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ABSTRACT — In this paper, we develop a greedy randomized adaptive search procedure (GRASP)
for the problem of minimizing straight-line crossings in a 2-layer graph.  The procedure is fast and is
particularly appealing when dealing with low-density graphs.  When a modest increase in
computational time is allowed, the procedure may be coupled with a path relinking strategy to search
for improved outcomes.  Although the principles of path relinking have appeared in the tabu search
literature, this search strategy has not been fully implemented and tested.  We perform extensive
computational experiments with more than 3,000 graph instances to first study the effect of changes in
critical search parameters and then to compare the efficiency of alternative solution procedures.  Our
results indicate that graph density is a major influential factor on the performance of a solution
procedure.
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The problem of minimizing straight-line crossings in layered graphs has been the subject of study for
at least 17 years, beginning with the Relative Degree Algorithm introduced by Carpano[2].  The
problem consists of aligning the two shores V1 and V2 of a bipartite graph G = (V1, V2, E) on two
parallel straight lines (layers) such that the number of crossing between the edges in E is minimized
when the edges are drawn as straight lines connecting the end-nodes (Jünger and Mutzel, 1997).  The
problem is also known as the bipartite drawing problem (or BDP).  In the BDP the problem consists of
finding an optimal ordering for the vertices in both layers, which differ from the layer permutation
problem (LPP) that seeks the optimal ordering of one layer only.  Table 1 summarizes some of the
relevant work in the area to the present.  The research listed in Table 1 combines procedures
specifically designed for both 2-layer and multi-layer graphs.  In some instances, however, LPP
procedures have been extended to the BDP case, in a similar way that 2-layer graph methods have
been adapted to the multi-layer case.

Table 1  Summary of relevant literature.
Reference Procedure Comments

Carpano[2] Relative degree algorithm
Sugiyama, et al.[21] Barycenter Similar to Carpano’s.
Eades and Kelly[4] Greedy insertion

Splitting
Averaging
Greedy switching

Same as barycenter.

Eades and Wormald[6] Median
Sugiyama[20]

Rowe, et al.[19]
Barycenter / median Variations and extensions to

the barycenter / median
approach.

Makinen[15] Average median
Semi median

Barycenter / median hybrids.

Gansner, et al.[10]

Eades, et al.[5]
Barycenter / median Variations and extensions to

the barycenter / median
approach to multi-layered
graphs.

Catarci[3] Assignment
Jünger and Mutzel[12] Branch and cut Includes a comparative study

of heuristic approaches.
Valls, et al.[22] Branch and bound Small instances.
Valls, et al.[23]

Martí[16]
Tabu thresholding
Tabu search

High quality results with long
computational times.

Martí and Laguna[17] Several existing methods Empirical analysis of 16
heuristics.

Laguna, et al.[14] Tabu search Multi-layer graphs.

The main application of these problems is found in automated drawing systems, where drawing speed
is a critical factor.  This is why for many years researchers were interested only in designing simple
heuristic procedures and sacrificed solution quality for speed.  The motivation for our current
development is to provide high quality solutions to the 2-layer straight line cross minimization
problem within a computational time that approaches simple heuristics.  We will show that simple
heuristics are very fast but result in inferior solutions, while high-quality solutions have been found
with meta-heuristics (such as tabu search) that demand an impractical amount of computer time.
Hence, our goal is to develop a procedure that can compete in speed with the simple heuristics and in
quality with the complex meta-heuristics.  In some of our experiments, we target low-density graphs
because we believe these graph types can be found in practical applications but typically have not been
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used for testing proposed procedures.  Also, as shown in the comparative study by Jünger and
Mutzel[12], the performance of existing heuristics seems to quickly deteriorate as the graphs become
sparser.  In particular, we adapt a greedy randomized search procedure (GRASP) in this context.  In
addition, we explore the adaptation of a search strategy called path relinking within the GRASP
framework.  The path relinking strategy has been suggested in connection with tabu search, however,
to the best of our knowledge, it has not been implemented and thoroughly tested.  Before describing
our basic procedure and its variants, we provide background on both GRASP and path relinking in the
following two sections.

