

Scatter Search and Local NLP Solvers: A Multistart

Framework for Global Optimization

Zsolt Ugray1, Leon Lasdon2, John Plummer2, Fred Glover3, James Kelly4 and Rafael Marti5

1The A. Gary Anderson Graduate School of Management, University of California, Riverside,

CA, 92521-0203
2Management Science and Information Systems Department, McCombs School of Business, The

University of Texas at Austin, Austin, TX, 78712, USA
3Graduate School of Business, University of Colorado, Boulder, CO, 80309

4OptTek Systems, Inc, 1919 7th St, Boulder CO, 80302
5Departament d’estadistica i Investigacio Operativa, University of Valencia, 46100

BURJASSOT, Valencia, Spain

zsolt.ugray@ucr.edu, lasdon@mail.utexas.edu, jcplummer@mail.utexas.edu,
fred.glover@colorado.edu, Kelly@OptTek.com, rafael.marti@uv.es

Submitted to INFORMS Journal on Computing, July 25, 2002.
 Revised Version Submitted ????

The algorithm described here, called OptQuest/NLP or OQNLP, is a heuristic designed to find
global optima for pure and mixed integer nonlinear problems with many constraints and
variables, where all problem functions are differentiable with respect to the continuous variables.
It uses OptQuest, a commercial implementation of scatter search developed by OptTek Systems,
Inc., to provide starting points for any gradient-based local NLP solver. This solver seeks a local
solution from a subset of these points, holding discrete variables fixed. The procedure is
motivated by our desire to combine the superior accuracy and feasibility-seeking behavior of
gradient-based local NLP solvers with the global optimization abilities of OptQuest.
Computational results include 155 smooth NLP and MINLP problems due to Floudas et al., most
with both linear and nonlinear constraints, coded in the GAMS modeling language. Some are
quite large for global optimization, with over 100 variables and 100 constraints. Global solutions
to almost all problems are found in a small number of local solver calls, often one or two.

(Global Optimization; Multistart Heuristic; Mixed Integer Nonlinear programming; Scatter
Search; Gradient Methods)
__

1

1. Introduction
This paper describes OQNLP, a multistart heuristic algorithm designed to find global optima of

smooth constrained nonlinear programs (NLPs) and mixed integer nonlinear programs

(MINLPs). It uses the OptQuest Callable Library (OCL) implementation of Scatter Search

[Laguna and Marti, 2000] to generate trial points, which are candidate starting points for a local

NLP solver. These are filtered to provide a smaller subset from which the solver attempts to find

a local optimum. Our GAMS implementation can use any GAMS NLP solver, and the stand-

alone version uses the generalized reduced gradient NLP solver LSGRG2 [Smith and Lasdon,

1992].

The most general problem this algorithm can solve has the form

 minimize f(x,y) (1)

subject to the nonlinear constraints

 guy)G(x,gl ≤≤ (2)

the linear constraints

 uyAxAl ≤+≤ 21 (3)

 YySx ∈∈ , (4)

where x is an n-dimensional vector of continuous decision variables, y is a p-dimensional vector

of discrete decision variables, and the vectors gl, gu, l, and u contain upper and lower bounds for

the nonlinear and linear constraints respectively. The matrices and are by n and

by p respectively, and contain the coefficients of any linear constraints. The set S is defined by

simple bounds on x, and we assume that it is closed and bounded, i.e., that each component of x

has a finite upper and lower bound. This is required by the OptQuest scatter search procedure.

The set Y is assumed to be finite, and is often the set of all p-dimensional binary or integer

vectors y which satisfy finite bounds. The objective function f and the -dimensional vector of

constraint functions G are assumed to have continuous first partial derivatives at all points in

. This is necessary so that a gradient-based local NLP solver can be applied to the relaxed

NLP sub-problems formed from (1) - (4) by allowing the y variables to be continuous.

1A 2A 2m 2m

1m

YS ×

2

2. Multi-start algorithms for global optimization
In this section, which reviews past work on multi-start algorithms, we focus on unconstrained

problems where there are no discrete variables, since to the best of our knowledge multi-start

algorithms have been investigated theoretically only in this context. These problems have the

form of (1)-(4) with no y variables and no constraints except the bounds in (4).ε Sx∈

All global minima of f are assumed to occur in the interior of S. By multi-start we mean any

algorithm that attempts to find a global solution by starting a local NLP solver, denoted by L,

from multiple starting points in S. The most basic multi-start method generates uniformly

distributed points in S, and starts L from each of these. This converges to a global solution with

probability one as the number of points approaches infinity--in fact, the best of the starting points

converges as well. However, this procedure is very inefficient because the same local solution is

located many times. A convergent procedure that largely overcomes this difficulty is called

multi-level single linkage (MLSL) [Rinnooy Kan and Timmer, 1987]. MLSL uses a simple rule

to exclude some potential starting points. A uniformly distributed sample of N points in S is

generated, and the objective, f, is evaluated at each point. The points are sorted according to

their f values, and the qN best points are retained, where q is an algorithm parameter between 0

and 1. L is started from each point of this reduced sample, except if there is another sample point

within a certain critical distance that has a lower f value. L is also not started from sample points

that are too near the boundary of S, or too close to a previously discovered local minimum.

Then, N additional uniformly distributed points are generated, and the procedure is applied to the

union of these points and those retained from previous iterations. The critical distance referred

to above decreases each time a new set of sample points is added. The authors show that, if the

sampling continues indefinitely, each local minimum of f will be located, but the total number of

local searches is finite with probability one. They also develop Bayesian stopping rules, which

incorporate assumptions about the costs and potential benefits of further function evaluations, to

determine when to stop the procedure.

When the critical distance decreases, a point from which L was previously not started may

become a starting point in the next cycle. Hence all sample points generated must be saved.

This also makes the choice of the sample size, N, important, since too small a sample leads to

many revised decisions, while too large a sample will cause L to be started many times. Random

Linkage (RL) multi-start algorithms introduced by [Locatelli and Schoen, 1999] retain the good

3

convergence properties of MLSL, and do not require that past starting decisions be revised.

Uniformly distributed points are generated one at a time, and L is started from each point with a

probability given by a nondecreasing function)(dφ , where d is the distance from the current

sample point to the closest of the previous sample points with a better function value.

Assumptions on this function that give RL methods the same theoretical properties as MLSL are

derived in the above reference.

Recently, Fylstra et al. have implemented a version of MLSL that can solve constrained

problems - see www.solver.com. Limited to problems with no discrete variables y, it uses the

exact penalty function, defined as

1L

 (5)))(()(),(
1

1 ∑
=

+=
m

i
ii xgviolwxfwxP

where the are nonnegative penalty weights, iw 21 mmm += , and the vector g has been extended

to include the linear constraints (4). The function is equal to the absolute amount by

which the ith constraint is violated at the point x. It is well known (see [Nash and Sofer, 1996])

that if is a local optimum of (1)-(4), is a corresponding optimal multiplier vector, the

second order sufficiency conditions are satisfied at , and

))((xgviol i

*x *u

),(** ux

 (6))(*
ii uabsw >

then is a local unconstrained minimum of . If (1)-(4) has several local minima, and each

 is larger than the maximum of all absolute multipliers for constraint i over all these optima,

then has a local minimum at each of these local constrained minima. Even though is not a

differentiable function of x, MLSL can be applied to it, and when a randomly generated trial

point satisfies the MLSL criterion to be a starting point, any local solver for the smooth NLP

problem can be started from that point. The local solver need not make any reference to the

exact penalty function , whose only role is to provide function values to MLSL. We will use

 in the same way in our OQNLP algorithm. We are not aware of any theoretical investigations

of this extended MLSL procedure, so it must currently be regarded as a heuristic.

