
Arc Crossing Minimization in Hierarchical Digraphs with Tabu
Search

MANUEL LAGUNA*

Graduate School of Business, University of Colorado, Campus Box 419, Boulder, CO 80309
Manuel.Laguna@Colorado.Edu

RAFAEL MARTÍ** and VICENTE VALLS***

Departamento de Estadística e Investigación Operativa
Facultad de Matemáticas, Universidad de Valencia
Dr. Moliner 50, 46100 Burjassot (Valencia) Spain
Marti@mac.uv.es
Vicente.Valls@uv.es

Last revision: October 21, 1996.

Abstract — Graphs are commonly used as a basic modeling tool in areas such as project

management, production scheduling, line balancing, business process reengineering, and software

visualization. An important problem in the area of graph drawing is to minimize arc crossings in a

multi-layer hierarchical digraph. Existing solution methods for this problem are based on simple

ordering rules for single layers that may lead to inferior drawings. This paper first introduces an

extensive review of relevant work previously published in this area. Then a tabu search

implementation is presented that seeks high-quality drawings by means of an intensification phase

that finds a local optimum according to an insertion mechanism and two levels of diversification.

Computational experiments with 200 graphs with up to 30 nodes per layer and up to 30 layers are

presented to assess the merit of the method.

* Research was supported by the Modeling Group of U S WEST Advanced Technologies, 4001 Discovery Drive,

Boulder, CO 80303.
** Research was supported by the Conselleria de Educación y Ciencia de la Generalitat Valenciana. Spain.
*** Research was supported by the Dirección General de Investigación Cientifica y Tecnica (DGICYT). Spain.

2 / LAGUNA, MARTÍ, and VALLS

Introduction

The field of graph drawing has received increasing interest in the last years. The annotated

bibliography on graph drawing by Di Battista, et al. (1994) has more than 300 entries. In particular,

drawing directed acyclic hierarchical graphs

to minimize arc crossings has received a fair

amount of attention since the seminal work

by Warfield (1977). Although the

perception of how good a graph is in

conveying information is fairly subjective, the

goal of limiting the number of arc crossings

is a well-admitted criterion for a good

drawing. In fact, early papers in this area

state that “the most crucial problem as far as

readability of a graph is that of edge

crossing” (Carpano 1980). Directed acyclic

hierarchical graphs are also known as layered digraphs, hierarchical digraphs, or simply hierarchies.

A hierarchical digraph is a drawing where the vertices are constrained to lie on a set of equally spaced

horizontal or vertical lines called layers and all arcs flow in the same direction (see Figure 1). The

problem of minimizing arc crossings in hierarchical graphs has been proven to be NP-hard even if there

are only two layers (Garey and Johnson 1983).

Warfield (1977) was the first one to propose a heuristic for the problem of arc-crossing

minimization. Although his work concentrated on bipartite graphs, he developed the first crossing

reduction theory for multi-layer digraphs. His procedure, which was only tested on a 21-vertex graph,

introduced dummy vertices which were eliminated before drawing (a procedure that has become

standard in graph drawing packages).

While Warfield’s heuristic is combinatorial in nature, Delarche’s (1979) is numerical as

presented in Carpano (1980). This heuristic is known as the relative degree algorithm and at the time

Fig. 1. Hierarchical Digraph.

Layer 1 Layer 2 Layer 3 Layer 4

LAGUNA, MARTÍ, and VALLS / 3

of its development was considered well-suited to treat two-layer cycle free graphs due to its reasonable

running times. The basic principle of this heuristic is that the more horizontal arcs the fewer the

crossings. Hence given a permutation of vertices in layer 1, the method consists of defining a

permutation in layer 2 such that these vertices are placed as much as possible directly to the right of

those in layer 1 to which they are connected. Since the method can also be applied backward (i.e.,

fixing level 2 and defining a permutation in layer 1), the procedure iterates forward and backward until

two consecutive iterations result in the same relative position of the vertices in both layers. The

position of a given vertex at each iteration is calculated as the arithmetic mean of the positions of its

adjacent vertices. Through extensive experimentation with real-life examples, Delarche showed that

the heuristic is capable of drawing graphs with 30 to 50 percent less arc crossings when starting with

an arbitrary configuration.

Eades and Kelly (1986) present four heuristics for arc crossing minimization in 2-layer graphs:

greedy insertion, greedy switching, splitting, and averaging. The averaging heuristic is the same as

the relative degree algorithm (also known as the barycentric method), while the greedy approaches use

local arc crossing minimization to guide the search. In a related study, Eades and Wormald (1986)

present the median heuristic. This heuristic determines the position of each vertex as the median

position of its adjacent vertices. When the number of adjacent vertices is odd, the position is fully

determined. However, when the number of adjacent vertices is even, a number of options are possible.

In the original implementation the heuristic selects the position of the vertex on the bottom to be the

median value. A weighted average has also been used, as illustrated later. Valls, et al. (1995) and

Marti (1995a) develop tabu search procedures, which are based on the concept of tabu thresholding

(Glover 1993). A computational comparison of 16 procedures on 900 randomly generated bipartite

graphs is presented by Marti (1995b). This study shows that the procedures based on tabu search

dominate all other ones in terms of solution quality at the expense of more computational time. When

run-time is critical (e.g., for drawing graphs on a computer screen), the combination of the barycentric

method and switching or splitting are recommended.

Additional heuristics for 2-layer graphs have been developed and tested by Makinen (1990).

He considers two hybrid heuristics which operate exactly as the median method except when the vertex

4 / LAGUNA, MARTÍ, and VALLS

being positioned has an even degree. The average median heuristic assigns the arithmetic mean of the

positions occupied by the two middle adjacent vertices. Note that the average position may be a

fraction, however, once a number has been assigned to all vertices in a layer, the vertices are ordered

according to this number. The second hybrid approach referred to as the semi median heuristic, uses

the median values to assign the position of a vertex with odd degree and the relative degree algorithm

(or averaging) to assign the position of vertices with an even degree.

