

Experimental Testing of Advanced Scatter Search Designs
for Global Optimization of Multimodal Functions

MANUEL LAGUNA 1

Leeds School of Business, University of Colorado, Boulder, CO 80309-0419, USA
laguna@colorado.edu

RAFAEL MARTÍ2

Departament D’Estadística i Investigació Operativa, Universitat de València, Burjassot 46100, Spain
rafael.marti@uv.es

Latest version: November 21, 2002

Abstract — Scatter search is an evolutionary method that, unlike genetic algorithms, operates on a small
set of solutions and makes only limited use of randomization as a proxy for diversification when searching
for a globally optimal solution. The scatter search framework is flexible, allowing the development of
alternative implementations with varying degrees of sophistication. In this paper, we test the merit of
several scatter search designs in the context of global optimization of multimodal functions. We compare
these designs among themselves and choose one to compare against a well-known genetic algorithm that
has been specifically developed for this class of problems. The testing is performed on a set of benchmark
multimodal functions with known global minima.

1 Partially supported by the visiting professor fellowship program of the University of Valencia (Grant Ref.
No. 42743).
2 Partially supported by the Ministerio de Ciencia y Tecnología of Spain: TIC2000-1750-C06-01.

Laguna and Martí / 2

1. Introduction

Scatter search is a solution procedure that falls within the evolutionary framework and consists of five
methods:

1. A Diversification Generation Method to generate a collection of diverse trial solutions, using
one or more arbitrary trial solutions (or seed solutions) as an input.

2. An Improvement Method to transform a trial solution into one or more enhanced trial

solutions. (Neither the input nor the output solutions are required to be feasible, though the
output solutions are typically feasible. If the input trial solution is not improved as a result of
the application of this method, the “enhanced” solution is considered to be the same as the
input solution.)

3. A Reference Set Update Method to build and maintain a reference set consisting of the b

“best” solutions found (where the value of b is typically small, e.g., no more than 20),
organized to provide efficient accessing by other parts of the solution procedure. Several
alternative criteria may be used to add solutions to the reference set and delete solutions from
the reference set.

4. A Subset Generation Method to operate on the reference set, to produce a subset of its

solutions as a basis for creating combined solutions. The most common subset generation
method is to generate all pairs of reference solutions (i.e., all subsets of size 2).

5. A Solution Combination Method to transform a given subset of solutions produced by the

Subset Generation Method into one or more combined solutions. The combination method is
analogous to the crossover operator in genetic algorithms but it must be capable of combining
two or more solutions.

The scatter search methodology is very flexible, since each of its elements can be implemented in a variety
of ways and degrees of sophistication. Details about the origin and applications of scatter search can be
found in, Glover (1998), Glover, Laguna and Martí (1999) and Laguna (2002). In our current development,
we study the merit of alternative scatter search designs in the context of nonlinear optimization. In
particular, we use a benchmark set of unconstrained problems, for which global optima are known. That is,
the class of problems that we use for testing can be characterized as:

Minimize ()xf

Subject to uxl ≤≤

Where ()xf is a nonlinear function and x is a vector of continuous and bounded variables. We test several
alternatives for generating diversification and updating the reference set in a procedure that does not use an
improvement method and in which combinations are linear and limited to pairs of solutions. We also test
the use of a two-phase intensification. These strategies are added to a basic procedure, which is outlined in
form of pseudo-code in Figure 1.

The basic procedure in Figure 1 starts with the creation of an initial reference set of solutions (RefSet). The
Diversification Generation Method is used to build a large set of diverse solutions P. The size of P (PSize)
is typically 10 times the size of RefSet. Initially, the reference set RefSet consists of b distinct and
maximally diverse solutions from P. The solutions in RefSet are ordered according to quality, where the
best solution is the first one in the list. The search is then initiated by assigning the value of TRUE to the
Boolean variable NewSolutions. In step 3, NewSubsets is constructed and NewSolutions is switched to
FALSE. Since we are focusing our attention to subsets of size 2, the cardinality of NewSubsets

Laguna and Martí / 3

corresponding to the initial reference set is given by (b2-b)/2, which accounts for all pairs of solutions in
RefSet. The pairs in NewSubsets are selected one at a time in lexicographical order and the Solution
Combination Method is applied to generate one or more solutions in step 5. If a newly created solution
improves upon the worst solution currently in RefSet, the new solution replaces the worst and RefSet is
reordered in step 6. The NewSolutions flag is switched to TRUE and the subset s that was just combined is
deleted from NewSubsets in steps 7 and 8, respectively.

1. Start with P = Ø. Use the Diversification Generation Method to construct a solution x. If Px ∉ then

add x to P (i.e., xPP ∪=), otherwise, discard x. Repeat this step until |P | = PSize. Build
RefSet = { x1, …, xb } with b diverse solutions in P.

2. Evaluate the solutions in RefSet and order them according to their objective function value such that x1
is the best solution and xb the worst. Make NewSolutions = TRUE.

while (NewSolutions) do
 3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include at least one

new solution. Make NewSolutions = FALSE.
 while (NewSubsets ≠ ∅) do
 4. Select the next subset s in NewSubSets.
 5. Apply the Solution Combination Method to s to obtain one or more new solutions x.
 if (x is not in RefSet and () ()bxfxf <) then

 6. Make xb = x and reorder RefSet.
 7. Make NewSolutions = TRUE.
 end if
 8. Delete s from NewSubsets.
 end while
end while

Figure 1. Outline of basic scatter search.

