocols

For experimental evaluations, we employ two sets of instances in our

experimentation in line with the previous studies (Mart́ı and Estruch, 2001;

Mart́ı et al., 2018). The first one containing 120 instances was proposed by

Mart́ı and Estruch (2001), with the original number of vertices (n1,n2) of each

layer in the interval [25,50], and the graph density d in the interval [0.065,

0.300]. The instances are incremented by adding vertices and edges up to

pre-established numbers. These numbers are calculated as a percentage γ of

the quantities in the original graph, where |IVi| = γ |Vi| and |IEi| = γ |Ei|
for each i = 1, 2, γ = 1.2 and 1.6. The second set contains 1000 instances

obtained with the generator described in Stallmann et al. (2001). The size of

the first layer is in the range [10, 377], while the size of second layer is in the

range [10, 190]. The number of edges ranges from 20 to 950. The value of γ

is set as 1.1, 1.2 and 1.3. In line with the previous studies on this problem

(i.e., (Mart́ı and Estruch, 2001; Mart́ı et al., 2018)), we maintain the setting

of parameter γ in the two different instance sets considered.

We coded the ISB-TS algorithm in C++ and ran it on a PC with a

2.60GHz Intel Core i7-700HQ processor and 16GB of RAM with Windows

10 operating system. To evaluate the performance of ISB-TS, we perform

comparisons with the following heuristics which are all conducted on a com-

puter with a 2.8 GHz Intel Core i7 processor with 16GB of RAM in the

literature:
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• The greedy random adaptive search procedure (GRASP ) method pro-

posed by Mart́ı and Estruch (2001).

• The tabu search and path-relinking algorithm (TS+PR) proposed by

Mart́ı et al. (2018).

• The Gurobi based on mathematical programming formulation.

For the purpose of fair comparison, we utilize the method based on the

assumption that the CPU speed is approximately linearly proportional to

the CPU frequency. According to www.cpubenchmark.net, the CPU speed

in Mart́ı et al. (2018) is faster than ours due to the same CPU frequency. We

utilize the reported results of the corresponding results presented in Mart́ı

et al. (2018). Moreover, we perform 10 independent runs of ISB-TS for each

problem instance, with the maximum time-limit per run set to the scaled

CPU times used by the current best performing algorithms mentioned above.

Note however, that when we compare with a previous method that was run

only once, we report the results of our method on a single run for a fair

comparison. We share all the 1120 benchmark instances and the executable

files of our proposed ISB-TS on the website1.

4.2. Parameter tuning

Table 2 presents the settings of the SB-ITS parameters used in this study.

In line with the previous studies, we adopt a subset of 22 representative

instances from the first set as the training instances to configure the best

values of key parameters of our method. The parameters of (α, Lmin, Lmax,

θ, Θ, ξmax, and κ) were tuned with Iterated F-race (IFR) (Birattari et al.,

2010), and an automated configure method that is part of the IRACE package

(López-Ibáñez et al., 2016). The tuning was performed on all the 22 training

1https://github.com/283224262/DBDP

30



instances. For each parameter, IFR requires a limited set of values as input

to choose from the column (Candidate values) presented in Table 2. The

total time budget for IRACE was set to 100 execution of ISB-TS, with the

time limit 360 seconds for each instance. The setting of parameters suggested

by IFR is reported as Final value in Table 2.
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4.3. Comparisons with the state-of-the-art algorithms

We compare the proposed ISB-TS with the two best performing algo-

rithms (i.e., GRASP and TS+PR) and a general optimization solver (Guro-

bi). As presented in Table 3, the first four columns give, for each instance,

the numbers of vertices in each layer (n1 and n2), the density (dens.) and the

percentage γ of the quantities in the original graph, respectively. The next

column BestKnown shows the best objective value among the three refer-

ence algorithms. The following twelve columns show the minimum crossing

number Cross, the computing time Time in seconds, and average percent

deviation DEV (%) from the best-known solutions produced by all the four

compared algorithms (i.e., GRASP, TS+PR, Gurobi, and ISB-TS (1 run))

in one run. Furthermore, in order to test the robustness of our ISB-TS, the

average results obtained by our ISB-TS algorithm in ten runs are reported

in the next four columns (labeled as ISB-TS (10 runs)), including the best

and average objective value fbest and favg, the average running time Tavg to

reach the best solution in each run and average percent deviation DEV (%).

Note that the best results obtained by our ISB-TS and all the compared

algorithms are indicated in bold.