Carpano (1980) extended the concept of Delarche’s relative degree algorithm to the general k-

layer case (for k > 2). The graphs were represented as a permutation of vertices in each layer.

Carpano realized the difficulty of the general problem, because it involved not only finding for each

layer the best permutation with respect to its adjacent layers but also the effect of this choice on the

configuration as a whole. The adaptation consisted of first finding the “best” permutation for layer 1

applying the relative degree algorithm considering only the vertices in layers 1 and 2. The positions of

the vertices in layer 1 was determined by the outcome of this initialization step and remained fixed

throughout the rest of the procedure. In layer Li each vertex was positioned by applying the

computation technique of the forward step in the relative degree algorithm considering all the

predecessors located not only in layer Li-1 but also in layers Li-2, Li-3, ..., L1.

Sugiyama, et al. (1981) proposed a so-called barycentric method. Their approach is similar to

Carpano’s in that a series of 2-layer subproblems are solved starting from an initial permutation for

layer L1. The procedure moves from “left” to “right” until the subproblem involves layers Lk-1 and Lk,

and then from “right” to “left” until the layers L1 and L2 are once again considered. Each subproblem i

in the left-to-right sweep consists of finding the “best” permutation for layer Li considering that the

permutation of layer Li-1 is fixed. Similarly, each subproblem i in the right-to-left sweep consists of

finding the “best” permutation for layer Li considering that the permutation of layer Li+1 is fixed. Each

subproblem is solved using the barycentric method originally designed for the 2-layer problem (and also

known as the relative degree algorithm or averaging). In this method, the position of each vertex v in

layer i is given by the arithmetic mean of the positions of the vertices in layer Li+1 (in a left-to-right

sweep) that are adjacent to vertex v. Similarly, the average position of the adjacent vertices in layer Li-1

determine the barycenter of vertex v in a right-to-left sweep. The original order is preserved when two

LAGUNA, MARTÍ, and VALLS / 5

vertices have the same barycenter, during the first phase of the procedure. A second phase is used to

switch the order of vertices with equal barycenters. With the orderings determined during the second

phase, the first phase is then re-applied.

An interesting variant of their method consists of calculating the barycenter of a vertex in layer

Li by regarding connected vertices in both layer Li-1 and Li+1 during both left-to-right and right-to-left

sweeps. However the results of their experiments indicated that the performance of this variant was

worse than the original method. The performance difference, they explain, may be due to calculating

barycenters by considering vertices whose orders has not yet been improved. In the original method

only layers whose orders were already improved are considered in the calculation of barycenters for the

current subproblem.

Rowe, et al. (1987) employed an adaptation of Sugiyama’s method within their general-

purpose browser for directed graphs. In the original work by Sugiyama et al., the vertical position of a

vertex was determined by either a left-barycenter or a right-barycenter. The left-barycenter of a vertex

was the average position of its immediate predecessors in the previous layer. Similarly, the right-

barycenter of a vertex was the average position of its immediate successors in the next layer. Ordering

the vertices in a layer by the left-barycenters (right-barycenters) comes close to minimizing the number

of arc crossings with respect to the previous (next) layer.

Sugiyama’s method orders vertices in a layer by the left-barycenters when making a left-to-

right sweep and by right-barycenters when making a right-to-left sweep. Rowe et al. noticed that this

approach caused vertex positions to be unstable in some graphs. This was particularly apparent in

situations where the position of a vertex determined by the left-barycenters was very different from the

position determined by the right-barycenters. This caused the vertex to move back and forth between

the two positions on alternate sweeps, and often the position leading to the smallest number of

crossings was between the two extremes. Consequently, Rowe et al. decided to change the position-

estimating function after the first two sweeps (left-to-right and right-to-left). The third and subsequent

sweeps ordered vertices by considering the average of the right- and the left-barycenters of each vertex.

The method terminates when all arc crossings have been eliminated or a fixed number of sweeps

(usually 4) have been made.

6 / LAGUNA, MARTÍ, and VALLS

Gansner, et al. (1988) proposed an iterative procedure based on those previously proposed by

Sugiyama et al. and Rowe et al. Gansner et al. introduced a weight function to estimate positions in

each layer and a local search. They called the function the weighted median, which according to them

has two main advantages: it produces fewer crossings by reducing the effects of widely spread vertices

and it is inexpensive to compute. The weighted median function is based on the median method

originally designed by Eades and Wormald (1986) for 2-layer graphs. The weighted median is a

position-estimating function that roughly works as follows. In a left-to-right sweep, a vertex in layer Li

is placed in the median position of its adjacent vertices in layer Li-1, provided the number of adjacent

vertices is odd. When the number of adjacent vertices is even, the weighted median is between the two

middle positions. The exact position is biased toward the side (up or down) where the adjacent

neighbors are more tightly packed. Positioning in a right-to-left sweep is done in a similar way (this

time considering adjacent vertices in layer Li+1).

Gansner’s procedure starts by constructing an initial ordering within layers in a depth-first

traversal of the graph beginning with the vertices in the first layer. This ordering guarantees zero arc

crossings for series-parallel graphs and those graphs with an underlying tree structure. After the initial

ordering is determined, the procedure iterates in order to reduce the number of arc crossings. Each

iteration consists of two steps. The first step sweeps the graph either from left to right or from right to

left to determine positions according to the weighted median values. After all layers have been

reordered, the procedure switches the positions of two consecutive vertices in the ordering defined

within a given layer if by doing so the number of crossings is reduced. The switching represents a

descent method to find a local optimal ordering for layer Li considering that the orderings of layers Li-1

and Li+1 remain fixed. This iterative process is performed a number of times, or until no discernible

progress is being made towards reducing the number of arc crossings.

Tamassia, et al. (1988) take on a different approach than the previous efforts to minimize arc

crossings. Given a graph, their procedure finds a maximal planar subgraph. A planar embedding for

the subgraph is determined whose topology is described by a planar representation. Then, the

“nonplanar” arcs (i.e., those arcs in the original graph that are not part of the planar subgraph) are

successively added to the planar representation of the subgraph. These arcs are added while

LAGUNA, MARTÍ, and VALLS / 7

minimizing at each step the number of arc crossings introduced. This procedure has been mainly used

to minimize crossings in undirected and mixed graphs adopting the grid standard.