Note that while this basic procedure is very aggressive in trying to improve upon the quality of the
solutions in the current reference set, it those so by sacrificing search diversity. In fact, the Diversification
Generation Method is used only once to generate PSize different solutions at the beginning of the search
and it is never employed again. The initial RefSet is built selecting a solution from P and then making b-1
more selection in order to maximize the minimum distance between the candidate solution and the
solutions currently in RefSet. That is, for each candidate solution x in P-RefSet and reference set solution y
in RefSet, we calculate a measure of distance or dissimilarity d(x,y). We then select the candidate solution
that maximizes dmin(x), where { }),(min)(min yxdxd

y RefSet∈
= .

The updating of the reference set is based on improving the quality of the worst solution and the search
terminates when no new solutions are admitted to RefSet. The procedure does not use an Improvement
Method, which in scatter search implementations is typically applied after a new solution is constructed
with either the Diversification Generation Method or the Combination Method. The Subset Generation
Method is also very simple and consists of generating all pairs of solutions in RefSet that contain at least
one new solution. This means that the procedure does not allow for two solutions to be subjected to the
Combination Method more than once.

In the remainder of this paper, we develop and test scatter search designs that add to the basic procedure of
Figure 1. All of these variations employ a method for creating new solutions that consists of linear
combinations of two solutions in the reference set. Linear combinations of two solutions were suggested
by Glover (1994) in the context of nonlinear optimization and are a generalization of the linear or
arithmetical crossover also used in continuous and convex spaces (Michalewicz and Logan 1994). We
consider the following three types of linear combinations, where we assume that the reference solutions are

x′ and x ′′ ,
2

xx
rd

′−′′
= and r is a random number in the range (0, 1):

Laguna and Martí / 4

C1: dxx −′=
C2: dxx +′=
C3: dxx +′′=

In the basic procedure of Figure 1, the Combination Method generates one solution of each type when
combining two solutions in the reference set. Note that the combination mechanism includes a random
element and therefore it is possible to combine the same pair of solutions more than once to generate new
solutions. The main motivation for using a random component in the Combination Method is that it would
be difficult to calibrate the procedure and find effective r-values for a variety of problems. The Subset
Combination Method does not allow the same pair of solutions to be combined more than once.

2. Reference Set Update Method

In the basic procedure of Figure 1, the reference set is updated by replacing the reference solution with the
worst objective function value with a new solution that has a better objective function value. Since the
RefSet is always ordered, the best solution can be denoted by x1 and worst solution by xb. Then, when a
new solution x is generated as a result of the application of the Combination Method, the objective function
value of the new solution is used to determine whether the RefSet needs to be updated. That is, if:

RefSetx ∉ and () ()bxfxf < ,

we update RefSet by making xb = x and reorder the reference set. We have developed the following three
variations of this basic update procedure (UP0), which we will refer to as UP1, UP2 and UP3.

RefSet Update UP1

This update adds a mechanism to partially rebuild the reference set when no new solutions can be generated
with the Combination Method. The update is performed after the inner “while-loop” in Figure 1 fails and
the NewSolutions variable is FALSE. (The inner while-loop consists of steps 4 to 8.) The RefSet is
partially rebuilt with a diversification update, which works as follows. Solutions x[b/2]+1 , …, xb are deleted
from RefSet, where [v] is the largest integer less than or equal to v. The frequency counts freq(i,j), the
number of times sub-range j has been chosen to generate a value for variable i, in the Diversification
Generation Method are updated with the corresponding values from the solutions that remain in the
reference set, that is, x1, …, x[b/2]. Then, the generator is used to construct a set P of solutions. Solutions
x[b/2]+1 , …, xb in RefSet are sequentially selected from P with the max-min criterion used in step 1 of Figure
1 (and described in the previous section). The min-max criterion is applied against solutions x1, …, x[b/2]
when selecting solution x[b/2]+1 , then against solutions x1, …, x[b/2]+1 when selecting solution x[b/2]+2 , and so
on.

The following modification of the pseudo-code in Figure 1 incorporates the UP1 update. The modification
consists of adding the following instructions after the end of the inner while-loop:

if (NewSolutions = FALSE) then
9. Use the Diversification Generation Method to replace solutions x[b/2]+1, …, xb from

RefSet and reorder RefSet.
10. Make NewSolutions = TRUE

end if

Note that when this update is added to the basic procedure, the resulting search does not have a built-in
termination criterion. In our experimental testing we stop the search after a maximum number of objective
function evaluations has been reached. The basic Combination Method is applied when using the UP1
update.

Laguna and Martí / 5

RefSet Update UP2

This update has the goal of dynamically preserving diversity in the reference set, instead of allowing it to
become homogenous by only admitting high quality solutions that in many applications tend to be very
similar to each other. Hence, in addition to updating the reference set when new solutions of high quality
are generated, the reference set is also updated with highly diverse solutions. Specifically, the update
consists of partitioning the reference into two subsets: RefSet1 = { x1, …, x[b/2] } and
RefSet2 = { x[b/2]+1 , …, xb }. The first subset is referred to as the “quality” subset and the second is referred
to as the “diverse” subset. The solutions in RefSet1 are ordered according to their objective function value
and the set is updated with the goal of increasing quality, using the UP0 criterion. That is, a new solution x
replaces the reference solution x[b/2] if () ()]2/[bxfxf < . The solutions in RefSet2 are ordered according to

their diversity value and the update has the goal of increasing diversity. Therefore, a new solution x
replaces the reference solution xb if () ()bxdxd minmin > .