1.  GRASP

The GRASP methodology was developed in the late 1980s, and the acronym was coined by Tom Feo
(Feo and Resende[8]).  It was first used to solve computationally difficult set covering problems (Feo
and Resende[7]).  Each GRASP iteration consists of constructing a trial solution and then applying an
exchange procedure to find a local optimum (i.e., the final solution for that iteration).  The
construction phase is iterative, greedy, and adaptive.  It is iterative because the initial solution is built
considering one element at a time.  It is greedy because the addition of each element is guided by a
greedy function.  It is adaptive because the element chosen at any iteration in a construction is a
function of those previously chosen.  (That is, the method is adaptive in the sense of updating relevant
information from one construction step to the next.)  The improvement phase typically consists of a
local search procedure.

Performing multiple GRASP iterations may be interpreted as a means of strategically sampling the
solution space.  Based on empirical observations, it has been found that the sampling distribution
generally has a mean value that is inferior to the one obtained by a deterministic construction, but the
best over all trials dominates the deterministic solution with a high probability.  The intuitive
justification of this phenomenon is based on the ordering statistics of sampling.  GRASP
implementations are generally robust in the sense that it is difficult to find or devise pathological
instances for which the method will perform arbitrarily bad.  The robustness of this method has been
well documented in applications to production, flight scheduling, equipment and tool selection,
location, and maximum independent sets.  Recently, GRASP has also been applied to a special type of
edge crossing minimization problem (Resende and Ribeiro[18]).

2.  Path Relinking

Tabu search is by now a well-established meta-heuristic for optimization (Glover and Laguna[11]).  One
of the main goals in a tabu search design is to create a balance between search intensification and
search diversification.  Path relinking has been suggested as an approach to integrate intensification
and diversification strategies (Glover and Laguna[11]).  This approach generates new solutions by
exploring trajectories that connect high-quality solutions  by starting from one of these solutions,
called an initiating solution, and generating a path in the neighborhood space that leads toward the
other solutions, called guiding solutions.  This is accomplished by selecting moves that introduce
attributes contained in the guiding solutions.

The approach may be viewed as an extreme (highly focused) instance of a strategy that seeks to
incorporate attributes of high quality solutions, by creating inducements to favor these attributes in the
moves selected.  However, instead of using an inducement that merely encourages the inclusion of
such attributes, the path relinking approach subordinates all other considerations to the goal of
choosing moves that introduce the attributes of the guiding solutions, in order to create a “good
attribute composition” in the current solution.  The composition at each step is determined by choosing
the best move, using customary choice criteria, from the restricted set of moves that incorporate a
maximum number (or a maximum weighted value) of the attributes of the guiding solutions.
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The approach is called path relinking because in tabu search any two solutions are linked by a series of
moves executed during the search.  Figure 1 shows two hypothetical paths (i.e., a sequence of moves)
that link solution A to solution B.  The solid line indicates the original path followed by the “normal”
operation of the procedure to move from A to B, while the dashed line depicts the relinking path.  The
paths are different because the move selection during the normal operation is generally “greedy” with
respect to the objective function evaluation.  For example, it is customary to adopt a move selection
strategy that chooses the neighborhood move that minimizes (or maximizes) the objective function
value in the local sense.  During path relinking, however, the main goal is to incorporate attributes of
the guiding solution (or solutions) while at the same time recording the objective function values.

Fig. 1  Path relinking illustration.

As shown in Figure 1, the purpose of performing the relinking moves is to find improved solutions
that were not in the neighborhood of the solutions visited by the original path.  The dark circle in
Figure 1 represents a better solution than both A or B, considering a minimization problem.

3.  GRASP Implementation

Before describing our implementation, we introduce some useful notation (Wilson[24]).  Given a graph
G = (V,E), where V = V1 ∪ V2, let n1 = |V1|, n2 = |V2|, m = |E|, and let N(v) = {w ∈ V | e = {v, w} ∈ E}
denote the set of neighbors of v ∈ V (Jünger and Mutzel[12]).  A solution is completely specified by a
permutation π1 of V1 and a permutation π2 of V2, where π1(v) or π2(v) is the position of v in its
corresponding layer.  The degree of a vertex v with respect to the set of vertices V is ρ(v,V).

