
Heuristics and Meta-Heuristics for 2-Layer
Straight Line Crossing Minimization

Rafael Martí1 and Manuel Laguna2

November 13, 2001

1 Departamento de Estadística e I.O. Universidad de Valencia. Dr. Moliner 50, 46100 Burjassot (Valencia) Spain.

Rafael.Marti@uv.es
2 Leeds School of Business, University of Colorado, 419 UCB, Boulder, CO 80309. Laguna@Colorado.Edu

Abstract — This paper presents extensive computational experiments to
compare 12 heuristics and 2 meta-heuristics for the problem of minimizing
straight-line crossings in a 2-layer graph. These experiments show that the
performance of the heuristics (largely based on simple ordering rules)
drastically deteriorates as the graphs become sparser. A tabu search
metaheuristic yields the best results for relatively dense graphs, with a
GRASP implementation as close second. Furthermore, the GRASP
approach outperforms all other approaches when tackling low -density
graphs.

1. Introduction

Researches in the graph-drawing field have proposed several aesthetic criteria that attempt to capture the
meaning of a “good” map of a graph. Although readability may depend on the context and the map’s user, most
authors agree that crossing reduction is a fundamental aesthetic criterion in graph dra wing. In the context of a 2-
layer graph and straight edges, the bipartite drawing problem or BDP consists of ordering the vertices in order to
minimize the number of crossings. Figure 1 shows two drawings of a sample graph with 12 vertices, 6 in each
layer, and 12 edges. The drawing labeled “a” has 5 crossings, while the drawing labeled “b” has 1.

Figure 1. Sample drawings.

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

(a) Crossings = 5 (b) Crossings = 1

1

2

3

4

5

6

7

8

9

10

11

12

1

2

3

4

5

6

7

8

9

10

11

12

(a) Crossings = 5 (b) Crossings = 1

 Martí and Laguna/ 2

A bipartite graph G=(V,E) is a simple directed graph where the set of vertices V is partitioned into two subsets L (the
left layer) and R (the right layer) and where E ⊆ L×R. Note that the direction of the arcs has no effect on crossings so
throughout this paper we consider G to be an undirected graph, the arcs to be edges and denote G by the triple (L,R,E).

We assume that the vertices in L and R are arranged in the vertical lines x = 0 and x = 1 respectively, and the edges are
straight lines. Thus, a drawing of the graph is specified with a unique y-coordinate for each vertex. Let h(u) be the y-
coordinate of vertex u in L. Similarly, let r(u) be the y-coordinate of vertex u in R. Given that the number of crossings does
not depend on the precise position of vertices but only on the ordering of the vertices, we say that h and r are orderings of L
and R respectively, and denote a drawing by the pair (h,r).

For each vertex u ∈ L the set of its adjacent vertices (neighbors) is denoted by Nu = {v∈R / (u,v) ∈ E} and its degree by du.
Similar definitions apply to a vertex u ∈ R. The density of the graph is the quotient between the number of edges on the
graph and the number of edges on the complete graph over the same number of vertices. In a bipartite graph G = (L,R,E) the

density is
|L| |R|

|E|
 .

A crossing is a set { (u,v) , (w,x) } ⊆ E of two edges where u,w ∈ L and v,x ∈ R with either h(u) < h(w) and r(v) > r(x)
or h(u) > h(w) and r(v) < r(x). A drawing is optimal if there is no other with fewer crossings. The optimal solution to the
BDP is an optimal drawing. A drawing (h,r) is left optimal when there is no other ordering h´ of L so that (h´,r) has fewer
crossings. A left optimal drawing is an optimal solution to the level permutation problem (LPP), for which the ordering r of
R is fixed. A drawing (h,r) is right optimal if there is no other ordering r´ of R so that (h,r´) has fewer crossings. As shown
by Eades and Kelly (1986), if a drawing is simultaneously right and left optimal this does not necessarily imply that the
drawing is also optimal with respect to the BDP.

Suppose that r is a fixed ordering of R and i and j are two vertices of L, then K(i,j) is the number of crossings that edges
incident to vertex i cause with edges incident to vertex j, when vertex i precedes vertex j in the ordering of L. Note that given
i and j ∈ L, the value of K(i,j) does not depend on the position of the remaining vertices of L, but it does dependent on the
ordering of the vertices of R. The value K(i,j) is similarly defined relative to i and j vertices of R, for an ordering h of L.

Given two orderings h and r of L and R, respectively, let C(G,h,r) be the total number of edge crossings of G with respect
to these orderings. C(G,h,r) can be obtained as the sum of the values K(i,j) with h(i) < h(j) for all the vertices i and j in L
(or similarly as the sum of all the K(i,j) with r(i) < r(j) for all vertices i and j in R):

∑
<

=
)()(

),(),,(
jhih

jiKrhGC

The BDP is known to be NP-complete (Johnson, 1982). Both the BDP and the general problem with more than 2
layers have been the subject of study for at least 17 years. Several heuristic algorithms have been proposed
throughout the years, beginning with the Relative Degree Algorithm introduced of Carpano (1980). These heuristics are
based on simple ordering rules, reflecting the goal of researchers and practitioners of quickly obtaining solutions of reasonable
quality. Recent developments, however, have shown that meta-heuristic approaches can be successfully applied to both the
BDP and the general multi-layer problem (Valls et al., 1996a; Martí, 1996; Laguna et al., 1997; and Laguna and Martí,
1999). Also, an exact procedure due to Valls et al. (1996b) has been developed for BDP. Additionally, for the special case
when the ordering in one of the layers is considered fixed, Jünger and Mutzel (1995) have developed a Branch and Cut
procedure.