Eades and Lin (1989) and Eades and Sugiyama (1990) mention that an old graph drawing

method first used by Tutte (1963) obtains similar results to the barycentric heuristic, without the layer-

by-layer sweep. In Tutte’s approach, later named degree weighted barycenter by Eades, et al. (1990),

the positions of the vertices in the first and last layers are fixed. Then for each vertex in each other

layer, a coordinate y is calculated as the weighted average of the y coordinates of its adjacent vertices.

The weighting is computed from the indegree and the outdegree of the vertex under consideration.

The y-value for each vertex can be computed by solving a system of sparse linear equations. Finally,

the vertices in each layer are ordered according to y.

Gansner, et al. (1993) describe in more detail the arc-crossing minimization method proposed

in Gansner, et al. (1988). They provide a pseudo-code for both the weighted median heuristic and the

switching procedure. In addition they recommend to run the entire procedure twice: once for an initial

ordering determined by starting with vertices in the first layer and searching out-arcs, and the second

time by starting with vertices in the last layer and searching in-arcs. They believe that it is generally

worth the extra cost to run the procedure twice, because it allows one to pick the better of two

different solutions.

Definitions

A hierarchical digraph H = (V, A, k, g) consists of a directed graph (V, A), a positive

integer k, and, for each vertex v, an integer g(v) ∈ {1, 2, ..., k}, with the property that if (u, v) ∈

A then g(u) < g(v). The set {v : g(v) = i} is the ith layer of H and is denoted by Li, for 1 ≤ i ≤ k.

Note that a hierarchical digraph is acyclic.

The span of an arc (u, v) is g(v) - g(u). Arcs of span greater than one are long, and a

hierarchical graph with no long arcs is proper. If a hierarchy is improper, a method which is

standard in the graph drawing literature, is to replace each arc of span s > 1 by a path of s - 1

8 / LAGUNA, MARTÍ, and VALLS

dummy vertices, and thus obtaining a proper hierarchy. So without losing generality, in this paper

we only consider proper hierarchies.

According to these definitions, the problem of minimizing the number of arc crossings

becomes the problem of finding the optimal ordering of vertices in Li for 1 ≤ i ≤ k. Let Πi =

{πi(1), πi(2), ..., πi(|Li|)} be an ordering of the vertices in layer Li, where πi(v) is the position of

vertex v in layer Li. Also let the ordering of a layer be defined as Φi = {φi(1), φi(2), ..., φi(|Li|)},

where φi(j) is the index of the vertex in position j (i.e., φi(πi(v)) = v). These two definitions of the

ordering of a layer simplify the discussion of our procedure and its implementation details.

Considering that the vertices are constrained to lie on a set of equally spaced vertical lines, and

each arc is drawn as a straight line between two vertices, a drawing of a proper hierarchy is the

set of orderings D = {Π1, Π2, ..., Πk} or D = {Φ1, Φ2, ..., Φk}. A crossing is a set {(u, v), (w, x)}

of two arcs in A such that:

u, w ∈ Li

v, x ∈ Li+1

πi(u) < πi(w) and πi+1(v) > πi+1(x), or

πi(u) > πi(w) and πi+1(v) < πi+1(x).

A drawing D* is optimal if there is no other drawing D with fewer crossings.

Suppose that Πi is a fixed ordering of Li and u and v are two vertices in Li+1. Then,

Kp(u,v) is defined as the number of crossings that arcs going into u (i.e., the arcs of the

predecessors adjacent to u) make with arcs going into v when πi+1(u) < πi+1(v). Note that given u,

v ∈ Li+1, the value of Kp(u,v) depends only on the positions πi+1(u) and πi+1(v) and the ordering of

the vertices in the ith layer. Similarly, we define Ks(u,v) for a fixed ordering Πi+1 and vertices u

and v in layer Li, as the number of crossings that arcs going out of u (i.e., the arcs of the

successors adjacent to u) make with arcs going out of v when πi(u) < πi(v). Also note that

Kp(u,v) is defined for all pairs of vertices in Li for i = 2, ..., k and Ks(u,v) is defined for all pairs of

vertices on Li for i = 1, ..., k - 1. Making Kp(u,v) = 0 ∀ u, v ∈ L1 and Ks(u,v) = 0 ∀ u, v ∈ Lk, we

LAGUNA, MARTÍ, and VALLS / 9

can define K(u,v) = Kp(u,v) + Ks(u,v) as the total number of crossings that arcs incident to vertex

u make with arcs incident to vertex v when u precedes v in the ordering.

In order to clarify the previous

definitions, consider the hierarchical digraph in

Figure 2. Following a suitable procedure to

calculate the values of Kp(u,v) and Ks(u,v), the

following values are obtained for vertices 5 and 6

(considering that the orderings in layers 1 and 3

are fixed): Kp(5,6) = 1, Ks(5,6) = 2, Kp(6,5) = 1,

Ks(6,5) = 1. In Valls, et al. (1994) an efficient

procedure is presented to calculate Kp(u,v) and

Ks(u,v). Because of the symmetry between the

set of values Ks(u,v) for u, v ∈ Li and the values

Kp(u,v) for u, v ∈ Li+1, the total number of crossings due to arcs between Li and Li+1 can be

calculated as follows:

() ()
()K u vs

u vi iπ π<
∑ , or

() ()
()K u vp

u vi iπ π+ +<
∑

1 1

, . (1)

Given a drawing D = {Π1, Π2, ..., Πk} of a proper hierarchical digraph, let K(D) be the total number

of arc crossings associated with D. Then from (1) it follows that:

()
() ()

()K D K u vs
u vi

k

i

=
<=
∑∑

π πi

,
1

. (2)

Fig. 2. Arc-crossing calculation.

