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Abstract — Scatter search is an evolutionary method that, unlike genetic algorithms, operates on a small 
set of solutions and makes only limited use of randomization as a proxy for diversification when searching 
for a globally optimal solution.  The scatter search framework is flexible, allowing the development of 
alternative implementations with varying degrees of sophistication.  In this paper, we test the merit of 
several scatter search designs in the context of global optimization of multimodal functions.  We compare 
these designs among themselves and choose one to compare against a well-known genetic algorithm that 
has been specifically developed for this class of problems.  The testing is performed on a set of benchmark 
multimodal functions with known global minima. 
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1. Introduction 

Scatter search is a solution procedure that falls within the evolutionary framework and consists of five 
methods: 
 

1. A Diversification Generation Method to generate a collection of diverse trial solutions, using 
one or more arbitrary trial solutions (or seed solutions) as an input. 

 
2. An Improvement Method to transform a trial solution into one or more enhanced trial 

solutions.  (Neither the input nor the output solutions are required to be feasible, though the 
output solutions are typically feasible.  If the input trial solution is not improved as a result of 
the application of this method, the “enhanced” solution is considered to be the same as the 
input solution.) 

 
3. A Reference Set Update Method to build and maintain a reference set consisting of the b 

“best” solutions found (where the value of b is typically small, e.g., no more than 20), 
organized to provide efficient accessing by other parts of the solution procedure.  Several 
alternative criteria may be used to add solutions to the reference set and delete solutions from 
the reference set. 

 
4. A Subset Generation Method to operate on the reference set, to produce a subset of its 

solutions as a basis for creating combined solutions.  The most common subset generation 
method is to generate all pairs of reference solutions (i.e., all subsets of size 2). 

 
5. A Solution Combination Method  to transform a given subset of solutions produced by the 

Subset Generation Method into one or more combined solutions.  The combination method is 
analogous to the crossover operator in genetic algorithms but it must be capable of combining 
two or more solutions. 

 
The scatter search methodology is very flexible, since each of its elements can be implemented in a variety 
of ways and degrees of sophistication.  Details about the origin and applications of scatter search can be 
found in, Glover (1998), Glover, Laguna and Martí (1999) and Laguna (2002).  In our current development, 
we study the merit of alternative scatter search designs in the context of nonlinear optimization.  In 
particular, we use a benchmark set of unconstrained problems, for which global optima are known.  That is, 
the class of problems that we use for testing can be characterized as: 
 

Minimize  ( )xf  

Subject to uxl ≤≤  
 
Where ( )xf  is a nonlinear function and x is a vector of continuous and bounded variables.  We test several 
alternatives for generating diversification and updating the reference set in a procedure that does not use an 
improvement method and in which combinations are linear and limited to pairs of solutions.  We also test 
the use of a two-phase intensification.  These strategies are added to a basic procedure, which is outlined in 
form of pseudo-code in Figure 1.  
 
The basic procedure in Figure 1 starts with the creation of an initial reference set of solutions (RefSet).  The 
Diversification Generation Method is used to build a large set of diverse solutions P.  The size of P (PSize) 
is typically 10 times the size of RefSet.  Initially, the reference set RefSet consists of b distinct and 
maximally diverse solutions from P.  The solutions in RefSet are ordered according to quality, where the 
best solution is the first one in the list.  The search is then initiated by assigning the value of TRUE to the 
Boolean variable NewSolutions.  In step 3, NewSubsets is constructed and NewSolutions is switched to 
FALSE.  Since we are focusing our attention to subsets of size 2, the cardinality of NewSubsets 
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corresponding to the initial reference set is given by (b2-b)/2, which accounts for all pairs of solutions in 
RefSet.  The pairs in NewSubsets are selected one at a time in lexicographical order and the Solution 
Combination Method is applied to generate one or more solutions in step 5.  If a newly created solution 
improves upon the worst solution currently in RefSet, the new solution replaces the worst and RefSet is 
reordered in step 6.  The NewSolutions flag is switched to TRUE and the subset s that was just combined is 
deleted from NewSubsets in steps 7 and 8, respectively. 
 
1. Start with P = Ø.  Use the Diversification Generation Method to construct a solution x.  If Px ∉  then 

add x to P (i.e., xPP ∪= ), otherwise, discard x.  Repeat this step until |P | = PSize.  Build 
RefSet = { x1, …, xb } with b diverse solutions in P. 