In this paper we undertake to explore the behavior of the most relevant heuristic approaches developed for the BDP. With
this goal in mind, we have generated a large number of instances with a wide range of sizes and densities. In the following
sections we first provide short descriptions of the heuristics that are more often used in graph drawing systems. We then
present a summarized description of two meta-heuristic approaches, one based on GRASP (Laguna and Martí, 1999) and

 Martí and Laguna/ 3

the other on the tabu search methodology (Martí, 1996). These sections are followed by the results of our computational
testing with more than 3,000 graphs.

2. Heuristic Approaches

Since the first procedure developed by Carpano (1980), most heuristics for the BDP are structured in a
similar way. Specifically, the procedures first order one layer employing a simple rule, while keeping the position
of the vertices in the other layer fixed. Then the other layer is ordered and the process repeats until two
successive iterations occur in which the relative positions of the vertices remain the same. The following
summarizes the most relevant work in the area to the present.

The best-known approach to the BDP is the so-called Barycenter Method (BC1), which is similar to Carpano’s
algorithm (Sugiyama, 1981). In this algorithm, the position of a given vertex is calculated as the arithmetic mean
of the positions of its adjacent vertices. The basic principle of this rule is that crossings are likely to be
minimized by increasing the number of horizontal arcs. Gansner (1988) refined the barycenter procedure by
incorporating a tie-breaking mechanism (BC2).

Eades and Kelly (1986) propose the Splitting (SP) and the Greedy Switching (GS) approaches. In the Splitting
procedure, a vertex u is chosen and every other vertex v is placed above or below u with the goal of minimizing
the number of crossing due to the current positions of u and v. Then the process is recursively applied to order
the set of vertices below and above u. (In this description we assume that the vertices are drawn in two parallel
columns, each one corresponding to a layer, as shown in Figure 1.) Greedy Switching considers all consecutive
pairs of vertices and exchanges their positions as long as this move decreases the number of crossings.

Eades and Wormald (1986) developed the Median heuristic (MED1). This ordering rule is similar to the barycenter
method, with the difference that it employs the median instead of the average to compute the position of each vertex. The
same authors (1994) later proposed a variant of this method (MED2). A hybrid of the Median and Barycenter methods is
presented in Makinen (1990) and is known as the Semimedian heuristic (SM).

In our study we have also considered combinations of pairs of algorithms denoted by (A_B), as typically done in some
graph drawing systems. In these hybrid approaches, the algorithms are performed in sequence, such that the
second procedure (i.e., B) starts from the solution obtained by the first one (i.e., A). The nature of the second
algorithm must be such that it can be applied as a descent method capable of finding local optima (such as a
switching heuristic). Thus, not all combinations are possible. In particular, we focus our attention to 5 combined
algorithms: BC2_GS (Gansner et al., 1988), SM_GS (Gansner et al., 1993), SP_GS, BC2_SP and GS_SP.

3. GRASP Approach

The GRASP methodology was developed in the late 1980s, and the acronym was coined by Tom Feo (Feo and
Resende, 1995). It was first used to solve computationally difficult set covering problems (Feo and Resende, 1989). Each
GRASP iteration consists of constructing a trial solution and then applying an exchange procedure to find a local optimum
(i.e., the final solution for that iteration). The details of the two GRASP phases developed by Laguna and Martí (1999)
follow:

Construction Phase
This phase starts by creating a list of unassigned vertices (U), which originally consists of all the vertices
in the graph. The first vertex v is randomly selected from all those vertices in U with maximum degree.
Then U is updated by deleting v from the list. In subsequent construction steps, the next vertex v is
selected from a list of vertices with a degree of no less than 2/3 of the maximum degree of all the vertices
in U. Vertex degree, in this case, is calculated with respect to the subgraph given by the partial solution

 Martí and Laguna/ 4

obtained from previous vertex selections. (Note that this is different from the first vertex selection,
where maximum degree is calculated with respect to the original graph.)

A chosen vertex v is placed as prescribed by the barycenter calculation. If the position is already
occupied by a previously chosen vertex, then vertex v is placed either one position above or one position
below the barycenter (whichever produces the least number of crosses with respect to the partial
construction). Once v has been positioned in the partial solution, the vertex is deleted from the list U
and the vertex degree calculations (corresponding to the remaining elements of U) are updated
accordingly. The construction phase terminates when all vertices have been selected (i.e., U = ∅).

