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Abstract 

The problem of finding a global optimum of an unconstrained multimodal 
function has been the subject of intensive study in recent years, giving rise to valuable 
advances in solution methods. We examine this problem within the framework of 
adaptive memory programming (AMP), focusing particularly on AMP strategies that 
derive from an integration of Scatter Search and Tabu Search. Computational 
comparisons involving 16 leading methods for multimodal function optimization, 
performed on a testbed of 64 problems widely used to calibrate the performance of such 
methods, disclose that our new Scatter Tabu Search (STS) procedure is competitive 
with the state-of-the-art methods in terms of the average optimality gap achieved.  
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1. Introduction 
The unconstrained continuous global optimization problem may be formulated as 
follows: 
 

(P) Minimize   f(x)  
subject to nxuxl ℜ∈≤≤ , , 

 
where f(x) is a nonlinear function and x is a vector of continuous and bounded variables. 
 
We investigate Adaptive Memory Programming (AMP) methods for P based on the 
Scatter Search (SS) and Tabu Search (TS) methodologies, and perform comparative 
computational testing against currently leading methods for unconstrained global 
optimization on a widely used benchmark set of problems for which global optima are 
known.   
 
TS and SS have common roots in basic principles going back three decades (see, e.g., 
Glover (1977)) and extended more recently in a variety of expositions, including 
settings that explore primal-dual relationships by effectively integrating adaptive 
memory principles derived from surrogate constraint relaxations with TS and SS to 
create what is generally called a relaxation adaptive memory programming (RAMP) 
approach (Rego 2005). Expositions that focus especially on SS (and its close relative, 
path relinking) can also be found in Glover, Laguna and Martí (2000) and Laguna and 
Martí (2003).  The TS and SS metaheuristics are often combined, to marry the 
evolutionary strategy of Scatter Search with the adaptive memory focus of Tabu Search, 
as documented in the articles featured in Rego and Alidaee (2005). 
 
In prior work on unconstrained global optimization, SS was applied as a stand-alone 
method (without the hybridization with Tabu Search) in Laguna and Martí (2005). This 
implementation was based on the “SS template” (Glover, 1998) which consists of the 
following five components: 
1. A diversification-generation method to generate a collection of diverse trial 

solutions, using an arbitrary trial solution (or seed solution) as an input. 
2. An improvement method to transform a trial solution into one or more enhanced trial 

solutions. (Neither the input nor output solutions are required to be feasible, though 
the output solutions will more usually be expected to be so). 

3. A reference-set update method to build and maintain a reference set consisting of the 
b “best” solutions found (where the value of b is typically small, e.g. no more than 
20).  New solutions are obtained by combination of solutions in the reference set. 
Solutions gain membership to the reference set according to their quality or their 
diversity. 

4. A subset-generation method to operate on the reference set, to produce several 
subsets of its solutions as a basis for creating combined solutions. 

5. A solution-combination method to transform a given subset of solutions produced by 
the Subset Generation Method into one or more combined solution vectors. 

 
Laguna and Martí (2005) experimented with an abridged version of SS that excluded 
the improvement method, and focused on testing several alternatives for generating 
diversification and updating the reference set.  The combinations generated by their 
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approach are linear and limited to joining pairs of solutions.  They also tested the use of 
a two-phase intensification.  In the present study, we compare our procedure with the 
best version of SS proposed in that work.  
 
We also make reference to the following additional approaches to provide a basis for 
comparing our procedure with the current leading methods for P. 
 
Direct Tabu Search, DTS, due to Hedar and Fukushima (2006), is based on the 
following three procedures: 

- An exploration procedure, based on the simplex method (Nedler and Mead 
1965) and on the adaptative pattern search strategy (Hedar and Fukushima 
2004), to generate trial moves. Anti-cycling is prevented not only with the 
standard tabu list but also with the inclusion of tabu regions (Glover 1994). 

- A diversification procedure to generate new points outside the visited regions.  
To do so, the visited regions list, VRL, is stored during the search. 

- An intensification procedure, applied at a final stage, to refine the elite solutions 
and thereby obtain a solution still closer to the global optimum. 

 
The computational experience reported in Hedar and Fukushima (2006) shows that DTS 
improves upon a previous implementation of Tabu Search for global optimization 
(Chelouah and Siarry 2005) as well as upon the SS method (Laguna and Martí 2005) 
described above. 
 
Addis et al. (2005) proposed a smoothing transformation of the local search results as an 
approximation framework.  A common approach to deal with complex multi-modal 
functions is to optimize the underlying smooth function, often called the funnel 
structure, instead of the original objective function.  However, in this paper they 
considered an interesting variant: optimize the smoothed transform of the local search 
operator.  A computational comparison over 4 well known functions, Rastrigin, Levy, 
Ackley and Schwefel, shows that the proposed method improves upon the previous 
Monotonic Basin-Hopping Method (MBH, Leary 2000).  Addis and Leyffer (2006) 
improved the previous algorithm adding a trust-region framework to it.  This is a 
reactive method that adaptively updates two key search parameters of the previous 
algorithm: the radius of the ball in which the local optimization takes place, and the 
sample size.  A comparison over the four functions mentioned shows the contribution of 
this reactive mechanism in terms of percentage of success (i.e. number of times that the 
local search is able to improve the initial point) and CPU time. 
 