1

2

3

4 7

8

95

6

Layer 1 Layer 2 Layer 3

10

10 / LAGUNA, MARTÍ, and VALLS

Tabu Search

Tabu search is by now a well-known metaheuristic for solving hard combinatorial optimization

problems. Although the origins of this technique can be traced back to almost 20 years ago (Glover

1977), the name and the methodology was officially introduced by Glover (1989). Numerous

applications of this technique have appeared in the literature (see for example Glover, et al. 1993),

along with tutorial papers and book chapters designed to expand the knowledge related to this

methodology (Glover and Laguna 1993; Laguna 1994).

In this paper we adapt the tabu search framework to the problem of minimizing arc crossings in

hierarchical proper digraphs. Our implementation is based on a simple concept: intensify the search by

seeking optimal or near-optimal orderings of a single layer (considering that the orderings of adjacent

layers are fixed) and achieve diversification by means of an importance sampling mechanism to select

layers and a switching procedure performed on a randomly selected vertex. It is well-known within the

tabu search community that successful implementations of this technique manage to create the right

balance between search intensification and diversification. We seek this balance while developing a

solution procedure that achieves superior solutions within a competitive running time.

Intensification Phase

The intensification phase deals with finding a local optimum with respect to an insertion move

mechanism for a selected layer Li, considering that the orderings of layers Li-1 and Li+1 are fixed. The

insertion mechanism operates as follows. Suppose that the ordering of a layer Li is Πi when this layer

is selected to initiate a new intensification phase. Then for each vertex v in Li, we compute the

change in the number of arc crossings caused by inserting v in each position j ≠ πi(v) in the layer.

(An efficient way of calculating insertion move values is given in the section of computational

experiments.) If any of the |Li|-1 trial insertions result in an arc crossing reduction, the insertion

with the largest reduction is performed. This process starts from vertex v such that πi(v) = 1 and

proceeds in an orderly fashion until it reaches vertex w with πi(w) = |Li|. The entire process (or

LAGUNA, MARTÍ, and VALLS / 11

pass) is repeated until no insertion is found that reduces the number of arc crossings in the current

solution. In the case when more than one insertion results in the same maximum reduction of the

number of arc crossings, the insertion that places vertex v closest to its barycenter is chosen. The

intensification phase finishes with a final pass in which insertions are performed according to the

barycentric criterion as long as the objective function value is not increased. The barycenter is

calculated as the average position considering both layers Li-1 and Li+1, unless i = 1 or k in which

case only layer L2 or Lk-1 is respectively considered.

In sparse graphs, measuring the relative goodness of an insertion is difficult because of the

large number of insertions with the same change on the objective function value. The barycentric

criterion for tie breaking is particularly helpful to preserve the aggressive nature of the search

during the intensification phase.

Diversification Phase

The procedure employs two levels of diversification. The first one has a narrow diversification

scope and is performed via layer selection. The second level attempts to move away from the current

solution structure and therefore has a broader scope.

The first level of diversification is performed after the intensification phase has been applied to

all layers in the digraph with a left-to-right sweep. The sweep guarantees that the intensification phase

is applied to all layers in the digraph, and is considered an intermediate phase between the application

of the two diversification levels. The first diversification level is an importance sampling procedure that

operates as follows. Layers are treated differently according to their level of importance. We consider

that the importance of a layer increases with the degree of its vertices, because it is expected that

vertices with a larger degree might produce more arc crossings than those with less number of incident

arcs. Hence, the level of importance or attractiveness of layer Li is given by:

() ()α L d vi
v Li

=
∈
∑ (3)

12 / LAGUNA, MARTÍ, and VALLS

where d(v) is the degree of vertex v. Then the probability of selecting layer Li for intensification is

made directly proportional to its α-value during the first-level diversification.

A tabu search mechanism is employed to avoid repeatedly selecting layers that have no

opportunity to improve the best solution after an intensification phase, which would decrease the

procedure effectiveness and in the limit could cause cycling. Specifically, if a layer Li was selected and

layers Li-1 and Li+1 have not changed since that intensification phase, selecting Li again for intensification

will not change the current solution (i.e., no insertion could be found that could decrease the number of

arc crossings or improve the barycentric position of any vertex). In order to implement a tabu

restriction that will enforce this logic, we create a structure tabu(i) for i = 1, ..., k. Assume that at

iteration iter layer Li is selected for intensification. Then after the phase is completed tabu(i) = iter if

the number of arc crossings in the current solution has decreased, and tabu(i) = -iter if the number of

crossings remains the same. This updating is done during the entire first-level diversification phase,

including the initial left-to-right sweep. The tabu information, however, is not used during that initial

sweep. When the probabilistic selection of the first-level diversification is activated, a chosen layer Li is

allowed to enter the intensification phase if either tabu(i+1) > abs(tabu(i)) or tabu(i-1) > abs(tabu(i)).

The first-level diversification phase terminates after all layers are tabu, i.e., no layer exist that

can be chosen for an intensification phase. The solution at this point is a local optimum with respect to

the insertion mechanism defined above. When the first-level diversification phase terminates, a

diversification at a second level begins. An iteration during the second-level diversification consists of

selecting a vertex v in layer Li for switching. Suppose that the ordering Πi of layer Li is such that

πi(u) = πi(v) - 1 and πi(w) = πi(v) + 1, for u, v, and w ∈ Li. We define two switch moves

associated with vertex v, where Π′ is the ordering after the move:

m-(v) = {π′i(v) = πi(u) and π′i(u) = πi(v)} ∀ v : πi(v) > 1 (4)

m+(v) = {π′i(v) = πi(w) and π′i(w) = πi(v)} ∀ v : πi(v) < |Li|. (5)

The move evaluations are given by:

LAGUNA, MARTÍ, and VALLS / 13

E(m-(v)) = K(u, v) - K(v, u) (6)

E(m+(v)) = K(v, w) - K(w, v). (7)

After a switch move m-(v) is executed

on the current drawing D, the number

of crossings is given by K(D) = K(D)

- E(m-(v)). A similar update is

performed for a move m+(v). Since

the objective is to minimize the total

number of crossings, the larger the

move value the better. The second-

level diversification is performed a

fixed number of iterations maxiter.

