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Abstract — Graphs are commonly used as a basic modeling tool in areas such as project
management, production scheduling, line balancing, business process reengineering, and software
visudization. Animportant problem in the area of graph drawing isto minimize arc crossingsin a
multi-layer hierarchical digraph. Existing solution methods for this problem are based on smple
ordering rules for single layers that may lead to inferior drawings. This paper first introduces an
extensive review of relevant work previoudly published in thisarea. Then atabu search
implementation is presented that seeks high-quality drawings by means of an intensification phase
that finds alocal optimum according to an insertion mechanism and two levels of diversification.
Computational experiments with 200 graphs with up to 30 nodes per layer and up to 30 layers are

presented to assess the merit of the method.
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Introduction

The field of graph drawing has recelved increasing interest in the last years. The annotated
bibliography on graph drawing by Di Battista, et d. (1994) has more than 300 entries. In particular,
drawing directed acyclic hierarchica graphs

S . . . Fig. 1. Hierarchical Digraph.
to minimize arc crossings has recelved afair g arep

amount of attention since the seminal work ‘ ‘ : !
by Warfied (1977). Although the
perception of how good agraphisin ‘
conveying information isfairly subjective, the

god of limiting the number of arc crossings ‘

isawel-admitted criterion for agood
drawing. Infact, early papersinthisarea
dtate that “the most crucid problem asfar as
readability of agraph isthat of edge Layer 1 Layer2  Layer3 Layer 4
crossing” (Carpano 1980). Directed acydlic

hierarchica graphs are aso known as layered digraphs, hierarchical digraphs, or smply hierarchies.
A hierarchica digraph is adrawing where the vertices are constrained to lie on a set of equally spaced
horizontd or vertica lines cdled layers and al arcsflow inthe same direction (see Figure 1). The
problem of minimizing arc crossings in hierarchical graphs has been proven to be NP-hard even if there
are only two layers (Garey and Johnson 1983).

Warfied (1977) was the first one to propose a heuristic for the problem of arc-crossing
minimization. Although hiswork concentrated on bipartite graphs, he developed the first crossing
reduction theory for multi-layer digraphs. His procedure, which was only tested on a 21-vertex graph,
introduced dummy vertices which were eliminated before drawing (a procedure that has become
standard in graph drawing packages).

While Warfidd' s heurigtic is combinatorid in nature, Delarche’ s (1979) is numerica as
presented in Carpano (1980). This heurigtic is known as the relative degree adgorithm and at the time
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of its development was considered well-suited to treat two-layer cycle free graphs due to its reasonable
running times. The basic principle of this heurigtic is that the more horizonta arcs the fewer the
crossings. Hence given apermutation of verticesin layer 1, the method consists of defining a
permutation in layer 2 such that these vertices are placed as much as possible directly to the right of
those in layer 1 to which they are connected. Since the method can also be gpplied backward (i.e.,
fixing level 2 and defining a permutation in layer 1), the procedure iterates forward and backward until
two consecutive iterations result in the same relative position of the verticesin both layers. The
position of agiven vertex at each iteration is calculated as the arithmetic mean of the positions of its
adjacent vertices. Through extensive experimentation with red-life examples, Delarche showed that
the heurigtic is cgpable of drawing graphs with 30 to 50 percent less arc crossings when starting with
an arbitrary configuration.

Eades and Kdly (1986) present four heuristics for arc crossing minimization in 2-layer graphs:
greedy insertion, greedy switching, splitting, and averaging. The averaging heuristic is the same as
the relative degree dgorithm (also known as the barycentric method), while the greedy approaches use
locd arc crossing minimization to guide the search. In ardated study, Eades and Wormad (1986)
present the median heuristic. This heuristic determines the position of each vertex as the median
position of its adjacent vertices. When the number of adjacent verticesis odd, the postion isfully
determined. However, when the number of adjacent verticesis even, anumber of options are possible.
In the original implementation the heuristic selects the position of the vertex on the bottom to be the
median vaue. A weighted average has also been used, asillugtrated later. Valls, et d. (1995) and
Marti (1995a) develop tabu search procedures, which are based on the concept of tabu thresholding
(Glover 1993). A computational comparison of 16 procedures on 900 randomly generated bipartite
graphsis presented by Marti (1995b). This study shows that the procedures based on tabu search
dominate al other onesin terms of solution quality at the expense of more computationd time. When
run-timeiscritica (e.g., for drawing graphs on acomputer screen), the combination of the barycentric
method and switching or splitting are recommended.

Additiond heurigtics for 2-layer graphs have been devel oped and tested by Makinen (1990).
He considers two hybrid heuristics which operate exactly as the median method except when the vertex
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being positioned has an even degree. The average median heuristic assgns the arithmetic mean of the
positions occupied by the two middle adjacent vertices. Note that the average position may bea
fraction, however, once a number has been assigned to al verticesin alayer, the vertices are ordered
according to this number. The second hybrid approach referred to as the semi median heuristic, uses
the median values to assign the position of a vertex with odd degree and the relative degree adgorithm
(or averaging) to assign the position of vertices with an even degree.