Genetic algorithms (GAs) have also been applied to global optimization (see, e.g., 
Michalewicz 1996).  Although the population-based character of the SS and GA 
methods qualifies them both as evolutionary procedures, there are fundamental 
differences between these two approaches (Laguna and Martí 2003).  Hansen (2006) 
reports the results of the empirical comparison of different solving methods on 25 
benchmark instances presented at the Congress on Evolutionary Computation 
CEC2005.  We can find there the following 11 algorithms, most of them based on 
hybrid evolutionary strategies and methods.  Specifically, they are:  
 

- BLX-GL50.  Hybrid real coded genetic algorithm (García-Martinez and 
Lozano 2005) 
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- BLX_MA.  Real coded memetic algorithm (Molina et al. 2005) 
- CoEVO.   Cooperative co-evolutionary algorithm (Posik 2005) 
- DE.   Differential evolution algorithm (Rönkkönen et al. 2005) 
- DMS-L-PSO.  Particle multi-swarm optimizer (Liang and Suganthan 2005) 
- EDA.  Continuous estimation of distribution algorithm (Yuan and 

Gallagher 2005)  
- G-CMA-ES.  Covariance matrix adaptation evolution strategy (Auger and 

Hansen 2005a),  
- k_PCX.   Population based steady-state algorithm (Sinha et al. 2005) 
- L-CMA-ES.  Advanced local search evolutionary algorithm (Auger and 

Hansen 2005b)  
- L-SaDE.  Self adaptive differential evolution algorithm (Qin and Suganthan 

2005)  
- SPC-PNX.  Real parameter genetic algorithm (Ballester et al. 2005) 

 
Hirsch et al. (2007) introduced C-GRASP which implements a continuous heuristic 
based on the GRASP methodology (Resende and Ribeiro 2001).  As in the standard 
GRASP, C-GRASP has two phases, a construction and an improvement phase, that are 
repeated for a specified maximum number of iterations.  However, GRASP is based on 
an independent random sampling of the solution space and in C-GRASP most of the 
consecutive iterations (construction + improvement) are dependent upon each other 
since the solution obtained with the improvement method seeds the next construction. 
 
Starting from a solution x, the construction phase in C-GRASP performs multiple line-
searches in which only one variable is modified and the other n-1 remain fixed.  The 
restricted candidate list is formed from the variables that have a good evaluation and the 
method randomly selects among the k best of these (where k is a parameter calibrated by 
preliminary testing) to perform a line search over the selected variable.  The 
construction finishes after n steps when all the variables are fixed. The improvement 
phase generates a set of directions and determines in which direction, if any, the 
objective function value improves.  The number of directions is set to 30 in C-GRASP 
to reduce the computational effort and the procedure stops after 200 global iterations 
(construction + improvement). 
 
The next section describes our proposed approach for the unconstrained global 
optimization problem, and Section 3 provides some extensions to this design. We 
perform a computational study comparing our method to the leading methods 
previously indicated, applied to a set of 64  benchmark problems whose form is 
described in Section 4, where we also report our computational findings. Finally, we 
summarize our conclusions and offer suggestions about future research directions in 
Section 5. 
 
 
 
2. Scatter Search Design 
The fundamental structure of our Scatter Search procedure is sketched in Figure 1. The 
method starts with the creation of an initial large set of diverse solutions with the 
Diversification Generation Method.   
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1. Start with D = Pool = RefSet = Ø. 
while (|D| < DSize) { 

2. Use the Diversification Generation Method to construct a solution x. 
3. If x ∉ D and d(x,D) > dthresh then add x to D (i.e., D = D ∪ {x} ). 

4. Evaluate the solutions in D and build RefSet = { x1, …, xb1 } with the best b1 
solutions according to f.  NumEval = |D| 

} 
while (NumEval < MaxEval ) { 

5. Solve the max-min diversity problem in D to obtain b2 diverse solutions 
(b2=b-b1) with respect to the solutions already in RefSet. 

6. Build RefSet = { x1, …, xb } with the b1 quality and b2 diverse solutions. 
7. Evaluate the solutions in RefSet and order them according to their objective 

function value (where x1 is the best solution). 
8. Make NewSolutions = TRUE 

 while ( NewSolutions ) { 
9. Pool = Ø. NewSolutions = FALSE 
10. Generate NewSubset, which consists of all pairs of solutions in RefSet that 

include at least one new solution. 
  while ( NewSubset ≠ ∅ ) { 

11. Select the next subset s in NewSubset.  
12. Apply the Solution Combination Method to s to obtain a new solution x. 
13. Evaluate x. NumEval++ 
14. Add x to Pool (Pool = Pool ∪ {x}) 
15. Apply the Improvement Method to the best b solutions in Pool. Replace 

these b solutions with the outputs of the Improvement Method. Update 
NumEval adding the number of evaluations performed. 

16. Delete s from NewSubset 
} 

  while ( Pool ≠ ∅ ) { 
17. Select the next solution x in Pool. 
18. Let yx be the closest solution in RefSet to x. 

      if ( f(x) < f( x1) or  ( f(x) < f(xb) & d(x, yx)>dthresh) ) 
19. Add x to the RefSet and remove xb (RefSet = RefSet \ { xb } ∪ {x}). 
20. Make NewSolutions = TRUE. 

21. Remove x from Pool 
} 

} 
22.  Remove the worst b2 solutions from the RefSet 

} 
 

Figure 1. Outline of the Scatter Search procedure. 
 
Controlled randomization and frequency memory are used to generate the set D of 
diverse solutions by dividing the range of each variable ui - li into sr sub-ranges of equal 
size.  In the study of Laguna and Martí (2005) sr is set to 4.  We investigate the effect 
on the SS algorithm of the changes in this search parameter.  A solution is then 
constructed in two steps.  First a sub-range is selected by a randomized rule using a 
probability inversely proportional to the frequency count associated with the sub-range.  
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Then a value is randomly generated within the selected interval.  The number of times 
sub-range j has been chosen to generate a value for variable i is accumulated in freq(i,j). 
 