*x 1P

iw

1P 1P

1P

1P

4

3. The OQNLP Algorithm
3.1 The Global Phase - Scatter Search

Scatter Search (ScS) is a population based meta-heuristic algorithm devised to intelligently

perform a search on the problem domain [Glover, 1998]. It operates on a set of solutions called

the reference set or population. Elements of the population are maintained and updated from

iteration to iteration. Scatter Search differs from other population-based evolutionary heuristics

like Genetic Algorithms (GAs) mainly in its emphasis on generating new elements of the

population mostly by deterministic combinations of previous members of the population as

opposed to the more extensive use of randomization. ScS was founded on strategies that were

proposed as augmentations to GAs more than a decade after their debut in Scatter Search. It

embodies principles and strategies that are still not emulated by other evolutionary methods and

prove to be advantageous for solving a variety of complex optimization problems. For the most

recent and complete description of ScS, see [Laguna and Marti, 2003]

A summary of the OptQuest [Laguna and Marti, 2002] and [Laguna and Marti, 2000]

implementation of ScS follows. The problem to be solved has the form (1)-(4) but, to simplify

the explanation, we assume there are no y variables.

3.1.1 Steps of Scatter Search

1. Initialize: size of reference set = b, initial point =x0, input upper and lower bounds on

variables and constraint functions, and the coefficients of any linear constraints. Create an initial

set of three points, : all variables equal their lower bounds, all variables set to their upper

bounds, and all variables equal the mid-point between their bounds. If an initial point has been

determined, add it to R0.

SR ⊂0

2. Given R0, use a diversification generation method to augment it with additional points,

creating an initial diverse reference set, of cardinality b. Optionally, map the elements of

R into points that satisfy the linear constraints.

SR ⊂

3. Evaluate the objective f and the nonlinear constraint functions G at each point in R, and

evaluate a penalty function POQ, equal to the objective plus a penalty weight times the maximum

percentage violation of the nonlinear constraints (the max of 100 times the absolute violation

divided by 1 plus the absolute constraint value). POQ is used as the quality measure of a

population point.

5

While (stopping criteria are not satisfied)

While (some distinct pair of points in R has not been processed)

4. Select a new pair of points in R

5. Use a solution combination method to produce a small number of trial solutions from this pair

of points. Optionally, map each trial point into the closest point that satisfies the linear

constraints and variable bounds.

6. At each (mapped) trial solution, evaluate the objective f and nonlinear constraint functions G,

and form the penalty function, POQ .

Endwhile

7. Update the reference set.

8. If the reference set has changed, return to step 4. Otherwise, restart the procedure by selecting

a subset (typically the best half) of the best points in the reference set to be retained as the set R0,

and return to step 2.

Endwhile

3.1.2 Description of the Scatter Search Steps

Step 1 generates the starting points to create the initial reference set R0. The 3 points always

appearing in this set are the vectors x for which all element are set to the upper bounds, to the

lower bound, and to the midpoints of the bounds. If there is an initial point recommended to the

problem, it is also added to R0 as a fourth point.

Step 2 generates the remaining points to the initial reference set R. The diversification

generation method begins by generating nr>b randomly generated points in S, using a stratified

sampling procedure described in [Laguna and Marti, 2000]. It then creates the reference set, R,

by adding to R0 the random point farthest from its nearest neighbor in R0, and repeating this

process until R0 has cardinality b. If the problem has linear constraints and the points selected

are infeasible for these linear constraints, they are first projected onto the convex polyhedron

defined by the linear constraints and then added to R0. This is done by finding the point in this

polyhedron that is closest (using the L1 norm) to the infeasible point by solving a linear program.

The result of this step is a diverse reference set that satisfies the linear constraints of the problem.

The initial population resulting from this procedure for a reference set of size b = 10 is shown

in Figure 1, which uses data from a 2 variable unconstrained problem due to [Dixon and Szegö,

1975] called the six-hump camelback function. The objective to be minimized is

6

 42642 44
3
11.24),(yyxyxxxyxF +−++−= (7)

This is the problem EX8_2_5 from a large set of problems described in [Floudas, et al., 1999].

Problems from this set are used as test problems for OQNLP, and will be discussed in detail

later. The problem has upper bounds of 10.0 and lower bounds of –10.0 on both variables, and

has 6 local minima, all lying well within these bounds (see Figure 2 for their location), plus a

stationary point at the origin that is neither a local minimum nor a maximum. The initial set R0

is the three points (0,0), (10,10), (-10,-10), where (0,0) is user-supplied and the other two are the

vectors of upper and lower bounds respectively.

-11

-6

-1

4

9

-11 -6 -1 4 9

Figure 1: Initial Population for the Six-Hump Camelback Function

7

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 2: Locally Optimal Solutions for the Six-Hump Camelback Function

Step 3 ranks the points in the reference set based on their quality, measured by a penalty

function POQ which is equal to the objective plus a penalty weight times the maximum

percentage violation of the violated nonlinear constraints. The penalty function POQ is not the

same as the exact penalty function described in (5), and is not exact. It is used because

Lagrange multiplier information is assumed not to be available. Multipliers may not even exist if

the problem is non-smooth or has discrete variables, and OptQuest is designed to solve such

problems as well.

1P

Steps 4 and 5 create new trial solutions by selecting 2 “parent” points from the reference set

and performing the solution combination method on them. (If the option to always satisfy linear

constraints is selected, the trial solutions are projected onto the linear constraints.) To illustrate

how the combination method currently implemented in OptQuest works, Figure 3 demonstrates

the generation of new trial points from the 3 best points of the initial population for the six-hump

camel back function.

8

x1

x2

x3

-5

-3

-1

1

3

5

7

9

11

13

-7 -5 -3 -1 1 3 5

x

y

Figure 3: Trial Points for Six-Hump Camelback Function

The three points shown as diamonds and labeled x1, x2, x3 (x1 is the origin) have the lowest

objective values in the initial population. The two lines in the figure are determined by the pairs

of points (x1, x2) and (x1, x3). Focusing on the line (x1, x2), let

d = (x2-x1)/2

v1 = x1-d

v2 = x1

 v3 = x1+d

v4 = x2

v5 = x2+d.

Thus v3 is at the midpoint of this line, and v1 and v5 extend it beyond x1 and x2. These points

are shown as black or white squares in the figure. The points v1 and v2 can be used to define a

hyper-rectangle whose vertices are the set n2

9

 },...,1,)2()1(|),...,,{(21 nivorvzzzzV iiin === .

Thus the four pairs of points (vi, v(i+1)) for i = 1,..,4 define 4 rectangles, three of which are

shown on the line determined by x1 and x2. OptQuest generates one randomly distributed trial

point in each rectangle, and these points are shown as triangles. Three more trial points are

generated in the same way starting with the points (x1, x3). These points lie “close” to the lines,

but are not on them.

If there are discrete variables, the above process produces trial points whose values for these

variables are not in the finite set of allowed values. These components are rounded to an

allowable value using generalized rounding processes, i.e., processes where the rounding of each

successive variable depends on the outcomes of previous roundings. For each discrete variable

xi, Optquest allows the definition of a lower bound (loi), an upper bound (upi), and a step value

(sti). The step is the distance between two consecutive allowed values (it is usually equal to 1).

Then, if old_xi is the value to be rounded, the rounding process generates a first value new_xi

according to:

iiii
i

ii
i stincloxnew

st
loxold

inc ⋅+=⎥
⎦

⎥
⎢
⎣

⎢ −
+= _,

_
5.0

If new_xi is lower than upi, then it is accepted as the rounded value. Otherwise, we compute it

again, decreasing inci by one unit, which gives an allowed value.