After this phase terminates, the tabu

structure is initialized, the initial left-

to-right sweep is performed and the

first-level diversification is started.

The procedure continues until the last

nonimp local optima found at the end of the first-level diversification fail to improve the best-known

solution. A summary of the entire procedure is given in Figure 3.

Computational Experiments

Before applying an arc crossing minimization procedure to acyclic digraphs, graph drawing

software performs the following two steps. First, vertices are assigned to layers, then the hierarchy is

made proper. In our experiments we consider that any hierarchy can always be transformed into a

proper hierarchy, and therefore we concentrate our attention to instances of hierarchical proper

digraphs.

Fig. 3. Pseudo-code of the tabu search procedure.

Generate a random initial solution.

Make best_solution equal to the current_solution.

Make lastimp equal to 0.

while (lastimp < nonimp) {

Initial left-to-right sweep.

while (at least one non-tabu layer exists) {

Choose a layer (first-level diversification).

Find the current_solution applying the

intensification phase.

}

if (current_solution improves best_solution) {

Make best_solution equal to the current_solution.

Make lastimp equal to 0.

} else lastimp = lastimp + 1.

Apply second-level diversification.

}

14 / LAGUNA, MARTÍ, and VALLS

From the real-life graph examples reported in the literature, we have examined the size

characteristics as determined by the number of layers, number of vertices, number of arcs, maximum

number of vertices in a single layer, and the digraph density. We have used this information to

determine a range for each of these parameters that would contain the aforementioned examples. The

sizes of the resulting instances are feasible for computer screen drawing. However, our experiments

will be extended to include larger instances that are better suited for a hard copy of the graph.

The graph generator works as follows. Given the number of layers, the number of vertices in

each layer is randomly chosen between 5 and 30. For each vertex v in layer Li, an arc to a randomly

chosen vertex u in layer Li+1 is included. This guarantees that each vertex in layers L1 to Lk-1 has an

outdegree of at least one. In addition, the generator checks that all vertices in the last layer have a

indegree of at least one. If a vertex in layer Lk is found with an indegree of zero, an arc is added to a

randomly chosen vertex in layer Lk-1. The next step is to check the total number of arcs in the fully

connected graph with the current number of layers and vertex assignment. The total number of arcs is

multiplied by the desired graph density. This gives the total number of arcs that the instance must

contain. Since an initial number of arcs are already in the graph, the generator adds the difference

between this number and the desired total. The additional arcs are added by randomly choosing two

vertices in consecutive layers. The process is repeated until all additional arcs have been included.

We used the generator to create 180 instances with the following characteristics. For each

combination of 6, 13, and 20 layers and 0.065, 0.175 and 0.3 graph densities, 20 instances were

generated. The interval [0.065, 0.175] contains the density of all real-life examples found in the

literature.

For the computational testing, we have employed two versions of our algorithm: TABU1 and

TABU2. The TABU2 version attempts to find high-quality solutions within a reasonable computing time,

while TABU1 is a fast version that tries to be competitive with respect to computational time when

compared to methods based on simple ordering rules. TABU1 and TABU2 differ only in the termination

criterion. The termination criterion for TABU2 is given by nonimp = 50. TABU1 terminates after the

procedure has performed the inner while-loop in Figure 3 a total of three times. In both algorithms, the

parameter maxiter is set to 25*|V| for the second-level diversification.

LAGUNA, MARTÍ, and VALLS / 15

As far as we know, a computational testing has not been reported in the literature that

compares heuristic methods for arc crossing minimization in directed acyclic graphs. However, most

drawing systems employ procedures to minimize the total number of arc crossings generally based on

the barycentric or median methods. Makinen (1990) compares the barycentric, median, and the

hybrids average and semi median methods for 2-layer graphs, and concludes that the barycentric

method provides the best results followed by the semi median method. Furthermore, Makinen shows

the improvement obtained by applying a greedy switching to the solution given by the barycentric

method. This idea has been further extended by means of iterating the combination barycentric or

median plus greedy switching a specified number of times (see e. g., Gansner et al. 1988), and thus

obtaining improved solutions.

The results obtained by combining ordering rules with exchange mechanisms seem to indicate

that one of the best solution procedures could be obtained by iterating the combination of the

barycentric method and a greedy switching (BC+SW) or the semi median method and a greedy

switching (SM+SW). An earlier study by Gansner, et al. (1988) reports that the best results are found

within a small number of iterations. Our experience has been that 6 iterations are sufficient to obtain

the best results. We use these combinations, BC+SW and SM+SW, with a termination criterion of 6

iterations to compare our two tabu search versions.

Before reporting the findings of our experiments, we present implementation details that play

an important role in making our procedure competitive with respect to computational efficiency. In

each intensification phase on a layer Li, the procedure must compute the change in the number of arc

crossings due to the insertion of each vertex v in all positions j ≠ πi(v). That is, a total of |Li|*(|Li| - 1)

evaluations are required during each pass of an intensification phase on layer Li. Therefore, the

intensification phase can be very time consuming if it is not carefully implemented. The evaluation

scheme that we are about to describe is one of the key factors that determines the speed of our

procedure. The evaluation E of the insertion of vertex φi(j) in position j’ is given by the following

two expressions:

16 / LAGUNA, MARTÍ, and VALLS

if j’ > j then ()() () ()() () ()()[]E j j K j q K q ji i i i i
q j

j

φ φ φ φ φ, ' , ,
'

= −
= +
∑

1

(8)

if j’ < j then ()() () ()() () ()()[]E j j K q j K j qi i i i i
q j

j

φ φ φ φ φ, ' , ,
'

= −
= −
∑

1

(9)

therefore,

if j’ > j then ()() ()() () ()() () ()()[]E j j E j j K j j K j ji i i i i iφ φ φ φ φ φ, ' , ' , ' ' ,= − + −1 (10)

if j’ < j then ()() ()() () ()() () ()()[]E j j E j j K j j K j ji i i i i iφ φ φ φ φ φ, ' , ' ' , , '= + + −1 . (11)

Since ()()E j jiφ , = 0 , the recursive equations (10) and (11) indicate that the efficient order to

compute all possible insertions of vertex φi(j) is ()()E j jiφ , ' for j’ = j+1, ..., |Li| and j’ = j-1, ..., 1.