Carpano (1980) extended the concept of Delarche’ s relative degree agorithm to the general k-
layer case (for k > 2). The graphs were represented as a permutation of verticesin each layer.
Carpano redlized the difficulty of the general problem, because it involved not only finding for each
layer the best permutation with respect to its adjacent layers but aso the effect of this choice on the
configuration asawhole. The adaptation consisted of first finding the “best” permutation for layer 1
applying the relative degree agorithm considering only the verticesin layers 1 and 2. The positions of
the verticesin layer 1 was determined by the outcome of thisinitialization step and remained fixed
throughout the rest of the procedure. In layer L; each vertex was positioned by applying the
computation technique of the forward step in the relative degree agorithm considering al the
predecessors located not only in layer Liy but dsoinlayersLi,, Lis, ..., Li.

Sugiyama, et d. (1981) proposed a so-called barycentric method. Their gpproachissmilar to
Carpano’sin that a series of 2-layer subproblems are solved starting from an initid permutation for
layer L,. The procedure movesfrom “left” to “right” until the subproblem involves layers Ly, and L,
and then from “right” to “left” until thelayersL, and L, are once again considered. Each subproblem i
in the left-to-right sweep consgsts of finding the “best” permutation for layer L; considering that the
permutation of layer L. isfixed. Smilarly, each subproblem i in the right-to-left sweep conssts of
finding the “best” permutation for layer L; consdering that the permutation of layer L., isfixed. Each
subproblem is solved using the barycentric method originaly designed for the 2-layer problem (and dso
known as the relative degree algorithm or averaging). In this method, the position of each vertex v in
layer i isgiven by the arithmetic mean of the positions of the verticesin layer Li.; (in aleft-to-right
sweep) that are adjacent to vertex v. Similarly, the average position of the adjacent verticesin layer Liy

determine the barycenter of vertex v in aright-to-left sveep. The original order is preserved when two
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vertices have the same barycenter, during the first phase of the procedure. A second phaseis used to
switch the order of vertices with equal barycenters. With the orderings determined during the second
phase, the first phase is then re-applied.

An interesting variant of their method conssts of ca culating the barycenter of avertex in layer
L; by regarding connected verticesin both layer Li; and Li.; during both left-to-right and right-to-left
sweeps. However the results of their experiments indicated that the performance of this variant was
worse than the original method. The performance difference, they explain, may be due to calculating
barycenters by considering vertices whose orders has not yet been improved. In the origina method
only layers whose orders were dready improved are consdered in the calculation of barycenters for the
current subproblem.

Rowe, et d. (1987) employed an adaptation of Sugiyama' s method within their general-
purpose browser for directed graphs. In the origind work by Sugiyamaet d., the vertica position of a
vertex was determined by ether aleft-barycenter or aright-barycenter. The left-barycenter of avertex
was the average position of itsimmediate predecessorsin the previous layer. Smilarly, theright-
barycenter of avertex was the average position of itsimmediate successorsin the next layer. Ordering
the verticesin alayer by the left-barycenters (right-barycenters) comes close to minimizing the number
of arc crossings with respect to the previous (next) layer.

Sugiyama s method orders verticesin alayer by the left-barycenters when making a left-to-
right sweep and by right-barycenters when making a right-to-left sweep. Rowe et d. noticed that this
approach caused vertex positions to be unstable in some graphs. Thiswas particularly gpparent in
dtuations where the position of a vertex determined by the |eft-barycenters was very different from the
position determined by the right-barycenters. This caused the vertex to move back and forth between
the two pogitions on alternate sweeps, and often the position leading to the smallest number of
crossings was between the two extremes. Consequently, Rowe et d. decided to change the position-
estimating function after the first two sweeps (left-to-right and right-to-left). The third and subsequent
sweeps ordered vertices by considering the average of the right- and the | eft-barycenters of each vertex.
The method terminates when all arc crossings have been eiminated or afixed number of sveeps
(usudly 4) have been made.
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Gansner, et d. (1988) proposed an iterative procedure based on those previoudy proposed by
Sugiyamaet d. and Rowe et d. Gansner et d. introduced aweight function to estimate positionsin
each layer and alocal search. They called the function the weighted median, which according to them
has two main advantages. it produces fewer crossings by reducing the effects of widdy spread vertices
and it isinexpendve to compute. The weighted median function is based on the median method
origindly designed by Eades and Wormad (1986) for 2-layer graphs. The weighted medianisa
position-estimating function that roughly works asfollows. In aleft-to-right sweep, avertex in layer L;
is placed in the median position of its adjacent verticesin layer Li.,, provided the number of adjacent
verticesisodd. When the number of adjacent verticesis even, the weighted median is between the two
middle positions. The exact position is biased toward the sde (up or down) where the adjacent
neighbors are more tightly packed. Positioning in aright-to-left sweep is done in asimilar way (this
time consdering adjacent verticesin layer Li.).