The full set of 144 trial points generated from the initial population of this example is shown

in Figure 4.

10

-11

-6

-1

4

9

-11 -6 -1 4 9

Figure 4: Initial Population and 144 Trial Points for Six-Hump Camelback Problem

The ten white diamond points are the members of the initial reference set, while the dark

squares are the trial points, generated as described earlier. These are well scattered over the

region defined by the bounds.

In Step 6 the objective f and non-linear constraints G are evaluated and the penalty function

POQ is calculated. OptQuest considers f and G to be black boxes, and it is the responsibility of

the user to provide the evaluation and return the corresponding values.

In step 7, after all trial points have been evaluated, the reference set is updated by replacing

the population which generated the trial points by the best b points of the union of the trial points

and the initial reference set, where best is determined by the OptQuest penalty function POQ.

This is an aggressive update, emphasizing solution quality over diversity. This updated reference

set, used to generate trial points from iteration 155 onward, is shown in Figure 5. The ten

population points cluster in the region about the origin where the six local optima are located, so

the next set of 144 trial points will lie within a slight expansion of this region. These trial points

11

thus have much better objective values than those generated by the initial population, as we

illustrate later in section 6.

-11

-6

-1

4

9

-11 -6 -1 4 9

Figure 5: Second Reference Set for Six-Hump Camelback Function

When the diversity and quality of the reference are considered equally important, a different

updating method is suggested in [Laguna and Marti, 2002]. In this variation, the reference set is

split into 2 halves. The first half is created and maintained the same way as described earlier,

focusing on the quality of the points. The other half contains diverse points. If a solution does

not qualify to enter the first half of the reference set based on its quality, a test is performed to

determine whether it fits the diversity criterion. That is, if the new point’s minimum distance to

any point in the second half of the reference set is larger than that of any points’ already in the

set, the new point will replace it. With this method the dynamic preservation of diversity is

assured for the reference set.

12

If the updated reference set is unchanged, step 8 forces a return to Step 4 where a new diverse

reference set is created. When this occurs, a number (typically b/2) of the best points from the

current population are retained and newly generated points replace the rest.

3.2 The Local Phase – Gradient Based NLP Solvers

There are many papers and texts discussing gradient-based NLP solvers, e.g., [Nash and Sofer,

1996], [Nocedal and Wright, 1999], [Edgar, Himmelblau, and Lasdon, 2001]. These solve

problems of the form (1)-(4), but with no discrete (y) variables. They require a starting point as

input, and use values and gradients of the problem functions to generate a sequence of points

which, under fairly general smoothness and regularity conditions, converges to a local optimum.

The main classes of algorithms in widespread use today are Successive Quadratic Programming

(SQP) and Generalized Reduced Gradient (GRG)-see [Edgar, Himmelblau, and Lasdon, 2001,

Chapter 8.] The algorithm implemented in the widely used MINOS solver [Murtagh and

Saunders, 1982] is similar to SQP. If there are nonlinear constraints, SQP and MINOS generate

a sequence of points that usually violate the nonlinear constraints, with the violations decreasing

to within a specified feasibility tolerance as the sequence converges to a local optimum. GRG

algorithms have a simplex-like phase 1-phase 2 structure. Phase 1 begins with the given starting

point and, if it is not feasible, attempts to find a feasible point by minimizing the sum of

constraint violations. If this effort terminates with some constraints violated, the problem is

assumed to be infeasible. However, this local optimum of the phase 1 objective may not be

global, so a feasible point may exist. If a feasible point is found, phase 2 uses it as its starting

point, and proceeds to minimize the true objective. Both phases consist of a sequence of line

searches, each of which produces a feasible point with an objective value not worse (and usually

better) than its predecessor.

Several good commercially available implementations of GRG and SQP solvers exist: see

[Nash, 1998] for a review. As with any numerical analysis software, a local NLP solver can fail

to find a local solution from a specified starting point. The problem may be too badly

conditioned, badly scaled, or too large for the solver, causing it to terminate at a point (feasible

or infeasible) which is not locally optimal. While the reliability of the best current NLP solvers is

quite high, these difficulties occurred in our computational testing, and we discuss this in more

detail later.

13

Let L be a local NLP solver capable of solving (1)-(4), and assume that L converges to a local

optimum for any starting point . Let be the locally optimal solution found by L

starting from , and let , i = 1,2,...,nloc be all the local optima of the problem. The basin of

attraction of the ith local optimum relative to L, denoted by B(), is the set of all starting points

in S from which the sequence of points generated by L converges to . Formally:

Sx ∈0)(0xL

0x *
ix

*
ix

*
ix

 B() = *
ix })(,|{ *

000 ixxLSxx =∈

One measure of difficulty of a global optimization problem with unique global solution is

the volume of B() divided by the volume of the rectangle, S, the relative volume of B().

The problem is trivial if this relative volume is 1, as it is for convex programs, and problem

difficulty increases as this relative volume approaches zero.

*
1x

*
1x *

1x

3.3 Comparing Heuristic Search Methods and Gradient Based NLP Solvers

For smooth problems, the relative advantages of a heuristic search method like Scatter Search

over a gradient-based NLP solver are its ability to locate an approximation to a good local

solution (often the global optimum), and the fact that it can handle discrete variables. Gradient-

based NLP solvers converge to the “nearest” local solution, and have no facilities for discrete

variables, unless they are imbedded in a rounding heuristic or branch-and-bound method.

Relative disadvantages of heuristic search methods are their limited accuracy, and their weak

abilities to deal with equality constraints (more generally, narrow feasible regions). They find it

difficult to satisfy many nonlinear constraints to high accuracy, but this is a strength of gradient-

based NLP solvers. Search methods also require an excessive number of iterations to find

approximations to local or global optima accurate to more than 2 or 3 significant figures, while

gradient-based solvers usually achieve 4 to 8-digit accuracy rapidly.

The motivation for combining search and gradient-based solvers in a multi-start procedure is

to achieve the advantages of both while avoiding the disadvantages of either. Surprisingly, we

have been unable to locate any published efforts in this direction, besides the Frontline extended

MLSL method discussed in Section 2.

3.4 The OQNLP Algorithm

A pseudo-code description of the simplest OQNLP algorithm follows:

14

INITIALIZATION

Read_Problem_Parameters (n, p, , , bounds, starting point); 1m 2m

Setup_OQNLP and OptQuest_Parameters and Options(problem size, stage 1 and 2 iteration

limits, population size, accuracy, names and types of variables and constraints, bounds on

variables and constraints);

Initialize_OptQuest_Population;

Stage 1 iterations = Stage 2 iterations = 0;

STAGE 1: INITIAL OPTQUEST ITERATIONS AND FIRST L CALL

WHILE (Stage 1 iterations < Stage 1 iteration limit)

DO {

 Get (trial solution from OptQuest);

 Evaluate (objective and nonlinear constraint values at trial solution,);

 Put (trial solution , objective and constraint values to OptQuest database);

 Stage 1 iterations = Stage 1 iterations + 1;

 } ENDDO

Get_Best_Point_from_OptQuest_database (starting point);

Call_L (starting point, local solution);

Threshold = default value;

IF (local solution feasible) THEN {

 Insert local solution in linked list;

 Penalty weights = max(positive lower limit, absolute multiplier values from L call);

 threshold = value of local solution; } 1P

Penalty weights = max(positive lower limit, absolute multiplier values from L call)

STAGE 2: MAIN ITERATIVE LOOP

WHILE (Stage 2 iterations < Stage 2 iteration limit)

DO {

 Get (trial solution from OptQuest);

 Evaluate (objective and nonlinear constraint values at trial solution,);

15

 Put (trial solution, objective and constraint values to OptQuest database);