Improving Phase
In each step of the improving phase vertices are selected to be moved. The probability of selecting a
vertex increases with its degree. When a vertex is selected, three moves are considered: (1) to insert the
vertex one position above the barycenter, (2) to insert the vertex at the barycenter position, and (3) to
insert the vertex one position below the barycenter. The vertex is placed in the position that produces
the maximum reduction in the number of crosses. If no reduction is possible, then the vertex is not
moved. An improving step terminates when all vertices have been considered for insertion. (Note that
within the same improving step, some vertices may be moved while others may stay in their original
positions.) More steps are performed as long as at least one vertex is moved (i.e., as long as the current
solution keeps improving).

When a step fails to improve the current solution, and before abandoning the improving phase, an
attempt is made to exchange adjacent vertices in order to find an improved solution. This process is
performed on each layer, from top to bottom, according to the vertex order in the current solution.

The GRASP implementation also includes strategies for by -passing the improving phase in order to accelerate the search
when constructions are not likely to yield a better solution than the best known (i.e., the incumbent solution recorded during
the search). Also, a path relinking process is implemented to increase search efficiency, but this feature has been disallowed
for the purpose of our study. (Path Relinking has been proposed in the context of tabu search as described in Glover and
Laguna (1997).)

4. Tabu Search Approach

Tabu Search (TS) is a technique that employs adaptive memory and that has been used for solving hard
combinatorial optimization problems (Glover and Laguna, 1997).

The TS adaptation to the BDP developed by Martí (1998) has three different search states: Normal, Influential and
Opposite, and it oscillates among them according to the search history. In each state there are two alternately applied
phases, an Intensification Phase and a Diversification Phase. In the Intensification Phase only improving moves may be
performed. In the Diversification phase both non-improving and improving moves may be performed with the aim of
escaping from local optima and directing the search to regions in the solution space that have not been explored. The
meaning of “improving” is not limited to the objective function evaluation, since it considers factors such as move influence
(as determined by the search history and the context).

At each iteration of the intensification phase the procedure considers removing a vertex from its current position and
inserting it in its barycenter. The move evaluation in the Normal search state is given by the change in the number of
crossings when the move is performed. In the intensification phase the procedure only allows a move to be made when the
number of crossings strictly diminishes. Thus, it is considered that after a specified number of iterations have been reached
without improvement, t he current ordering is sufficiently close to the local optimum to stop this phase.

 Martí and Laguna/ 5

The moves defined in the intensification are based on a positioning function while those defined in the diversification are
based on permuting consecutive vertices. The use of different moves fulfills the role of altering the terrain visited in a way
that is unlikely to occur by always applying the same kind of moves; thus reinforcing the non-monotonic search strategy
common to tabu search.

The algorithm starts in the normal state. If the best solution does not improve after a number of iterations, then the state
begins to oscillate following the sequence: Normal, Influential, Normal, Opposite, Normal, Influential, etc. When the best
solution is improved the state is re-initialized to Normal.

The Intensification and Diversification Phases are alternately applied to all three search states. The move definition in each
phase is the same in the three states (as described earlier). In the Normal and Opposite states the move evaluation is given
by the change in the number of crossings when the move is performed. In the Influential state the evaluation is given by the
change in the solution structure. The objective of this search state is to change the solution structure by moving vertices
with large degree, which tend to occupy the same position for many iterations.

Finally, the objective of the Opposite search state is to provide an aggressive diversification scheme that permits the
discovery of new solutions in “far” regions usually non visited. Thus, reinforcing the long term memory diversification.

5. Computational Comparison

All the procedures described in the sections above were implemented in C, and all experiments were performed on a
Pentium-150 personal computer. Our first set of experiments was done on graph instances generated with the
random_bigraph code of the Stanford GraphBase by Knuth (1993). This generator is hardware independent so the
experiments are fully reproducible.

In our first experiment, the instances have 10 vertices in each layer and a number of edges (m) ranging from 10 to 90. There
are a total of 900 instances (100 instances for each edge density). For this relatively small graph size the optimal solution
can be found with the branch and bound code developed by Valls et al. (1996b). Tables 1, 2 and 3 report, respectively, the
average number of crossings, the average deviation from the optimal solutions (see OPT in Table 1), and the average CPU
seconds.

Table 1. Average number of crossings on 10 + 10 nodes.
m = 10 20 30 40 50 60 70 80 90 Average
opt 0.29 11.62 56.6 146.89 276.78 463.17 698.35 1008.38 1405.57 451.96
bc1 2.21 20.32 68.13 160.31 289.03 476.03 712 1026.72 1424.17 464.32
bc2 2.21 20 66.51 159.1 288.07 475.52 711.08 1024.27 1422.12 463.20
med1 2.05 26.1 83.8 188.51 329.3 530.21 769.61 1099.03 1496.26 502.76
med2 1.7 23.85 79.16 181.54 316.87 511.13 748.1 1066.88 1450.4 486.62
sm 2.38 21.33 71.17 167.5 302.84 494.33 728.73 1052.5 1442.04 475.86
gs 9.67 33.17 81.17 164.21 293.75 481.39 714.58 1021.46 1424.48 469.32
sp 1.93 21.45 69.26 158.55 290.61 481.48 712.03 1022.6 1419.86 464.19
bc2_gs 2.21 19.92 66.02 158.55 287.21 474.75 709.68 1023.46 1421.21 462.55
sm_gs 2.34 20.5 67.43 160.32 290.6 477.59 710.88 1023.03 1423.91 464.06
sp_gs 1.93 21.45 69.26 158.55 290.6 481.48 712.03 1022.6 1419.86 464.19
bc2_sp 1.99 19.35 64.77 157.17 286.43 474.35 709.69 1023.42 1421.11 462.03
gs_sp 2.11 20.25 68.64 158.56 291.46 479.18 713.71 1021.37 1424.13 464.37
tabu 0.29 11.62 56.6 146.89 276.78 463.17 698.35 1008.38 1405.57 451.96
grasp 0.29 11.77 57.09 147.20 276.99 463.47 698.46 1008.46 1405.64 452.15