The row #Avg indicates the average value of each measure. The row

#Beq shows the number of instances for which the associated algorithm ob-

tains the better results or match the best-known results among the compared

algorithms. Furthermore, in order to check there exists a significant differ-

ence between the results of our ISB-TS algorithm and those obtained by the

reference algorithms in terms of fbest or favg, we reported the p−values from

the non-parametric Friedman test in the last row of tables where a p− value

smaller than 0.05 implies a significant difference between the compared re-

sults.

Table 3 shows that our ISB-TS algorithm outperforms significantly the

other three reference algorithms. In particular, in only one run, ISB-TS can
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improve best-known results for 13 out of 22 instances, and it matches the best

known results for the remaining 5 ones. Meanwhile, the average computing

time of our ISB-TS to reach the best objective values is lower than any other

(15.17s vs 308.08s, 41.9s and 1102.4s). Furthermore, the number of instances

for which ISB-TS can improve or match the best-known results increases up

to 20 instances. ISB-TS is worse than Gurobi in only two instances with

the larger number of edge crossings (19846 vs 19831 and 2173 vs 2169). In

addition, the non-parametric Friedman tests (p−values < 0.05) confirms the

significance of these differences, and the least average value of DEV (%) also

shows the robustness of ISB-TS. All these outcomes indicate that ISB-TS

has a strong search ability and a high computational efficiency on this part

of benchmark instances.

From Table 4, which reports 120 instances of the first instance set, our

ISB-TS algorithm dominates the competing algorithms including a very ef-

fective variant of TS+PR (TS(500)+PR) in terms of all the indicators. To

be specific, our ISB-TS is able to obtain better solutions than the best ref-

erence algorithm TS(500)+PR (83264.97 vs. 83888.83) for 104 out of 120

instances according to the experimental results, while TS(500)+PR can only

obtain better results in 10 instances. In particular, the average computing

time of our ISB-TS method is almost 10 times faster than TS(500)+PR over-

all the 120 instances of the first instance set. The non-parametric Friedman

tests (p− value < 2.2e-16) indicates that there exists a significant difference

between the ISB-TS algorithm and the reference algorithm TS(500)+PR in

terms of fbest values on this set of instances.

Table 5 indicates that for the 1000 instances of the second set, the ISB-TS

algorithm achieves the best results among the compared algorithms in most

instances. Compared with the state-of-the-art algorithm TS+PR, ISB-TS

can obtain better solutions for 687 instances out of 1000 instances, while

the TS+PR can only obtain better result for 146 instances. In addition,
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ISB-TS can obtain better results than TS+PR in terms of fbest (36448.09

vs. 36928.31) and Tavg (49.05s vs. 83.67s). The non-parametric Friedman

tests (p− value < 2.2e-16) demonstrates that the ISB-TS algorithm and the

reference algorithm TS+PR is significantly different in terms of fbest on the

second instance set.

In summary, the experimental results reported above show clearly that

the proposed ISB-TS algorithm is very competitive compared to the state-

of-the-art algorithms in the literature both in terms of solution quality and

computational efficiency.

Table 4: Results for the performances of ISB-TS in comparison with the

reference algorithms (i.e., GRASP, TS(500)+PR, TS+PR, and Gurobi) in

the first instance set with γ = 1.2 and 1.6.

γ = 1.2 γ = 1.6Algorithm
Cross T ime DEV (%) Cross T ime DEV (%)

Small size (n1+n2 = 50)

Gurobi 6230.00 27.18 0.00 18553.53 1224.33 4.24

GRASP 6317.47 33.23 2.17 18056.27 141.83 7.44

TS(500) + PR 6232.20 48.76 0.10 17459.13 1039.53 1.01

TS + PR 6234.33 8.15 0.16 17489.07 90.12 1.71

ISB-TS (1 run) 6230.00 1.21 0.00 17397.07 71.95 0.96

Medium size (n1+n2 = 75)

Gurobi 28522.20 781.71 0.24 84088.57 1808.00 7.50

GRASP 28776.57 228.98 2.52 80917.97 409.31 5.15

TS(500) + PR 28379.10 621.53 0.16 78959.23 1718.27 0.27

TS + PR 28390.17 61.11 0.21 79161.07 386.90 0.61

ISB-TS (1 run) 28365.33 42.57 0.08 77817.4 160.66 0.23

Large size (n1+n2 = 100)