Calculate_ Penalty_ Function (trial solution, Penalty weights,); 1P

 IF (distance and merit filter criteria are satisfied) THEN {

 Replace threshold with current value; 1P

 Call_L (trial solution, local solution);

 IF (local solution feasible) THEN {

 Insert local solution in linked list;

 Penalty weights = max(positive lower limit, absolute multiplier values from L

call); }

 }

ELSE IF (> threshold for waitcycle consecutive iterations) {increase threshold} 1P

Stage 2 iterations = Stage 2 iterations + 1;

} ENDDO

After initialization, there are two main stages. In the “initial OptQuest iterations” stage, the

objective and constraint values at all trial points generated by the initial OptQuest population

(including the population points themselves) are evaluated, and these values are returned to

OptQuest, which computes its penalty function, POQ, at each point. The point with the best POQ

value is selected, and L is started from this point. If there are any discrete variables, y, they are

fixed at their current values during the L solution process. Figure 4 shows a graph of these trial

points for a two variable unconstrained problem. In general, they are scattered within the

rectangle defined by the bounds on the variables, so choosing the best corresponds to performing

a coarse search over this rectangle. If the best point falls inside the basin of attraction of the

global optimum relative to L (as it often does), then if the subsequent L call is successful, it will

find a global optimum. This call also determines optimal Lagrange multiplier values, , for the

constraints. These are used to determine initial values for the penalty weights, , satisfying (6),

which are used in the exact penalty function, , defined in (5). All local optima found are stored

in a linked list, along with the associated Lagrange multipliers and objective values. Whenever a

new local optimum is found, the penalty weights are updated so that (6) is satisfied over all

known local optima.

*u

iw

1P

16

The main iterative loop of stage 2 obtains trial points from OptQuest, and starts L from the

subset of these points determined by two filters. The distance filter helps insure that these

starting points are diverse, in the sense that they are not too close to any previously found local

solution. Its goal is to prevent L from starting more than once within the basin of attraction of

any local optimum, so it plays the same role as the rule in the MLSL algorithm of Section 2,

which does not start at a point if it is within a critical distance of a better point. When the final

point found by L is feasible, it is stored in a linked list, ordered by its objective value, as is the

Euclidean distance between it and the starting point that led to it. If a local solution is located

more than once, the maximum of these distances, maxdist, is updated and stored. For each trial

point, t, if the distance between t and any local solution already found is less than

distfactor*maxdist, L is not started from the point, and we obtain the next trial solution from

OptQuest.

This distance filter implicitly assumes that the attraction basins are spherical, with radii at

least maxdist. The default value of distfactor is 0.75, and it can be set to any positive value. As

distfactor approaches zero, the filtering effect vanishes, as would be appropriate if there were

many closely spaced local solutions. As it increases, the filtering effect increases until eventually

L is never started in stage 2.

The merit filter helps insure that the L starting points have high quality, by not starting from

candidate points whose exact penalty function value in (5) is greater than a threshold. This

threshold is set initially to the value of the best candidate point found in the first stage of the

algorithm. If trial points are rejected by this test for more than waitcycle consecutive iterations,

the threshold is increased by the updating rule:

1P

1P

 threshold threshold +threshfactor*(1.0+abs(threshold))

where the default value of threshfactor is 0.2 and that for waitcycle is 20. The additive 1.0 term

is included so that threshold increases by at least threshfactor when its current value is near zero.

When a trial point is accepted by the merit filter, threshold is decreased by setting it to the

value of that point.

1P

The combined effect of these 2 filters is that L is started at only a few percent of the OptQuest

trial points, yet global optimal solutions are found for a very high percentage of the test

problems. Some insight is gained by examining Figure 6, which shows the stationary point at the

17

origin and the 6 local minima of the 2 variable six-hump camelback function defined in (7) as

dark squares, labeled with their objective value. The ten points from which OQNLP starts the

local solver are shown as nine white diamonds, plus the origin. The local minima occur in pairs

with equal objective value, located symmetrically about the origin. There were 144 trial points

generated in the “initial OptQuest iterations” stage, and these, plus the 10 points in the initial

population, are shown in Figure 4. The best of these 154 points is the population point (0,0), so

this becomes the first starting point for the local solver. This happens to be a stationary point of

F, so it satisfies the optimality test (that the norm of the gradient of the objective be less than the

optimality tolerance), and the local solver terminates there. The next local solver start is at

iteration 201, and this locates the global optimum at (.0898, -.7127), which is located two times.

The other global optimum at (-.0898, .7127) is found first at iteration 268, and is located 6 times.

1.6071

-.2155
-1.0316

-.2155

0

--1.0316

1.6071

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 6: Local Optima and 10 L Starting Points for 6 hump camelback function

18

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

150 200 250 300 350 400

Figure 7: Objective and Threshold Values for Six-Hump Camelback Function

for Iterations 155 to 407

The limit on total OQNLP iterations in this run was 1000. L was started at only 9 of the 846

OptQuest trial points generated in the main iterative loop of stage 2. All but 2 of the starting

points are in the basin of attraction of one of the two global optima. This is mainly due to the

merit filter. In particular, the threshold values are always less than 1.6071, so no starts are ever

made in the basin of attraction of the two local optima with this objective value. The merit filter

alone rejected 498 points, the distance filter alone 57, and both rejected 281.

Figure7 illustrates the dynamics of the merit filtering process for iterations 155 to 407 of this

problem, displaying the objective values for the trial points as white diamonds, and the threshold

values as dark lines. All objective values greater than 2.0 are set to 2.0.

The initial threshold value is zero, and it is raised twice to a level of 0.44 at iteration 201,

where the trial point objective value of -0.29 falls below it. L is then started and locates the

global optimum at (.0898, -.7127), and the threshold is reset to –0.29. This cycle then repeats.

Nine of the ten L starts are made in the 252 iterations shown in the graph. In this span, there are

12 points where the merit filter allows a start and the threshold is decreased, but L is not started

at three of these because the distance filter rejects them.

19

Figure 8 shows the same information for iterations 408 to 1000. There is only one L start in

this span. This is not due to a lack of high quality trial points: there are more good points than

previously, many with values near or equal to –1.0310 (the global minimum is –1.0316), and the

merit threshold is usually –1.0310 as well. Every time this threshold is raised, the merit filter

accepts one of the next trial points, but 51 of the 52 accepted points are too near one of the 2

global optima, and they are rejected by the distance filter.

This simple example illustrates a number of important points:

1. Setting the bounds on the continuous or discrete variables to be too large in magnitude is

likely to slow the OQNLP algorithm (or any search algorithm) and may lead to a poorer final

solution. In the above example, if the variable bounds had been [-2,2] rather than [10,10], the

trial points generated by the initial population would have had much lower objective values.

OptQuest can overcome this when the initial population is updated.

2. L found a highly accurate approximation to the global solution of this unconstrained problem

at its second call. OptQuest alone would have taken many more iterations to achieve this

accuracy.

3. The best trial point generated by the initial population may not have as good an objective

value as those generated from the second or succeeding ones, especially if the variable bounds

are too large. Using the best “first generation” point as the initial L starting point may not lead to

as good a local solution as if some “second generation” points had been considered. For this

reason our base case computational results use a first stage of 200 OptQuest trial points, which in

this example would include all 144 first generation points and 56 from the second generation.

20

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

407 507 607 707 807 907

Figure 8: Objective and Threshold Values for Six-Hump Camelback Function:

iterations 408 to 1000

3.5 Filtering Logic for Problems with Discrete Variables

The filtering logic described above must be extended when there are discrete variables (the y

variables in the problem statement (1)-(4)). There are 2 distinct modes: (1) Optquest is aware of

both the x and y variables and all problem constraints and (2) Optquest is aware only of the y

variables and the constraints involving y only. Tests thus far do not show conclusively that one

of these is preferred, so both modes are described and comparisons thus far are presented later.