As mentioned earlier, GRASP consists of a construction phase and an improvement phase.  The most
important element in the construction phase is that the selection in each step must be guided by a
greedy function that adapts according to the selections in previous steps.  The improvement phase
performs a sequence of moves towards a local optimum solution, which becomes the output of a
complete GRASP iteration.  The details of the two GRASP phases follow:

Construction Phase

This phase starts by creating a list of unassigned vertices (U = U1 ∪ U2), which at
the beginning consists of all the vertices in the graph (i.e., initially U = V).  Also, the
current position of each vertex is assigned a value of zero (i.e., π1(v) = 0 ∀ v ∈ V1
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and π2(v) = 0 ∀ v ∈ V2).  The first vertex v is randomly selected from all those
vertices in U with maximum degree.  That is, the first vertex is chosen from

U� = { v ∈ V | ρ(v,V) = ρmax},

where ρmax = max{ρ(v,V) ∀ v ∈ V}.

Once v is selected, U is updated by deleting v from its corresponding set (e.g., U1 =
U1 – {v} if v ∈ V1 or U2 = U2 – {v} if v ∈ V2).  In subsequent construction steps, the
next vertex v is randomly selected from a set U� that consists of vertices with a
degree of no less than δ of the maximum degree of all the vertices in U.  Vertex
degree, in this case, is calculated with respect to the subgraph given by the partial
solution obtained from previous vertex selections. That is, U� = { v ∈ U | ρ(v,V-U) ≥
δρmax}, where ρmax = max{ρ(v,V-U) ∀ v ∈ U}.  Note that this is different from the
first vertex selection, where maximum degree ρmax is calculated with respect to all
the vertices in the graph.

A selected vertex v is placed as prescribed by the barycenter calculation.  The
barycenter of a vertex v ∈ V1, bc(v), is the arithmetic mean of the current positions of
the vertices w ∈ V2 adjacent to v.  In mathematical terms, the barycenter is:

Ê

w

vbc Kw
∑
∈

π

=
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)(
2

Where K = {w ∈ V2 | π2(w) > 0 and {v,w} ∈ E}.  (A similar calculation is carried out
for a vertex v ∈ V2.)  Note that bc(v) may be a fractional value and therefore
rounding must be used to determine the exact position of v.  We try the assignments
π1(w) = bc(v) and π1(w) = bc(v), and select the best.  If a previously chosen vertex
already occupies the barycenter position of the most recently selected vertex (i.e.,
π1(w) = bc(v) or bc(v) for w ∈ V1), then vertex v is placed either one position
“before” (i.e., bc(v)-1) or one position “after” (i.e., bc(v)+1) the barycenter
(whichever produces the least number of crosses with respect to the partial
construction).  Once vertex v has been positioned in the partial solution, the vertex is
deleted from the set U and the vertex degree calculations ρ(v,V-U) are updated
accordingly.  The construction phase terminates after n1+n2 steps, when all vertices
have been selected (i.e., when U = ∅).

Improvement Phase

An improving step begins with making U = V.  Each step of the improvement phase
consists of selecting each vertex to be considered for a move.  The probabilistic
selection rule is such that vertices with higher degree ρ(v,V) are more likely to be
selected first at each step of this process.  In particular, the probability Pr(v) that a
vertex v is selected is given by:

∑
∈

ρ

ρ
=

Vw

Vw

Vv
v
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When a vertex v ∈ V1 is selected, three moves are considered:  (1) to insert the vertex
one position before the barycenter (i.e., π1(v) = bc(v)-1), (2) to insert the vertex at
the barycenter position (i.e., π1(v) = bc(v) or bc(v)), and (3) to insert the vertex
one position after the barycenter (i.e., π1(v) = bc(v)+1).  The vertex v is placed in
the position that produces the maximum reduction in the number of crossings.  (In
our notation we assume that when the position of a vertex changes, the position of
the other vertices are updated to preserve the correct relative ordering.  In the actual
implementation, however, we handle the position changes with an appropriate
pointer structure.)  If no reduction is possible, then the vertex is not moved.  The
vertex is removed from the set U after being considered, so U = U – {v}.  An
improvement step terminates when all vertices have been considered for insertion,
i.e., when U = ∅.  Hence, an improvement step consists of n1+n2 trials.  (Note that
within the same improvement step, some vertices may be moved while others may
stay in their original positions.)  More steps are performed as long as at least one
vertex is moved (i.e., as long as the current solution keeps improving).