It is worth mentioning that given two vertices u and v in layer Li, the value K(u, v) does

not depend on the ordering Φi, but instead it depends on the orderings Φi-1 and Φi+1. Hence,

during the intensification phase on layer Li, the values K(u, v) for u, v ∈ Li remain constant. Our

implementation, therefore, computes all K(u, v) once at the beginning of each intensification

phase.

The experiments reported in this section were performed on a 486-50 personal computer. All

procedures were programmed in C and

compiled with Microsoft Visual C++ 1.0.

We have performed four different

experiments. The first one consists of

comparing the performance of BC+SW,

SM+SW, TABU1, and TABU2 using 60 instances with density 0.065. The instances have been divided

into three groups of 20 according to the number of layers (6, 13, and 20). Table 1 shows the average

number of crossings obtained by each heuristic. This table shows that the tabu search versions

outperform both BC+SW and SM+SW. The relative performance of BC+SW and SM+SW in this

experiment agrees with earlier findings reported in the literature.

Table 1. Density 0.065: Average Number of Crossings.

Layers BC+SW SM+SW TABU1 TABU2
6 431.50 442.85 377.30 331.05
13 891.65 908.80 744.45 643.00
20 1174.85 1198.70 993.30 856.75

Average 832.67 850.12 705.02 610.27

LAGUNA, MARTÍ, and VALLS / 17

In addition to the average number of

arc crossings, it is interesting to analyze the

deviation of the solutions obtained by each

method from the best solutions known for

each problem. The best solution (BEST) of

a given instance is the one with the minimum number of arc crossings from those found by the four

procedures under study. The percentage deviation is calculated as (heuristic solution - BEST)/BEST.

Table 2 indicates that TABU2 always finds the best solution to all problem instances. In all cases the

average deviation of TABU1 is better than that of either BC+SW or SM+SW.

The previous two tables have

established that, when dealing with low-

density graphs, the procedure based on tabu

search is superior (in terms of solution

quality) to those based on ordering rules

combined with switching. We must now compare the computational times associated with finding

solutions using each procedure. The average computational times (in seconds) are reported in Table 3.

As expected, BC+SW and SM+SW are the fastest, with an average running time of 0.31 and 0.34

seconds respectively. However, the TABU1 procedure is quite competitive in time, achieving superior

results in less than 1 second of computer time. Although, the average running time for TABU2 is larger,

it is still quite reasonable when a higher quality of the resulting drawing is expected.

Similar results are obtained when comparing all four procedures using denser graphs. Tables 4

to 6 report the testing performed on graphs with a 0.175 density, while Tables 7 to 9 summarize the

results for graphs with a density of 0.3. These tables are included in the appendix. Note that the

largest instances in these sets have an average of 340 vertices and 1,647 arcs.

Table 2. Density 0.065: Average Percentage Deviation.

Layers BC+SW SM+SW TABU1 TABU2
6 0.66 0.65 0.49 0.00
13 0.48 0.48 0.22 0.00
20 0.41 0.43 0.18 0.00

Average 0.52 0.52 0.30 0.00

Table 3. Density 0.065: Average Running Time.

Layers BC+SW SM+SW TABU1 TABU2
6 0.14 0.15 0.37 14.51
13 0.31 0.35 0.88 41.28
20 0.49 0.53 1.31 54.96

Average 0.31 0.34 0.86 36.92

18 / LAGUNA, MARTÍ, and VALLS

An additional experiment is

conducted with the goal of studying

the progression of all procedures

towards finding improved solutions.

For this experiment, we generate 20

additional problem instances with

density 0.1 and 30 layers. These

instances have an average of 510

vertices and 838 arcs. Figure 4

shows the reduction of the average number of arc crossings as time elapses. The procedure based on

tabu search is able to quickly find high quality solutions after the first three iterations (TABU1), and

continues a path of improvement exhibiting diminishing returns (i.e., a reduction of the improvement

margin compared to the additional computational time). For extremely short computational times

(e.g., less than 0.5 seconds), BC+SW continues to dominate.

We perform one final experiment to test the merit of employing the solution generated by the

BC+SW approach as starting point for our TS procedure. Table 10 in the appendix compares the

original average performance of TABU1 and TABU2 with the performance resulting form using the

BC+SW starting solutions. The comparison is based on the average obtained by the different measures

reported in Tables 1 to 9. This experiment revels that some improvements in average solution quality

and speed are realized by initiating the tabu search from the solutions found by BC+SW. Improved

outcomes are more significant when considering the application of TABU1 to low density graphs.

Conclusions

In this paper we start by reviewing the relevant work related to arc crossing minimization

in hierarchical digraphs, and then we have developed an algorithm based on the tabu search. Our

implementation consists of an intensification phase that seeks local optimal orderings of layers

using an insertion move, and two levels of diversification. The first level of diversification is a

Fig. 4 Average number of crossings vs. running time.

0
1000

2000
3000
4000
5000

6000
7000

0 0.5 1 6 11 16 21 26 31 36 41 46

Seconds
A

vg
. n

um
be

r
of

 c
ro

ss
in

gs

BC+SW

SM+SW

TABU

Tabu1

LAGUNA, MARTÍ, and VALLS / 19

strategy for selecting layers for intensification, while the second one escapes local optimality by

means of switching moves. We have considered running the procedure with two different

termination criteria (TABU1 and TABU2).