We can modify the outline in Figure 1 to incorporate the UP2 update by replacing the “if” statement inside
the inner while-loop with the following:

 if (x is not in RefSet1 and () ()]2/[bxfxf <) then

 6a. Make x[b/2] = x and reorder RefSet1.
 7a. Make NewSolutions = TRUE.
 else if (x is not in RefSet2 and () ()bxdxd minmin >) then

 6b. Make x[b] = x and reorder RefSet2.
 7b. Make NewSolutions = TRUE.
 end if

When adding this update to the basic procedure, the procedure exits the inner while -loop when no new
solutions can be admitted to either RefSet1 or RefSet2 during the combination of all NewSubsets. The
search, however, does not terminate, because RefSet is updated using the UP1 update. That is, RefSet1 is
kept and RefSet2 is rebuilt with the Diversification Generation Method. The following rules are used during
the application of the Combination Method when the UP2 update is active, assuming that x ′ and x ′′ are
the reference solutions to be combined:

• If both x ′ and x ′′ are elements of RefSet1, then C1 and C3 are applied once and C2 is applied
twice to create 4 solutions.

• If only one of x ′ and x ′′ is a member of RefSet1, then C1, C2 and C3 are applied once to create 3
solutions.

• If neither x ′ nor x ′′ is a member of RefSet1, then C2 and either C1 or C3 is applied once to
create 2 solutions, where the selection of C1 or C3 is random.

The rationale behind these rules is that we have experimentally determined that high-quality solutions tend
to create other high-quality solutions and therefore we allow combinations of two high-quality solutions to
create more new solutions than other types of combinations (Campos, et al. 1999). Note that we do not use
common random numbers during the application of these combination methods.

RefSet Update UP3

This update is an extension of UP2. The reference set is divided into three subsets: RefSet1 = { x1, …, x[(b-

2)/2] }, RefSet2 = { x[(b-2)/2]+1 , …, xb-2 }, and RefSet3 = { xb-1, xb }. RefSet1 and RefSet2 are updated using the
same rules as in UP2. In order to update RefSet3, we keep track of g(x), the objective function value of the
best solution ever created from a combination of 1RefSetx ∈ and any other reference solution. RefSet3 is

ordered according to g(x) in such a way that () ()bb xgxg <−1 . When solution x[(b-2)/2] in RefSet1 is replaced

Laguna and Martí / 6

with a newly created solution of higher quality, we compare ()]2/)2[(−bxg and ()bxg and update RefSet3
accordingly.

We can modify the pseudo-code in Figure 1 to incorporate the UP3 update by replacing the “if” statement
inside the inner while -loop with the following:

 if (x is not in RefSet1 and () ()]2/)2[(−< bxfxf) then

 6a. Make y = x[(b-2)/2] and x[(b-2)/2] = x. Reorder RefSet1.
 if (y is not in RefSet3 and () ()bxgyg <) then

 6b. Make xb = y and reorder RefSet3.
end if
7a. Make NewSolutions = TRUE.

 else if (x is not in RefSet2 and () ()2
minmin

−> bxdxd) then

 6c. Make xb-2 = x and reorder RefSet2.
 7b. Make NewSolutions = TRUE.
 end if

When adding this update to the basic procedure, the search exists the inner while-loop when no new
solutions can be admitted to either RefSet1 or RefSet2 during the combination of all NewSubsets. As before,
the search does not terminate, because RefSet is updated in a similar way as UP2. That is, RefSet1 and
RefSet3 are kept and RefSet2 is rebuilt with the Diversification Generation Method. Note that the update of
RefSet3 is dependent on the update of RefSet1, in the sense that RefSet3 can only be updated if a solution in
RefSet1 is replaced. The combination rules associated with the UP3 update are the same as the rules for
UP2 when combining solutions from either RefSet1 or RefSet2. However, when x ′ is in RefSet1 and x ′′ is

in RefSet3, then C1 and C2 are applied once with
3

xx
rd

′−′′
= . Note that we don’t attempt combinations

that consist of either one solution from RefSet2 and one solution from RefSet3 or both solutions from
RefSet3.

3. Diversification Generation Method

The basic Diversification Generation Method (DV0) uses controlled randomization and frequency memory
to generate a set of diverse solutions. We accomplish this by dividing the range of each variable ui - li into
4 sub-ranges of equal size. Then, a solution is constructed in two steps. First a sub-range is randomly
selected. The probability of selecting a sub-range is inversely proportional to its frequency count. Then a
value is randomly generated within the selected sub-range. The number of times sub-range j has been
chosen to generate a value for variable i is accumulated in freq(i, j).