When a step fails to improve the current solution, and before abandoning the
improvement phase, an attempt is made to exchange the positions of vertices v and w
in the same layer in order to find an improved solution.  We restrict the search to
exchanges of vertices that are one position away from each other.  In other words, we
exchange the positions of v and w as long as π1(v) = π1(w)+1.  This process is
performed on each layer, according to the vertex order in the current solution, i.e.,
π1(v) = 1, … n1-1 and π2(v) = 1, … n2-1.

After a number of GRASP iterations, it is possible to estimate the percent improvement achieved by
the application of the improvement phase and use this information to increase the efficiency of the
search.  Define the percent improvement in the GRASP iteration i as:

P i
S i S i

S i
( )

( ) ( )

( )

*

=
−

where S(i) is the number of crossings in the solution at iteration i after the construction phase and
before the improvement phase, while S*(i) is the number of crosses in the solution obtained after the
improvement phase is performed in the same GRASP iteration.  After n GRASP iterations, the
following mean and standard deviation estimates of P can be calculated:
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Then, at a given iteration i, these estimates can be used to determine whether is “likely” that the
improvement phase will be able to improve the current construction enough to produce a better
solution than the current best (Sbest).  In particular, we calculate the minimum percentage improvement
x that is necessary for a construction S(i) to be better than Sbest, as follows:
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α , then the construction corresponding to S(i) is discarded and the

improvement phase is not performed.  The value of α is a search parameter, which represents a
threshold on the number of standard deviations away from the estimated mean percent improvement
that the procedure is allowed to tolerate at a given GRASP iteration.  In Section 5, we perform a set of
preliminary experiments to test the effect of different α values on solution quality and speed.

4.  Path Relinking Implementation

In our implementation of path relinking, the procedure stores a small set of high quality (elite)
solutions to be used for guiding purposes.  Fluerent and Glover[9] have proposed the use of elite
solutions within the GRASP framework.  Specifically, after each GRASP iteration, the resulting
solution is compared to the best three solutions found during the search.  If the new solution is better
than any one in the elite set, the set is updated.  Instead of using attributes of all the elite solutions for
guiding purposes, one of the elite solutions is randomly selected to serve as a guiding solution during
the relinking process.  The relinking in this context consists of finding a path between a solution found
after an improvement phase and the chosen elite solution.  Therefore, the relinking concept has a
different interpretation within GRASP, since the solutions found from one GRASP iteration to the next
are not linked by a sequence of moves (as in the case of tabu search).  The relinking process
implemented in our search may be summarized as follows:

The set of elite solutions is constructed during the first three GRASP iterations.
Starting with the fourth GRASP iteration, every solution after the improvement
phase (called the initiating solution) is subject to a relinking process by performing
moves that transform the initiating solution into the guiding solution (i.e., the elite
solution selected at random).  The transformation is relatively simple, at each step, a
vertex v is chosen from the initiating solution (using the same probabilistic rule as in
the improvement phase of GRASP) and is placed in the position occupied by this

vertex in the guiding solution.  So, if g
1π (v) is the position of vertex v in the guiding

solution, then the assignment i
1π (v) = g

1π (v) is made.  (For the purpose of this

discussion, we once again assume that an updating of the positions of vertices in V1

of the intiating solution occurs.)  After this is done, an expanded neighborhood from

the current solution defined by i
1π (v) and i

2π (v) is examined.  The expanded

neighborhood consists of a sequence of position exchanges of vertices that are one
position away from each other, which are performed until no more improvement
(with respect to crossing minimization) can be found.  This is the same exchange
mechanism used at the end of the improvement phase of GRASP.  Once the
expanded neighborhood has been explored, the relinking continues from the solution

defined by i
1π (v) and i

2π (v) before the exchanges were made.  The relinking finishes

when the initiating solution matches the guiding solution, which will occur after n1+
n2 relinking steps.

Note that two consecutive solutions after a relinking step differ only in the position of two vertices

(after the assignment i
1π (v) = g

1π (v) is made).  Therefore, it is not efficient to apply the expanded

neighborhood exploration (i.e., the exchange mechanism) at every step of the relinking process.  We
introduce the parameter β to control the application of the exchange mechanism.  In particular, the
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exchange mechanism is applied every β steps of the relinking process.  We report on the effectiveness
of the procedure with different values of β in the computational testing that follows.