Gansner’ s procedure starts by constructing an initia ordering within layersin a depth-first
traversa of the graph beginning with the verticesin thefirst layer. This ordering guarantees zero arc
crossings for series-pardld graphs and those graphs with an underlying tree structure. After theinitial
ordering is determined, the procedure iterates in order to reduce the number of arc crossings. Each
iteration consists of two steps. The first step sweeps the graph either from left to right or from right to
|eft to determine pogitions according to the weighted median values. After dl layers have been
reordered, the procedure switches the positions of two consecutive vertices in the ordering defined
within agiven layer if by doing so the number of crossingsis reduced. The switching representsa
descent method to find alocal optima ordering for layer L congdering that the orderings of layersLi
and L., remainfixed. Thisiterative processis performed a number of times, or until no discernible
progress is being made towards reducing the number of arc crossings.

Tamassg, et d. (1988) take on adifferent gpproach than the previous effortsto minimize arc
crossings. Given agraph, their procedure finds amaxima planar subgraph. A planar embedding for
the subgraph is determined whose topology is described by a planar representation. Then, the
“nonplanar” arcs (i.e., those arcsin the origina graph that are not part of the planar subgraph) are

successvely added to the planar representation of the subgraph. These arcs are added while
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minimizing at each step the number of arc crossingsintroduced. This procedure has been mainly used
to minimize crossings in undirected and mixed graphs adopting the grid standard.

Eades and Lin (1989) and Eades and Sugiyama (1990) mention that an old graph drawing
method first used by Tutte (1963) obtains similar results to the barycentric heuristic, without the layer-
by-layer sweep. In Tutte's gpproach, later named degree weighted barycenter by Eades, et d. (1990),
the positions of the verticesin thefirst and last layers arefixed. Then for each vertex in each other
layer, acoordinatey is caculated as the weighted average of the y coordinates of its adjacent vertices.
The weighting is computed from the indegree and the outdegree of the vertex under consideration.
The y-value for each vertex can be computed by solving a system of sparse linear equations. Findly,
the verticesin each layer are ordered according to y.

Gansner,, et d. (1993) describe in more detail the arc-crossing minimization method proposed
in Gansner, et d. (1988). They provide a pseudo-code for both the weighted median heuristic and the
switching procedure. In addition they recommend to run the entire procedure twice: once for an initial
ordering determined by starting with verticesin the first layer and searching out-arcs, and the second
time by starting with verticesin the last layer and searching in-arcs. They believe that it is generdly
worth the extra cost to run the procedure twice, because it alows one to pick the better of two

different solutions.

Definitions

A hierarchical digraph H = (V, A, k, g) consists of a directed graph (V, A), apositive
integer k, and, for each vertex v, aninteger g(v) 1 {1, 2, ..., k}, with the property that if (u, v) T
Atheng(u) <g(v). Theset {v:g(v) =i} istheith layer of H and isdenoted by L;, for L£i £ k.
Note that a hierarchical digraph is acyclic.

The span of an arc (u, v) isg(v) - g(u). Arcsof span greater than one are long, and a
hierarchical graph with no long arcsis proper. If ahierarchy isimproper, amethod whichis

standard in the graph drawing literature, is to replace each arc of spans > 1 by apath of s - 1
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dummy vertices, and thus obtaining a proper hierarchy. So without losing generality, in this paper
we only consider proper hierarchies.

According to these definitions, the problem of minimizing the number of arc crossings
becomes the problem of finding the optimal ordering of verticesinL;forL£i£k. LetP;=
{pi(2), pi(2), ..., pi(|Li])} be an ordering of the verticesin layer L;, where p;(v) is the position of
vertex v in layer L. Alsolet the ordering of alayer be defined asFi = {fi(1), fi(2), ..., fi(|Li])},
wheref i(j) isthe index of the vertex in position j (i.e., fi(pi(v)) = v). These two definitions of the
ordering of alayer smplify the discussion of our procedure and its implementation details.
Considering that the vertices are constrained to lie on a set of equally spaced vertical lines, and
each arc is drawn as a straight line between two vertices, adrawing of a proper hierarchy isthe
set of orderingsD ={P1, Py, ..., P} or D ={F 1, Fo, ..., F\}. Acrossingisaset {(u, V), (w, X)}
of two arcsin A such that:

uwl L

v, X T Lis

pi(u) < pi(w) and pi+1(v) > pi+a(x), or
pi(u) > pi(w) and pi+1(v) < pi+1(X).

A drawing D" isoptimal if there is no other drawing D with fewer crossings.

Suppose that P; isafixed ordering of L and u and v are two verticesin Li+;. Then,
Ky (u,v) is defined as the number of crossings that arcs going into u (i.e., the arcs of the
predecessors adjacent to u) make with arcs going into v when pi.1(u) < pi+1(v). Note that given u,
V1 Lis, the value of Ky(u,v) depends only on the positions p;.1(u) and p;.1(v) and the ordering of
the vertices in the ith layer. Similarly, we define Kq(u,v) for afixed ordering P ., and verticesu
and v in layer L;, as the number of crossings that arcs going out of u (i.e., the arcs of the
successors adjacent to u) make with arcs going out of v when p;(u) < pi(v). Also note that
Ky(u,v) is defined for al pairs of verticesin L; for i = 2, ..., k and K¢(u,v) is defined for al pairs of

verticesonL; fori=1, ..., k- 1. Making K,(u,v) =0" u,vl LyandKyuv)=0" u,vi L, we
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can define K(u,v) = Ky(u,v) + Ks(u,v) as the total number of crossings that arcs incident to vertex

u make with arcs incident to vertex v when u precedes v in the ordering.