In addition to DV0, we have developed two variants (DV1 and DV2), which are based on techniques from
the area of statistics known as Design of Experiments. One of the most popular design of experiments is
the factorial design kn, where n is the number of factors (in our case variables) and k is the number of levels
(in our case possible variable values). A full factorial design considers that all combinations of the factors
and levels will be tested. Therefore, a full factorial design with 5 factors and 3 critical levels would require
35 = 243 experiments. Obviously, full factorial designs can quickly become impractical even for a small
number of levels, because the number of experiments exponentially increases with the number of factors.
A more practical alternative is to employ fractional factorial designs. These designs draw conclusions
based on a fraction of experiments, which are strategically selected from the set of all possible experiments
in the corresponding full factorial design. One of the most notable proponents of the use of fractional
factorial designs is Genichi Taguchi (Roy, 1990). Taguchi proposed a special set of orthogonal arrays to
lay out experiments associated with quality improvement in manufacturing. These orthogonal arrays are
the result of combining orthogonal Latin squares in a unique manner. We use Taguchi’s arrays as a

Laguna and Martí / 7

mechanism for generating diversity. Table 1 shows the L9(34) orthogonal array that can be used to generate
9 solutions for a 4-variable problem.

Table 1. L9(34) orthogonal array.

Factors Experiment
1 2 3 4

1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 2 3
8 3 2 1 3
9 3 3 2 1

The values in Table 1 represent the levels at which the factors are set in each experiment. For the purpose
of creating DV1, a diversification generator based on Taguchi tables, we translate each level setting as
follows:

1 = lower bound (li)

2 = midpoint 





 +

2
ii ul

3 = upper bound (ui)

The generator DV1 uses the appropriate Taguchi table to draw solutions every time the diversification
generator is called. The Taguchi table is selected according to the number of variables in the problem.
When DV1 is employed and all solutions in the appropriate table have been tried, the generator returns
solutions using DV0.

A second variant based on Taguchi tables (DV2) is obtained when level settings in each experiment are
translated to variable values as follows:

1 = near lower bound ()()iii lurl −+ , where r is randomly drawn from (0, 0.1)

2 = near midpoint ()





 −+

+
ii

ii lur
ul

2
, where r is randomly drawn from (-0.1, 0.1)

3 = near upper bound ()()iii luru −− , where r is randomly drawn from (0, 0.1)

Although the same Taguchi experiment can result in more than one solution to the problem, we turn control
to DV0 once all experiments have been used to generate solutions, because DV0 covers the entire feasible
range of each variable, while DV2 focuses on generating solutions with variable values near the bounds and
the midpoint.

4. Intensification Strategy

The Combination Method is the main intensification mechanism within scatter search. In section 2, we
described the application of the Combination Method associated with each variant of the updating
strategies for the reference set. In addition to these rules, we have developed and tested a two-phase
intensification procedure.

The basic design of Figure 1 applies the Combination Method to all the subsets generated from a given
reference set. Although the reference set is dynamically updated, the new solutions are not used for

Laguna and Martí / 8

combination until all the subsets generated with the previous RefSet have been combined. In other words,
the new solutions that become members of RefSet are not combined until all pairs in NewSubsets are
subjected to the Combination Method. The goal of the first phase of our intensification strategy is to apply
the Combination Method to new solutions in a manner that is faster than in the bas ic design. That is, if a
new solution is admitted to the reference set the intensification goal is to allow this new solution to be
subjected to the Combination Method as quickly as possible. This strategy can be easily implemented by
modifying step 3 in Figure 1 as follows:

if (Intensify = TRUE) then
3a. Let NewSubsets consist of one pair of solutions, the two best solutions in RefSet1

where at least one is a new solution. Make NewSolutions = TRUE.
if (NewSubsets = ∅) then Intensify = FALSE.

end if
if (Intensify = FALSE) then

3b. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include
at least one new solution. Make NewSolutions = FALSE.

end if

Note that by reducing NewSubsets to just one pair of solutions, the procedure returns to the generation of
subsets immediately after one application of the Combination Method. The downside of this intensification
phase is that some solutions in RefSet could be replaced before being combined. To illustrate this, suppose
that the initial RefSet = { x1, x2, x3, x4 } and that the intensification strategy is active. Suppose also that the
combination of the pair (x1, x2) results in a solution y for which:

f(y) < f(x3)

Then, the reference set is changed in such a way that the updated RefSet = { x1, x2, y, x3 }. The search
continues with the combination of the pair (x1, y). Clearly, the quick updating of the reference set
eliminates the combination of the pair (x1, x4).

The second phase of our intensification strategy consists of selecting the two best solutions in RefSet1 to
create 8 solutions by applying C1 and C3 twice and C2 four times. Note that for this intensification, we do
not require that at least one of the two best solutions be new. We do not test the two phases of our
intensification strategies separately. That is, we either apply the entire two-phase strategy or we don’t
apply it at all. The application of the intensification strategy depends on two parameters: IntPoint and
IntLength. IntPoint is the iteration number at which the first intensification phase is applied for IntLength
iterations. The second intensification phase is automatically applied at iteration 2*IntPoint. An iteration,
in our context, is considered a single evaluation of the objective function.

5. Computational Experiments

Our computational testing consists of two main experiments. In the first experiment, we compare the
performance of the scatter search variants that result from the application of the alternative strategies
described in the previous sections. In the second experiment, we compare the performance of the most
effective scatter search design against a well-known genetic algorithm. Table 2 shows summary
information of 40 test problems that are based on a set of nonlinear objective functions, most of which can
be found in the following web pages:

http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfopt.htm
http://solon.cma.univie.ac.at/~neum/glopt/my_problems.html
http://www-math.cudenver.edu/~rvan/phd/node32.html

The numbers between parentheses associated with some of the problems are the parameter values for the
corresponding objective function. A typical parameter refers to the number of variables, since several of
these functions expand to an arbitrary number of variables. Although the objective functions are built in a

Laguna and Martí / 9

way that the optimal solutions are known, the optimization problems cannot be trivially solved by search
procedures that do not exploit the special structure associated with each function. A detailed description of
the objective functions is provided in the Appendix.