2. Evaluate the solutions in RefSet and order them according to their objective function value such that x1 
is the best solution and xb the worst.  Make NewSolutions = TRUE. 

while ( NewSolutions ) do 
 3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include at least one 

new solution.  Make NewSolutions = FALSE. 
 while ( NewSubsets ≠ ∅ ) do 
 4. Select the next subset s in NewSubSets. 
 5. Apply the Solution Combination Method to s to obtain one or more new solutions x. 
 if ( x  is not in RefSet and ( ) ( )bxfxf <  ) then 

 6. Make xb = x and reorder RefSet. 
 7. Make NewSolutions = TRUE. 
 end if 
 8. Delete s from NewSubsets. 
 end while 
end while 

Figure 1. Outline of basic scatter search. 
 
Note that while this basic procedure is very aggressive in trying to improve upon the quality of the 
solutions in the current reference set, it those so by sacrificing search diversity.  In fact, the Diversification 
Generation Method is used only once to generate PSize different solutions at the beginning of the search 
and it is never employed again.  The initial RefSet is built selecting a solution from P and then making b-1 
more selection in order to maximize the minimum distance between the candidate solution and the 
solutions currently in RefSet.  That is, for each candidate solution x in P-RefSet and reference set solution y 
in RefSet, we calculate a measure of distance or dissimilarity d(x,y).  We then select the candidate solution 
that maximizes dmin(x), where { }),(min)(min yxdxd

y RefSet∈
= . 

 
The updating of the reference set is based on improving the quality of the worst solution and the search 
terminates when no new solutions are admitted to RefSet.  The procedure does not use an Improvement 
Method, which in scatter search implementations is typically applied after a new solution is constructed 
with either the Diversification Generation Method or the Combination Method.  The Subset Generation 
Method is also very simple and consists of generating all pairs of solutions in RefSet that contain at least 
one new solution.  This means that the procedure does not allow for two solutions to be subjected to the 
Combination Method more than once. 
 
In the remainder of this paper, we develop and test scatter search designs that add to the basic procedure of 
Figure 1.  All of these variations employ a method for creating new solutions that consists of linear 
combinations of two solutions in the reference set.  Linear combinations of two solutions were suggested 
by Glover (1994) in the context of nonlinear optimization and are a generalization of the linear or 
arithmetical crossover also used in continuous and convex spaces (Michalewicz and Logan 1994).  We 
consider the following three types of linear combinations, where we assume that the reference solutions are 

x′  and x ′′ , 
2

xx
rd

′−′′
=  and r is a random number in the range (0, 1): 
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C1: dxx −′=  
C2: dxx +′=  
C3: dxx +′′=  
 

In the basic procedure of Figure 1, the Combination Method generates one solution of each type when 
combining two solutions in the reference set.  Note that the combination mechanism includes a random 
element and therefore it is possible to combine the same pair of solutions more than once to generate new 
solutions.  The main motivation for using a random component in the Combination Method is that it would 
be difficult to calibrate the procedure and find effective r-values for a variety of problems.  The Subset 
Combination Method does not allow the same pair of solutions to be combined more than once. 

2. Reference Set Update Method 

In the basic procedure of Figure 1, the reference set is updated by replacing the reference solution with the 
worst objective function value with a new solution that has a better objective function value.  Since the 
RefSet is always ordered, the best solution can be denoted by x1 and worst solution by xb.  Then, when a 
new solution x is generated as a result of the application of the Combination Method, the objective function 
value of the new solution is  used to determine whether the RefSet needs to be updated.  That is, if: 
 

RefSetx ∉  and ( ) ( )bxfxf < , 

 
we update RefSet by making xb = x and reorder the reference set.  We have developed the following three 
variations of this basic update procedure (UP0), which we will refer to as UP1, UP2 and UP3. 

RefSet Update UP1 

This update adds a mechanism to partially rebuild the reference set when no new solutions can be generated 
with the Combination Method.  The update is performed after the inner “while-loop” in Figure 1 fails and 
the NewSolutions variable is FALSE.  (The inner while-loop consists of steps 4 to 8.)  The RefSet is 
partially rebuilt with a diversification update, which works as follows.  Solutions x[b/2]+1 , …, xb are deleted 
from RefSet, where [v] is the largest integer less than or equal to v.  The frequency counts freq(i,j), the 
number of times sub-range j has been chosen to generate a value for variable i, in the Diversification 
Generation Method are updated with the corresponding values from the solutions that remain in the 
reference set, that is, x1, …, x[b/2].  Then, the generator is used to construct a set P of solutions.  Solutions 
x[b/2]+1 , …, xb in RefSet are sequentially selected from P with the max-min criterion used in step 1 of Figure 
1 (and described in the previous section).  The min-max criterion is applied against solutions x1, …, x[b/2] 
when selecting solution x[b/2]+1 , then against solutions x1, …, x[b/2]+1 when selecting solution x[b/2]+2 , and so 
on. 
 