In order to clarify the previous Fig. 2. Arc-crossing calculation.
definitions, consider the hierarchical digraphin
Figure 2. Following a suitable procedure to
calculate the values of K,(u,v) and Ks(u,v), the
following values are obtained for vertices 5 and 6
(considering that the orderingsin layers 1 and 3
are fixed): K,(5,6) = 1, Ky(5,6) = 2, K,(6,5) = 1,
Ky(6,5) = 1. InValls, et a. (1994) an efficient
procedure is presented to calculate K,(u,v) and

Ks(u,v). Because of the symmetry between the

set of values Ky(u,v) for u, v L; and the values

Ky(u,v) for u, v1 Lis, thetotal number of crossings due to arcs between L; and L., can be
calculated as follows:

a K (u,v) or a Ky (uv). @)
pi(u)<pi(v pi+1(u)<pi+a(v)

GivenadrawingD ={P 4, P, ..., P} of aproper hierarchica digraph, let K(D) be the total number

of arc crossings associated with D. Then from (1) it follows that:

k
K(D)=a & K(uv). @
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Tabu Search

Tabu search is by now awell-known metaheuristic for solving hard combinatorial optimization
problems. Although the origins of this technique can be traced back to amost 20 years ago (Glover
1977), the name and the methodology was officidly introduced by Glover (1989). Numerous
applications of thistechnique have appeared in the literature (see for example Glover, et d. 1993),
along with tutorial papers and book chapters designed to expand the knowledge related to this
methodology (Glover and Laguna 1993; Laguna 1994).

In this paper we adapt the tabu search framework to the problem of minimizing arc crossingsin
hierarchica proper digraphs. Our implementation is based on asmple concept: intensify the search by
seeking optimal or near-optimal orderings of asingle layer (considering that the orderings of adjacent
layers are fixed) and achieve diversification by means of an importance sampling mechanism to select
layers and a switching procedure performed on arandomly selected vertex. It iswell-known within the
tabu search community that successful implementations of this technique manage to create the right
bal ance between search intensfication and diversfication. We seek this balance while developing a

solution procedure that achieves superior solutions within a competitive running time.

Intensification Phase

The intengfication phase dedls with finding aloca optimum with respect to an insertion move
mechanism for asdected layer L;, consdering that the orderings of layersLi; and Li.; arefixed. The
insertion mechanism operates as follows. Suppose that the ordering of alayer L; is P when this layer
is selected to initiate a new intensification phase. Then for each vertex v in L;, we compute the
change in the number of arc crossings caused by inserting v in each position j * pi(v) in the layer.
(An efficient way of calculating insertion move valuesis given in the section of computational
experiments.) If any of the |Lj|-1 tria insertions result in an arc crossing reduction, the insertion
with the largest reduction is performed. This process starts from vertex v such that p;(v) = 1 and

proceeds in an orderly fashion until it reaches vertex w with pi(w) = |Lij|. The entire process (or
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pass) is repeated until no insertion is found that reduces the number of arc crossings in the current
solution. In the case when more than one insertion results in the same maximum reduction of the
number of arc crossings, the insertion that places vertex v closest to its barycenter is chosen. The
intensification phase finishes with a final passin which insertions are performed according to the
barycentric criterion as long as the objective function value is not increased. The barycenter is
calculated as the average position considering both layers Li; and Li.1, unlessi = 1 or k in which
case only layer L, or L1 isrespectively considered.

In sparse graphs, measuring the relative goodness of an insertion is difficult because of the
large number of insertions with the same change on the objective function value. The barycentric
criterion for tie breaking is particularly helpful to preserve the aggressive nature of the search

during the intensification phase.
Diversification Phase

The procedure employs two levels of diversfication. Thefirst one hasanarrow diversfication
scope and is performed vialayer selection. The second level attempts to move away from the current
solution structure and therefore has a broader scope.

Thefirgt level of diversfication is performed after the intensfication phase has been gpplied to
al layersin the digraph with aleft-to-right sweep. The sweep guarantees that the intengification phase
isapplied to al layersin the digraph, and is considered an intermediate phase between the application
of the two divergfication levels. Thefirst diversfication leve isan importance sampling procedure that
operates asfollows. Layers are treated differently according to their level of importance. We consider
that the importance of alayer increases with the degree of its vertices, because it is expected that
verticeswith alarger degree might produce more arc crossings than those with less number of incident

arcs. Hence, the leve of importance or attractiveness of layer L; isgiven by:

a(L)=a d(v) &)
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where d(v) isthe degree of vertex v. Then the probability of sdlecting layer L; for intengficationis
made directly proportional to its a-vaue during the firs-levd diversfication.