Table 2. Test problems

Number of
variables

Problem
number

Name and
parameter values

x* f(x*)

2 1 Branin (9.42478, 2.475)† 0.397887
 2 B2 (0, 0) 0
 3 Easom (π,π) -1
 4 Goldstein and Price (0, -1) 3
 5 Shubert (0.0217, -0.9527)† -186.7309
 6 Beale (3, 0.5) 0
 7 Booth (1, 3) 0
 8 Matyas (0, 0) 0
 9 SixHumpCamelback (0.089840, -0.712659) † -1.0316285
 10 Schwefel(2) (1, 1) 0
 11 Rosenbrock (2) (1, 1) 0
 12 Zakharov(2) (0, 0) 0

3 13 De Joung (0, 0, 0) 0
 14 Hartmann(3,4) (0.114614, 0.555649, 0.852547) 0

4 15 Colville (1, 1, 1, 1) 0
 16 Shekel(5) (4, 4, 4, 4) -10.1532
 17 Shekel(7) (4, 4, 4, 4) -10.4029
 18 Shekel(10) (4, 4, 4, 4) -10.53641
 19 Perm(4,0.5) (1, 2, 3, 4) 0
 20 Perm0(4,10) (1, 1/2, 1/3, 1/4) 0
 21 Powersum (8,18,44,114) (1, 2, 2, 3) 0

6 22 Hartmann(6,4) (0.20169, 0.150011, 0.47687,
0.275332, 0.311652, 0.6573)

0

 23 Schwefel(6) (1, …, 1) 0
 24 Trid(6) xi = i*(7-i) -50

10 25 Trid(10) xi = i*(11-i) -210
 26 Rastrigin(10) (0, …, 0) 0
 27 Griewank(10) (0, …, 0) 0
 28 Sum Squares(10) (0, …, 0) 0
 29 Rosenbrock(10) (1, …, 1) 0
 30 Zakharov(10) (0, …, 0) 0

20 31 Rastrigin(20) (0, …, 0) 0
 32 Griewank(20) (0, …, 0) 0
 33 Sum Squares(20) (0, …, 0) 0
 34 Rosenbrock(20) (1, …, 1) 0
 35 Zakharov(20) (0, …, 0) 0

> 20 36 Powell(24) (3, -1, 0, 1, 3, …, 3, -1, 0, 1) 0
 37 Dixon and Price(25)







 −

−
= z

z

ix
1

2 , 12 −= iz
0

 38 Levy(30) (1, …, 1) 0
 39 Sphere(30) (0, …, 0) 0
 40 Ackley(30) (0, …, 0) 0

† This is one of several multiple optimal solutions.

Since the initial reference set includes the solution in which all the variables are set to their lower bound
(i.e., x = l), the solution in which all the variables are set to their upper bounds (i.e., x = u) and the solution
for which all the variables are set to the midpoint (i.e., x = (u+l)/2), we have modified the bounds in those
cases where any of these solutions turns out to be the optimal. For example, the optimal solution to the “De
Joung” function is x = 0 and the original bounds for all variables were l = -5.12 and u = 5.12. Since the

Laguna and Martí / 10

midpoint of this range is the optimal solution, the problem is trivially solved by any of our scatter search
variants. Therefore, we have modified the range and changed the lower bound to -2.56.

For our experiments, we define the optimality gap as:

)()(*xfxfGAP −=

where x is a heuristic solution and x* is the optimal solution. We then say that a heuristic solution x is
optimal if:







≠ε
=ε

≤
0)()(*
0)(

**

*

xfxf
xf

GAP

In our experimentation we set ε = 0.001. Our first experiment consists of trying all possible combinations
of the designs resulting from the strategies described above. We consider the following settings:

Reference set update: UP1, UP2 and UP3
Diversification generation: DV0, DV1 and DV2
Intensification strategy: IN0 (deactivated) and IN1 (activated)

We use IntPoint = 3000 and IntLength = 200 for IN1. These settings result in 3*3*2 = 18 possible
combinations and each combination is run up to a maximum of 10000 objective function evaluations. Note
that we don’t test settings with UP0 because this update strategy causes an early termination of the search
and cannot compete with extended runs of the other variants. We execute 18*20 = 360 runs of our scatter
search procedure, because we limit this experiment to the odd-numbered problems in Table 2. We use half
of the available problems to be able to confirm our findings when applying them to the entire set of
problems. The outcome from the first experiment is summarized in Table 3.

Table 3. Results of various scatter search designs.

Update Method
(UP)

Diversification
Method (DV)

Intensification
Strategy (IN) Average GAP Std. Dev. GAP

Number of
Optima

1 0 0 9.90 30.93 14
1 0 1 6.14 26.44 13
1 1 0 45.76 171.00 13
1 1 1 10.76 32.21 14
1 2 0 35.84 127.98 7
1 2 1 34.07 117.99 9
2 0 0 46.15 177.96 8
2 0 1 45.94 178.01 6
2 1 0 68.89 208.02 6
2 1 1 55.58 131.76 3
2 2 0 59.62 193.65 1
2 2 1 48.00 116.76 2
3 0 0 40.47 150.91 8
3 0 1 47.82 183.01 9
3 1 0 69.82 206.21 3
3 1 1 77.90 206.01 5
3 2 0 45.53 121.89 5
3 2 1 47.02 122.59 2

Laguna and Martí / 11

The results in Table 3 indicate that there is an important difference between the number of optimal
solutions found with the (UP1, DV0, *) and (UP1, DV1, *) settings and all other settings tested in our first
experiment. Among the top four settings, the (UP1, DV0, IN1) seems to dominate the others in terms of
the average GAP.