The following modification of the pseudo-code in Figure 1 incorporates the UP1 update.  The modification 
consists of adding the following instructions after the end of the inner while-loop: 
 

if ( NewSolutions = FALSE ) then 
9. Use the Diversification Generation Method to replace solutions x[b/2]+1, …, xb from 

RefSet and reorder RefSet. 
10. Make NewSolutions = TRUE 

end if 
 
Note that when this update is added to the basic procedure, the resulting search does not have a built-in 
termination criterion.  In our experimental testing we stop the search after a maximum number of objective 
function evaluations has been reached.  The basic Combination Method is applied when using the UP1 
update. 
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RefSet Update UP2 

This update has the goal of dynamically preserving diversity in the reference set, instead of allowing it to 
become homogenous by only admitting high quality solutions that in many applications tend to be very 
similar to each other.  Hence, in addition to updating the reference set when new solutions of high quality 
are generated, the reference set is also updated with highly diverse solutions.  Specifically, the update 
consists of partitioning the reference into two subsets: RefSet1 = { x1, …, x[b/2] } and 
RefSet2 = { x[b/2]+1 , …, xb }.  The first subset is referred to as the “quality” subset and the second is referred 
to as the “diverse” subset.  The solutions in RefSet1 are ordered according to their objective function value 
and the set is updated with the goal of increasing quality, using the UP0 criterion.  That is, a new solution x 
replaces the reference solution x[b/2] if ( ) ( )]2/[bxfxf < .  The solutions in RefSet2 are ordered according to 

their diversity value and the update has the goal of increasing diversity.  Therefore, a new solution x 
replaces the reference solution xb if ( ) ( )bxdxd minmin > . 

 
We can modify the outline in Figure 1 to incorporate the UP2 update by replacing the “if” statement inside 
the inner while-loop with the following: 
 
 if ( x  is not in RefSet1 and ( ) ( )]2/[bxfxf <  ) then 

 6a. Make x[b/2] = x and reorder RefSet1. 
 7a. Make NewSolutions = TRUE. 
 else if ( x is not in RefSet2 and ( ) ( )bxdxd minmin >  ) then 

 6b. Make x[b] = x and reorder RefSet2. 
 7b. Make NewSolutions = TRUE. 
 end if 
 
When adding this update to the basic procedure, the procedure exits the inner while -loop when no new 
solutions can be admitted to either RefSet1 or RefSet2 during the combination of all NewSubsets.  The 
search, however, does not terminate, because RefSet is updated using the UP1 update.  That is, RefSet1 is 
kept and RefSet2 is rebuilt with the Diversification Generation Method.  The following rules are used during 
the application of the Combination Method when the UP2 update is active, assuming that x ′  and x ′′  are 
the reference solutions to be combined: 
 

• If both x ′  and x ′′  are elements of RefSet1, then C1 and C3 are applied once and C2 is applied 
twice to create 4 solutions. 

• If only one of x ′  and x ′′  is a member of RefSet1, then C1, C2 and C3 are applied once to create 3 
solutions. 

• If neither x ′  nor x ′′  is a member of RefSet1, then C2 and either C1 or C3 is applied once to 
create 2 solutions, where the selection of C1 or C3 is random. 

 
The rationale behind these rules is that we have experimentally determined that high-quality solutions tend 
to create other high-quality solutions and therefore we allow combinations of two high-quality solutions to 
create more new solutions than other types of combinations (Campos, et al. 1999).  Note that we do not use 
common random numbers during the application of these combination methods. 

RefSet Update UP3 

This update is an extension of UP2.  The reference set is divided into three subsets: RefSet1 = { x1, …, x[(b-

2)/2] }, RefSet2 = { x[(b-2)/2]+1 , …, xb-2 }, and RefSet3 = { xb-1, xb }.  RefSet1 and RefSet2 are updated using the 
same rules as in UP2.  In order to update RefSet3, we keep track of g(x), the objective function value of the 
best solution ever created from a combination of 1RefSetx ∈  and any other reference solution.  RefSet3 is 

ordered according to g(x) in such a way that ( ) ( )bb xgxg <−1 .  When solution x[(b-2)/2] in RefSet1 is replaced 
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with a newly created solution of higher quality, we compare ( )]2/)2[( −bxg  and ( )bxg  and update RefSet3 
accordingly. 
 