In mode one, when a trial point (xt, yt) provided by OptQuest passes the two filtering tests and

is passed to the local solver L, xt acts as a starting point and is changed by L, but the yt values are

fixed and are not changed. Each new set of yt values defines a different NLP for L to solve, say

NLP(yt), with its own set of local minima in x space, so both filters must be made specific to

NLP(yt). For the distance filter, it is irrelevant if xt is close to any local minima (in x space)

previously found which correspond to problems NLP(y) with y different from yt. Hence the

distance filter is based on the distance from xt to local minima of NLP(yt) only. Similarly, the

tests and threshold values in the merit filter must be specific to the problem NLP(yt) currently

being solved. However, the weights w in the exact penalty function (x,y,w) used in the merit

filter are based on the maximum absolute multipliers over all local optima for all vectors y

1P

t,

21

because these weights are large enough to ensure that this function is exact for all problems

NLP(y).

Therefore, in stage 2 of the algorithm, the exact penalty function, (x1P t,yt,w), is calculated at

each trial point (xt,yt), and L is started at (xt,yt) if is smaller than the current threshold for

NLP(y

1P

t). This threshold is initialized to plus infinity, so if the values yt have not occurred in a

previous stage 2 trial point, L will be called at this point. This leads to many more local solver

calls in problems with discrete variables, as we show later in the computational results sections.

In mode two, Optquest presents candidate y vectors only to L, which are fixed while L finds

corresponding (locally) optimal x values. The starting values for x can be chosen to minimize

computational effort. We are experimenting with an option which obtains all possible trial

points for the current population, sorts them in terms of their distance from each other, and calls

L in that sorted order, starting each call of L from the previous optimum. It is expected that y’s

which are close to one another will have x’s with that property, so the previous optimum will be

a good starting point.

In mode two, there is no stage 1, and L must be called at each y vector that has not been

produced previously. As a result, the local solver call where the best value is found typically

comes later than with mode 1. On the other hand, OptQuest’s effort is reduced since it processes

a much smaller problem, and the information returned to it by the local solver (the optimal

objective value over the continuous variables) is of much higher quality than in the base case (the

penalized objective value at OptQuest’s trial point).

An important option involves the return of information from the local solver to OptQuest,

which is absent in the above procedure, i.e., local solutions found by the local solver are not

returned to OptQuest. Such solutions are generally of very high quality, and might aid the search

process if they were incorporated into the OptQuest population, because at least a subset would

likely be retained there. However, this should be done so as to preserve the diversity of the

population.

4. Computational Results
The algorithm described in the previous section has been implemented as a callable C-language

function. In this form, the user supplies a C function that evaluates the objective and constraint

functions, an optional routine that evaluates their first partial derivatives (finite difference

22

approximations are used otherwise), and a calling program that supplies problem size, bounds, an

initial point, and invokes the algorithm. Algorithm parameters and options all are set initially to

default values, and any changes are specified in an options file.. The local NLP solver is the

LSGRG2 implementation of [Smith and Lasdon, 1992]. We have also developed an interface

between our C implementation and the GAMS algebraic modeling language (see

www.gams.com), using C library routines provided by GAMS Development Corporation. The

user function routine is replaced by one that calls the GAMS interpreter, and a special derivative

routine accesses and evaluates expressions developed by GAMS for first derivatives of all

nonlinear problem functions. GAMS identifies all linear terms in each function, and supplies

their coefficients separately, thus identifying all linear constraints. This enables us to invoke the

OptQuest option which maps each trial point into a point which satisfies the linear constraints.

The derivative information supplied by GAMS significantly enhances the performance of the

local solver since only non-constant derivatives are re-evaluated, and these are always available

to full machine precision. As mentioned earlier, this GAMS version can call any GAMS NLP

solver.

For our computational experiments we used the large set of global optimization test problems

coded in GAMS from [Floudas et al., 1999]. Table 1 shows the characteristics of 142 individual

and 2 groups of problems.

23

Table 1: Floudas Test Problem Set Characteristics

Series Pr
ob

le
m

s

M
ax

 v
ar

s

M
ax

 d
is

cr
et

e
va

rs

M
ax

 li
ne

ar
 c

on
st

ra
in

ts

M
ax

 n
on

lin
ea

r c
on

st
ra

in
ts

Problem Type
EX2_1_x 14 24 0 10 0 concave QP (min)
EX3_1_x 4 8 0 4 6 quadratic obj and constraints
EX4_1_x 9 2 0 0 2 obj or constraints polynomial
EX5_2_x 2 32 0 8 11 bilinear-pooling
EX5_3_x 2 62 0 19 34 distillation column sequencing
EX5_4_x 3 27 0 13 6 heat exchanger network
EX6_1_x 4 12 0 3 6 Gibbs free energy min
EX6_2_x 10 9 0 3 0 Gibbs free energy min
EX7_2_x 4 8 0 3 12 generalized geometric prog
EX7_3_x 6 17 0 10 11 robust stability analysis
EX8_1_x 8 6 0 0 5 small unconstrained, constrained
EX8_2_x 5 55 0 6 75 batch plant design-uncertainty
EX8_3_x 14 141 0 43 65 reactor network synthesis
EX8_4_x 8 62 0 0 40 constrained least squares
EX8_5_x 6 6 0 2 2 min tangent plane distance
EX8_6_1 N 3N 0 0 0 Lennard-Jones energy min
EX8_6_2 N 3N 0 0 0 Morse energy min
EX9_1_x 10 29 6 27 5 bilevel LP
EX9_2_x 9 16 3 11 6 bilevel QP
EX12_2_x 6 11 8 9 4 MINLP
EX14_1_x 9 10 0 4 17 infinity norm solution of equations
EX14_2_x 9 7 0 1 10 infinity norm solution of equations

Total: 142 + 2N

Most problems arise from chemical engineering, but some are from other sources. Most are

small, but a few have over 100 variables and comparable numbers of constraints, and 13 have

both continuous and discrete variables. Almost all of the problems without discrete variables

have local solutions distinct from the global solution, and the majority of problems have

constraints. Sometimes all constraints are linear, as with the concave quadratic programs of

series EX2_1_x, but many problems have nonlinear constraints, and these are often the source of

the non-convexities. The best-known objective value and (in most cases) the corresponding

24

variable values are provided in [Floudas, et al., 1999]. The symbol N in the rows for the series

EX8_6_1 and EX8_6_2 is the number of particles in a cluster whose equilibrium configuration is

sought via potential energy minimization. Each particle has 3 coordinates, so there are 3N

variables.

4.1 Continuous Variables-The Base Case

This section describes results obtained when OQNLP is applied to 128 of the problems in the

Floudas et. al. test set with no discrete variables. A few problems for which no GAMS NLP

solver can find a feasible solution in 800 solver calls are omitted. Computations were performed

on a DELL OptiPlex PC with a 1.2 Ghz Pentium IV processor and 261 Mbytes of RAM, running

under Windows 2000.

The options and main algorithm parameters used are shown in Table 2 (see Section 3.4 for

definitions). The filter parameter values (waitcycle, threshfactor, distfactor) correspond to fairly

tight filters, and these must be loosened to solve some problems. The OptQuest “use linear

constraints” option, which projects trial points onto the linear constraints, is not used because it

is very time consuming for larger problems. SNOPT, an SQP implementation, was used for the

largest problems because many calls to the GRG solvers CONOPT and LSGRG2 terminate

infeasible on these problems. The 8_3_x problems include many “pooling” constraints, which

have bilinear terms. In almost all these terminations, the GRG solvers find a local minimum of

the phase 1 objective. SNOPT has no phase 1, and never terminates infeasible.