A tabu search mechanism is employed to avoid repeatedly sdlecting layersthat have no
opportunity to improve the best solution after an intensification phase, which would decrease the
procedure effectiveness and in the limit could cause cycling. Specificdly, if alayer L was sdlected and
layersL;; and L., have not changed since that intengification phase, selecting L again for intengfication
will not change the current solution (i.e., no insertion could be found that could decrease the number of
arc crossings or improve the barycentric position of any vertex). In order to implement atabu
restriction that will enforce thislogic, we create a structure tabu(i) for i = 1, ..., k. Assumethat at
iteration iter layer L; is selected for intengfication. Then after the phase is completed tabu(i) = iter if
the number of arc crossingsin the current solution has decreased, and tabu(i) = -iter if the number of
crossings remainsthe same. This updating is done during the entire first-level diverdfication phase,
including the initia left-to-right sweep. The tabu information, however, is not used during that initial
sweep. When the probabilistic selection of the first-level diversfication is activated, a chosen layer L; is
alowed to enter the intengification phase if ether tabu(i+1) > abs(tabu(i)) or tabu(i-1) > abs(tabu(i)).

Thefirg-leve diversfication phase terminates after dl layersare tabu, i.e., no layer exist that
can be chosen for an intensfication phase. The solution at this point isaloca optimum with respect to
the insertion mechanism defined above. When thefirgt-leve diversfication phase terminates, a
diversfication at asecond level begins. Aniteration during the second-level diversfication conssts of
selecting avertex v inlayer L; for switching. Suppose that the ordering P of layer L; is such that
pi(u) = pi(v) - Land pi(w) = pi(v) + 1, foru, v,and w1 L;. We define two switch moves

associated with vertex v, where P ¢is the ordering after the move:

m(v) ={p&v) = pi(u) and p&u) = pi(v)} "vipi(v)>1 (4)
m'(v) = {p&(v) = pi(w) and p&(w) = pi(v)} " vipi(v) < Ll ()

The move evaluations are given by:
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E(m(v)) = K(u, v) - K(v, u) (6)
E(m*(v)) = K(v, w) - K(w, V). (7

After aswitch move m'(v) is executed
on the current drawing D, the number
of crossingsisgiven by K(D) = K(D)
- E(m'(v)). A dmilar updateis
performed for amove m*(v). Since
the objective isto minimize the total
number of crossings, the larger the
move vaue the better. The second-
levd divergfication is performed a
fixed number of iterations maxiter.
After this phase terminates, the tabu
dructureisinitiaized, theinitia 1eft-
to-right sweep is performed and the
first-level diversification is started.
The procedure continues until the last

Fig. 3. Pseudo-code of the tabu search procedure.

Generate arandom initial solution.
Make best_solution equal to the current_solution.
Make lastimp equal to O.
while (lastimp < nonimp) {
Initial left-to-right sweep.
while (at least one non-tabu layer exists) {
Choose alayer (first-level diversification).
Find the current_solution applying the
intensification phase.
}
if (current_solution improves best_solution) {
Make best_solution equal to the current_solution.
Make lastimp equal to O.
} else lastimp = lastimp + 1.
Apply second-level diversification.

nonimp local optimafound at the end of the first-level diversfication fail to improve the best-known

solution. A summary of the entire procedure is given in Figure 3.

Computational Experiments

Before gpplying an arc crossing minimization procedure to acyclic digraphs, graph drawing

software performs the following two steps. Firgt, vertices are assigned to layers, then the hierarchy is

made proper. In our experiments we consider that any hierarchy can always be transformed into a

proper hierarchy, and therefore we concentrate our attention to instances of hierarchical proper

digraphs.
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From the redl-life graph examples reported in the literature, we have examined the size
characteristics as determined by the number of layers, number of vertices, number of arcs, maximum
number of verticesin asingle layer, and the digraph density. We have used thisinformation to
determine arange for each of these parameters that would contain the aforementioned examples. The
sizes of the resulting instances are feasible for computer screen drawing. However, our experiments
will be extended to include larger instances that are better suited for ahard copy of the graph.

The graph generator works asfollows. Given the number of layers, the number of verticesin
each layer israndomly chosen between 5 and 30. For each vertex v in layer L;, an arc to arandomly
chosen vertex u in layer Li., isincluded. This guaranteesthat each vertex inlayersL; to Ly, hasan
outdegree of at least one. In addition, the generator checksthat dl verticesin thelast layer have a
indegree of at least one. If avertex in layer Ly isfound with an indegree of zero, an arcisadded to a
randomly chosen vertex in layer L.;. The next step isto check the total number of arcsin the fully
connected graph with the current number of layers and vertex assgnment. The total number of arcsis
multiplied by the desired graph dengity. This gives the total number of arcsthat the instance must
contain. Since an initial number of arcs are dready in the graph, the generator adds the difference
between this number and the desired total. The additiona arcs are added by randomly choosing two
verticesin consecutive layers. The processisrepeated until al additiond arcs have been included.

We used the generator to create 180 instances with the following characteristics. For each
combination of 6, 13, and 20 layers and 0.065, 0.175 and 0.3 graph densities, 20 instances were
generated. Theinterva [0.065, 0.175] contains the dengity of dl red-life examplesfound in the
literature.