We can modify the pseudo-code in Figure 1 to incorporate the UP3 update by replacing the “if” statement 
inside the inner while -loop with the following: 
 
 if ( x  is not in RefSet1 and ( ) ( )]2/)2[( −< bxfxf  ) then 

 6a. Make y = x[(b-2)/2] and x[(b-2)/2] = x. Reorder RefSet1. 
 if ( y  is not in RefSet3 and ( ) ( )bxgyg <  ) then 

 6b. Make xb = y and reorder RefSet3. 
end if 
7a. Make NewSolutions = TRUE. 

 else if ( x is not in RefSet2 and ( ) ( )2
minmin

−> bxdxd  ) then 

 6c. Make xb-2 = x and reorder RefSet2. 
 7b. Make NewSolutions = TRUE. 
 end if 
 
When adding this update to the basic procedure, the search exists the inner while-loop when no new 
solutions can be admitted to either RefSet1 or RefSet2 during the combination of all NewSubsets.  As before, 
the search does not terminate, because RefSet is updated in a similar way as UP2.  That is, RefSet1 and 
RefSet3 are kept and RefSet2 is rebuilt with the Diversification Generation Method.  Note that the update of 
RefSet3 is dependent on the update of RefSet1, in the sense that RefSet3 can only be updated if a solution in 
RefSet1 is replaced.  The combination rules associated with the UP3 update are the same as the rules for 
UP2 when combining solutions from either RefSet1 or RefSet2.  However, when x ′  is in RefSet1 and x ′′  is 

in RefSet3, then C1 and C2 are applied once with 
3

xx
rd

′−′′
= .  Note that we don’t attempt combinations 

that consist of either one solution from RefSet2 and one solution from RefSet3 or both solutions from 
RefSet3. 

3. Diversification Generation Method 

The basic Diversification Generation Method (DV0) uses controlled randomization and frequency memory 
to generate a set of diverse solutions.  We accomplish this by dividing the range of each variable ui - li into 
4 sub-ranges of equal size.  Then, a solution is constructed in two steps.  First a sub-range is randomly 
selected.  The probability of selecting a sub-range is inversely proportional to its frequency count.  Then a 
value is randomly generated within the selected sub-range.  The number of times sub-range j has been 
chosen to generate a value for variable i is accumulated in freq(i, j). 
 
In addition to DV0, we have developed two variants (DV1 and DV2), which are based on techniques from 
the area of statistics known as Design of Experiments.  One of the most popular design of experiments is 
the factorial design kn, where n is the number of factors (in our case variables) and k  is the number of levels 
(in our case possible variable values).  A full factorial design considers that all combinations of the factors 
and levels will be tested.  Therefore, a full factorial design with 5 factors and 3 critical levels would require 
35 = 243 experiments.  Obviously, full factorial designs can quickly become impractical even for a small 
number of levels, because the number of experiments exponentially increases with the number of factors.  
A more practical alternative is to employ fractional factorial designs.  These designs draw conclusions 
based on a fraction of experiments, which are strategically selected from the set of all possible experiments 
in the corresponding full factorial design.  One of the most notable proponents of the use of fractional 
factorial designs is Genichi Taguchi (Roy, 1990).  Taguchi proposed a special set of orthogonal arrays to 
lay out experiments associated with quality improvement in manufacturing.  These orthogonal arrays are 
the result of combining orthogonal Latin squares in a unique manner.  We use Taguchi’s arrays as a 
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mechanism for generating diversity.  Table 1 shows the L9(34) orthogonal array that can be used to generate 
9 solutions for a 4-variable problem. 
 

Table 1. L9(34) orthogonal array. 

Factors Experiment 
1 2 3 4 

1 1 1 1 1 
2 1 2 2 2 
3 1 3 3 3 
4 2 1 2 3 
5 2 2 3 1 
6 2 3 1 2 
7 3 1 2 3 
8 3 2 1 3 
9 3 3 2 1 

 
The values in Table 1 represent the levels at which the factors are set in each experiment.  For the purpose 
of creating DV1, a diversification generator based on Taguchi tables, we translate each level setting as 
follows: 
 

1 = lower bound (li) 

2 = midpoint 





 +

2
ii ul

 

3 = upper bound (ui) 
 
The generator DV1 uses the appropriate Taguchi table to draw solutions every time the diversification 
generator is called.  The Taguchi table is selected according to the number of variables in the problem.  
When DV1 is employed and all solutions in the appropriate table have been tried, the generator returns 
solutions using DV0. 
 