2.1 Initialization 
Since we want the solutions in D to be diverse, we do not directly admit a generated 
solution x to become part of D, but only admit those with a distance to the solutions 
already in D, d(x,D), larger than a pre-established distance threshold value dthresh.  In 
mathematical terms: 

dthreshyxdDxd
Dy

≥=
∈

),(min),(  

The value of the dthresh parameter is set in our preliminary experimentation described 
in Section 4. In the expression above we use the Euclidean distance d(x,y) between two 
given solutions x and y.  Therefore, in the initialization we generate solutions with this 
frequency mechanism until DSize solutions qualify to enter in D. 
 
Instead of the one-by-one selection of diverse solutions typically employed in previous 
Scatter Search applications to build the Reference Set, we propose solving the max-min 
diversity problem (MMDP) in the step 4 of Figure 1. 
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Since the MMDP is a computationally hard problem, we have chosen the D2 method 
(Glover et al. 1998) because it provides a good balance between solution quality and 
speed, attributes that are important in order to embed it as part of the overall solution 
method.  The MMDP consists of finding, from a given set of elements (D in this case) 
and corresponding distances between elements, the most diverse subset of a given size 
(the Reference Set size b).  The diversity of the chosen subset is given by the minimum 
of the distances between every pair of elements:  The assignment xi = 1 indicates that 
the associated solution in D, xi, is selected.   
 
Starting with all the elements selected, D2 unselects, at each step, the element with the 
minimum distance to the set Sel of selected elements.  The method finishes when n-b 
elements have been unselected.  The distance between an element xi and the set Sel is 
defined as follows: 
 

∑
∈

=
Sely

ii yxdSelxd ),(),(  

 
The best b1 solutions in terms of the objective function f are selected from D.  Then, the 
b2 (b2=b-b1) most diverse solutions in D found with the D2 method considering that b1 
solutions are already selected, are chosen to form the set RefSet.  The initialization of 
the SS algorithm finishes with the construction of the Reference Set, RefSet= {x1, …, 
xb} with the b1 quality and b2 diverse solutions from D.  Note that the b solutions are 
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selected from D and only generated solutions veryfing the distance threshold dthresh 
are in D.  Therefore we are considering diversity in two stages of the method. 
 
2.2 Reference Set Update 
The solutions in RefSet are ordered according to quality, where the best solution is the 
first one in the list.  The search is then initiated by assigning the value of TRUE to the 
Boolean variable NewSolutions.  In step 10, NewSubset is constructed with all pairs of 
solutions in RefSet.  The pairs in NewSubset are selected one at a time in lexicographical 
order and the Solution Combination Method is applied to generate a new solution in 
step 12.  The (b2-b)/2 combined solutions are stored in a new set called Pool.  The 
Improvement Method is selectively applied to save computational effort.  This is why 
we introduce the set Pool in the step 9 of the algorithm shown in Figure 1. The 
Improvement Method is applied to the best b solutions in Pool in the step 14.  Each of 
these b solutions is replaced with the output of the Improvement Method. 
 
In our SS procedure we restrict the application of the Improvement Method.  We 
consider three alternative algorithms for the Improvement.  In this section we describe a 
local search based on line-searches for solution improvement.  In Section 3 we propose 
two different extensions of the improvement procedure based on the Tabu Search 
methodology.  Subsection 3.1 describes a short term Tabu Search algorithm based on 
line-searches, and Subsection 3.2 is devoted to a memory-based implementation of the 
Nelder-Mead simplex method.  The selective application of the Improvement Method as 
well as these three alternative algorithms, are tested and compared in the computational 
experiments reported on Section 4. 
 
If solution x qualifies to enter RefSet, then, the worst solution xb is removed from it.  
The NewSolutions flag is switched to TRUE.  If a new solution entered the RefSet, in 
the next main loop, when generating the pairs of solutions in the RefSet (step 10), only 
pairs containing new solutions are included in NewSubset.  Finally, when no new 
solutions are admitted to the reference set in the main while loop in Figure 1, the SS 
methodology dictates that the search either terminates or a RefSet rebuilding step is 
performed.  The rebuilding step consists of eliminating all but the best b2 reference 
solution and reinitializing the process from the step 5 in Figure 1. In our 
implementation, we have chosen to terminate the SS method after a pre-specified 
number of solution evaluations MaxEval as in most of the previous applications 
referenced in Section 1. 
 
In the final steps of the SS algorithm, we test whether the solutions in Pool qualify to 
enter the RefSet.  Given a solution x in Pool, let yx be the closest solution to x in RefSet.  
We admit x to RefSet if it improves upon the best solution in it, x1, or alternatively, if it 
improves upon the worst solution, xb, and its distance with the closest solution in the 
RefSet, yx, is larger than the pre-established distance threshold dthresh introduced 
above.  The criteria for admission to RefSet can be stated as: 
 

f(x) < f( x1) or  ( f(x) < f(xb) & d(x, yx)>dthresh) 
 

2.3 Improvement Method 
One of the most commonly used ways to improve solutions in global optimization 
consists of the so-called line-search.  Given a solution x and an index variable i, the line-
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search from x in the i-direction can be represented as the set ls(x,h,i) where h is the 
width of the uniform grid of the discretized search space.  This set contains all the 
feasible solutions that can be obtained in the h-grid by modifying variable xi in solution 
x.  In mathematical terms: 
 

{ }uylkhkexyyihxls i
n ≤≤Ζ∈+=ℜ∈= ,,/),,(  , 

 
where ei represents the unit vector with all 0s except a 1 in the i position.  Our 
improvement method consists of a local search based on line-searches.  We consider a 
typical implementation of line search.  Given a solution x, we first order the variables in 
a random fashion and then perform the line search associated with each variable in this 
order.  In other words, at a given step, we scan the set ls(x,h,i) associated with variable i 
and if it contains a better solution than x, we move to it (and replace x with the 
improved solution).  The improvement method performs iterations until no further 
improvement is possible (i. e., when all the variables have been examined and no 
improvement is found). Then, it returns the best solution found as the output of the 
method. 
 