Computational testing was performed on a set of 200 randomly generated graphs, chosen

to include the range of densities and sizes previously reported in the literature. In addition, our

experiments expand to graph sizes that have not been tested before, including graphs with up to

571 vertices and 2,241 arcs. Comparisons were made with procedures that have shown to be

effective for arc crossing minimization, i.e., the barycentric and the semi media methods with

switching.

The results of our experiments lead us to conclude that in terms of solution quality the

procedures ranking is TABU2, TABU1, BC+SW, and SM+SW. This ranking holds for all the

investigated densities, although the differences become smaller at higher densities. The ranking

also confirms that procedures based on the barycentric method are superior than those based on

the semi median method (a conclusion drawn in earlier studies). In terms of computational time,

the tabu search version TABU1 is quite competitive with the procedures based on simple ordering

rules plus switching. Specifically, TABU1 required a maximum running time of 1.87, 2.9, and 7

seconds for graph densities of 0.065, 0.175, and 0.3, respectively. This allows TABU1 to be

considered a powerful procedure for real-time drawing (e.g., drawing on a computer screen).

When higher quality drawings are important at the cost of additional computational time, TABU2

obtains solutions with fewer arc crossings with a maximum running time of 131, 157, and 209

seconds, for graph densities of 0.065, 0.175, and 0.3, respectively. This procedure may be

appropriate for drawings, such as those typical of large projects or process mapping, whose

printouts are used for analysis, monitoring and control.

Although the most important aesthetic criterion in graph drawing is that of minimizing arc

crossings, future work could be directed to extend our procedure to handle additional criteria

such as minimization of arc bends or minimization of arc lengths.

20 / LAGUNA, MARTÍ, and VALLS

Appendix

Table 4. Density 0.175: Average Number of Crossings.

Layers BC+SW SM+SW TABU1 TABU2
6 2041.15 2072.00 1961.85 1894.90
13 4842.30 4852.85 4522.65 4360.90
20 6234.10 6243.75 5750.80 5547.50

Average 4372.52 4389.53 4078.43 3934.43

Table 5. Density 0.175: Average Percentage Deviation.

Layers BC+SW SM+SW TABU1 TABU2
6 0.22 0.21 0.09 0.00
13 0.13 0.12 0.04 0.00
20 0.12 0.13 0.04 0.00

Average 0.16 0.16 0.06 0.00

Table 6. Density 0.175: Average Running Time.

Layers BC+SW SM+SW TABU1 TABU2
6 0.20 0.24 0.58 16.94
13 0.57 0.62 1.47 51.01
20 0.87 0.94 2.13 84.39

Average 0.54 0.60 1.39 50.78

Table 7. Density 0.3: Average Number of Crossings.

Layers BC+SW SM+SW TABU1 TABU2
6 5821 5791 5706 5635
13 19827 19745 19399 19203
20 23583 23476 22915 22625

Average 16410 16337 16007 15821

Table 8. Density 0.3: Average Percentage Deviation.

Layers BC+SW SM+SW TABU1 TABU2
6 0.04 0.04 0.02 0.00
13 0.03 0.03 0.01 0.00
20 0.05 0.04 0.02 0.00

Average 0.04 0.04 0.01 0.00

LAGUNA, MARTÍ, and VALLS / 21

Table 9. Density 0.3: Average Running Time.

Layers BC+SW SM+SW TABU1 TABU2
6 0.40 0.46 0.92 28.44
13 1.39 1.54 3.16 109.35
20 1.87 2.04 3.95 138.07

Average 1.22 1.35 2.68 91.95

Table 10. Comparison of average performance.

TABU1 TABU2
Table Original BC+SW Original BC+SW

1 705.02 668.92 610.27 600.30
2 0.30 0.20 0.00 0.00
3 0.86 0.72 36.92 33.59
4 4078.43 4028.95 3934.43 3935.42
5 0.06 0.05 0.00 0.01
6 1.39 1.16 50.78 48.83
7 16007 15979.23 15821 15820.72
8 0.01 0.01 0.00 0.00
9 2.68 2.19 91.95 88.86

22 / LAGUNA, MARTÍ, and VALLS

References

Carpano, M-J. (1980) “Automatic Display of Hierarchized Graphs for Computer-Aided Decision
Analysis,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-10, no. 11, pp. 705-715.

Delarche, M. (1979) “Quelques outils infographiques pou l’analyse structurale de systemes,” Dr. Ing.
thesis, Univ. Grenoble.

Di Battista, G. D., P. Eades, R. Tamassia, and I. G. Tollis (1994) “Algorithms for Drawing Graphs: an
Annotated Bibliography,” Department of Computer Science, Brown University.

Eades, P. and D. Kelly (1986) “Heuristics for Drawing 2-Layered Networks,” ARS Combinatoria, vol.
21-A, pp. 89-98.

Eades, P. and X. Lin (1989) “How to Draw a Directed Graph,” Proc. IEEE Workshop on Visual
Languages (VL’89), pp. 13-17.

Eades, P., X. Lin, and R. Tamassia (1990) “An Algorithm for Drawing a Hierarchical Graph,” Proc.
Second Canadian Conference on Computational Geometry (ed. J. Urrutia), University of Ottawa, pp.
142-146.

Eades, P. and K. Sugiyama (1990) “How to Draw a Directed Graph,” Journal of Information
Processing, vol. 13, no. 4, pp. 424-437.

Eades, P. and N. C. Wormald (1986) “The Median Heuristic for Drawing Two-Layered Networks,”
Technical Report 69, Department of Computer Science, University of Queensland.

Gansner, E. R., E. Koutsofios, S. C. North, and K. P. Vo (1993) “A Technique for Drawing Directed
Graphs,” IEEE Transactions on Software Engineering, vol. 19, no. 3, pp. 214-230.

Gansner, E. R., S. C. North, and K. P. Vo (1988) “DAG  A Program that Draws Directed Graphs,”
Software  Practice and Experience, vol. 18, no. 11, pp. 1047-1062.

Garey, M. R. and D. S. Johnson (1983) “Crossing Number is NP-Complete,” SIAM J. Algebraic and
Discrete Methods, vol. 4, no. 3, pp. 312-316.