Since the GAP variability is quite large with respect to the average values, we conducted an analysis of
variance to detect statistically significant differences. Table 4 shows the analysis of variance output from
SPSS. The model tests for differences in means of the dependent variable GAP and includes the three
factors UP, DV and IN.

Table 4. ANOVA for scatter search designs.

Source Sum of
Squares

df Mean Square F p-value

UP 75196.848 2 37598.424 1.657 0.192
DV 29293.122 2 14646.561 0.645 0.525
IN 2641.153 1 2641.153 0.116 0.733
UP * DV 13664.106 4 3416.026 0.151 0.963
UP * IN 5892.651 2 2946.325 0.130 0.878
DV * IN 3265.096 2 1632.548 0.072 0.931
UP * DV * IN 4959.722 4 1239.930 0.055 0.994
Error 7761017.193 342 22693.033
Total 8598536.376 360

The p values in Table 4 are clearly larger than any reasonable critical value that one might use to test the
significance of the mean GAP. Therefore the ANOVA in Table 4 indicates that the mean GAP does not
differ more than would be expected by chance alone.

In our second main experiment, we compare the performance of our scatter search with UP1, DV0 and IN1
against Genocop III (http://www.coe.uncc.edu/~zbyszek/gchome.html), an implementation of genetic
algorithms that is customized for solving nonlinear optimization problems with continuous and bounded
variables (Michalewicz 1993). We chose the (UP1, DV0, IN1) setting because it is the one with the
smallest average GAP in Table 3 and also is one of four with the largest number of optima found.

Table 5 shows the average GAP value for our scatter search implementation compared to the one for
Genocop III. The average GAP is calculated over the set of 40 problems in Table 2 at several points during
the search. Since Genocop III begins with a GAP in the order of 1027 for problem 23, we also provide the
average GAP calculated over 39 problems, ignoring the GAP for problem 23.

Table 5. Average GAP values.

Evaluations 100 500 1000 5000 10000 20000 50000
Genocop1 5.37E+25 2.39E+17 1.13E+14 636.37 399.52 320.84 313.34
Genocop2 1335.45 611.30 379.03 335.81 328.66 324.72 321.20
Scatter Search 134.45 26.34 14.66 4.96 3.60 3.52 3.46
1 Average values over all test problems.
2 Average values ignoring problem 23.

Table 5 shows that the average GAP of scatter search is consistently lower than the average GAP associated
with Genocop III. In fact, the average GAP of scatter search after 100 evaluations of the objective function
is already better than the average GAP for Genocop III after 50000 objective function evaluations. The
final GAP values for scatter search are all less than 1.0, except for problems 23, 26, 34, and 40, for which
the GAP values are 118.4341, 9.9496, 2.2441, and 5.5033, respectively. Although there is a difference in
average GAP values in Table 5 between scatter search and Genocop, an analysis of variance revealed that
the difference of means is not statistically significance. SPSS yields a p-value of 0.164 for the comparison
of means at 5000 evaluations with a one-way ANOVA.

Laguna and Martí / 12

Counting the number of optimal solutions found with each method is an alternative measure of
performance, as shown in Table 3. The plot in Figure 2 shows the number of ε-optimal solutions found by
each procedure during a search with a stopping criterion of 50000 objective function evaluations. The plot
shows the better performance of the scatter search implementation, which solves 4 problems within 100
evaluations and 30 by 20000 evaluations. At the end of the search, Genocop III successfully solves a total
of 23 problems.

0

5

10

15

20

25

30

100 500 1000 5000 10000 20000 50000

Evaluations

P
ro

bl
em

s
So

lv
ed

Genocop

Scatter Search

Figure 2. Number of problems solved.

We perform a secondary experiment to investigate whether any of the scatter search variants is capable of
solving the 10 problems that the UP1, DV0 and IN1 setting did not solve. For each unsolved problem (15,
19, 23, 26, 29, 34, 36-38 and 40), we run a 50000-evaluation search using each of the 17 settings, excluding
(UP1, DV0, IN1). The outcome of this experiment is that 5 additional problems are solved and the average
GAP of the unsolved problems is reduced to 1.2322. These results are summarized in Tables 6 and 7.

Table 6 shows that both settings (UP1, DV1, IN0) and (UP1, DV1, IN1) are capable of solving problems
15, 19 and 26. However, the performance of (UP1, DV1, IN0) is considered better regarding these three
problems because it solves them in fewer evaluations than (UP1, DV1, IN1). This setting, on the other
hand, is capable of solving the elusive problem 23 employing less than 10000 evaluations. Also, a setting
that uses UP1 and DV0 solves problem 36 regardless of the intensification strategy. Finally, note that from
the unsolved problems in Table 7, only two have a GAP value larger than 1.

Table 6. Additional solved problems.

Setting Problem Evaluations
(UP1, DV1, IN0) 15 13638
 19 13325
 26 27
(UP1, DV1, IN1) 15 16152
 19 37118
 23 9525
 26 27
(UP2, DV0, *) 36 119
* = all options.