2.4 Combination Method 
Given two solutions x and y, the Combination Method considers the line through x and y 
given by the representation 

z(λ) = x + λ (y – x) 
 
where λ is a scalar weight.  We consider three points in this line: the convex 
combination z(1/2), and the exterior solutions z(-1/3) and z(4/3). We evaluate these 
three solutions and return the best as the result of the combination of x and y. 
 
 
3. Tabu Search Extensions 
Our method couples the SS design described in the previous section with Tabu Search 
elements in the following manner.  We have considered two alternative extensions for 
the improvement method; the first introduces memory structures in the line-search 
scheme described above, and the second replaces the line searches with an 
implementation of the Nelder-Mead simplex method mentioned in the introduction, 
which we also modify by incorporating memory structures to improve the method’s 
performance.   
 
3.1 Tabu Line Search 
Our improvement method in this instance consists of a short term Tabu Search 
procedure based on line-searches.  A global iteration first orders the variables according 
to their attractiveness for movement in the current solution.  Given a solution x, we 
compute for each variable i two associated solutions, xi+h and xi-h where: 
 

x=(x1, x2,…, xi, …, xn),  xi+h =(x1, x2,…, xi+h, …, xn)  and  xi-h =(x1, x2,…, xi-h, …, xn). 
 
We evaluate the attractiveness for movement of each variable i in x, A(x,i), as 
 

A(x,i) = max ( f(x)-f(xi+h) , f(x)-f(xi-h) ). 
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Then, given an initial solution x, a global iteration of the improvement method first 
computes A(x,i) for i=1 to n, and then orders the variables according to their A-values 
(where the variable with the largest A-value comes first).  The first ts variables are 
selected one at a time in this order, and their corresponding line-searches are performed.  
Say for instance that j is the first variable in the list. Then we scan ls(x,h,j) and select the 
best solution x’ in this set.  We then consider the second variable in the list, say k, and 
scan its associated line search from x’: ls(x’,h,k) selecting the best solution x’’ in this set 
if it improves upon the current solution, and so on. 
 
As it is customary in Tabu Search implementations, we permit non-improving moves 
that deteriorate the objective value.  Specifically, in the first step, the method selects the 
best solution x’ in ls(x,h,j) and the search moves from x to x’, even if f(x’)>f(x).  In a 
similar way, in the second step the method moves from x’ to x’’ thus defining the 
trajectory of the Tabu Search algorithm.  Also note that when we select the second 
variable in the list, say k, to perform the move from x’ to x’’, its attractiveness, A(x,i), is 
computed with respect to the initial solution x and we do not perform an update by 
computing A(x’,i), so that the attractiveness value A(x,i) only represents an indicator.  
This is why  the attractiveness information is updated after ts iterations and we do not 
explore additional variables in the list. At this point the search can either stop or 
continue with the next global iteration.  In the latter case the A-values are first computed 
with respect to the solution obtained in the previous global iteration and the variables 
are ordered according to the values obtained.  
 
Our Tabu Search algorithm implements a short term memory structure incorporating the 
following simple design. When a variable j is selected and we move to the best solution 
in its associated line-search, we labelled j as tabu and we do not allow the method to 
select it in the next tenure iterations.  Therefore, in each global iteration of the TS 
algorithm, it selects the first ts non-tabu variables in the list computed with the A-
values.  When TS finishes it returns as the output of the method to the main algorithm 
the best solution visited during its application.  If no improvement has been found, it 
returns the initial solution as the output. 
 
3.2 Nelder-Mead Simplex Search 
The simplex search procedure of Nelder and Mead (1965) is a popular method for 
unconstrained minimization which does not use derivatives.  A good description is 
found in Avriel (1976).  It maintains a set of n+1 points, located at the vertices of a n-
dimensional simplex.  Each major iteration attempts to replace the worst point by a new 
and better one using reflection, expansion, and contraction steps.  The reflection step 
moves from the centroid of all points except for the worst, in a direction away from the 
worst toward the centroid, to a new point xr.  If xr is better than all others, the expansion 
step moves farther in this direction.  If xr is worse than all points in the original simplex 
but the worst, then the contraction step replaces the original simplex by a new one that 
retains the best point, but with the other vertices some fraction of their original distances 
from this best point.  Some variants can be shown to converge to a local minimum of a 
smooth function, but the rate of convergence is at most linear, like steepest descent. 
However, the customary implementations of this method have been shown by Hvattum 
and Glover (2007) to perform very poorly, and consequently we create a modified 
approach that includes a TS memory component. 
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Given a solution x, our Improvement Method starts by perturbing each variable to create 
an initial simplex from which the local search begins.  Let pt be the amount in which we 
modify the value of x in each variable to obtain the n points x1, x2, .., xn, according to: 
 

xi=(x1, x2,…, xi+pt, …, xn)   for  i=1,...,n 
 
Tabu restrictions in continuous spaces can be based both on directional considerations 
and locational considerations, where the latter are usually expressed in terms of 
proximity to solutions previously visited (see, e.g., Glover (1994)).  In our present work, 
we adopt a proximity criterion for generating tabu restrictions, which operates by 
reference to a distance threshold T. Accompanying this, we use a simple memory 
structure to record all trial solutions we operate on with our modified simplex method.  
Then, at a given iteration, before applying the improvement method to a given trial 
solution, we test whether the trial solution lies within a hypersphere of radius T centered 
at any solution previously submitted to the simplex method (or centered at any of the 
perturbed solutions xi). If, so, the trial solution is considered tabu, and the improvement 
method is not applied. In order to reduce the computational effort associated with this 
memory structure, as in a customary short term tabu list, we limit the memory by 
maintaining a record only of the last NumSol solutions submitted to the simplex search.  
 