For the computationa testing, we have employed two versions of our agorithm: TABU1 and
TABU2. The TABU2 verson attempts to find high-quaity solutions within a reasonable computing time,
while TABU1 isafast verson that tries to be competitive with respect to computational time when
compared to methods based on smple ordering rules. TABU1 and TABU2 differ only in the termination
criterion. The termination criterion for TABU2 is given by nonimp = 50. TABU1 terminates after the
procedure has performed the inner while-loop in Figure 3 atotal of threetimes. In both agorithms, the

parameter maxiter is set to 25*|V| for the second-leve diversfication.
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Asfar aswe know, acomputational testing has not been reported in the literature that
compares heuristic methods for arc crossng minimization in directed acyclic graphs. However, most
drawing systems employ procedures to minimize the total number of arc crossings generdly based on
the barycentric or median methods. Makinen (1990) compares the barycentric, median, and the
hybrids average and semi median methods for 2-layer graphs, and concludes that the barycentric
method provides the best results followed by the semi median method. Furthermore, Makinen shows
the improvement obtained by applying a greedy switching to the solution given by the barycentric
method. Thisidea has been further extended by means of iterating the combination barycentric or
median plus greedy switching a specified number of times (seee. g., Gansner et d. 1988), and thus
obtaining improved solutions.

The results obtained by combining ordering rules with exchange mechanisms seem to indicate
that one of the best solution procedures could be obtained by iterating the combination of the
barycentric method and a greedy switching (BC+Sw) or the semi median method and a greedy
switching (SM+Sw). An earlier sudy by Gansner, et al. (1988) reports that the best results are found
within asmal number of iterations. Our experience has been that 6 iterations are sufficient to obtain
the best results. We use these combinations, BC+Sw and SM+Sw, with atermination criterion of 6
iterations to compare our two tabu search versions.

Before reporting the findings of our experiments, we present implementation details that play
an important role in making our procedure competitive with respect to computationd efficiency. In
each intengfication phase on alayer L;, the procedure must compute the change in the number of arc
crossings due to the insertion of each vertex vin al postionsj* pi(v). That is, atota of |LiJ*(|Li| - 1)
evauations are required during each pass of an intensfication phase on layer L;. Therefore, the
intengification phase can be very time consuming if it is not carefully implemented. The evaluation
scheme that we are about to describe is one of the key factors that determines the speed of our
procedure. The evauation E of the insertion of vertex fi(j) in position j’ is given by the following

two expressions:
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if > j then E(Fi(i). i) = é[K(fi(j),fi(q))- K(fi(a).fi (i) (8)
if < then JHONE é[K(fi(q),fi(j))- K(fi (i).fi (@) (9)
therefore,

it > then E(fi(3). 3) =E(F; (). - 9 + [K(H ()1 (1) - K(GG)HG)] @0
ifj7 < then E(Fi(3). 1) =E(Fi (i), i+ + [K(F () 1 () - (GG @D

Since E(f;(j), j) =0, the recursive equations (10) and (11) indiicate that the efficient order to
compute al possible insertions of vertex fi(j) is E(f;(j), j') forj’ =j+1, ..., |Lland j’ =j-1, ..., 1.
It is worth mentioning that given two verticesu and v in layer L;, the value K(u, v) does
not depend on the ordering F ;, but instead it depends on the orderings Fi.; and F ;. Hence,
during the intensification phase on layer L;, the values K(u, v) for u, v1 L; remain constant. Our
implementation, therefore, computes all K(u, v) once at the beginning of each intensification

phase.
The experiments reported in this section were performed on a 486-50 persona computer. All

pprocedures were programmed in C and Table 1. Density 0.065: Average Number of Crossings.
We have pen‘ormed four different 6 431.50 442.85 377.30 331.05
13 891.65 908.80 744.45 643.00
experiments. Thefirst one consists of 20 1174.85 | 119870 | 993.30 | 856.75
Average 832.67 850.12 705.02 610.27

comparing the performance of BC+Sw,

SM+Sw, TABU1, and TABU2 using 60 instances with dengty 0.065. The instances have been divided

into three groups of 20 according to the number of layers (6, 13, and 20). Table 1 shows the average

number of crossngs obtained by each heuristic. This table shows that the tabu search versons

outperform both BC+Sw and sSM+Sw. Therelative performance of BC+Sw and SM+Sw in this

experiment agrees with earlier findings reported in the literature.
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In addition to the average number of
arc crossings, it isinteresting to anadyze the
deviation of the solutions obtained by each
method from the best solutions known for

each problem. The best solution (BEST) of

Table 2. Density 0.065: Average Percentage Deviation.
Layers | BC+SW | SM+SW | TABU1l | TABU2

6 0.66 0.65 0.49 0.00

13 0.48 0.48 0.22 0.00

20 0.41 0.43 0.18 0.00

Average 0.52 0.52 0.30 0.00

agiven instance is the one with the minimum number of arc crossings from those found by the four

procedures under study. The percentage deviation is caculated as (heuristic solution - BEST)/BEST.