Laguna and Martí / 13

Table 7. Unsolved problems.

Problem Setting GAP
29 (UP1, DV2, IN1) 0.327761
34 (UP1, DV1, IN1) 2.050292
37 (UP1, *, *) 0.666667
38 (UP1, DV0, IN1) 0.089528
40 (UP1, DV2, IN1) 3.026937

Average 1.232237
* = all options.

The comparisons are made on the basis of solution quality versus number of evaluations because
computing times are equivalent for all the tested methods. For instance, the average time to complete a run
of 20000 objective function evaluations is 0.4 seconds for both SS (UP1, DV0, IN1) and Genocop on a
2.53 GHz Pentium 4 computer. The use of number of function evaluations as a way of comparing
procedures has the additional advantage of providing a more accurate performance measure in settings
where the evaluation of the objective function is computationally expensive. For example, in the context of
optimizing simulations, the time required for generating solutions is negligible compared to the time
required to evaluate the objective function.

6. Conclusions

We have explored alternative mechanisms to perform key operations within the scatter search framework.
In particular, we have focused on designing and testing strategies for updating the reference set, generating
diversity and intensifying the search. We have gathered a set of 40 test problems with number of variables
ranging from 2 to 30 to perform experiments with the goal of assessing the merit of each combination of
the proposed strategies. For our initial testing, we chose 20 problems out of 40 and concluded that the best
parameter setting was UP1, DV0 and IN1. This conclusion is based on the average GAP value and the
number of optimal solutions found, although an ANOVA could not confirm a statistical significant
difference. We then used this setting to compare the performance of the resulting procedure against a well-
known genetic algorithm. The computational tests show that our scatter search is robust, because it finds
solutions of reasonable quality from the beginning of the search. This is an important feature in settings
where the objective function evaluation is computational expensive (e.g., when optimizing simulations).
The procedure is capable of finding ε-optimal solutions to 30 out of 40 problems within 20000 objective
function evaluations. This compares favorable to the number of ε-optimal solutions found with Genocop
III employing more than twice the number of evaluations.

References

Campos, V., F. Glover, M. Laguna and R. Martí (1999) “An Experimental Evaluation of a Scatter Search
for the Linear Ordering Problem,” Working paper, University of Colorado at Boulder.

Glover, F. (1994) “Tabu Search for Nonlinear and Parametric Optimization (with Links to Genetic
Algorithms),” Discrete Applied Mathematics, vol. 49, pp. 231-255.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial Evolution, Lecture
Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer and D. Snyers (Eds.),
Springer-Verlag, pp. 13-54.

Glover, F., M. Laguna and R. Martí (1999) “Scatter Search,” to appear in Theory and Applications of
Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui (Eds.), Springer-Verlag.

Laguna and Martí / 14

Laguna, M. (2002) “Scatter Search,” in Handbook of Applied Optimization, P. M. Pardalos and M. G. C.
Resende (Eds.), Oxford University Press, New York, pp. 183-193.

Michalewicz, Z. (1994) Genetic Algorithms + Data Structures = Evolution Programs, Second-Extended
Edition, Springer-Verlag.

Michalewicz, Z. and T. D. Logan (1994) “Evolutionary Operators for Continuous Convex Parameter
Spaces,” Proceedings of the 3rd Annual Conference on Evolutionary Programming, A.V. Sebald and L. J.
Fogel (Eds.), World Scientific Publishing, River Edge, NJ, pp. 84-97.

Roy, R.K. (1990) A Primer on the Taguchi Method, Van Nostrand Reinhold, New York.

Appendix

This appendix contains the description of the set of test functions in Table 2. The description consists of
the objective function, parameter values and the bounds for each variable.

1. Branin

Minimize () 10cos
8
111065

4

5)(
2

1
2
122 +








π

−+





−








π

+








π
−= ixxxxxf

Subject to -5 ≤ x1, x2 ≤ 15

2. B2

Minimize () () 7.04cos4.03cos3.02)(21
2
2

2
1 +π−π−+= xxxxxf

Subject to -50 ≤ xi ≤ 100 for i=1, 2

3. Easom

Minimize () () () ()()()2
2

2
121 expcoscos)(π−+π−−−= xxxxxf

Subject to -100 ≤ xi ≤ 100 for i=1, 2

4. Goldstein and Price

Minimize
() ()()

() ()()2
2212

2
11

2
21

2
2212

2
11

2
21

2736481232183230

36143141911)(

xxxxxxxx

xxxxxxxxxf

+−++−−+

++−+−+++=

Subject to -2 ≤ xi ≤ 2 for i=1, 2

5. Shubert

Minimize ()() ()()












++













++= ∑∑

==

5

1
2

5

1
1 1cos1cos)(

jj

jxjjjxjjxf

Subject to -10 ≤ xi ≤ 10 for i=1, 2

6. Beale

Laguna and Martí / 15

Minimize 23
211

22
211

2
211)625.2()25.2()5.1()(xxxxxxxxxxf +−++−++−=

Subject to -4.5 ≤ x1, x2 ≤ 4.5

7. Booth

Minimize 2
21

2
21)52()72()(−++−+= xxxxxf

Subject to -10 ≤ x1, x2 ≤ 10

8. Matyas

Minimize 21
2
2

2
1 48.0)(26.0)(xxxxxf −+=

Subject to -5 ≤ x1, x2 ≤ 10

9. SixHumpCamelBack

Minimize 4
2

2
221

6
1

4
1

2
1 44

3
11.24)(xxxxxxxxf +−++−=

Subject to -5 ≤ x1, x2 ≤ 5

10, 23. Schwefel(n)

Minimize ()∑
=

−+=
n

i
ii xxnxf

1

sin9829.418)(

Subject to -500 ≤ xi ≤ 500 for i=1,..., n

11, 29, 34. Rosenbrock(n)

Minimize 2
12

2
2

1

2
122)1()(100)(−

=
− −+−= ∑ i

n

i
ii xxxxf

Subject to -10 ≤ xi ≤ 10 for i=1,..., n.