 Martí and Laguna/ 6

Table 2. Average percent deviation from optima on 10 + 10 nodes.
m 10 20 30 40 50 60 70 80 90 Average
bc1 188.3% 85.0% 21.0% 9.3% 4.4% 2.7% 1.9% 1.8% 1.3% 35.1%
bc2 188.3% 81.8% 18.1% 8.4% 4.1% 2.6% 1.8% 1.6% 1.2% 34.2%
med1 170.5% 148.3% 50.1% 28.6% 19.1% 14.6% 10.3% 9.0% 6.5% 50.8%
med2 135.7% 126.3% 41.7% 23.8% 14.5% 10.4% 7.2% 5.8% 3.2% 40.9%
sm 204.8% 97.4% 26.2% 14.0% 9.5% 6.8% 4.3% 4.4% 2.6% 41.1%
gs 905.1% 211.8% 44.2% 11.8% 6.2% 3.9% 2.3% 1.3% 1.3% 132.0%
sp 157.7% 98.7% 23.2% 8.0% 5.0% 3.9% 1.9% 1.4% 1.0% 33.4%
bc2_gs 188.3% 81.0% 17.2% 8.0% 3.7% 2.5% 1.6% 1.5% 1.1% 33.9%
sm_gs 200.8% 88.0% 19.4% 9.1% 5.1% 3.1% 1.8% 1.5% 1.3% 36.7%
sp_gs 157.7% 98.7% 23.2% 8.0% 5.0% 3.9% 1.9% 1.4% 1.0% 33.4%
bc2_sp 166.3% 76.3% 14.7% 7.1% 3.5% 2.4% 1.6% 1.5% 1.1% 30.5%
gs_sp 177.7% 81.6% 21.9% 8.1% 5.3% 3.5% 2.2% 1.3% 1.3% 33.6%
tabu 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
grasp 0.00% 1.23% 0.82% 0.20% 0.07% 0.06% 0.02% 0.01% 0.00% 0.27%

Table 3. Average CPU seconds on 10 + 10 nodes.
m 10 20 30 40 50 60 70 80 90 Average
bc1 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
bc2 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01
med1 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.00 0.01
med2 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00
sm 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01
gs 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00
sp 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.03 0.01
bc2_gs 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
sm_gs 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01
sp_gs 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.01
bc2_sp 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.01
gs_sp 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.01
tabu 0.43 0.82 1.51 2.50 3.93 8.12 17.50 39.35 60.81 15.00
grasp 0.01 0.02 0.04 0.06 0.08 0.11 0.14 0.18 0.18 0.09

These tables show that the best solution quality is obtained by the tabu search method (TS), which is able to match all
known optimal solutions. However, TS employs more computational time than the other methods (15 seconds on average,
compared to less than a second for all other methods). GRASP is very competitive, considering its average percent
deviation from optima of 0.27% achieved on an average of 0.09 seconds. BC2_SP is the best of the combined algorithms
with 30.5% average percent deviation from optima, while SP is the best of the simple procedures (33.4%) closely followed
by BC2 (34.2%).

These tables also show that the performance of heuristics quickly deteriorates as the graph become sparser. In high-density
graphs the performance of all the heuristic methods are very similar (see the m=90 column in Table 2). These results lead
us to the observation that the lower the density the more difficult the problem. Moreover, considering that low-density
graphs are more commonly found in real-world applications, we make this graphs the focus of our attention.

In our second experiment we generate 900 additional instances with number of vertices in each layer equal to the number of
edges. We generate sets of 100 instances with number of edges ranging from 10 to 90 in increments of 10. The BEST row
represents the minimum number of crossings found for each instance after running all procedures during the experiment.
(We cannot assess how close the BEST values are from the optimal solutions, so we are only using these values as a way of
comparing the methods.)