Gurobi 112572.27 1207.01 1.10 343478.67 1891.89 8.70

GRASP 111381.07 423.60 1.94 328878.53 532.43 3.86

TS(500) + PR 110214.33 1516.66 0.08 322528.33 1687.68 0.00

TS + PR 110233.07 292.30 0.12 322831.60 514.51 0.23

ISB-TS (1 run) 110172.60 103.84 -0.04 319490 211.41 -0.94

#Total #Better

TS(500) + PR 83888.83 1121.52 10 (120)

ISB-TS (1 run) 83264.97 137.24 104 (120)
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Table 5: Results for the performances of ISB-TS in comparison with the

reference algorithms (i.e., GRASP, TS+PR, and Gurobi) in the second set

of instances.

Algorithm Cross T ime DEV (%)

Small size (21 ≤ n1 + n2 ≤ 57)

GRASP 510.82 0.40 4.09

TS + PR 497.77 0.09 2.03

ISB-TS (1 run) 489.93 0.02 1.94

Medium size (111 ≤ n1 + n2 ≤ 122)

GRASP 22742.99 18.83 4.69

TS + PR 22394.12 7.80 0.06

ISB-TS (1 run) 22228.50 3.72 -0.74

Large size (231 ≤ n1 + n2 ≤ 471)

GRASP 87844.49 319.53 4.97

TS + PR 85816.74 232.27 0.01

ISB-TS (1 run) 84597.47 113.68 -1.42

#Total #Better

TS+ PR 36928.31 83.67 146 (1000)

ISB-TS (1 run) 36448.09 40.91 687 (1000)

5. Analysis and Discussions

In this section we pay attention to the analysis of several key elements

of the proposed algorithm (i.e., the constrained neighborhood structure,

solution-based tabu strategy and the diversified perturbation strength tech-

nique) used in our proposed ISB-TS algorithm.

5.1. Impact of the constrained neighborhood structure

ISB-TS adopts a constrained neighborhood structure to achieve the qual-

ity and efficiency of the search by constricting the distance of moving vertex

with Φ. To evaluate the impact of constrained neighborhood structure, we

conduct an experiment to compare the performance of ISB-TS with its al-

ternative versions, ISB-TSall which evaluates all the neighboring solutions

without this distance constriction mechanism, and ISB-TS1 which only eval-

uates two neighboring solutions each time by considering moving the cur-
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rent vertex to the previous position or the posterior position, similar to the

method proposed in Mart́ı et al. (2018). We obtain ISB-TSall and ISB-TS1

by setting the parameter Φ with the value of max(n1,n2) and 1, respective-

ly, and select two representative instances, i.e., G 00 05 scr 0014 30 5 and

G 21 06 scr 0002 30 with the number of vertices 471 and 242, to test their

performance. For each test variant and each instance considered, the corre-

sponding algorithm is independently performed 10 times with a maximum

number of 1500 (×2500) iterations, and the gap of the best found solution

(f ∗) in each variant to the current best known result (f best), i.e., f ∗−f best, is

recorded as a function of the number of iterations. The evolution of the gap

value is respectively plotted in Figure 5 for each instance and each variant.

One observes from Figure 5 that the performance of the compared al-

gorithms are significantly influenced by the different size of neighborhood

structure. The normal version of ISB-ITS employed a constrained neigh-

borhood structure performs the best, although ISB-ITSall exploits a close

performance with it. ISB-TS1 clearly performs the worst, thus it is impor-

tant to avoid making the distance threshold Φ too small during the search

since this will restrict the search region of the algorithm too much, causing

the search to miss high-quality solutions. In general, the constrained neigh-

borhood structure employed in this study will lead to a good performance in

terms of both the computing speed and solution quality.

5.2. Impact of solution-based tabu strategy

The solution-based tabu strategy is a crucial ingredient of our ISB-TS

algorithm. To show its importance with respect to the popular attribute-

based tabu strategy, we produce a variant IAB-TS of the ISB-TS method

by replacing the solution-based tabu strategy with the attribute-based tabu

strategy typically employed in tabu search implementations, while keeping

other ISB-TS components unchanged according to the experimental protocol
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Figure 5: Comparative results of ISB-TS with ISB-TSall and ISB-TS1. The

vertical axis represents the gap to the best found solution and the horizontal

axis represents the number of iterations.
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Table 6: Comparison between the ISB-TS and its variant IAB-TS with

attribution-based tabu strategy on the 30 representative large instances.