12, 30, 35. Zakharov(n)

Minimize ∑ ∑∑
= ==














+













+=

n

j

n

j
j

n

j
jj jxjxxxf

1

4

1

2

1

2 5.05.0)(

Subject to -5 ≤ xi ≤ 10 for i=1, …, n

13. De Joung

Minimize 2
3

2
2

2
1)(xxxxf ++=

Subject to -2.56 ≤ xi ≤ 5.12 for i=1, 2, 3

Laguna and Martí / 16

14. Hartmann(3,4)

Minimize ()∑ ∑
= =














−−−=

4

1

3

1

2exp)(
i j

ijjiji pxacxf

Subject to 0 ≤ xi ≤ 1 for i=1, 2, 3

i aij ci pij
1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

15. Colville

Minimize ())1)(1(8.19)1()1(1.10

)1()(90)1()(100)(

42
2

4
2

2

2
3

22
34

2
1

22
12

−−+−+−

+−+−+−+−=

xxxx

xxxxxxxf

Subject to -10≤ xi ≤ 10 for i=1,...,4.

16-18. Shekel(n)

Minimize () ()()∑
=

−
+−−−=

n

i
ii

T
i cxf

1

1
)(axax ; () ()Tiiiii

T aaaaxxxx 4321
4321 ,,,;,,, == ax

Subject to 0 ≤ xi ≤ 10 for i=1, 2, 3, 4

i T

ia ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

19. Perm(n, β)

Minimize ()
2

1 1

1)(∑ ∑
= =




























−




β+=
n

k

n

i

k
ik

i
x

ixf

Subject to -n ≤ xi ≤ n for i=1,..., n.

Laguna and Martí / 17

20. Perm0(n, β)

Minimize ()
2

1 1

1)(∑ ∑
= =

































−β+=

n

k

n

i

k
k
i i

xixf

Subject to -n ≤ xi ≤ n for i=1,..., n.

21. PowerSum(b1,...,bn)

Minimize

2

1 1

)(∑ ∑
= =














−










=

n

k
k

n

i

k
i bxxf

Subject to 0 ≤ xi ≤ n for i=1,..., n.

22. Hartmann(6,4)

Minimize ()∑ ∑
= =














−−−=

4

1

6

1

2exp)(
i j

ijjiji pxacxf

Subject to 0 ≤ xi ≤ 1 for i=1, …, 6

i aij ci pij
1 10.0 3.0 17.0 3.5 1.7 8.0 1.0 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10.0 17.0 0.10 8.0 14.0 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

24-25. Trid(n)

Minimize () ∑∑
==

−









−=

n

i
ji

n

i
i xxxxf

21

21)(

Subject to -n2 ≤ xi ≤ n2 for i=1,..., n.

26, 31. Rastrigin(n)

Minimize ()()∑
=

π−+=
n

i
ii xxnxf

1

2 2cos1010)(

Subject to -2.56 ≤ xi ≤ 5.12 for i=1,..., n

27, 32. Griewank(n)

Minimize ∑ ∏
= =

+





−=

n

i

n

i

ii

i

xx
xf

1 1

2

1cos
4000

)(

Subject to -300 ≤ xi ≤ 600 for i=1,..., n

Laguna and Martí / 18

28, 33. Sum Squares (n)

Minimize ∑
=

=
n

i
iixxf

1

2)(

Subject to -5 ≤ xi ≤ 10 for i=1,..., n

36. Powell(n)

Minimize 4
434

4
1424

2
414

2
4

1
2434)(10)2()(5)10()(jjjjjj

n

j
jj xxxxxxxxxf −+−+−++= −−−−

=
−−∑

Subject to -4 ≤ xi ≤ 5 for i=1,..., n

37. Dixon and Price(n)

Minimize 2
1

2

1
1

2)1()2()(−+−= ∑
=

− xxxixf
n

i
ii

Subject to -10 ≤ xi ≤ 10 for i=1,..., n

38. Levy(n)

Minimize ()∑
−

=

π+−++π+−+π=
1

1

2222
1

2))2(sin1()1())1(sin101(1)(sin)(
k

i
kkii xyyyyxf

Subject to
4

1
1

−
+= i

i
x

y for i=1,..., n

-10 ≤ xi ≤ 10 for i=1,..., n

39. Sphere(n)

Minimize ∑
=

=
n

i
ixxf

1

2)(

Subject to -2.56 ≤ xi ≤ 5.12 for i=1,..., n

40. Ackley(n)

Minimize
∑

−
∑

−+= ==
π−

n

i
i

n

i
i x

n
x

n eeexf 11

2)2cos(
11

2.0
2020)(

Subject to -15 ≤ xi ≤ 30 for i=1,..., n