5.  Computational Experiments

The procedure described in the previous section was implemented in C, and all experiments were
performed on a Pentium 166 MHz personal computer.  Before testing the effectiveness of our
procedure, we perform 4 preliminary experiments to explore the effect of changes in the three search
parameters α, β and δ.  We also explore the effect of allowing the procedure to run longer, by
increasing the number of iterations (STOP) that the procedure is allowed to run without improving the
best solution found.  For these experiments we use the random_bigraph code of the Stanford
GraphBase by Knuth[13] to generate 100 graphs with n1 = n2= 50 and m = 50, 250, and 500, for a total
of 300 instances.  The experiments can be described as follows:

1) A termination criterion of 10 GRASP iterations without improvement is established (i.e., STOP =
10).  We start with this criterion because it is in line with our objective of developing a procedure
that can compete in both speed and solution quality.  We consider the value δ = 2/3 and we test
the effect of changing α by assigning the values 1, 2, 3 and 4.  Results of this experiment are
reported in Table 2.

2) We set α = 3, δ = 2/3 and try a termination criterion STOP = 5, 10, 15 and 20 GRASP iterations
without improvement.  Results of this experiment are reported in Table 3.

3) We set α = 3, STOP = 10 and try δ = 1, 1/3 and 2/3.  Results of this experiment are reported in
Table 4.

4) We set α = 3, δ = 2/3 and the termination criterion to 10.  We then make β a function of the
number of edges in the graph.  We try the following values: b = 0.05m, 0.1m, 0.2m and 0.3m.
Results of this experiment are reported in Table 5.

Table 2.  Preliminary experiment (1).
Average no. of crossings Average CPU seconds % of Improvement

phases skipped
α / m 50 250 500 50 250 500 50 250 500

1 6.48 6725.8 37752 0.13 0.91 4.72 48% 42% 33%
2 6.46 6717.8 37736 0.15 1.23 6.48 21% 17% 11%
3 6.15 6714.7 37712 0.15 1.48 7.43 5% 4% 2%
4 6.13 6712.9 37710 0.15 1.52 7.41 1% 1% 0%

Table 3.  Preliminary experiment (2).
Average no. of crossings Average CPU seconds

STOP / m 50 250 500 50 250 500
5 7.12 6762.5 37781 0.09 0.73 3.85

10 6.15 6714.7 37712 0.15 1.48 7.43
15 5.87 6691.6 37666 0.22 2.17 10.90
20 5.53 6674.4 37645 0.28 2.94 14.19

Table 4.  Preliminary experiment (3).
Average no. of crossings Average CPU seconds

δ 50 250 500 50 250 500
1/3 6.34 6698.2 37682 0.17 1.43 7.12
2/3 6.15 6714.7 37712 0.15 1.48 7.43
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1 6.15 6717.1 37716 0.17 1.52 7.28

Table 5.  Preliminary experiment (4).
Average no. of crossings Average CPU seconds % of PR phases where

solution improved
β / m 50 250 500 50 250 500 50 250 500
0.05m 6.26 6633.2 37528 0.58 10.70 39.93 3% 80% 84%
0.1m 6.23 6640.5 37534 0.39 5.97 23.71 2% 60% 67%
0.2m 6.32 6647.4 37553 0.29 3.82 14.52 1% 43% 52%
0.3m 6.31 6656.1 37572 0.26 2.93 12.04 1% 36% 44%

Tables 2 shows that as α increases the average solution quality also increases.  This is to be expected,
since skipping the Improvement Phase may result in a missing opportunity to improve the best
solution found.  Table 3 also shows an improving trend in terms of solution quality as the procedure is
allowed to run longer.  By comparing the results of tables 2 and 3, it is clear that the effect in solution
quality of increasing STOP is more significant than the effect of increasing α.  Table 4 shows some
mixed results.  On one hand, the solution quality increases when δ is changed from 1/3 to 2/3 and m
equals 50.  On the other, the solution quality decreases when δ is changed from 1/3 to 2/3 and m
equals 250 and 500.  This seems to indicate that δ is sensitive to the density of the graph.  Finally,
Table 5 shows that in general, solution quality is higher for smaller values of β.  One exception to this
occurs when β = 0.1m and m = 50.  Note that the last three columns of Table 5 show the percentage of
time that the path relinking (PR) phase improves upon the best solution found.  As expected, this
percentage goes down as the β value increases.