 Martí and Laguna/ 7

Table 4. Average number of crossings on sparse graphs.
m 10 20 30 40 50 60 70 80 90 Average
best 0.29 1.07 2.25 3.6 5.2 7.06 8.68 10.26 15.03 5.9
bc1 2.21 8.52 16.76 26.04 39.06 51.5 70.85 78.56 97.83 43.5
bc2 2.21 8.57 16.53 25.81 38.13 50.29 70.06 79.45 95.94 43.0
med1 2.05 9.31 24.87 42.91 69.54 96.23 137.1 182.5 225.3 87.8
med2 1.7 8.25 23.09 40.6 67.2 92.24 132.2 178 219.9 84.8
sm 2.38 8.16 18.46 31.13 49.41 65.25 91.83 108.8 136.6 56.9
gs 9.67 62.9 161.1 316.8 515.1 755.6 1071 1425 1818 681.7
sp 1.93 11.71 26.06 49.18 82.46 107.5 152.2 199.1 254.3 98.3
bc2_gs 2.21 8.5 16.38 25.36 37.47 49.31 68.43 77.55 94.11 42.1
sm_gs 2.34 7.99 17.96 30.28 48.65 63.99 90.15 106.9 134.4 55.9
sp_gs 1.93 11.71 26.06 49.18 82.46 107.5 152.2 199.1 254.3 98.3
bc2_sp 1.99 8.41 15.96 25.28 37.39 48.82 68.04 77.27 93.89 41.9
gs_sp 2.11 11.48 26.76 50.31 82.21 113.4 151.7 201.2 244.2 98.1
tabu 0.29 1.07 2.39 4.91 7.88 12.02 15.82 20.14 27.4 10.2
grasp 0.29 1.09 2.27 3.62 5.23 7.09 8.74 10.26 15.14 5.9

Table 5. Average percent deviation from the best known on sparse graphs.
m 10 20 30 40 50 60 70 80 90 Average
bc1 188% 619% 926% 1090% 1253% 1330% 1259% 1081% 1120% 985%
bc2 188% 622% 927% 1073% 1248% 1306% 1249% 1088% 1104% 978%
med1 171% 645% 1466% 1821% 2250% 2710% 2537% 2844% 2779% 1914%
med2 136% 558% 1357% 1702% 2163% 2599% 2442% 2770% 2694% 1825%
sm 205% 596% 1056% 1319% 1709% 1765% 1659% 1459% 1614% 1265%
gs 905% 5146% 10542% 16814% 20878% 24114% 23242% 25237% 27121% 17111%
sp 158% 887% 1584% 2233% 3058% 3181% 2960% 3194% 3358% 2290%
bc2_gs 188% 617% 919% 1057% 1226% 1288% 1222% 1066% 1087% 963%
sm_gs 201% 583% 1024% 1294% 1689% 1739% 1625% 1427% 1590% 1241%
sp_gs 158% 887% 1584% 2233% 3058% 3181% 2959% 3194% 3358% 2290%
bc2_sp 166% 612% 891% 1051% 1224% 1281% 1217% 1061% 1085% 954%
gs_sp 178% 871% 1578% 2378% 3038% 3340% 2990% 3305% 3246% 2325%
tabu 0.0% 0.0% 11.3% 70.7% 116.9% 158.3% 158.3% 178.8% 183.3% 97.5%
grasp 0.0% 0.3% 0.5% 0.3% 0.3% 0.2% 0.1% 0.0% 0.2% 0.2%

Table 6. Average CPU seconds on sparse graphs.
m 10 20 30 40 50 60 70 80 90 Average
bc1 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.10 0.13 0.05
bc2 0.00 0.00 0.01 0.02 0.03 0.05 0.06 0.09 0.12 0.04
med1 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.06 0.08 0.03
med2 0.00 0.00 0.01 0.02 0.02 0.03 0.05 0.06 0.08 0.03
sm 0.00 0.01 0.01 0.02 0.04 0.06 0.08 0.11 0.16 0.06
gs 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00
sp 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.03
bc2_gs 0.00 0.00 0.01 0.02 0.03 0.05 0.07 0.09 0.12 0.04
sm_gs 0.00 0.00 0.01 0.02 0.04 0.06 0.08 0.12 0.16 0.06
sp_gs 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.07 0.09 0.03
bc2_sp 0.00 0.01 0.01 0.03 0.04 0.06 0.09 0.13 0.18 0.06
gs_sp 0.00 0.00 0.01 0.01 0.02 0.04 0.05 0.07 0.09 0.03
Tabu 1.65 3.24 5.87 8.53 11.62 15.14 19.08 21.86 27.09 12.68
grasp 0.00 0.05 0.18 0.44 0.93 1.86 3.07 4.65 6.91 2.01

 Martí and Laguna/ 8

Tables 4, 5 and 6 show the remarkable performance of GRASP when tackling instances with low edge density. An average
percent deviation of 0.2% is achieved by GRASP, which compares quite well with the average deviation of 97.5%
corresponding to the tabu search procedure. The computational effort associated with the GRASP is still modest (2.01
seconds). The performance of the simple and combined algorithms is clearly inferior in this experiment, with average
deviations several orders of magnitude larger than those achieved by the GRASP approach.

A third experiment was performed in denser graphs (relative to our second experiment). An additional set of instances was
generated with equal number of vertices in each layer (ranging from 10 to 100) and twice as many edges as vertices in each
layer (hence, ranging from 20 to 200). In Tables 7,8 and 9, we note that the TS procedure outperforms all other heuristics.
The average deviation from the best-known values is 0.6% for the TS procedure, while GRASP obtains an average
deviation of 10.6%. (TS, however uses 26 seconds versus 3.9 seconds for GRASP.) The rest of the heuristics under
consideration yield average percent deviations in excess of 40%. As before, BC2_SP and BC2 are the best of the combined
and single procedures respectively. Their average CPU times are 0.2 seconds.