Glover, F. (1977) “Heuristics for Integer Programming Using Surrogate Constraints,” Decision
Science, vol. 8, pp. 156-166.

Glover, F. (1989) “Tabu Search  Part I,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190-206.

LAGUNA, MARTÍ, and VALLS / 23

Glover, F. and M. Laguna (1993) “Tabu Search,” Modern Heuristic Techniques for Combinatorial
Problems, C. R. Reeves (Ed.), Blackwell Scientific Publications, Oxford, pp. 70-150.

Glover, F., M. Laguna, E. Taillard, D. de Werra (1993) “Tabu Search,” Annals of Operations
Research, vol. 41.

Laguna, M. (1994) “A Guide to Implementing Tabu Search,” Investigación Operativa, vol. 4, no. 1,
pp. 5-25.

Makinen, E, (1990) “Experiments on Drawing 2-Level Hierarchical Graphs,” Intern. J. Computer
Math., vol. 36, pp. 175-181.

Marti, R (1995a) “An Aggressive Search Procedure for the Bipartite Drawing Problem,” to appear in
Proceedings of the Metaheuristics International Conference, Breckenridge, CO.

Marti, R. (1995b) “The Bipartite Drawing Problem,” Technical Report, Departamento de Estadistica e
Investigacion Operativa, Universidad de Valencia, Spain.

Rowe, L. A., M. Davis, E. Messinger, C. Meyer, C. Spirakis, and A. Tuan (1987) “A Browser for
Directed Graphs,” Software  Practice and Experience, vol. 17, no. 1, pp. 61-76.

Sugiyama, K., S. Tagawa, and M. Toda (1981) “Methods for Visual Understanding of Hierarchical
System Structures,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-11, no. 2, pp.
109-125.

Tamassia, R., G. D. Battista, and C. Batini (1988) “Automatic Graph Drawing and Readability of
Diagrams,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 61-79.

Tutte, W. (1963) “How to Draw a Graph,” Proceedings of the London Mathematical Society, vol. 3,
no. 13, pp. 743-768.

Valls, V., R. Martí, and P. Lino (1994) “A Branch and Bound Algorithm for Arc Crossing
Minimization in Bipartite Graphs,” to appear in European Journal of Operational Research.

Valls, V., R. Martí, and P. Lino (1995) “A Tabu Thresholding Algorithm for Arc Crossing
Minimization in Bipartite Graphs,” Annals of Operations Research, vol. 60.

Warfield, J. (1977) “Crossing Theory and Hierarchy Mapping,” IEEE Transactions on Systems, Man,
and Cybernetics, vol. SMC-7, no. 7, pp. 505-523.

Arc Crossing Minimization in Hierarchical Digraphs with Tabu
Search

MANUEL LAGUNA

Graduate School of Business, University of Colorado, Campus Box 419, Boulder, CO 80309
Manuel.Laguna@Colorado.Edu

RAFAEL MARTÍ and VICENTE VALLS

Departamento de Estadística e Investigación Operativa
Facultad de Matemáticas, Universidad de Valencia
Dr. Moliner 50, 46100 Burjassot (Valencia) Spain
Marti@mac.uv.es
Vicente.Valls@uv.es

Scope and Purpose — The conventional wisdom that a picture is worth more than a thousand
words is particularly true when referred to graphs. In project management, for example, an
activity network is more useful than a list of all activities in terms of understanding the complexity
of a particular project. In business process reengineering, the use of process maps facilitate the
understanding of processes and suggest opportunities for radical redesigns. The difficulty of
drawing meaningful graphs (i.e., those that can be used for analysis), however, increases with the
number of activities, tasks, or jobs considered within a given context. A graph drawing becomes
difficult to analyze and understand when the activities (usually represented by vertices) are placed
in such a way that the relationships among them (usually represented by arcs) create a large
number of crossings or overlaps. Therefore, in order to create “readable” (sometimes referred to
as “pretty”) graph drawings, one would like to place activities in order to reduce the number of
crossings caused by the connections from one activity to another. Since graphs in practical
settings tend to be large, an automated procedure to deal with the arc crossing minimization
problem is desirable. In this paper we present an effective procedure for the problem of
minimizing arc crossings in graphs, where the effectiveness of the procedure is measured by the
combination of drawing quality and speed.

LAGUNA, MARTÍ, and VALLS / 25

Biographical Sketches

MANUEL LAGUNA is an Assistant Professor of Operations Management in the College of
Business and Administration and Graduate School of Business Administration of the University of
Colorado at Boulder. He received master's and doctoral degrees in Operations Research and
Industrial Engineering from the University of Texas at Austin. He was the first U S WEST
postdoctoral fellow in the Graduate School of Business at the University of Colorado. He has
done extensive research in the interface between artificial intelligence and operations research to
develop solution methods for problems in the areas of production planning and inventory control,
routing and network design in telecommunications, and automated drawing. Dr. Laguna co-
edited the Tabu Search volume of Annals of Operations Research, and he is currently editor of
the Journal of Heuristics and Combinatorial Optimization: Theory and Practice. He is a
member of the Institute for Operations Research and the Management Sciences, the Institute of
Industrial Engineers, and the International Honor Society Omega Rho.

RAFAEL MARTI is an assistant professor in the Department of Statistics and Operations
Research at the University of Valencia in Spain. He has a doctoral degree in Mathematics from
the University of Valencia, for which he received a “Doctoral Thesis Award.” His areas of
research include project scheduling, graph drawing and the design and development of heuristic
procedures in combinatorial optimization. He has worked in several research projects supported
by the Spanish Government. He is a member of the Spanish Statistic and Operations Research
Society (SEIO).

VICENTE VALLS received a doctoral degree in Mathematics from the University of Valencia,

Spain, in 1981. He is a Professor in the Statistics and Operational Research Department of the

University of Valencia. His current research interests include project scheduling, production,

automatic drawing, metaheuristics and graph theory. He is currently advisory editor of the Journal

of Heuristics and associate editor of TOP.