Given the results of the preliminary experimentation, we compare two versions of our procedure: 1)
GRASP without path relinking (labeled GRASP) and 2) GRASP with path relinking (labeled PR).  For
GRASP, we use STOP = 10, α = 3 and δ = 2/3, while for PR we use STOP = 20, α = 3, β = 0.03m and
δ = 2/3.  The first version is designed to compete in speed and generate high-quality solutions.  The
PR version is designed to find the best possible solutions (while somewhat sacrificing computational
speed).

In the first experiment, we employ the problem instances reported in Table 5 of Jünger and Mutzel[12].
These instances have 10 vertices in each layer and a number of edges ranging from 10 to 90.  There
are a total of 900 instances (i.e., 100 instances for each edge density).  We compare the performance of
GRASP, BCn (the barycenter method started from n = 1, 10 and 15 random points), TS (tabu search as
implemented in Martí[16]), and PR.  We compare our procedure to BC, because independent studies by
Jünger and Mutzel[12] and Martí and Laguna[17] have concluded that this method outperforms rival
approaches based on relatively simple vertex positioning rules.  We also compare against the TS
procedure in Martí[16], because it consistently provides higher quality solutions than BC-based
approaches (although TS requires more computational effort).  Tables 6, 7 and 8 report, respectively,
the average number of crossings, the average deviation from the optimal solutions (see OPT in Table
6), and the average CPU seconds
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Table 6.  Average number of crossings.
Number of edges

Method 10 20 30 40 50 60 70 80 90 Average
OPT 0.29 11.62 56.60 146.89 276.78 463.17 698.35 1008.4 1405.6 451.96
BC1 2.21 20.00 66.51 159.10 288.07 475.52 711.08 1024.3 1422.1 463.21
BC10 0.43 12.78 57.94 148.28 277.74 464.22 699.14 1008.9 1406.5 452.88
BC15 0.37 12.31 57.18 147.64 277.38 463.97 699.02 1008.7 1405.8 452.49
GRASP 0.29 11.87 57.29 147.56 277.05 463.63 698.52 1008.5 1405.7 452.26
TS 0.29 11.62 56.60 146.89 276.78 463.17 698.35 1008.4 1405.6 451.96
PR 0.29 11.66 56.81 147.00 276.81 463.20 698.35 1008.4 1405.6 452.01

Table 7.  Average percent deviation from optima.
Number of edges

Method 10 20 30 40 50 60 70 80 90 Average
BC1 188.33 81.81 18.05 8.43 4.06 2.63 1.81 1.58 1.18 34.21
BC10 14.00 12.83 2.28 0.92 0.34 0.22 0.11 0.05 0.07 3.43
BC15 8.00 7.59 0.96 0.50 0.21 0.17 0.10 0.03 0.02 1.95
GRASP 0.00 2.09 1.17 0.45 0.09 0.10 0.02 0.01 0.01 0.44
TS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PR 0.00 0.37 0.35 0.07 0.01 0.01 0.00 0.00 0.00 0.09

Table 8.  Average CPU seconds.
Number of edges

Method 10 20 30 40 50 60 70 80 90 Average
BC1 0.00 0.00 0.01 0.00 0.00 0.01 0.01 0.01 0.02 0.01
BC10 0.02 0.02 0.04 0.05 0.07 0.09 0.12 0.14 0.16 0.08
BC15 0.02 0.04 0.06 0.08 0.11 0.14 0.17 0.21 0.24 0.12
GRASP 0.00 0.02 0.03 0.05 0.05 0.07 0.10 0.12 0.12 0.06
TS 0.43 0.82 1.51 2.50 3.93 8.12 17.50 39.35 60.81 15.00
PR 0.01 0.08 0.13 0.18 0.25 0.35 0.43 0.53 0.56 0.28

These tables show that the best solution quality is obtained by the TS method, which is able to match
all known optimal solutions, while GRASP matches 750 and PR matches 866.  However, TS employs
more computational time than the other methods reported in these tables.  GRASP is very competitive,
considering its average percent deviation from optima of 0.44% achieved on an average of 0.06
seconds.  PR achieves an improved average percent deviation of 0.09% with a modest increase in
computer time (0.28 seconds).