Table 7. Average number of crossings.
m 20 40 60 80 100 120 140 160 180 200 Average
best 11.6 45.4 105.6 178.6 282.2 424.3 570.3 742.5 960.1 1145.2 446.6
bc1 20.3 76.9 164.9 274.0 403.3 601.3 784.5 1012.1 1248.3 1507.6 609.3
bc2 20.0 75.8 163.5 270.0 397.8 596.9 780.5 1000.4 1225.8 1482.6 601.3
med1 26.1 110.7 251.8 445.7 706.1 1027.7 1418.3 1824.2 2312.6 2868.7 1099.2
med2 23.9 105.4 246.3 437.0 694.5 1015.4 1399.1 1806.6 2290.5 2846.5 1086.5
sm 21.3 82.5 191.1 319.5 489.8 722.2 974.7 1261.7 1592.5 1906.4 756.2
gs 33.2 211.7 569.0 1158.8 1888.5 2827.0 4042.9 5401.5 6934.6 8693.9 3176.1
sp 21.5 92.7 210.2 356.5 560.0 779.1 1059.2 1351.2 1685.5 2028.2 814.4
bc2_gs 19.9 74.8 160.6 264.4 388.9 583.2 761.9 977.0 1195.5 1446.6 587.3
sm_gs 20.5 79.2 184.4 308.8 474.2 701.6 948.5 1229.8 1552.7 1859.1 735.9
sp_gs 21.5 92.7 210.1 356.4 559.8 778.7 1058.7 1350.8 1684.8 2027.2 814.0
bc2_sp 19.4 74.1 159.6 262.0 384.9 575.1 752.0 962.4 1179.3 1422.1 579.1
gs_sp 20.3 92.5 209.8 362.6 538.0 801.4 1059.1 1364.7 1674.9 2042.2 816.5
tabu 11.6 45.5 105.9 179.3 285.0 426.9 573.8 746.7 967.6 1154.4 449.7
grasp 11.8 48.3 115.7 197.3 317.4 475.8 641.7 835.0 1061.6 1308.7 501.3

Table 8. Average percentage deviation.
m 20 40 60 80 100 120 140 160 180 200 Average
bc1 85.0% 76.5% 59.9% 58.5% 45.3% 43.5% 39.7% 37.9% 31.6% 32.5% 51.0%
bc2 81.8% 73.8% 57.6% 56.5% 43.2% 42.4% 38.8% 36.2% 29.1% 30.3% 49.0%
med1 148.3% 160.3% 147.0% 159.9% 155.7% 147.7% 153.3% 150.6% 146.3% 154.4% 152.4%
med2 126.3% 148.0% 141.3% 155.0% 151.7% 144.8% 149.9% 148.2% 143.9% 152.4% 146.1%
sm 97.4% 93.6% 86.1% 85.5% 76.2% 72.7% 73.8% 72.8% 68.4% 68.7% 79.5%
gs 211.8% 402.0% 461.3% 578.8% 584.9% 585.5% 628.7% 644.8% 640.1% 672.9% 541.1%
sp 98.7% 115.2% 104.8% 108.5% 103.0% 88.0% 89.4% 85.9% 79.1% 79.8% 95.2%
bc2_gs 81.0% 71.5% 54.8% 53.2% 39.9% 39.1% 35.5% 32.9% 25.9% 27.1% 46.1%
sm_gs 88.0% 85.9% 79.5% 79.1% 70.7% 67.8% 69.1% 68.5% 64.2% 64.4% 73.7%
sp_gs 98.7% 115.2% 104.7% 108.4% 103.0% 87.9% 89.4% 85.8% 79.0% 79.7% 95.2%
bc2_sp 76.3% 69.9% 53.9% 51.7% 38.5% 37.2% 33.7% 30.9% 24.2% 25.0% 44.1%
gs_sp 81.6% 117.8% 105.8% 112.5% 94.7% 92.6% 89.3% 87.6% 77.8% 80.4% 94.0%
tabu 0.0% 0.4% 0.3% 0.5% 1.1% 0.6% 0.7% 0.6% 0.7% 0.8% 0.6%
grasp 1.2% 6.4% 9.9% 10.8% 12.7% 12.8% 13.0% 13.1% 11.3% 14.8% 10.6%

 Martí and Laguna/ 9

Table 9. Average CPU seconds.
m 20 40 60 80 100 120 140 160 180 200 Average
bc1 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.2
bc2 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.5 0.7 0.2
med1 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.1
med2 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.1
sm 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.4 0.5 0.2
gs 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sp 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.5 0.6 0.2
bc2_gs 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.7 0.2
sm_gs 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.4 0.5 0.2
sp_gs 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.3 0.5 0.6 0.2
bc2_sp 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.5 0.7 0.9 0.3
gs_sp 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.3 0.5 0.6 0.2
tabu 0.8 2.3 4.0 15.1 28.9 23.6 22.1 53.1 38.4 72.8 26.1
grasp 0.0 0.2 0.5 1.0 1.9 3.1 4.8 6.5 9.1 12.4 3.9

Figure 2 shows the average percentage distance of all algorithms to the best solution known on sparse and dense graphs. The
percent of greedy switching heuristic (GS) in sparse graphs is in fact 17,111%, however it has been scaled down to 3,000%
for plotting. The procedures in Figure 2 are shown in ascending order, as given by their percent deviation on sparse graphs.