 
4. Computational Experiments 
Our computational testing consists of several experiments. The first set of experiments 
determines the key search parameters of our method. Then we perform two additional 
sets of experiments, as detailed below, to compare our method with the best known 
procedures from the literature.  We consider two sets of instances: 
 
LM: This data set consists of 40 test problems with n ranging from 2 to 30.  These 

instances were reported in Laguna and Martí (2005). The initialization ranges for 
each problem are the same as in their “original sources”:  

 

 
http://www.cyberiad.net/realbench.htm 
http://solon.cma.univie.ac.at//glopt.html 

 
CEC: This data set consist of 24 instances (12 with n=10, and 12 with n=30).  These 

instances are extremely difficult, consisting of multimodal function mostly 
obtained by composition and hybridization of functions in the LM data set 
(biased, rotated, shifted and added).  These instances are described in detail in 
Suganthan et al. (2005) and reported in Hansen (2006) under the section entitled 
"Never solved multimodal functions". The initialization ranges for each problem 
are the same as in their “original sources”: 

 
 http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm 
 
In the initial experiments we compare the performance of the Scatter Tabu Search 
variants that result by experimentally varying the key search parameters of the method.  
Then, we compare the performance of the most effective Scatter Tabu Search design, 
STS, against previous algorithms reported with the instances in the LM data set.  
Specifically we target C-GRASP (Hirsch et al. 2006), DTS (Hedar and Fukushima 
2006), SS (Laguna and Martí 2005), MCS (Huyer and Neumaier 1999) and AMBH 

http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfopt.htm�
http://solon.cma.univie.ac.at/~neum/glopt/my_problems.html�
http://www.ntu.edu.sg/home/EPNSugan/index_files/CEC-05/CEC05.htm�
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(Addis and Leyffer 2006).  In the final experiment we compare STS with the methods 
reported on the CEC instances (CEC 2005 competition).  Specifically we consider 
BLX-GL50 (García-Martinez and Lozano 2005), BLX_MA (Molina et al. 2005), 
CoEVO (Posik 2005), DE (Rönkkönen et al. 2005), DMS-L-PSO (Liang and Suganthan 
2005), EDA (Yuan and Gallagher 2005), G-CMA-ES (Auger and Hansen 2005a), 
k_PCX (Sinha et al. 2005), L-CMA-ES (Auger and Hansen 2005b), L-SaDE (Qin and 
Suganthan 2005) and SPC-PNX (Ballester et al. 2005).  Table 1 shows the names of the 
64 test problems with known optimum objective function values that we use in our 
experiments. 
 
Set Name of Instance 
LM Branin, B2, Easom, Goldstein and Price, Shubert, Beale, Booth, Matyas, 

SixHumpCamelback, Schwefel(2), Rosenbrock (2), Zakharov(2), De Joung, 
Hartmann(3,4), Colville, Shekel(5), Shekel(7), Shekel(10), Perm(4,0.5), Perm0(4,10), 
Powersum (8,18,44,114), Hartmann(6,4), Schwefel(6), Trid(6), Trid(10), Rastrigin(10), 
Griewank(10), Sum Squares(10), Rosenbrock(10), Zakharov(10), Rastrigin(20), 
Griewank(20), Sum Squares(20), Rosenbrock(20), Zakharov(20), Powell(24), Dixon 
and Price(25), Levy(30), Sphere(30), Ackley(30) 
 

CEC F8 - Shifted rotated Ackley, F13 - Shifted expanded Griewank plus Rosenbrock,  
F14 - Shifted rotated expanded Scaffer, F16 - Rotated Rastrigin et al., F17 - Rotated 
Rastrigin et al. biased with noise, F18 - Rotated hybrid Ackley et al., F19 - Hybrid F18 
with narrow basin optimum, F20 - Hybrid F18 with optimum on bound, F21 - Rotated 
Rosenbrock plus Rastrigin, Weierstrass and Griewank, F22 - Same composition of F21 
with different condition numbers, F23 - Non continuous F22, F24 - Weierstrass plus 
rotated Scaffer plus Ackley plus Rastrigin plus Griewank. 

Table 1. Test problems 
 
In our preliminary experiments we apply the SS design described in Section 2.  We set 
the maximum number of solution evaluations MaxEval to 10,000 and we employ the 
following 9 functions in the LM set: Branin, Beale, Rosenbrock (2), Shekel(5), 
Powersum (8,18,44,114), Rastrigin(10), Rastrigin(20), Powell(24) and Ackley(30).  We 
have implemented the SS algorithm in C and all the experiments were conducted on a 
Pentium 4 computer at 3 GHz with 3 GB of RAM. 
 
We have identified the following 12 search parameters in our method: b1, b2, 
Improvement strategy (All / Selective), sr, dthresh, dgrid, SS design (standard / distance 
based), h (width), Improvement method (TS, Simplex, Tabu Simplex), ts, tenure and pt.  
Although a full factorial design would provide us complete information about the effect 
of each parameter and the interdependencies among them, it requires a huge amount of 
work.  Moreover, according to our previous experience on this methodology and 
following the recommendations in Laguna and Martí (2003) we limit our preliminary 
experimentation to test some selected values on groups of key search parameters 
(testing the interdependencies within each group).  We therefore consider the following 
six experiments.  
 