In our second experiment we undertake to compare the performance of our proposed procedures
(GRASP and the variant with path relinking) using relatively sparser graphs (as compared to those in
the first experiment).  In specific, we generate 900 additional instances with number of vertices in
each layer equal to the number of edges.  (All instances in this and subsequent experiments were also
generated with the random_bigraph code.)  This is the same generator used by Jünger and Mutzel[12]

in their experiments, including the instances that we employed to construct Tables 6, 7 and 8.  We
generate 100 instances with number of edges ranging from 10 to 90 in increments of 10.  We again
use the solutions obtained by BC10 and TS for comparison purposes.  The BEST row represents the
minimum number of crossings found for each instance after running all procedures during the
experiment.  (We cannot assess how close the BEST values are from the optimal solutions, and we are
only using these values as a way of comparing the methods.)
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The issue of graph connectivity becomes relevant when dealing with sparse graphs.  Sparse graphs
will tend to have disjoint components.  This was verified by an anonymous referee who generated
graphs with n1 = n2 = m = 90 and found that approximately 30-35 vertices from each layer were of
degree zero, another 10 to 20 vertices were of degree one, and the remainder of the graph were about a
dozen larger components.  In his (her) report, this referee also indicated that the largest component
found in these experiments had about 28 vertices from each layer (Anonymous Referee[1]).

To address this situation, we have added a pre-processing phase that finds the disjoint components in
the graph.  After the preprocessing, the solution procedure (either BC, TS, GRASP or PR) is then
applied to each component.  We compare the performance of the procedures with and without the
preprocessing.  We indicate the use of the preprocessing by adding –PP to each procedure’s label in
tables 9, 10 and 11.

Table 9.  Average number of crossings.
Number of edges

Method 10 20 30 40 50 60 70 80 90 Average
BEST 0.29 1.07 2.25 3.46 4.88 6.60 8.00 9.24 13.41 5.47
BC10 0.43 3.43 8.03 15.28 22.88 32.48 42.38 51.87 65.17 26.88
GRASP 0.29 1.16 2.50 4.06 6.15 8.76 10.86 13.36 20.30 7.49
TS 0.29 1.07 2.39 4.91 7.88 12.02 15.82 20.14 27.40 10.21
PR 0.29 1.07 2.25 3.55 5.04 7.03 8.85 10.30 16.13 6.06
BC10-PP 0.31 1.48 3.63 5.72 8.97 12.00 15.44 17.70 26.12 10.15
GRASP-PP 0.29 1.11 2.31 3.73 5.46 7.68 9.29 11.11 16.96 6.44
TS-PP 0.29 1.07 2.25 3.52 4.97 6.85 8.30 9.73 13.96 5.66
PR-PP 0.29 1.07 2.28 3.52 4.92 6.83 8.30 9.38 13.91 5.61

Table 10.  Average percent deviation from the best known.
Number of edges

Method 10 20 30 40 50 60 70 80 90 Average
BC10 14.0 200.5 370.3 586.1 731.4 781.4 732.1 763.1 788.8 551.95
GRASP 0.0 3.3 10.4 16.0 27.2 35.8 39.8 49.4 63.6 27.27
TS 0.0 0.0 11.3 73.4 122.5 167.6 173.4 200.5 211.0 106.65
PR 0.0 0.0 0.0 1.4 2.2 4.7 10.3 11.0 23.1 5.85
BC10-PP 1.3 31.2 50.8 57.0 88.6 84.8 108.6 95.3 104.7 69.15
GRASP-PP 0.0 1.5 2.3 5.0 7.9 11.3 11.1 13.9 18.5 7.94
TS-PP 0.0 0.0 0.0 1.1 0.8 2.0 2.4 3.4 3.5 1.46
PR-PP 0.0 0.0 0.7 0.7 0.4 1.9 1.8 1.0 2.4 0.99