Table 2 indicates that TABU2 always finds the best solution to dl problem instances. In dl casesthe

average deviation of TABUL is better than that of either BC+Sw or SM+Sw.

The previous two tables have
established that, when dedling with low-
dengity graphs, the procedure based on tabu
search is superior (in terms of solution

quality) to those based on ordering rules

Table 3. Density 0.065: Average Running Time.

Layers | BC+SW | SM+SW | TABUl | TABU2
6 0.14 0.15 0.37 14.51
13 0.31 0.35 0.88 41.28
20 0.49 0.53 131 54.96
Average 0.31 0.34 0.86 36.92

combined with switching. We must now compare the computationa times associated with finding

solutions using each procedure. The average computationa times (in seconds) are reported in Table 3.

As expected, BC+SwW and sSM+Sw are the fastest, with an average running time of 0.31 and 0.34

seconds respectively. However, the TABU1 procedure is quite competitive in time, achieving superior

resultsin less than 1 second of computer time. Although, the average running time for TABU2 is larger,

it isgtill quite reasonable when a higher qudity of the resulting drawing is expected.

Similar results are obtained when comparing dl four procedures using denser graphs. Tables4

to 6 report the testing performed on graphs with a 0.175 dengity, while Tables 7 to 9 summarize the

results for graphs with adensty of 0.3. These tables are included in the appendix. Note that the

largest ingtances in these sets have an average of 340 vertices and 1,647 arcs.
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An additiond experiment is

Fig. 4 Average number of crossings vs. running time.
conducted with the god of studying

the progression of dl procedures

towards finding improved solutions. —BCrsw
SM+SW
For this experiment, we generate 20 —— TABU

additiond problem ingtances with
dengity 0.1 and 30 layers. These

Avg. number of crossings

0 05 1| 6 11 16 21 26 31 36 41 46

Tabul Seconds

instances have an average of 510

verticesand 838 arcs. Figure4

shows the reduction of the average number of arc crossings astime elgpses. The procedure based on
tabu search is able to quickly find high quaity solutions after the first three iterations (TABU1), and
continues a path of improvement exhibiting diminishing returns (i.e., areduction of the improvement
margin compared to the additional computationa time). For extremely short computationa times
(e.g., lessthan 0.5 seconds), BC+SwW continues to dominate.

We perform one find experiment to test the merit of employing the solution generated by the
BC+Sw agpproach as starting point for our TS procedure. Table 10 in the appendix compares the
origina average performance of TABU1 and TABU2 with the performance resulting form using the
BC+Sw starting solutions. The comparison is based on the average obtained by the different measures
reported in Tables1t0 9. This experiment revels that some improvements in average solution quaity
and speed are redized by initiating the tabu search from the solutions found by BC+Sw. Improved

outcomes are more significant when congdering the gpplication of TABU1 to low density graphs.

Conclusions

In this paper we start by reviewing the relevant work related to arc crossing minimization
in hierarchical digraphs, and then we have developed an agorithm based on the tabu search. Our
implementation consists of an intensification phase that seeks local optimal orderings of layers

using an insertion move, and two levels of diversification. Thefirst level of diversification isa
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strategy for selecting layers for intensification, while the second one escapes local optimality by
means of switching moves. We have considered running the procedure with two different
termination criteria (TABU1 and TABU2).

Computational testing was performed on a set of 200 randomly generated graphs, chosen
to include the range of densities and sizes previously reported in the literature. 1n addition, our
experiments expand to graph sizes that have not been tested before, including graphs with up to
571 vertices and 2,241 arcs. Comparisons were made with procedures that have shown to be
effective for arc crossing minimization, i.e., the barycentric and the semi media methods with
switching.

The results of our experiments lead us to conclude that in terms of solution quality the
procedures ranking is TABU2, TABU1, BC+SW, and sSM+Sw. Thisranking holds for all the
investigated densities, although the differences become smaller at higher densities. The ranking
also confirms that procedures based on the barycentric method are superior than those based on
the semi median method (a conclusion drawn in earlier studies). Interms of computationa time,
the tabu search version TABUL1 is quite competitive with the procedures based on simple ordering
rules plus switching. Specifically, TABU1 required a maximum running time of 1.87, 2.9, and 7
seconds for graph densities of 0.065, 0.175, and 0.3, respectively. This allows TABU1 to be
considered a powerful procedure for real-time drawing (e.g., drawing on a computer screen).
When higher quality drawings are important at the cost of additional computational time, TABU2
obtains solutions with fewer arc crossings with a maximum running time of 131, 157, and 209
seconds, for graph densities of 0.065, 0.175, and 0.3, respectively. This procedure may be
appropriate for drawings, such as those typical of large projects or process mapping, whose
printouts are used for analysis, monitoring and control.

Although the most important aesthetic criterion in graph drawing is that of minimizing arc
crossings, future work could be directed to extend our procedure to handle additional criteria

such as minimization of arc bends or minimization of arc lengths.
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Appendix

Table 4. Density 0.175: Average Number of Crossings.