The objective of the first experiment is to test the selective application of the 
improvement method and to study the sizes b1 (quality) and b2 (diversity) in the 
Reference Set.  In order to isolate the contribution of these three parameters, we 
configure the Scatter Search with a standard design. Specifically, we set sr = 4, as 
suggested in Laguna and Martí (2003), dthresh = dgrid = 0 (i.e., it does not use distance 
information), h = MinRange/50 and with line searches as the improvement strategy.  
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In the standard SS designs (Laguna and Martí 2003) every solution generated by the 
diversification generation method or by the combination method is subjected to the 
improvement method.  Since the execution of the improvement method is 
computationally expensive, applying it to every solution may prevent the search from 
visiting additional solutions during the allotted search time.  Therefore, in our current 
design (summarized in Section 2) we selectively apply the improvement method to a 
subset of the solutions that are visited during the search.  The column labelled with 
Improve All reports the results of the standard SS design in which all the solutions are 
improved, while the column Selective Improvement reports the results of the design 
described in Section 2.  We also test the size b of the Reference Set and the sizes b1 and 
b2 of the component subsets devoted respectively to high quality solutions and to 
diverse solutions.  

 
Table 2 summarizes the results of this experiment, in which we report the average gap, 
Avg. GAP, and the number of optimal solutions, #Optima, found with each variant 
across the 9 problems considered. We define the optimality gap as: 
 

)()( *xfxfGAP −=  
 
where x is a heuristic solution and x* is the optimal solution.  We then say that a 
heuristic solution x is effectively optimal if: 
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where we set ε = 0.001 as in the work of Laguna and Martí (2005). 
 
  Improve All Selective Improvement 
b (b1 ,b2) Avg. GAP # Optima Avg. GAP #Optima 
8 (2, 6) 0.401 5 0.050 5 

(4, 4) 0.367 5 0.075 6 
(6, 2) 0.436 5 0.050 6 

10 (2, 8) 0.251 5 0.056 6 
(5, 5) 0.367 5 0.062 6 
(8, 2) 0.264 5 0.053 5 

20 (4, 16) 0.281 5 0.276 5 
(10, 10) 0.267 5 0.270 5 
(16, 4) 0.267 5 0.264 5 

Table 2. RefSet size and selective improvement method 
 
Regarding the average GAP, the results in Table 2 reveal that the best average 
performance when applying the improvement method to all solutions is achieved when 
b is set to (b1 ,b2)=(2, 8).  On the other hand, the best average deviation for the selective 
procedure is achieved when b is set to (2, 6).  When considering average deviation and 
number of best solutions, the selective application of the improvement method 
outperforms the standard design reported in the “Improve All”. We applied the 
Friedman test for paired samples to the solutions obtained by the different variants 
tested in our preliminary experiments.  This test computes, for each instance, the rank-
value of each method according to solution quality, and calculates the average rank 



Hybrid STS for Global Optimization / 13 

 

values of each method across all the instances solved.  If the averages are very different, 
the associated p-value or significance will be small.  The resulting significance level of 
0.000 obtained in this first experiment clearly indicates that there are statistically 
significant differences between the two strategies tested (Improve all versus Selective 
improvement). 
 
As far as we know the number of sub-ranges sr associated with the diversification 
generator method has been arbitrarily set to 4 in previous SS implementations.  In the 
second experiment we study the variation of this search parameter.  Specifically we 
target sr=2, 4, 10, 20.  The average gap value obtained with these four sr values is 
0.130, 0.050, 0.100 and 0.051 respectively. These results are in line with the value 
employed in previous SS implementations and confirm that four sub-ranges provides 
good solutions; thus we set sr=4 in the following experiments. 
 
The value of the distance threshold dthresh controls the minimum distance required to 
permit a solution first, to enter the diverse set D, and second, to enter the RefSet.  Ideally 
speaking, we would like to have the initial diverse solutions in D uniformly distributed 
in the function domain.  Therefore, we compute the initial value of dthresh as the 
distance of the grid dgrid that permits |D| solutions to fit into the function domain.  
However, directly setting dthresh=dgrid would be very restrictive and force the SS 
method to perform a large number of iterations to produce a set of solutions that satisfy 
the distance filter.  Furthermore, we have empirically found that constructing D as a grid 
leads to low quality results.  In the third preliminary experiment we try different dthresh 
values as a proportion of the dgrid distance.  Figure 2 shows the value of the average 
gap obtained with the SS method for the dthresh values considered.  In this experiement 
we set the values of the key search parameters as indicated above and we do not apply 
the improvement method. 
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Figure 2.  Experiments on the distance threshold dthresh 
 
Comparing the average gap values in Figure 2 with the values shown in Table 2, we can 
see that the improvement method globally constributes to reduce the optimality gaps in 
more than two percentage units.  The average gap values in Figure 2 are very similar 
and the significance level of 0.793 obtained with the Friedman test indicates that there 
are no statistically significant differences among the tested values for the dthresh search 
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parameter. We set dthresh=dgrid/3 in the following experiments since this value 
provides the best results on average.  
 
In most SS designs, diversity in the Reference Set is achieved with a one-by-one 
selection mechanism.  In Section 2 we have proposed to use the MMDP model to obtain 
a larger level of diversity in the initial RefSet.  On the other hand, in customary SS 
designs, new trial solutions obtained from combination operations become part of the 
RefSet according to their quality.  As previously indicated in Section 2, we filter 
evaluations also according to diversity criteria, allowing a solution to enter the RefSet 
only when its distance to this set is larger than dthresh (allowing an exception for the 
best solution found so far).  In the fourth preliminary experiment we compare both 
designs, the customary approach and the approach proposed in Section 2, in order to 
measure the contribution of these two distance based mechanisms.  Table 3 shows the 
GAP of the best solution found with each method for the 9 instances considered. 
 
Instance Standard SS Distance based SS 
Branin 0.001 0.001 
Beale 0.000 0.000 
Rosenbrock (2) 0.000 0.000 
Shekel(5) 0.000 0.000 
Powersum (8,18,44,114) 0.028 0.005 
Rastrigin(10) 0.000 0.000 
Rastrigin(20) 0.000 0.000 
Powell(24) 0.008 0.005 
Ackley(30) 10.537 0.510 

Table 3. Two alternative SS designs 
 
As Table 3 shows, the distance based SS is uniformly as good as, or better than, the 
customary SS approach.  Moreover, the significance level of 0.046 obtained with the 
Friedman test in this experiment, indicates that there are statistically significant 
differences between both designs. 
 