Table 11.  Average CPU seconds.
Number of edges

Method 10 20 30 40 50 60 70 80 90 Average
BC10 0.01 0.04 0.07 0.13 0.23 0.35 0.50 0.69 0.94 0.33
GRASP 0.00 0.02 0.05 0.11 0.16 0.25 0.32 0.43 0.56 0.21
TS 1.65 3.24 5.87 8.53 11.62 15.14 19.08 21.86 27.09 12.68
PR 0.01 0.45 1.79 2.74 3.78 7.25 8.97 13.34 14.82 5.91
BC10-PP 0.01 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.11 0.05
GRASP-PP 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.05 0.06 0.03
TS-PP 0.19 0.50 0.82 1.17 1.53 1.86 4.15 2.50 3.09 1.76
PR-PP 0.00 0.02 0.03 0.08 0.14 0.39 0.44 0.88 1.61 0.40
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Tables 9, 10 and 11 show that the preprocessing phase enhances the performance of all of the
procedures.  The path relinking with preprocessing achieves the best average deviation of less than
1%.  The computational effort associated with the PR-PP variant is very reasonable (with a worst case
average of 1.61 seconds).  This experiment shows that the performance of the BC-based approaches is
clearly inferior, with average deviations several orders of magnitude larger than those achieved by the
GRASP-based and TS approaches.  Also note the remarkable improvement of TS when the
preprocessor is used, with the average deviation decreasing from 106.65% to 1.46%.  In this sense, PR
is more robust since its average deviation improves from 5.85% without the preprocessing to 0.99%
with the preprocessing.

A third experiment was performed to assess the efficiency of our GRASP variants in denser graphs
(relative to our second experiment).  An additional set of 1,000 instances were generated with equal
number of vertices in each layer (ranging from 10 to 100) and twice as many edges as vertices in each
layer (hence, ranging from 20 to 200).  Jünger and Mutzel[12] used these instances to construct Table 6
in their paper.  We do not produce tables for this experiment, however, we report that the TS
procedure outperforms both the BC and the GRASP variants.  The average deviation from the best
known values is 1.41% for the TS procedure, while PR obtains an average deviation of 8.96%, using
similar computational time (i.e., 26 seconds for TS versus 22 seconds for PR).  The GRASP
approaches, however, were competitive with respect to the BC procedures, since these procedures
resulted in an average deviation of 14.07%.

In our last experiment, we generate 100 instances with 100 vertices in each layer and 100 edges.  The
experiment has the goal of showing how the average solution obtained by GRASP improves over time,
and to compare this average solution to the one obtained by BC100 (i.e., a barycenter approach that is
started 100 times from a random solution).  The results of this experiment are shown in Figure 2.

Fig. 2  GRASP and BC average solution over time.

The first average solution for BC100 has in fact 2,046 crossings, however, it has been deleted from
Figure 2 for scaling purposes.  It is obvious that the approaches are only comparable for very small
computational times (a fraction of a second).  GRASP clearly dominates the approach of starting BC
from random solutions as the procedures are allowed to run longer.
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6.  Conclusions

We have developed a heuristic procedure based on the GRASP methodology to provide high quality
solutions to the problem of minimizing straight-line crossings in a 2-layer graph.  Our GRASP
implementation was shown competitive in a set of problem instances for which the optimal solutions
are known (Tables 6, 7 and 8).  For a set of sparse instances, the proposed basic GRASP and its path
relinking variant performed remarkably well (outperforming the best procedures reported in the
literature).  This result can be explained by the construction phase of GRASP, which places more
importance to vertices with higher degree.  This is not done by either BC or TS whose performance
suffer in sparse graphs.  We show, however, that a preprocessing phase improves the performance of
all the procedures, including those that typically perform better with denser graphs (e.g., the tabu
search implementation).

Overall, experiments with 3,200 graphs were performed to assess the merit of the procedure developed
here.  This extensive experimentation allows us to conclude that our GRASP implementation seems
better suited for relatively low-density graphs.  As the density increases, procedures such as the one
based on the tabu search approach (Martí[16]) seem to be more appropriate.  Our experiments show that
TS is likely to outperform GRASP when m ≥ n1+n2.  Finally, our experience with the path relinking
approach shows that, although computationally more expensive, this strategy was able to improve the
performance of our basic GRASP implementation.
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