25

Table 2: Base case OQNLP and OptQuestGRG Parameters and Options Used

Total iterations = 1000

Stage 1 iterations = 200

Waitcycle = 20

Threshfactor = 0.2

Distfactor = 0.75

Use linear constraints = no

OptQuest search type = boundary

Boundary search parameter = 0.5

NLP solver = LSGRG2 except

SNOPT for 110 to 141 range

Table 3 shows outcomes and average effort statistics for 128 of the Floudas et. al. collection

of test problems with continuous variables only, sorted into 6 groups by number of variables.

Geometric rather than arithmetic means are used to reduce the effects of outliers: function calls,

iterations, and times for the larger problem sets typically include a few problems with values

much larger than all others. Computational effort is measured by OptQuest iterations, solver

calls, function calls (each function call evaluates the objective and all constraint functions), and

computation time. The three “to best” columns show the effort required to find the best OQNLP

objective value. Function calls are not available for the largest problems because the SNOPT

interface does not yet make them available.

26

Table 3: Results and Effort Statistics for 128 Continuous Variable Floudas Problems

 Va

ria
bl

e
ra

ng
e

Pr
ob

le
m

s

Va
ria

bl
es

C
on

st
ra

in
ts

Ite
ra

tio
ns

to

 b
es

t

So
lv

er
 c

al
ls

to

 b
es

t

So
lv

er
 c

al
ls

Lo
ca

ls

fo
un

d

Fu
nc

tio
n

ca
lls

 to
 b

es
t

 Fu
nc

tio
n

ca
lls

Ti
m

e
to

 b
es

t
To

ta
l

tim
e

Fa
ile

d

Fi
rs

t
L

ca
ll

Se
co

nd

L
ca

ll

1 to 4 32 2.5 1.7 206.3 1.1 7.5 1.9 263.9 2158.0 0.1 0.5 1 27 3
4 to 7 31 5.5 5.7 214.4 1.3 5.8 1.9 381.5 4766.7 0.2 0.6 0 22 6
8 to 12 21 9.4 8.1 238.2 1.5 13.2 3.0 575.6 19698.0 0.1 0.8 3 10 4

13 to 20 18 15.9 11.7 303.5 2.4 7.4 2.6 968.2 5211.9 0.3 0.7 4 8 1
22 to 78 13 37.9 27.6 259.6 2.1 14.1 3.1 1562.4 23077.9 0.6 2.5 1 5 3

110 to 141 13 116.4 80.1 305.0 2.7 23.7 22.7 NA NA 6.6 64.1 0 7 2
Total/avg 128 251.3 1.8 10.5 3.5 537.9 7190.9 0.4 1.7 9 80 19

Since all problems have known solutions, we define “failures” as problems with a solution

gap of more than 1%. This gap is the percentage difference between the best feasible OQNLP

objective value, fOQNLP, and the best-known feasible objective value, fbest, defined for

minimization problems as:

)(1
)(100

fbestabs
fbestfoqnlpgap

+
−

=

and the negative of the above for maximization, so positive gaps indicate that the best known

solution was not reached. Nine of the 128 problems failed to achieve gaps smaller than 1%, with

gaps ranging from 2.2% to 80%. All these are solved with more iterations or by loosening the

filters. Percentage gaps for almost all 119 “solved” problems are less than 1.e-4, and the largest

gap among solved problems is 0.37%.

Computational effort needed to achieve these results is quite low, and increases slowly with

problem size, except for the geometric mean solution time for the largest problems. The best

OQNLP value is also found very early: in the first solver call in 80 of the 118 solved problems,

and the second call in 19 more. This shows that, for these test problems, stage one of OQNLP is

very effective in finding a point in the basin of attraction of the global optimum. The ratio of the

“to best” effort to total effort is also small. For iterations, since there are always 200 stage 1

iterations, we subtract 200 before computing the ratio, giving 51.3/800 = 0.06. The solver call

ratio is 0.17 and the time ratio 0.23. This implies that, for these problems, a criterion that stops

OQNLP when the fractional change in the best feasible objective value found thus far is below a

27

small tolerance for some (reasonably large) number of successive iterations would rarely

terminate the algorithm before the best solution was found. The ratio of total solver calls to

locals found, a measure of filter efficiency, varies from 3 to 5, and is nearly one for the largest

problems.

Table 5 shows results obtained in solving the 9 “failed” problems with looser filters and an

OptQuest boundary search parameter of 1. Seven of these 9, the 2_1_x series, are quadratic

programs (QP’s) with concave objectives (to be minimized), so each has an optimal extreme

point solution, and every extreme point is a local solution. The base case and new parameter

values are in Table 4 below.

Table 4: Base Case and Loosened Filter Parameter Values

Parameter Base Case Value Looser Value

Waitcycle 20 10

Threshold_factor 0.2 1.0

Distance_factor 0.75 0.1

Boundary Search Parameter 0.5 1.0

The looser merit filter increases its threshold every 10 iterations, replacing the old value by

old value+1.0*(1+abs(old value)). The looser distance filter rejects a trial solution if its distance

from any previously found local solution is less than 0.1*maxdist, where maxdist is the largest

distance traveled to reach that solution. A search parameter of 1 causes more OptQuest trial

points to have values on the boundary of the rectangle defined by the variable bounds, which

helps solve the seven concave QP’s.

Eight of the nine “unsolved” problems are solved with these new parameters, and the other,

EX14_1_8, achieves a gap of 1.15%. It is solved by using 1000 stage one iterations and 5000

total, with all other parameters as in the base case.

28

Table 5: Solving 9 “failed” problems with looser filters and boundary parameter=1

Problem
name Va

ria
bl

es

 C
on

st
ra

in
ts

Ite
ra

tio
ns

to

 b
es

t

So
lv

er
 c

al
ls

to

 b
es

t

To
ta

l
so

lv
er

 c
al

ls

B
as

e
ca

se

so
lv

er
 c

al
ls

Lo
ca

ls

fo
un

d

Fu
nc

tio
n

ca
lls

to

 b
es

t

Total
function calls Ti

m
e

to
 b

es
t

To
ta

l
tim

e

 G
ap

EX14_1_8 3 4 338 21 122 17 2 38141 1218680 0.49 2.25 1.15
EX9_2_5 8 7 344 2 6 45 3 690 2832 0.21 0.6 0
EX2_1_6 10 5 203 3 107 7 17 389 138749 0.2 1.38 0
EX2_1_9 10 1 201 1 111 66 39 252 342345 0.16 1.45 0

EX2_1_7_1 20 10 279 8 27 2 19 5051 60043 0.39 1.25 0
EX2_1_7_3 20 10 269 4 65 22 36 1321 286213 0.3 1.92 0
EX2_1_7_4 20 10 253 6 29 4 9 3676 83989 0.39 1.41 0
EX2_1_7_5 20 10 254 5 29 3 15 2620 71004 0.33 1.34 0

EX2_1_8 24 10 226 3 120 8 25 981 1071730 0.29 2.87 0

Means(geom) 258.6 4.1 48.7 10.5 12.8 1760.7 137876.8 0.3 1.5

Comparing the “total solver calls” and “base case solver calls” columns shows that the new

parameters represent a substantial loosening of both filters. The looser filters result in many

more solver calls in all but problem 9_2_5, and the geometric mean solver calls is 48.7 with the

loose filters versus 10.5 with the tighter ones. The behavior of 9_2_5 is surprising (6 solver calls

with loose filters versus 45 with tighter ones), but the run with looser filters finds the global

minimum at iteration 344, and after that its merit thresholds and set of local solutions differ from

those of the base case run.