Figure 2. Average Percent Deviation from the Best Solution Known.

In Tables 10, 11 and 12 we repeat the second experiment on sparse graphs comparing tabu search and GRASP to BC2_SP
and BC2 with 25 starts from random orderings.

Table 10. Average number of crossings on sparse graphs.
m 10 20 30 40 50 60 70 80 90 Average
best 0.3 1.1 2.3 3.6 5.2 7.1 8.7 10.3 15.0 5.9
bc2 25 0.3 2.2 6.5 12.7 19.3 27.5 36.2 47.3 60.2 23.6
bc2_sp 25 0.3 2.2 6.4 12.4 19.0 26.3 36.7 46.7 57.1 23.0
tabu 0.3 1.1 2.4 4.9 7.9 12.0 15.8 20.1 27.4 10.2
grasp 0.3 1.1 2.3 3.6 5.2 7.1 8.7 10.3 15.1 6.0

0%

500%

1000%

1500%

2000%

2500%

3000%

gr
as

p

ta
bu

bc
2_

sp

bc
2_

gs bc
2

bc
1

sm
_g

s

sm

m
ed

2

m
ed

1

sp

sp
_g

s

gs
_s

p gs

Algorithms

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n

Sparse

Dense

 Martí and Laguna/ 10

Table 11. Average percent deviation from the best known on sparse graphs.
m 10 20 30 40 50 60 70 80 90 Average
bc2 25 2.0% 98.4% 275.1% 455.3% 582.5% 634.4% 553.3% 631.4% 621.6% 428.2%
bc2_sp 25 1.0% 97.7% 270.6% 453.3% 563.9% 595.9% 582.4% 606.4% 595.0% 418.5%
tabu 0.0% 0.0% 11.3% 70.7% 116.9% 158.3% 158.3% 178.8% 183.3% 97.5%
grasp 0.0% 0.3% 0.5% 0.3% 0.3% 0.2% 0.1% 0.0% 0.2% 0.2%

Table 12. Average CPU seconds on sparse graphs.
m 10 20 30 40 50 60 70 80 90 Average
bc2 25 0.02 0.10 0.23 0.45 0.78 1.19 1.73 2.41 3.37 1.14
bc2_sp 25 0.04 0.15 0.34 0.65 1.10 1.67 2.43 3.40 4.57 1.59
tabu 1.65 3.24 5.87 8.53 11.62 15.14 19.08 21.86 27.09 12.68
grasp 0.00 0.05 0.18 0.44 0.93 1.86 3.07 4.65 6.91 2.01

Note that an average percent deviation of 428% is achieved by BC2 from 25 random starts, which improves the average
deviation of 970% corresponding to the single BC2. GRASP still dominates the approach of starting BC variants from
random solutions, since the average deviation for GRASP is 0.2% and their average CPU times are equivalent (1.59 seconds
for bc2_sp25 compared to 2.01 seconds for GRASP).

Since all our previous experimentation was done with the same random graph generator, we now perform a new set of
experiments with a different generator. The goal of this experiment is to verify that our observations are not biased by the
particular structure of the graphs generated by the random_bigraph routine. The new procedure constructs a graph
in two steps using three parameters: the number of vertices in the left layer, the number of vertices in the right
layer and the graph density. In the first step, the procedure forces all vertices to have a minimum degree of one.
For each vertex in the left layer, it randomly selects a vertex on the right side and generates the corresponding
edge; then for each vertex in the right layer with no incident edge, it randomly selects a vertex from the left layer
and generates the corresponding edge. In the second step, it randomly generates the remaining edges necessary
to give the graph the desired density. This is done by randomly selecting a vertex from the left side and one from
the right. If there is no edge between them, it generates one.

We use this random graph generator to create a set of 300 instances. The graphs are divided in 15 groups of 20
instances. Each group has a different graph size but the same density. The graph sizes vary from n = 14 to
n = 100. The exact procedure of Valls, Martí and Lino (1996b) was applied to 140 of the smaller instance to
determine their optimal solutions. The results of this additional experiment did not contradict our previous
observations. The tabu s earch procedure is more effective than alternative approaches when dealing with denser
graphs. The average deviation from optimality for the tabu search implementation was 0.11%. In addition, the
tabu search implementation yielded all the best-known solution to the 160 problems for which the optimal
solution is not known. The performance of the heuristic approaches varied with the best being BC2_SP and the
worst MED1.

6. Conclusions

A computational comparison of 14 existing methods for the BDP has been presented. Overall, experiments with
2,900 graphs were performed to compare the procedures. This extensive experimentation allows us to conclude that the
GRASP implementation seems better suited for relatively low -density graphs. As the density increases the tabu search
approach (Martí 1996) seem to be more appropriate, but if run time is critical a combination of the barycenter and splitting
heuristics may be a better choice.