In the fifth preliminary experiment we test different values of the parameter h that 
defines the width of the uniform grid in which we discretized the search space.  For any 
variable xi, let li and ui be its lower and upper bounds respectively.  Let MinRange the 
minimum range across all the variables according to the following formula: 

iini
luMinRange −=

= ,...,1
min  

In this experiment we test four values for the width grid h computed as a fraction of the 
MinRange.  Table 4 reports the average gap, Avg. GAP, and the number of optimal 
solutions, #Optima, found with our SS solution method for alternative h-values across 
the 9 problems considered in the preliminary experimentation. 
 

h Avg. GAP # Optima 
MinRange/50 0.035 5 
MinRange/100 0.004 7 
MinRange/150 0.115 6 
MinRange/200 0.074 5 

Table 4. Preliminary experiment to determine h 
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Results in Table 4 show that the best results, with respect to both average GAP and 
number of optima, are obtained with the value of h set to MinRange/100 (although other 
variants present similar values).  Therefore, we adopted this value for the rest of our 
experimentation although the significance level of 0.675 obtained with the Friedman 
test indicates that there are no statistically significant differences among the tested 
variants. 
 
In our final preliminary experiment we measure the relative contribution of the different 
improvement methods of the SS algorithm described in Section 3.  We consider five 
alternatives based on the Adaptive Memory Programming framework represented by 
Tabu Search and Scatter Search: 
 
SS:  The SS method described on Section 2 
SS+TS: SS with Tabu Line Search (Sec. 3.1) as improvement method 
SS+Sx: SS with the original simplex method (Sec. 3.2) as improvement method 
SS+TSx: SS with TS simplex method (memory-based) as improvement method 
STS:  SS+TS coupled with a post-processing with the TS simplex method 
 
After initial experimentation, the values of ts, tenure and pt are set to n/2, n/2 and 
15*h respectively in the methods above.  Table 5 shows the average gap value and the 
number of optima of each AMP variant.  As in the previous experiments, we run the 
methods until they reach the limit of 10,000 solution evaluations. 
 

Method Avg. GAP # Optima 
SS 0.0291 7 

SS+TS 0.0035 7 
SS+Sx 0.0014 8 

SS+TSx 0.0011 8 
STS 0.0001 9 

Table 5. Scatter Search variants 
 
Table 5 clearly shows that the five variants considered are able to provide high quality 
results for this problem, since the average gap values are, in all the cases, below 0.1%.  
Moreover, comparing SS with SS+TS we can see that significant marginal improvement 
is achieved by replacing the simpler form of the line-search with the tabu line-search in 
the Scatter Search algorithm.  Further, comparing SS+Sx with SS+TSx, we see the 
advantage of including a memory structure to modify the improvement method (the 
Nelder-Mead simplex method in this case), so that successive applications of the 
method are restricted to operate only with solutions relatively far from those already 
submitted to the improvement method.  Finally, the STS method, which couples the 
SS+TS with the TS modified Nelder-Mead simplex procedure outperforms the other 
AMP variants.  Thus, in sum, the combination of two different improvement methods 
provides the best results, producing a variant that is able to obtain optimal solutions to 
all of the 9 instances tested.  Finally, the significance level of 0.010 obtained with the 
Friedman test in this experiment, indicates that there are statistically significant 
differences among the five SS variants tested. 
 
Having determined the values of the key search parameters for our algorithm in the first 
set of experiments, we perform the second and third sets of experiments to compare the 
best variant, STS, with the best methods identified in previous studies.  In the second set 
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of experiments we consider the three methods reported on the LM instances, while in 
the third set we consider the eleven reported on the CEC instances.  We employ in each 
experiment not only the instances but also the conditions and evaluation criteria found 
in the respective previous papers. 
 
Method Avg. GAP # Optima 
C-GRASP 2.382 28 
DTS 1.29 32 
prevSS 3.460 30 
STS 0.028 33 

Table 6. Comparison with best known methods over the 40 LM test problems 
 
Table 6 reports the results found with C-GRASP (Hirsch et al. 2006)1
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Search, DTS (Hedar and Fukushima, 2004) and a previous implementation of Scatter 
Search, prevSS (Laguna and Martí 2005).  Each method is executed a single time on 
each instance and we report the average GAP across the 40 instances described in Table 
1 as well as the number of optima found from among the 40 instances.  As with 
previous studies, we limit all the methods to performing at most 50,000 evaluations. 
 
The results in Table 6 clearly show that our Adaptive Memory STS framework is able 
to outperform these previous solution methods.  Moreover, since it combines SS with 
TS and improves upon previous pure SS (prevSS) and TS (DTS) designs, our findings 
illustrate the utility of hybrid memory based designs in this context.  To complement the 
information in Table 5, we show the evolution of the methods’ performance over time. 
Figure 3 shows the typical search profile for the methods compared, depicting the 
average GAP value from 5,000 to 50,000 evaluations over the 40 instances considered. 
 