Table 6 below shows the geometric performance means and totals obtained from solving the

14 concave QP problems with base case parameters, with and without the OptQuest “use linear

constraints” option, which maps each trial point into a nearest point feasible for the linear

constraints. Since these are linearly constrained problems, invoking this option guarantees that

all trial points are feasible.

Table 6: Solving Concave QP problems with and without “use linear constraints”

Case

Iterations

to best

Solver calls

to best

Total
Solver
calls

Locals
found

fcn calls to

best

Total fcn

calls

Time to

best

Total
time

Failed

no use 284.8 2.3 6.6 3.7 643.8 3875.1 0.3 0.6 7

use 247.1 2.1 12.1 3.1 437.7 3827.6 6.9 19.0 2

29

Clearly this option helps: there are roughly twice as many solver calls on average when using

it, and only 2 failures, versus 7 in the base case. The gaps for the 2 unsolved problems (2_1_7_5

and 2_1_9) are between 1% and 3.5% in both cases. However, this option increases run times

here by about a factor of 30, so it is currently off by default.

4.2 The Lennard-Jones and Morse Energy Minimization Problems

The Floudas et. al. set of test problems includes two GAMS models that choose the locations of a

cluster of N particles to minimize the potential energy of the cluster, using two different potential

energy functions, called Lennard-Jones and Morse. The decision variables are the (x,y,z)

coordinates of each particle. Particle 1 is located at the origin, and three position components of

particles 2 and 3 are fixed, so each family of problems has 3N-6 variables. These problems have

many local minima, and their number increases rapidly with problem size, so they constitute a

good test for global optimization algorithms.

Results of applying OQNLP to 14 of these problems, using 200 stage 1 and 1000 total

iterations, are shown in Tables 7 and 8. Each problem set was solved with LSGRG2 and

CONOPT. These results use CONOPT for the Lennard-Jones problems and LSGRG2 for the

Morse, because they provide slightly better results, illustrating the value of being able to call

several solvers. Because of the many distinct local minima, the number of local minima found is

equal to the number of solver calls for the 3 largest Lennard-Jones problems and for all the

Morse problems,

Table 7: Solving 6 Lennard-Jones Problems Using CONOPT and Loose Filters

Problem name

Variables

Constraints

Solver calls to
best

Total
Solver
calls

Locals
found

Time to
best

Total

Gap,%
EX8_6_1_5 9 10 1 152 39 1.09 21.83 0.00

EX8_6_1_10 24 45 21 130 114 18.56 68.34 0.00
EX8_6_1_15 39 105 6 104 100 13.63 165.09 0.00
EX8_6_1_20 54 190 67 118 118 257.62 396.21 1.12
EX8_6_1_25 69 300 42 94 94 325.82 730.68 1.84
EX8_6_1_30 84 435 16 59 59 134.35 434.56 0.88

The Lennard-Jones problems are the more difficult of the two. The 3 largest problems have

gaps of roughly 1% to 2%, using the looser filter parameters in Table 4. The default filter

30

parameters led to positive gaps for the last 3 problems totaling 7.8%, while this sum in Table 7 is

3.8%. The objective approaches infinity as the distance between any 2 particles approaches zero,

so its unconstrained minimization for N=20 leads to about 50,000 domain violations (either

divide by zero or integer power overflow), and this number grows rapidly with N. Hence we

added constraints lower bounding this distance by 0.1 for all distinct pairs of points, and the

number of these constraints is shown in the table. None are active at the best solution found.

Table 8 shows the Morse potential results using the LSGRG2 solver and the default OQNLP

parameters shown in Table 2. The objective here has no singularities, so there are no difficulties

with domain violations, and the only constraints are variable bounds. All problems are solved to

very small gaps except the largest (144 variables), which has a gap of .125%. The number of

solver calls is much smaller than for the Lennard-Jones problems, because the filters are much

tighter. Each call leads to a different local optimum. The largest problem is solved to a gap less

than 1.e-4% with 5000 total and 1000 stage 1 iterations and the same filter parameters. This run

terminated because the 3000 second time limit was exceeded, took 4083 iterations, and found

210 distinct local optima in 210 solver calls, compared to only 25 in the base case.

Table 8: Solving 8 Morse Problems Using Lsgrg2 and default Parameters

Problem name

Variables

Solver calls

to best

Total Solver

calls

Locals
found

Time to best

 Total time

Gap

EX8_6_2_5 9 1 5 5 0.23 0.61 0.0000

EX8_6_2_10 24 1 15 15 0.57 4.44 0.0000

EX8_6_2_15 39 1 6 6 1.41 6.43 0.0000

EX8_6_2_20 54 2 43 43 4.2 51.2 0.0000

EX8_6_2_25 69 4 20 20 13.44 58.38 0.0000

EX8_6_2_30 84 17 43 43 68.56 160.19 0.0000

EX8_6_2_40 114 7 33 33 66.29 273.91 0.0000

EX8_6_2_50 144 20 25 25 337.2 403.96 0.1251

4.3 Problems with Discrete Variables

There are 11 MINLP problems in the Floudas et. al. test set, with the total number of variables

ranging from 3 to 29 and the number of binary variables ranging from 1 to 8. Two of these,

EX12_2_3 and EX12_2_4, had been reformulated so that all binaries appeared linearly, and we

restored them to their original state where the binaries appear nonlinearly. OQNLP allows such

31

representations, while the other GAMS MINLP solvers do not. The final test set contains 13

problems. These are far too small to yield meaningful inferences about the power of OQNLP on

problems of practical size, but allow preliminary testing of the two MINLP modes described in

Section 3.5. The geometric means of some measures of computational outcomes and effort for

both modes are shown in Table 9, using the LSGRG2 NLP solver.

Table 9: Solution Statistics for 13 Problems with Discrete Variables

D
is

cr
et

e
 v

ar

m
od

e

 O
pt

io
ns

 a
nd

Pa

ra
m

et
er

s

 It
er

at
io

ns
 to

 b
es

t

L
ca

lls
 t

o
be

st

T
ot

al
 L

 c
al

ls

 Fc
n

ca
lls

 to
 b

es
t

 T
ot

al
 fc

n
ca

lls

T
im

e
 to

 b
es

t

T
ot

al
 ti

m
e

Fa
ilu

re
s

discrete
only default 10.2 10.2 20.1 2065.8 5794.1 0.8 1.5 0

all default 261.7 4.0 32.1 1065.7 25022.2 0.3 0.8 7

all (1000,5000) 1551.9 12 89.1 10196.8 224025.7 0.8 3.7 1

all default,use 272.4 3.6 115.8 1178.0 88983.0 9.9 26.1 0

The first table row is for mode 2, where OptQuest manipulates only the discrete variables.

Each NLP problem was “cold started” from the same initial point in these runs, so the number of

function calls could be reduced substantially by warm starts. All runs are terminated by

OptQuest after the small number of possible binary variable combinations have been completely

enumerated. The optimal solution is found on average about midway through the solution

process, but we expect that this will occur earlier as the number of discrete variables increases.

The OptQuest logic requires that at least one population of binary solutions be evaluated before

any learning can occur, and the average number of solver calls to find the best solution here is

about equal to the population size of 10.