fbest favg TavgInstance
IAB-TS ISB-TS IAB-TS ISB-TS IAB-TS ISB-TS

G 00 04 scr 0001 10 10854 10851 10856.1 10851 33.20 27.73

G 00 04 scr 0001 20 9534 9515 9548.9 9536.5 64.51 67.69

G 00 04 scr 0001 30 7922 7909 7958.9 7931.4 114.48 126.66

G 00 04 scr 0002 10 10405 10400 10415.5 10413.7 24.38 45.97

G 00 04 scr 0002 20 8451 8433 8461 8454.4 152.67 110.98

G 00 04 scr 0002 30 7345 7352 7365.5 7374.5 96.71 103.25

G 00 04 scr 0003 10 11246 11242 11254.1 11249.2 118.97 125.22

G 00 04 scr 0003 20 9307 9303 9336.1 9326.2 82.42 176.38

G 00 04 scr 0003 30 8122 8104 8169.9 8133.3 119.31 156.90

G 00 04 scr 0004 10 10270 10264 10282.9 10275.3 148.87 156.53

G 00 05 scr 0012 30 31923 31992 32047.1 32052.4 149.01 150.76

G 00 05 scr 0013 10 47779 47748 47813.1 47799.5 91.92 134.02

G 00 05 scr 0013 20 40760 40777 40851.7 40867.5 25.05 152.06

G 00 05 scr 0013 30 33786 33666 33885.3 33764.9 46.71 71.74

G 00 05 scr 0014 10 46677 46689 46735.8 46717.7 4.73 3.94

G 00 05 scr 0014 20 38178 38167 38197.9 38228.1 161.21 147.89

G 00 05 scr 0014 30 32241 32096 32371.2 32260.4 214.17 227.81

G 00 05 scr 0015 10 44895 44918 44961.5 44976.2 90.03 106.81

G 00 05 scr 0015 20 37560 37537 37614.3 37610.4 89.52 154.42

G 00 05 scr 0015 30 32368 32290 32449.5 32365.8 205.28 131.27

G 21 06 scr 0001 10 192094 192094 192094 192094 46.03 6.85

G 21 06 scr 0001 20 173515 173377 173574 173480 176.53 30.69

G 21 06 scr 0001 30 133086 132968 133153 133092.6 223.60 232.39

G 21 06 scr 0002 10 195546 195552 195549.6 195552 115.97 68.58

G 21 06 scr 0002 20 178140 178042 178190.8 178119.6 139.98 163.28

G 21 06 scr 0002 30 164395 164379 164608.2 164498.2 133.88 180.04

G 21 06 scr 0003 10 192955 192947 192957.8 192947.8 104.91 125.25

G 21 06 scr 0003 20 170026 170026 170055 170086.6 182.39 114.21

G 21 06 scr 0003 30 159157 159011 159457.3 159286.7 204.60 51.98

G 21 06 scr 0004 10 194128 194186 194137.6 194187.8 194.27 188.00

#Best 9 23 9 22 19 11

#Avg 74422.17 74394.5 74478.45 74451.12 118.51 117.98

p− value 8.15e-3 1.58e-2
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given in Table 2. Specifically, when we select a new vertex v and move it,

vertex v is maintained in tabu list for the number of the current iteration, in

order to prohibit to move it in the next tt iterations (tt is the tabu tenure). We

set tt = 5 in line with the previous setting in Mart́ı et al. (2018). Finally, we

complement the aspiration criterion that the tabu status of a move is disabled

if the generated solution leads to a solution better than all previously visited

solutions.

To compare the performance between IAB-TS and ISB-TS, we carry out

an experiment based on a set of 30 large instances with the number of vertices

in the range of 231, 242, 471, where both methods were run 10 times, and

terminated within 360 seconds for each time. The experimental results are

summarized in Table 6 where we present for each algorithm the best results

fbest obtained over 10 runs, the average results favg, and the average com-

puting time Tav. The row #Avg indicates the average value of each measure.

The row #Best shows the number of instances for which the associated al-

gorithm obtains the best results in terms of fbest or favg among the compared

algorithms. The p − values from the non-parametric Friedman test in the

last row of tables where a p − value smaller than 0.05 implies a significant

difference between the compared results.

We can observe from Table 6, the ISB-TS can obtain better results in

comparison with IAB-TS in terms of fbest and favg for 23 and 22 instances

out of 30 instances, respectively. In addition, the average values of #avg of

ISB-TS are superior to the results of IAB-TS in terms of fbest (74394.5 vs.