It is worth mentioning that Dell’Amico and Maffioli (1996), who implemented and tested a TS procedure for the 2-
partition problem, reached a similar conclusion with respect to GRASP and TS implementations. Their TS code was able
to outperform the GRASP implementation of Laguna et al. (1994) in all but the sparsest graphs.

 Martí and Laguna/ 11

The advantage of GRASP in sparse graphs seems to reside in the construction phase. TS approaches rely on move
evaluations to find promising search directions, however, in sparse graphs, neighborhoods contain many moves with the
same move value and tie-breaking mechanism are not immediately obvious. Although we don’t have statistical evidence to
justify this conjecture, we have observed this behavior in a sample set of instances. Determining the conditions under which
multiple constructions followed by a limited search is a preferable approach to a long search from an initial solution is
without a doubt an interesting topic for future studies.

References

Carpano, M. J. (1980) “Automatic Display of Hierarchized Graphs for Computer Aided Decision Analysis”, IEEE Transactions
on Systems, Man, and Cybernetics, Vol. 10, No. 11, pp. 705-715.

Dell’Amico, M. and F. Maffioli (1996) “A New Tabu Search Approach to the 0-1 Equicut Problem,” metaheuristics: Theory
and Applications, I. H. Osman and J. P. Kelly (eds.), pp. 361-377.

Eades, P. and D. Kelly (1986) “Heuristics for Drawing 2-Layered Networks”, Ars Combinatoria, Vol. 21, 89-98.
Eades, P., X. Lin and R. Tamassia (1994) “An Algorithm for Drawing a Hierarchical Graph,” Proceedings of the Second

Canadian Conference on Computational Geometry, University of Otawa, pp. 1-18.
Eades, P., and N. C. Wormald (1986) “The Median Heuristic for Drawing 2-layered Networks,” Technical report 69,

Department of Computer Science, University of Queensland.
Eades P. and N.C. Wormald (1994), “Edge crossing in drawings of bipartite graphs”, Algorithmica Vol. 11, 379-403.
Feo, T. and M. G. C. Resende (1989) “A probabilistic Heuristic for a Computationally Difficult Set Covering Problem,”

Operations Research Letters, Vol. 8, pp. 67-71.
Feo, T. and M.G.C. Resende (1995) “Greedy Randomized Adaptive Search Procedures,” Journal of Global Optimization, 2,

1-27.
Gansner E.R., S.C. North and K.P. Vo (1988), "DAG - A Program that Draws Directed Graphs", Software Practice and

Experience, 18 (11), pp. 1047-1062.
Gansner, E. R., E. Koutsofios, S. C. North and K. P. Vo (1993) “A Technique for Drawing Directed Graphs,” IEEE

Transactions on Software Engineering, Vol. 19, No. 3, pp. 214-230.
Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, forthcoming.
Johnson D.S. (1982), “The NP-completeness column: an ongoing guide”, Journal of Algorithms, 3, 288-300.
Jünger M. and P. Mutzel (1995) “Exact and Heuristic Algorithms for 2-Layer Straight Line Crossing Minimization,” Lecture

Notes in Computer Science, Graph Drawing 95, Springer Verlag, pp. 337-348.
Knuth, D. E. (1993) The Stanford GraphBase: A Platform for Combinatorial Computing , Addison Wesley, N.Y.
Laguna, M., T. A. Feo and H. C. Elrod (1994) “A Greedy Randomized Adaptive Search Procedure for the Two -Partition

Problem,” Operations Research, Vol. 42, No. 4, pp. 677-687.
Laguna M., R. Martí and V. Valls (1997) “Arc Crossing Minimization in Hierarchical Digraphs with Tabu Search”, Computers

and Operations Research, Vol. 24, No. 12, pp. 1175-1186.
Laguna, M. and R. Martí (1999) “GRASP and Path Relinking for 2-Layer Straight Line Crossing Minimization,” INFORMS

Journal on Computing, Vol. 11, No. 1, pp. 44-52.
Makinen, E. (1990) “Experiments on Drawing 2-Level Hierarchical Graphs”, International Journal of Computer Mathematics,

Vol. 36.
Martí R. (1998) “A Tabu Search Algorithm for the Bipartite Drawing Problem”, European Journal of Operational Research ,

Vol. 106, pp. 558-569.
Sugiyama, K. (1987) “A Cognitive Approach for Graph Drawing,” Cybernetics and Systems: An International Journal, Vol.

18, pp. 447-488.
Sugiyama, K., S. Tagawa and M. Toda (1981) “Methods for Visual Understanding of Hierarchical System Structures,” IEEE

Transactions on Systems, Man, and Cybernetics, Vol. 11, No. 2, pp. 109-125.
Valls, V., R. Martí and P. Lino (1996a) “A Tabu Thresholding Algorithm for Arc Crossing Minimization in Bipartite Graphs”,

Annals of Operations Research, Vol. 63, pp. 233-251.
Valls, V., R. Martí and P. Lino (1996b) “A Branch and Bound Algorithm for Arc Crossing Minimization in Bipartite Graphs,”

European Journal of Operational Research, Vol. 90, pp. 303-319.