A second variant based on Taguchi tables (DV2) is obtained when level settings in each experiment are 
translated to variable values as follows: 
 

1 = near lower bound ( )( )iii lurl −+ , where r is randomly drawn from (0, 0.1) 

2 = near midpoint ( )





 −+

+
ii

ii lur
ul

2
, where r is randomly drawn from (-0.1, 0.1) 

3 = near upper bound ( )( )iii luru −− , where r is randomly drawn from (0, 0.1) 
 
Although the same Taguchi experiment can result in more than one solution to the problem, we turn control 
to DV0 once all experiments have been used to generate solutions, because DV0 covers the entire feasible 
range of each variable, while DV2 focuses on generating solutions with variable values near the bounds and 
the midpoint. 

4. Intensification Strategy 

The Combination Method is the main intensification mechanism within scatter search.  In section 2, we 
described the application of the Combination Method associated with each variant of the updating 
strategies for the reference set.  In addition to these rules, we have developed and tested a two-phase 
intensification procedure. 
 
The basic design of Figure 1 applies the Combination Method to all the subsets generated from a given 
reference set.  Although the reference set is dynamically updated, the new solutions are not used for 
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combination until all the subsets generated with the previous RefSet have been combined.  In other words, 
the new solutions that become members of RefSet are not combined until all pairs in NewSubsets are 
subjected to the Combination Method.  The goal of the first phase of our intensification strategy is to apply 
the Combination Method to new solutions in a manner that is faster than in the bas ic design.  That is, if a 
new solution is admitted to the reference set the intensification goal is to allow this new solution to be 
subjected to the Combination Method as quickly as possible.  This strategy can be easily implemented by 
modifying step 3 in Figure 1 as follows:  
 

if (Intensify  = TRUE) then 
3a. Let NewSubsets consist of one pair of solutions, the two best solutions in RefSet1 

where at least one is a new solution. Make NewSolutions = TRUE. 
if ( NewSubsets = ∅  ) then Intensify  = FALSE. 

end if 
if (Intensify  = FALSE) then 

3b. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include 
at least one new solution.  Make NewSolutions = FALSE. 

end if 
 
Note that by reducing NewSubsets to just one pair of solutions, the procedure returns to the generation of 
subsets immediately after one application of the Combination Method.  The downside of this intensification 
phase is that some solutions in RefSet could be replaced before being combined.  To illustrate this, suppose 
that the initial RefSet = { x1, x2, x3, x4 } and that the intensification strategy is active.  Suppose also that the 
combination of the pair (x1, x2) results in a solution y for which: 
 

f(y) < f(x3) 
 
Then, the reference set is changed in such a way that the updated RefSet = { x1, x2, y, x3 }.  The search 
continues with the combination of the pair (x1, y).  Clearly, the quick updating of the reference set 
eliminates the combination of the pair (x1, x4). 
 
The second phase of our intensification strategy consists of selecting the two best solutions in RefSet1 to 
create 8 solutions by applying C1 and C3 twice and C2 four times.  Note that for this intensification, we do 
not require that at least one of the two best solutions be new.  We do not test the two phases of our 
intensification strategies separately.  That is, we either apply the entire two-phase strategy or we don’t 
apply it at all.  The application of the intensification strategy depends on two parameters: IntPoint and 
IntLength.  IntPoint is the iteration number at which the first intensification phase is applied for IntLength 
iterations.  The second intensification phase is automatically applied at iteration 2*IntPoint.  An iteration, 
in our context, is considered a single evaluation of the objective function. 

5. Computational Experiments 

Our computational testing consists of two main experiments.  In the first experiment, we compare the 
performance of the scatter search variants that result from the application of the alternative strategies 
described in the previous sections.  In the second experiment, we compare the performance of the most 
effective scatter search design against a well-known genetic algorithm.  Table 2 shows summary 
information of 40 test problems that are based on a set of nonlinear objective functions, most of which can 
be found in the following web pages: 
 

http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfopt.htm 
http://solon.cma.univie.ac.at/~neum/glopt/my_problems.html 
http://www-math.cudenver.edu/~rvan/phd/node32.html 

 
The numbers between parentheses associated with some of the problems are the parameter values for the 
corresponding objective function.  A typical parameter refers to the number of variables, since several of 
these functions expand to an arbitrary number of variables.  Although the objective functions are built in a 
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way that the optimal solutions are known, the optimization problems cannot be trivially solved by search 
procedures that do not exploit the special structure associated with each function.  A detailed description of 
the objective functions is provided in the Appendix. 
 