The last 3 rows of Table 9 show results for mode 1, where OptQuest manipulates both binary

and continuous variables. In rows 2 and 3, we do not require trial points to satisfy linear

constraints, while in row 4 we do. Without using linear constraints, the default number of stage

1 and total iterations of (200,1000), are not enough to find the best solution for about 7 of the 13

problems. This is because many OptQuest trial points have the same values for the binary

32

variables but different values for the continuous variables, so complete enumeration takes far

longer than in mode 2. However, 1000 stage 1 and 5000 total iterations solve all but 1 problem

(its gap is 9.4%), and the ratio (solver calls to best)/(total solver calls) of about 1/9 is favorably

small. Row 4 shows that, if trial points are required to satisfy linear constraints, all problems are

solved in 1000 total iterations. This is because these problems have mostly linear constraints

(geometric mean of linear constraints is 9.1 and of total constraints is 9.9), so the projected trial

points tend to contain an optimal set of binary variable values earlier, after only 3.6 solver calls

on average. However, solving the MILP’s which map trial points into nearest points which

satisfy the linear constraints increases total solution time by about a factor of 30 (compare the

times in rows 2 and 4).

Table 10 below shows that total solver calls increase quickly with the number of binary

variables for the 2 discrete variable modes, especially the “all” mode. When more than one

problem has the same number of binaries, averages over those problems are given. The values

for the “Discretes Only” mode are the number of feasible binary vectors, averaged over the

number of problems shown.

 Table 10: Average Solver Calls Vs. Number of Binary Variables

Binaries 1 3 4 5 6 8

Problems 1 3 2 1 4 2

Discretes only 2 7 12.5 27 52.5 81

all 52 35.7 17.5 109 195.5 551.5

5. Summary and future research
The results of Section 4 show that OQNLP is a promising approach for smooth nonconvex

NLP’s with continuous variables. It solves all 142 of the test problems with no discrete variables

with very reasonable solution effort. While there is no guarantee of optimality and no “gap” is

available, it can be combined with other algorithms that provide this information, e.g., LGO or

BARON. The lower bounds provided by these procedures can be used to estimate the gap for

33

the OQNLP solution, and the solution produced by any algorithm can be used as a warm start for

any other.

Future research includes enhancing the filter logic. As described above, the filters needed to

be loosened to solve 9 of the Floudas et. al. test problems, and this loosening could be done

automatically. The merit filter parameter threshfactor (new threshold=threshfactor(1+old

threshold)) could be calculated dynamically. Each time a penalty value is above the threshold,

calculate the value of threshfactor that would cause the new threshold to equal the penalty value.

If this happens for waitcycle consecutive iterations, set threshfactor to the smallest of these

values, so the new threshold would have just accepted the lowest of the penalty values. Similar

logic can be developed for the distance filter, reducing a basin radius maxdist if that basin’s

distance filter rejects trial points for waitcycle consecutive iterations.

Also, the current distance filter logic allows overlap of the spherical approximations to the

attraction basins. The true basins can have no points in common, so we can impose this

condition on the spheres. If the spherical model basins for any 2 local solutions xi and xj have

radii ri and rj, these must satisfy

),(jidrjri ≤+

where d(i,j) is the Euclidean distance between xi and xj. If this inequality is violated, the radii ri

and rj can be reduced by the same scale factor so that it holds as equality. We plan to test these

options soon.

Another important aspect is the communication of locally optimal solutions back to OptQuest,

to improve its search process. These solutions usually have substantially lower penalty values

than typical OptQuest trial points, so they are likely to ultimately be included in OptQuest’s

population. However, their penalty values often become the merit filter thresholds, causing most

other trial points to be rejected. Also, the local optima and their nearby “children” will be

rejected by the distance filter. We have seen these effects in preliminary tests.

NLP algorithms can fail by failing to find a feasible point in cases where the problem instance

is feasible. With GRG algorithms, this usually happens when Phase 1 terminates at a local

optimum of the Phase 1 objective. OQNLP can be applied to such problems, if they are

reformulated by dropping the true objective, adding deviation variables into all constraints, and

minimizing the sum of these deviation variables. This approach could greatly improve the

ability of existing NLP solvers to diagnose infeasibility. More generally, OQNLP can improve

34

NLP solver reliability by starting the solver from as many points as desired, while insuring that

these points balance diversity and quality.

The performance of OQNLP in solving MINLP’s is less clear, because the 13 MINLP test

problems used here are so small. More extensive testing is needed, which should clarify the

relative merits of the 2 MINLP “modes” discussed in Section 4.3. If OptQuest manipulates only

the discrete variables, then all trial points generated by the current population may be generated

at once, and the solver calls at these points may be done in any order. The points can be sorted

by increasing distance from their nearest neighbor, and each NLP call can be started from the

previous optimum. The NLP’s can also be solved in parallel.

Finally, comparative studies of OQNLP and other global and MINLP solvers are needed.

This testing is facilitated by the existing GAMS interfaces for BARON, LGO, DICOPT, and

SBB. The “MINLP World” and “Global World” websites developed by GAMS Development

Corporation (see www.gamsworld.org) provide solver information and test problems with known

solutions.

References
Dixon, L., G.P. Szegö . 1975. Towards Global Optimization. Proceedings of a Workshop at the

University of Cagliari, Italy, North Holland.

Drud, A. 1994. CONOPT—A Large-Scale GRG-Code. ORSA Journal on Computing 6 2.

Edgar, T.F., D.M. Himmelblau, L.S. Lasdon. 2001. Optimization of Chemical Processes.

McGraw-Hill Companies, Inc.

Floudas, C.A., et al. 1999. Handbook of Test Problems in Local and Global Optimization.

Kluwer Academic Publishers.

Glover, F. 1998. A Template for Scatter Search and Path Relinking. J.-K. Hao, E. Lutton, E.

Ronald, M. Schoenauer and D. Snyers, eds. Artificial Evolution, Lecture Notes in Computer

Science 1363. Springer Verlag. 13-54.

Laguna, M., Rafael Marti. 2000. Experimental Testing of Advanced Scatter Search Designs for

Global Optimization of Multimodal Functions. Working paper, Department D’Estadistica i

Investigacio Operativa, Universitat de Valencia, Burjassot 46100, Spain.

35

Laguna, M., Rafael Marti. 2002. The OptQuest Callable Library. Stefan Voss and D.

Woodruff, eds. Optimization Software Class Libraries. Kluwer Academic Publishers,

Boston. 193-218.

Laguna, M., Rafael Marti. 2003. Scatter Search: Methodology and Implementations in C.

Kluwer Academic Publishers.

Locatelli, M., F. Schoen. 1999. Random Linkage: a Family of Acceptance/Rejection

Algorithms for Global Optimization. Mathematical. Programming 85 2 379-396.

Murtagh, B.A., M.A. Saunders. 1982. A Projected Lagrangian Algorithm and Its

Implementation for Sparse Nonlinear Constraints. Mathematical Programming Study 16 84-

117.

Nash, S.G., A. Sofer. 1996. Linear and Nonlinear Programming. McGraw-Hill Companies,

Inc.

Nash, S.G. 1998. Nonlinear Programming. OR/MS Today 36-45.

Nocedal, J., S. J. Wright. 1999. Numerical Optimization. Springer Series in Operations

Research.

Pardalos, P.M., H.E. Romeijn, H. Tuy. 2000. Recent Developments and Trends in Global

Optimization. Journal of Computational and Applied Mathematics 124 1-2 209-228.

Pintér, J.D. 1996. Global Optimization in Action. Kluwer Academic Publishers.

Rinnooy Kan, A.H.G., G.T. Timmer. 1987. Stochastic Global Optimization Methods; part I:

Clustering Methods. Mathematical Programming 37 27-56.

Rinnooy Kan, A.H.G., G.T. Timmer, 1987. Stochastic Global Optimization Methods; part II:

Multi Level Methods. Mathematical Programming 37 57-78.

Smith, S., L. Lasdon. 1992. Solving Large Sparse Nonlinear Programs Using GRG. ORSA

Journal on Computing 4 1 3-15.

36