74422.17), favg (74451.12 vs. 74478.45) and Tavg (117.98s vs. 118.51s). The

p − values from the non-parametric Friedman test in the last row of tables

where both p − values (8.15e-3 and 1.58e-2) smaller than 0.05 implies the

ISB-TS is significantly different from IAB-TS in terms of fbest and favg. This

experiment thus concludes that the proposed solution-based tabu strategy is

more suitable than the attribute-based tabu strategy to combine its iterative
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perturbation mechanism for solving the DBDP.

5.3. Impact of the adaptive strength technique

Table 7: Comparison between the ISB-TS and its variant ISB-TSsp without

adaptive strength technique on the 30 representative large instances.

fbest favg TavgInstance
ISB-TSsp ISB-TS ISB-TSsp ISB-TS ISB-TSsp ISB-TS

G 00 04 scr 0001 10 10854 10851 10877.5 10851 125.76 27.73

G 00 04 scr 0001 20 9555 9515 9594.3 9536.5 192.54 67.69

G 00 04 scr 0001 30 7956 7909 7989.2 7931.4 121.48 126.66

G 00 04 scr 0002 10 10423 10400 10441.5 10413.7 127.34 45.97

G 00 04 scr 0002 20 8463 8433 8496.5 8454.4 107.26 110.98

G 00 04 scr 0002 30 7373 7352 7437.4 7374.5 81.99 103.25

G 00 04 scr 0003 10 11257 11242 11285.5 11249.2 147.74 125.22

G 00 04 scr 0003 20 9310 9303 9346.7 9326.2 126.54 176.38

G 00 04 scr 0003 30 8168 8104 8200.2 8133.3 87.90 156.90

G 00 04 scr 0004 10 10291 10264 10301.6 10275.3 167.25 156.53

G 00 05 scr 0012 30 32007 31992 32088.2 32052.4 196.86 150.76

G 00 05 scr 0013 10 47769 47748 47812.3 47799.5 278.09 134.02

G 00 05 scr 0013 20 40790 40777 40851.2 40867.5 174.99 152.06

G 00 05 scr 0013 30 33618 33666 33697.1 33764.9 195.54 71.74

G 00 05 scr 0014 10 46679 46689 46718.3 46717.7 176.02 3.94

G 00 05 scr 0014 20 38147 38167 38207 38228.1 162.74 147.89

G 00 05 scr 0014 30 32062 32096 32158.6 32260.4 250.27 227.81

G 00 05 scr 0015 10 44947 44918 45014 44976.2 194.34 106.81

G 00 05 scr 0015 20 37490 37537 37552.8 37610.4 220.39 154.42

G 00 05 scr 0015 30 32083 32290 32280.4 32365.8 194.14 131.27

G 21 06 scr 0001 10 192095 192094 192116.3 192094 36.68 6.85

G 21 06 scr 0001 20 173423 173377 173465.8 173480.0 184.69 30.69

G 21 06 scr 0001 30 133000 132968 133115.1 133092.6 171.06 232.39

G 21 06 scr 0002 10 195575 195552 195591.7 195552 100.18 68.58

G 21 06 scr 0002 20 178098 178042 178237.2 178119.6 29.28 163.28

G 21 06 scr 0002 30 164520 164379 164611.6 164498.2 147.72 180.04

G 21 06 scr 0003 10 192952 192947 192980.1 192947.8 47.91 125.25

G 21 06 scr 0003 20 170069 170026 170115.6 170086.6 128.01 114.21

G 21 06 scr 0003 30 158944 159011 159412.7 159286.7 215.39 51.98

G 21 06 scr 0004 10 194195 194186 194244.5 194187.8 78.54 188.00

#Best 7 23 7 23 9 21

#Avg 74403.8 74394.5 74474.70 74451.12 148.95 117.98

p− value 3.48e-3 3.49e-3
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To highlight the importance of the adaptive strength strategy in adaptive

perturbation phase, we compare our algorithm with a variant of ISB-TS (de-

noted as ISB-TSsp) obtained by removing the adaptive strength mechanism

and keeping the other ingredients unchanged. Compared with the adaptive

strength strategy employed in ISB-TS, which relies on the historical search

information (such as, the previous local optimum Sp, the counter ξ of con-

secutive non-improving best found solution), the variant ISB-TSsp adopts a

fixed perturbation strength Lsp. The value of Lsp is empirically set as (n1 +

n2)/2.