Table 2. Test problems  

Number of 
variables 

Problem 
number 

Name and 
parameter values 

x* f(x*) 

2 1 Branin (9.42478, 2.475)† 0.397887 
 2 B2 (0, 0) 0 
 3 Easom (π,π) -1 
 4 Goldstein and Price (0, -1) 3 
 5 Shubert (0.0217, -0.9527)† -186.7309 
 6 Beale (3, 0.5) 0 
 7 Booth (1, 3) 0 
 8 Matyas  (0, 0) 0 
 9 SixHumpCamelback (0.089840, -0.712659) † -1.0316285 
 10 Schwefel(2) (1, 1) 0 
 11 Rosenbrock (2) (1, 1) 0 
 12 Zakharov(2) (0, 0) 0 

3 13 De Joung (0, 0, 0) 0 
 14 Hartmann(3,4) (0.114614, 0.555649, 0.852547) 0 

4 15 Colville (1, 1, 1, 1) 0 
 16 Shekel(5) (4, 4, 4, 4) -10.1532 
 17 Shekel(7) (4, 4, 4, 4) -10.4029 
 18 Shekel(10) (4, 4, 4, 4) -10.53641 
 19 Perm(4,0.5) (1, 2, 3, 4) 0 
 20 Perm0(4,10) (1, 1/2, 1/3, 1/4) 0 
 21 Powersum (8,18,44,114) (1, 2, 2, 3) 0 

6 22 Hartmann(6,4) (0.20169, 0.150011, 0.47687, 
0.275332, 0.311652, 0.6573) 

0 

 23 Schwefel(6) (1, …, 1) 0 
 24 Trid(6) xi = i*(7-i ) -50 

10 25 Trid(10) xi = i*(11-i) -210 
 26 Rastrigin(10) (0, …, 0) 0 
 27 Griewank(10) (0, …, 0) 0 
 28 Sum Squares(10) (0, …, 0) 0 
 29 Rosenbrock(10) (1, …, 1) 0 
 30 Zakharov(10) (0, …, 0) 0 

20 31 Rastrigin(20) (0, …, 0) 0 
 32 Griewank(20) (0, …, 0) 0 
 33 Sum Squares(20) (0, …, 0) 0 
 34 Rosenbrock(20) (1, …, 1) 0 
 35 Zakharov(20) (0, …, 0) 0 

> 20 36 Powell(24) (3, -1, 0, 1, 3, …, 3, -1, 0, 1) 0 
 37 Dixon and Price(25) 







 −

−
= z

z

ix
1

2 , 12 −= iz  
0 

 38 Levy(30) (1, …, 1) 0 
 39 Sphere(30) (0, …, 0) 0 
 40 Ackley(30) (0, …, 0) 0 

† This is one of several multiple optimal solutions. 
 
Since the initial reference set includes the solution in which all the variables are set to their lower bound 
(i.e., x = l), the solution in which all the variables are set to their upper bounds (i.e., x = u) and the solution 
for which all the variables are set to the midpoint (i.e., x = (u+l)/2), we have modified the bounds in those 
cases where any of these solutions turns out to be the optimal.  For example, the optimal solution to the “De 
Joung” function is x = 0 and the original bounds for all variables were l = -5.12 and u = 5.12.  Since the 
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midpoint of this range is the optimal solution, the problem is trivially solved by any of our scatter search 
variants.  Therefore, we have modified the range and changed the lower bound to -2.56. 
 
For our experiments, we define the optimality gap as: 
 

)()( *xfxfGAP −=  

 
where x is a heuristic solution and x* is the optimal solution.  We then say that a heuristic solution x is 
optimal if: 
 







≠ε
=ε

≤
0)()(*
0)(

**

*

xfxf
xf

GAP  

 
In our experimentation we set ε = 0.001.  Our first experiment consists of trying all possible combinations 
of the designs resulting from the strategies described above.  We consider the following settings: 
 

Reference set update: UP1, UP2 and UP3 
Diversification generation: DV0, DV1 and DV2 
Intensification strategy: IN0 (deactivated) and IN1 (activated) 

 
We use IntPoint = 3000 and IntLength = 200 for IN1.  These settings result in 3*3*2 = 18 possible 
combinations and each combination is run up to a maximum of 10000 objective function evaluations.  Note 
that we don’t test settings with UP0 because this update strategy causes an early termination of the search 
and cannot compete with extended runs of the other variants.  We execute 18*20 = 360 runs of our scatter 
search procedure, because we limit this experiment to the odd-numbered problems in Table 2.  We use half 
of the available problems to be able to confirm our findings when applying them to the entire set of 
problems.  The outcome from the first experiment is summarized in Table 3. 
 