Layers | BC+SW | SM+SW | TABUl | TABU2
6 2041.15 | 2072.00 | 1961.85 | 1894.90
13 4842.30 | 4852.85 | 4522.65 | 4360.90
20 6234.10 | 6243.75 | 5750.80 | 5547.50
Average | 437252 | 4389.53 | 4078.43 | 3934.43

Table 5. Density 0.175: Average Percentage Deviation.

Layers | BC+SW | SM+SW | TABU1l | TABU2
6 0.22 0.21 0.09 0.00
13 0.13 0.12 0.04 0.00
20 0.12 0.13 0.04 0.00
Average 0.16 0.16 0.06 0.00
Table 6. Density 0.175: Average Running Time.
Layers | BC+SW | SM+SW | TABUl1l | TABU2
6 0.20 0.24 0.58 16.94
13 0.57 0.62 1.47 51.01
20 0.87 0.94 2.13 84.39
Average 0.54 0.60 1.39 50.78

Table 7. Density 0.3: Average Number of Crossings.

Layers | BC+SW [ SM+SW | TABU1l | TABU2
6 5821 5791 5706 5635
13 19827 19745 19399 19203
20 23583 23476 22915 22625

Average 16410 16337 16007 15821

Table 8. Density 0.3: Average Percentage Deviation.

Layers | BC+SW | SM+SW | TABUl | TABU2
6 0.04 0.04 0.02 0.00
13 0.03 0.03 0.01 0.00
20 0.05 0.04 0.02 0.00
Average 0.04 0.04 0.01 0.00
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Table 9. Density 0.3: Average Running Time.

Layers BC+SW | SM+SW | TABU1 TABU2
6 0.40 0.46 0.92 28.44
13 1.39 1.54 3.16 109.35
20 1.87 2.04 3.95 138.07
Average 1.22 1.35 2.68 91.95
Table 10. Comparison of average performance.
TABU1 TABU2
Table Original | BC+SW | Original | BC+SW
1 705.02 668.92 610.27 600.30
2 0.30 0.20 0.00 0.00
3 0.86 0.72 36.92 33.59
4 4078.43 | 4028.95 | 3934.43 3935.42
5 0.06 0.05 0.00 0.01
6 1.39 1.16 50.78 48.83
7 16007 15979.23 15821 15820.72
8 0.01 0.01 0.00 0.00
9 2.68 2.19 91.95 88.86
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Scope and Purpose — The conventional wisdom that a picture is worth more than a thousand
words is particularly true when referred to graphs. 1n project management, for example, an
activity network is more useful than alist of al activitiesin terms of understanding the complexity
of aparticular project. In business process reengineering, the use of process maps facilitate the
understanding of processes and suggest opportunities for radical redesigns. The difficulty of
drawing meaningful graphs (i.e., those that can be used for analysis), however, increases with the
number of activities, tasks, or jobs considered within a given context. A graph drawing becomes
difficult to analyze and understand when the activities (usually represented by vertices) are placed
in such away that the relationships among them (usually represented by arcs) create alarge
number of crossings or overlaps. Therefore, in order to create “readable” (sometimes referred to
as “pretty”) graph drawings, one would like to place activities in order to reduce the number of
crossings caused by the connections from one activity to another. Since graphsin practical
settings tend to be large, an automated procedure to deal with the arc crossing minimization
problem is desirable. In this paper we present an effective procedure for the problem of
minimizing arc crossings in graphs, where the effectiveness of the procedure is measured by the
combination of drawing quality and speed.




LAGUNA, MARTI, and VALLS/ 25

Biographical Sketches

MANUEL LAGUNA isan Assistant Professor of Operations Management in the College of
Business and Administration and Graduate School of Business Administration of the University of
Colorado at Boulder. He received master's and doctoral degrees in Operations Research and
Industrial Engineering from the University of Texas at Austin. He wasthe first U SWEST
postdoctoral fellow in the Graduate School of Business at the University of Colorado. He has
done extensive research in the interface between artificia intelligence and operations research to
develop solution methods for problems in the areas of production planning and inventory control,
routing and network design in telecommunications, and automated drawing. Dr. Laguna co-
edited the Tabu Search volume of Annals of Operations Research, and heis currently editor of
the Journal of Heuristics and Combinatorial Optimization: Theory and Practice. Heisa
member of the Institute for Operations Research and the Management Sciences, the Institute of
Industrial Engineers, and the International Honor Society Omega Rho.

RAFAEL MARTI isan assistant professor in the Department of Statistics and Operations
Research at the University of Vaenciain Spain. He has a doctoral degree in Mathematics from
the University of Vaencia, for which he received a*“Doctoral Thesis Award.” His areas of
research include project scheduling, graph drawing and the design and development of heuristic
procedures in combinatorial optimization. He has worked in several research projects supported
by the Spanish Government. He is a member of the Spanish Statistic and Operations Research
Society (SEIO).

VICENTE VALLS received adoctoral degree in Mathematics from the University of Valencia,
Spain, in 1981. HeisaProfessor in the Statistics and Operational Research Department of the
University of Vaencia. His current research interests include project scheduling, production,
automatic drawing, metaheuristics and graph theory. He is currently advisory editor of the Journal
of Heuristics and associate editor of TOP.