To compare ISB-TS and ISB-TSsp, we carried out an experiment based on

a set of 30 large instances with the number of vertices in the range of 241, 242,

471. One observes from Table 7 that the ISB-TS performs better than the

compared variant ISB-TSsp in terms of fbest, favg, and Tavg. To be specific,

ISB-TS is able to find better results in terms of fbest and favg than ISB-

TSsp within two indicators #Best (23 vs. 7, 23 vs. 7), and #Avg (74394.5

vs. 74403.8, 74451.12 vs. 74474.70) within a faster average computing time

(117.98s vs. 148.95s). Furthermore, the p − values (3.48e-3 and 3.49e-3)

smaller than 0.05 indicate that both two algorithms are significantly different

from each other in terms of fbest and favg. This experiment thus confirms the

effectiveness of the adaptive strength mechanism in perturbation phase.

5.4. Effectiveness of the iterative mechanism

To study the impact of the iterative mechanism, we created a variant of

the ISB-TS algorithm (denoted as SB-TS), where we disable the perturbation

procedure, while keeping other components unchanged. We compare SB-TS

and ISB-TS based on the set of 30 large instances with the number of vertices

including 241, 242, and 471. We ran both SB-TS and ISB-TS 10 times to

solve each instance. To perform a fair comparison, we run SB-TS with the

same computing time as that of ISB-TS presented in Table 7.

43



Table 8: Comparison between the ISB-TS and its variant SB-TS without

iterative mechanism on the 30 representative large instances.

fbest favgInstance CT (s)
SB-TS ISB-TS SB-TS ISB-TS

G 00 04 scr 0001 10 27.73 10886 10851 11130.7 10851

G 00 04 scr 0001 20 196.23 9609 9515 10018.4 9536.5

G 00 04 scr 0001 30 126.66 8070 7909 8204.3 7931.4

G 00 04 scr 0002 10 222.85 10436 10400 10492.5 10413.7

G 00 04 scr 0002 20 110.98 8505 8433 8592 8454.4

G 00 04 scr 0002 30 103.25 7510 7352 7833.4 7374.5

G 00 04 scr 0003 10 125.22 11309 11242 11345.2 11249.2

G 00 04 scr 0003 20 188.91 9469 9303 9661 9326.2

G 00 04 scr 0003 30 156.90 8323 8104 8491.4 8133.3

G 00 04 scr 0004 10 156.53 10306 10264 10383.9 10275.3

G 00 05 scr 0012 30 150.76 32120 31992 32549.9 32052.4

G 00 05 scr 0013 10 134.02 47870 47748 47954.5 47799.5

G 00 05 scr 0013 20 297.29 40793 40777 41202.5 40867.5

G 00 05 scr 0013 30 71.74 33702 33666 34256.5 33764.9

G 00 05 scr 0014 10 3.94 46697 46689 47144.5 46717.7

G 00 05 scr 0014 20 147.89 38307 38167 38494.7 38228.1

G 00 05 scr 0014 30 227.81 32295 32096 32893.2 32260.4

G 00 05 scr 0015 10 106.81 45031 44918 45152.9 44976.2

G 00 05 scr 0015 20 154.42 37561 37537 38030.1 37610.4

G 00 05 scr 0015 30 131.27 32400 32290 32449.5 32365.8

G 21 06 scr 0001 10 6.85 192134 192094 192180.5 192094

G 21 06 scr 0001 20 30.69 173849 173377 173860.8 173480

G 21 06 scr 0001 30 232.39 133368 132968 133891.5 133092.6

G 21 06 scr 0002 10 68.58 195596 195552 196022.7 195552

G 21 06 scr 0002 20 163.28 178098 178042 178120.8 178119.6

G 21 06 scr 0002 30 280.04 164531 164379 164924 164451.2

G 21 06 scr 0003 10 125.25 193458 192947 193684.1 192947.8

G 21 06 scr 0003 20 114.21 171088 170026 171181.8 170086.6

G 21 06 scr 0003 30 51.98 159846 159011 159884.2 159286.7

G 21 06 scr 0004 10 188.00 194456 194186 194488.6 194187.8

#Best 0 30 0 30

#Avg 74587.43 74394.5 74817.33 74449.55

p− value 4.32e-08 4.32e-08
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The experimental results are summarized in Table 8. It clearly shows

that the ISB-TS algorithm performs consistently much better than SB-TS

over all performance indicators considered within the same running time

(reported in the second column CT(s)), and on all the tested instances, as

confirmed by the small p-values (4.32e-08). This outcome shows that the

iterative mechanism plays a very positive role in the performance of the ISB-

TS algorithm.