Table 3. Results of various scatter search designs. 

Update Method 
(UP) 

Diversification 
Method (DV) 

Intensification 
Strategy (IN) Average GAP Std. Dev. GAP 

Number of 
Optima 

1 0 0 9.90 30.93 14  
1 0 1 6.14 26.44 13  
1 1 0 45.76 171.00 13  
1 1 1 10.76 32.21 14  
1 2 0 35.84 127.98 7  
1 2 1 34.07 117.99 9  
2 0 0 46.15 177.96 8  
2 0 1 45.94 178.01 6  
2 1 0 68.89 208.02 6  
2 1 1 55.58 131.76 3  
2 2 0 59.62 193.65 1  
2 2 1 48.00 116.76 2  
3 0 0 40.47 150.91 8  
3 0 1 47.82 183.01 9  
3 1 0 69.82 206.21 3  
3 1 1 77.90 206.01 5  
3 2 0 45.53 121.89 5  
3 2 1 47.02 122.59 2  
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The results in Table 3 indicate that there is an important difference between the number of optimal 
solutions found with the (UP1, DV0, *) and (UP1, DV1, *) settings and all other settings tested in our first 
experiment.  Among the top four settings, the (UP1, DV0, IN1) seems to dominate the others in terms of 
the average GAP. 
 
Since the GAP variability is quite large with respect to the average values, we conducted an analysis of 
variance to detect statistically significant differences.  Table 4 shows the analysis of variance output from 
SPSS.  The model tests for differences in means of the dependent variable GAP and includes the three 
factors UP, DV and IN. 
 
Table 4. ANOVA for scatter search designs. 

Source Sum of 
Squares 

df Mean Square F p-value 

UP 75196.848 2 37598.424 1.657 0.192 
DV 29293.122 2 14646.561 0.645 0.525 
IN 2641.153 1 2641.153 0.116 0.733 
UP * DV 13664.106 4 3416.026 0.151 0.963 
UP * IN 5892.651 2 2946.325 0.130 0.878 
DV * IN 3265.096 2 1632.548 0.072 0.931 
UP * DV * IN 4959.722 4 1239.930 0.055 0.994 
Error 7761017.193 342 22693.033   
Total 8598536.376 360    

 
The p values in Table 4 are clearly larger than any reasonable critical value that one might use to test the 
significance of the mean GAP.  Therefore the ANOVA in Table 4 indicates that the mean GAP does not 
differ more than would be expected by chance alone. 
 
In our second main experiment, we compare the performance of our scatter search with UP1, DV0 and IN1 
against Genocop III (http://www.coe.uncc.edu/~zbyszek/gchome.html), an implementation of genetic 
algorithms that is customized for solving nonlinear optimization problems with continuous and bounded 
variables (Michalewicz 1993).  We chose the (UP1, DV0, IN1) setting because it is the one with the 
smallest average GAP in Table 3 and also is one of four with the largest number of optima found. 
 
Table 5 shows the average GAP value for our scatter search implementation compared to the one for 
Genocop III.  The average GAP is calculated over the set of 40 problems in Table 2 at several points during 
the search.  Since Genocop III begins with a GAP in the order of 1027 for problem 23, we also provide the 
average GAP calculated over 39 problems, ignoring the GAP for problem 23. 
 
Table 5. Average GAP values. 

Evaluations 100 500 1000 5000 10000 20000 50000 
Genocop1 5.37E+25 2.39E+17 1.13E+14 636.37 399.52 320.84 313.34 
Genocop2 1335.45 611.30 379.03 335.81 328.66 324.72 321.20 
Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46 
1 Average values over all test problems. 
2 Average values ignoring problem 23. 
 
Table 5 shows that the average GAP of scatter search is consistently lower than the average GAP associated 
with Genocop III.  In fact, the average GAP of scatter search after 100 evaluations of the objective function 
is already better than the average GAP for Genocop III after 50000 objective function evaluations.  The 
final GAP values for scatter search are all less than 1.0, except for problems 23, 26, 34, and 40, for which 
the GAP values are 118.4341, 9.9496, 2.2441, and 5.5033, respectively.  Although there is a difference in 
average GAP values in Table 5 between scatter search and Genocop, an analysis of variance revealed that 
the difference of means is not statistically significance.  SPSS yields a p-value of 0.164 for the comparison 
of means at 5000 evaluations with a one-way ANOVA. 
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Counting the number of optimal solutions found with each method is an alternative measure of 
performance, as shown in Table 3.  The plot in Figure 2 shows the number of ε-optimal solutions found by 
each procedure during a search with a stopping criterion of 50000 objective function evaluations.  The plot 
shows the better performance of the scatter search implementation, which solves 4 problems within 100 
evaluations and 30 by 20000 evaluations.  At the end of the search, Genocop III successfully solves a total 
of 23 problems. 
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Figure 2. Number of problems solved. 
 
We perform a secondary experiment to investigate whether any of the scatter search variants is capable of 
solving the 10 problems that the UP1, DV0 and IN1 setting did not solve.  For each unsolved problem (15, 
19, 23, 26, 29, 34, 36-38 and 40), we run a 50000-evaluation search using each of the 17 settings, excluding 
(UP1, DV0, IN1).  The outcome of this experiment is that 5 additional problems are solved and the average 
GAP of the unsolved problems is reduced to 1.2322.  These results are summarized in Tables 6 and 7. 
 
Table 6 shows that both settings (UP1, DV1, IN0) and (UP1, DV1, IN1) are capable of solving problems 
15, 19 and 26.  However, the performance of (UP1, DV1, IN0) is considered better regarding these three 
problems because it solves them in fewer evaluations than (UP1, DV1, IN1).  This setting, on the other 
hand, is capable of solving the elusive problem 23 employing less than 10000 evaluations.  Also, a setting 
that uses UP1 and DV0 solves problem 36 regardless of the intensification strategy.  Finally, note that from 
the unsolved problems in Table 7, only two have a GAP value larger than 1.   
 

Table 6. Additional solved problems. 

Setting Problem Evaluations 
(UP1, DV1, IN0) 15  13638 
 19  13325 
 26  27 
(UP1, DV1, IN1) 15  16152 
 19  37118 
 23  9525 
 26  27 
(UP2, DV0, *) 36  119 
* = all options. 
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Table 7. Unsolved problems. 

Problem Setting GAP 
29 (UP1, DV2, IN1) 0.327761 
34 (UP1, DV1, IN1) 2.050292 
37 (UP1, *, *) 0.666667 
38 (UP1, DV0, IN1) 0.089528 
40 (UP1, DV2, IN1) 3.026937 

Average  1.232237 
* = all options. 

 
The comparisons are made on the basis of solution quality versus number of evaluations because 
computing times are equivalent for all the tested methods.  For instance, the average time to complete a run 
of 20000 objective function evaluations is 0.4 seconds for both SS (UP1, DV0, IN1) and Genocop on a 
2.53 GHz Pentium 4 computer.  The use of number of function evaluations as a way of comparing 
procedures has the additional advantage of providing a more accurate performance measure in settings 
where the evaluation of the objective function is computationally expensive.  For example, in the context of 
optimizing simulations, the time required for generating solutions is negligible compared to the time 
required to evaluate the objective function. 

6. Conclusions  

We have explored alternative mechanisms to perform key operations within the scatter search framework.  
In particular, we have focused on designing and testing strategies for updating the reference set, generating 
diversity and intensifying the search.  We have gathered a set of 40 test problems with number of variables 
ranging from 2 to 30 to perform experiments with the goal of assessing the merit of each combination of 
the proposed strategies.  For our initial testing, we chose 20 problems out of 40 and concluded that the best 
parameter setting was UP1, DV0 and IN1.  This conclusion is based on the average GAP value and the 
number of optimal solutions found, although an ANOVA could not confirm a statistical significant 
difference.  We then used this setting to compare the performance of the resulting procedure against a well-
known genetic algorithm.  The computational tests show that our scatter search is robust, because it finds 
solutions of reasonable quality from the beginning of the search.  This is an important feature in settings 
where the objective function evaluation is computational expensive (e.g., when optimizing simulations).  
The procedure is capable of finding ε-optimal solutions to 30 out of 40 problems within 20000 objective 
function evaluations.  This compares favorable to the number of ε-optimal solutions found with Genocop 
III employing more than twice the number of evaluations.   
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Appendix 

This appendix contains the description of the set of test functions in Table 2.  The description consists of 
the objective function, parameter values and the bounds for each variable. 
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i aij ci pij 
1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673 
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470 
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547 
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828 
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Subject to -10≤ xi ≤ 10  for i=1,...,4. 
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5 3.0 7.0 3.0 7.0 0.4 
6 2.0 9.0 2.0 9.0 0.6 
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10 7.0 3.6 7.0 3.6 0.5 
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