5.5. Experimental results for the decremental bipartite drawing problem

In this section, we employed the proposed ISB-TS to tackle the decre-

mental bipartite drawing problem, which considers both adding the incre-

mental vertices and deleting some of the original vertices from the graph. For

this purpose, we conducted the following experiment on 30 new decremental

graph drawing instances. These instances are constructed by removing 10

percent of the vertices from the representative 30 large DBDP instances, as

well as the corresponding edges incident to these vertices. We then compare

the proposed ISB-TS with the best-performing algorithm TS+PR for these

instances. We ran both ISB-TS and TS+PR 10 times to solve each instance.

The experimental results are summarized in Table 9. For a fair comparison,

we limit the running time of the two reference algorithms, as shown in the

column CT (s) of Table 9.

As presented in Table 9, the ISB-TS performs better than the compared

best-performing algorithm TS+PR in terms of the indicators fbest, favg. To

be specific, ISB-TS is able to find better results in terms of two indicators

#Best (28 vs. 2, 30 vs. 0), and #Avg (42751.56 vs. 40600.5, 43762.02

vs. 40921.55). Furthermore, the p − values (2.06e-06 and 3.18e-07) of the

two statistical tests considered are smaller than 0.05, which indicate that

both two algorithms are significantly different from each other in terms of

both indicators fbest and favg. This experiment thus confirms that our pro-
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Table 9: Comparison between the ISB-TS and the best-performing algo-

rithm TS+PR on the 30 new decremental graph drawing instances.

fbest favgInstance CT (s)
TS+PR ISB-TS TS+PR ISB-TS

Cut G 00 04 scr 0001 10 27.73 7766 7717 7816.5 7725.1

Cut G 00 04 scr 0001 20 196.23 6189 6106 6334.1 6176.8

Cut G 00 04 scr 0001 30 126.66 5525 5358 5594.7 5375.6

Cut G 00 04 scr 0002 10 222.85 6877 6831 6918.8 6838

Cut G 00 04 scr 0002 20 110.98 5922 5829 6013.8 5840

Cut G 00 04 scr 0002 30 103.25 4962 4875 5117 4907.9

Cut G 00 04 scr 0003 10 125.22 7899 7869 7936.7 7872.4

Cut G 00 04 scr 0003 20 188.91 6314 6228 6452.5 6245.4

Cut G 00 04 scr 0003 30 156.90 5293 5225 5430.6 5271.4

Cut G 00 04 scr 0004 10 156.53 7220 7177 7268.2 7181.3

Cut G 00 05 scr 0012 30 150.76 19322 19400 19564.2 19466.1

Cut G 00 05 scr 0013 10 134.02 33463 33312 33500.5 33345.3

Cut G 00 05 scr 0013 20 297.29 27240 27195 27812.8 27263.8

Cut G 00 05 scr 0013 30 71.74 22286 22280 22626.5 22367.1

Cut G 00 05 scr 0014 10 3.94 31002 30974 31170.3 31012.8

Cut G 00 05 scr 0014 20 147.89 24580 24537 24923.2 24611.2

Cut G 00 05 scr 0014 30 227.81 20446 20705 20600.5 20835.9

Cut G 00 05 scr 0015 10 106.81 30139 30059 30228.3 30100.3

Cut G 00 05 scr 0015 20 154.42 24823 24746 25130.4 24825.4

Cut G 00 05 scr 0015 30 131.27 18793 18634 19141.6 18749.7

Cut G 21 06 scr 0001 10 6.85 138113 137306 139750.6 138000.7

Cut G 21 06 scr 0001 20 30.69 80882 76335 82092.6 77006.6

Cut G 21 06 scr 0001 30 232.39 33178 21673 35643.2 23295.9

Cut G 21 06 scr 0002 10 68.58 130218 124961 132355 126067.7

Cut G 21 06 scr 0002 20 163.28 102674 101564 104578.5 102078.5

Cut G 21 06 scr 0002 30 280.04 59758 51735 61740.8 52022.9

Cut G 21 06 scr 0003 10 125.25 120764 118952 124422.3 119254.4

Cut G 21 06 scr 0003 20 114.21 109468 101693 113464.9 102963.6

Cut G 21 06 scr 0003 30 51.98 70011 53221 75523.2 54809.5

Cut G 21 06 scr 0004 10 188.00 121420 115518 123708.3 116135.2

#Best 2 28 0 30

#Avg 42751.56 40600.5 43762.02 40921.55

p− value 2.06e-06 3.18e-07
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posed ISB-TS is highly competitive in comparison with the state-of-the-art

algorithm TS+PR for the decremental bipartite drawing problem.

6. Conclusion

We present an iterative solution-based tabu search algorithm (ISB-TS)

for solving the dynamic bipartite drawing problem (DBDP). The novel and

key features of our algorithm include an efficient solution-based tabu search

that uses constrained neighborhood structure, a fast evaluation strategy for

solution improvement, and an adaptive perturbation phase with the diversi-

fied strength strategy to encourage the search to explore new regions in the

search space.

Experimental evaluations on extensive benchmarks show that our ISB-

TS competes very favourably with the current state-of-the-art algorithms.

In addition, we carry out experimental analysis to reveal the effectiveness of

the new features incorporated in the ISB-TS algorithm.

The main advantages of the proposed solution-based tabu search can be

summarized as follows: First, the solution-based tabu search relying on the

explicit memory mechanism (hash function and hash vector) can record the

whole information of a solution instead of one move (or its typical attribute)

as proposed in the standard attribute tabu search, thus reducing the proba-

bility of revisiting the same solution and inducing a stronger intensification

pattern. Second, the solution-based tabu search has a simpler implementa-

tion structure, since it does not contain the tabu tenure and tabu aspiration,

which are important components in standard attribute tabu search. On the

other hand, the limitation of the proposed solution-based tabu search is that

it requires larger storage space than the attribute-based tabu search, to keep

the whole information of the visited solution permanently without the tabu

tenure strategy.
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An important conclusion of this study is that explicit memory (solution-

based) can be more efficient than attributive memory. This is very relevant s-

ince most tabu search methods are based on attributive memory. Researchers

usually prefer them since they are easily implemented, maintained, and op-

erated, thus resulting in faster methods. However, our study reveals that

solution-based memory structures implemented with hash functions can also

be very fast and more efficient than the traditional attributive structures in

terms of search intensification.
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Peng, B., Lü, Z., Cheng, T. C. E., 2015. A tabu search/path relinking algo-

rithm to solve the job shop scheduling problem. Computers & Operations

Research 53 (53), 154–164.

Pinaud, B., Kuntz, P., Lehn, R., 2004. Dynamic graph drawing with a hy-

bridized genetic algorithm. Adaptive Computing in Design & Manufacture

VI, 365–375.

Silvestrin, P. V., Ritt, M., 2017. An iterated tabu search for the multi-

compartment vehicle routing problem. Computers & Operations Research

81, 192–202.

Stallmann, M., Brglez, F., Ghosh, D., 2001. Heuristics, experimental sub-

jects, and treatment evaluation in bigraph crossing minimization. Journal

of Experimental Algorithmics 6, 8.

Sugiyama, K., Tagawa, S., Toda, M., 1981. Methods for visual understanding

of hierarchical system structures. IEEE Transactions on Systems Man &

Cybernetics 11 (2), 109–125.

Valls, V., Mart́ı, R., Lino, P., 1996. A branch and bound algorithm for min-

imizing the number of crossing arcs in bipartite graphs. European journal

of operational research 90 (2), 303–319.

52



Wang, Y., Wu, Q., Glover, F., 2017. Effective metaheuristic algorithms for

the minimum differential dispersion problem. European Journal of Opera-

tional Research 258 (3), 829–843.

Woodruff, D. L., Zemel, E., 1993. Hashing vectors for tabu search. Annals of

Operations Research 41 (2), 123–137.

Wu, S. D., Tsai, C. C., Yang, M., 2006. A vlsi layout legalization technique

based on a graph fixing algorithm. In: International Symposium on Vlsi

Design, Automation and Test. pp. 1–4.

Zhou, T., Wang, Y., Ding, J., Peng, B., 2016. Multi-start iterated tabu search

for the minimum weight vertex cover problem. Journal of Combinatorial

Optimization 32 (2), 368–384.

Zhou, Y., Wang, J., Wu, Z., Wu, K., 2018. A multi-objective tabu search al-

gorithm based on decomposition for multi-objective unconstrained binary

quadratic programming problem. Knowledge-Based Systems 141, 18–30.

53