 
Figure 3. Average optimal GAP value 

 
We now test the robustness of our STS algorithm and compare it with two other 
previous methods: MCS (Huyer and Neumaier 1999) and AMBH (Addis and Leyffer 
2006).  We do not include these two methods in Table 6 because we do not have their 
results on the 40 test problems reported in that table.  Tables 7 and 8 include MCS and 

                                                 
1 We thank the authors for sharing their codes with us. (Some of these codes are freely available on the 
net.)   
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AMBH respectively with the results and instances reported in their respective source 
papers.  We study in these experiments the behaviour of the algorithms when they are 
executed several times.  Table 7 shows the results of MCS, STS, DTS and C-GRASP on 
the eight instances for which we have results of the previous methods run for several 
executions.  Specifically, MCS and STS are run 25 times while DTS and C-GRASP are 
run 100 times.  Following the statistics used in Huyer and Neumaier (1999), we report 
for each function in Table 7 the average number of function evaluations needed for the 
convergence and the success rate (percentage of runs) of reaching global minima. 
 

Functions MCS STS DTS C-GRASP 
Branin 41/100 1248/100 212/100 10090/100 
Goldstein and Price 81/100 809/100 230/100 53/100 
Shubert 69/100 1245/100 274/92 18608/100 
Hartmann(3,4) 79/100 298/100 438/100 1719/100 
Shekel(5) 83/100 9524/100 819/75 9274/100 
Shekel(7) 129/100 3818/100 812/75 11766/100 
Shekel(10) 103/100 3917/100 828/52 17612/100 
Hartmann(6,4) 111/96 1263/100 1787/83 29894/100 

Table 7. Average function evaluations and rate of success. 
 
Table 7 shows that MCS outperforms the other three methods in terms of average 
function evaluations. Specifically, MCS needs 87 iterations (evaluations) on average 
over these 8 instances to converge to the global optimum while STS, DTS and C-
GRASP need 2765, 675 and 12377 respectively.  On the other hand, STS and C-
GRASP obtain the global optimum in all the runs (100%) in the 8 instances while MCS 
and DTS obtain the global optimum in all the runs in 7 and 3 instances respectively. 
 
Table 8 shows the results of the AMBH and our STS method on the eight instances 
reported in Addis and Leyffer (2006). The results of AMBH are taken from Addis and 
Leyffer (2006) where the method is replicated 1000 times, reporting the percentage of 
success and average local searches. 
 

Functions AMBH STS 
Rastrigin(20) 15.2 / 7711 100.0 / 2233 
Rastrigin(50) 0.0 / - 100.0 / 5583 
Levy(20) 100.0 / 20 100.0 / 238 
Levy(50) 55.8 / 45 0.0 / - 
Ackley(20) 100.0 / 346 0.0 / - 
Ackley(50) 69.5 / 538 0.0 / - 
Schwefel(5) 0.2 / 3500 100.0 / 2207 
Schwefel(10) 0.1 / 44000 100.0 / 2309 

Table 8. Rate of success and average local searches. 
 
Table 8 shows that our STS method presents a 100% rate of success in 5 problems (i.e. 
in all the runs it obtains the global optimum).  However, it is not able to obtain the 
optimum in any run in the other 3 problems of this experiment (Levy(50), Ackley(20) 
and Ackley(50)), exhibiting a 0.0% average rate of success over these three instances. 
On the other hand, AMBH presents a 100% rate of success in 2 problems and shows a 
23.46% average rate of success over the other 6 instances in this experiment (with a 
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value lower than 0.3% in three instances).  Both methods present similar average 
number of local searches in their executions. 
 
In our third (and concluding) set of experiments we compare the 11 methods reported 
on the CEC 2005 competition with our STS algorithm, first with n=10 and then with 
n=30.  Following the guidelines in Suganthan et al. (2005) these 12 methods are run for 
25 independent times on each instance.  We then record the best value (minimum), the 
worst (maximum) and the average value over the 25 runs for each instance.  Tables 12 
to 14 in the Appendix show the optimality gap (minimum, maximum and average) of 
each method on each instance.  For the sake of simplicity, Tables 9 and 10 only reports 
the average of the minimum (Min.) and average (Avg.) optimality gap across the 12 
instances.  We consider three different time horizons given by 1,000, 10,000 and 
100,000 function evaluations as reported in Hansen (2006).  We do not report the 
number of optima, as we did in previous experiments, since none of the methods 
considered is able to match any of them (which is why these problems are called "Never 
solved instances").  As expected, the average gap values shown in Tables 9 and 10 are 
considerably larger than those reported in previous tables since these instances are 
extremely hard to solve (and no method has solved any of them to optimality). 
 
The interpretation as to the quality of the outcomes obtained by our STS method 
compared to those obtained by the other methods depends strongly on how these 
outcomes are measured. If one is looking for a method that will succeed in finding a 
solution better than found by all competing methods, when applied over a series of trials 
and particularly over a long term rather than a short term horizon, then the STS emerges 
as one of the leading methods. On the other hand, if one is looking for a method whose 
average performance over the series of trials is better than that of competitors, then our 
STS method ranks down in a second group on the scale of comparisons. Thus, the value 
of the method depends on whether one is interested in the best or in the “best average” 
(Johnson, 2001). We elaborate these findings as follows. 
 

 1,000 10,000 100,000 
Method Min. / Avg. Min. / Avg. Min. / Avg. 

STS 616.1 / 759.4 348.9 / 576.6 198.3 / 413.4 
G-CMA-ES 269.7 / 542.0 260.0 / 419.4 256.0 / 265.3 

EDA 669.9 / 1059.1 287.1 / 335.1 269.4 / 300.6 
BLX-MA 456.7 / 711.1 315.5 / 445.1 306.2 / 430.1 
SPC-PNX 621.7 / 750.3 279.6 / 391.0 206.0 / 309.9 

BLX-GL50 676.0 / 716.3 272.8 / 341.0 257.2 / 319.0 
L-CMA-ES 289.0 / 825.7 225.9 / 655.8 202.7 / 411.1 

DE 715.4 / 914.1 396.7 / 492.4 228.8 / 272.0 
K-PCX 671.0 / 968.5 488.0 / 564.4 257.4 / 475.6 
CoEVO 672.6 / 799.0 437.5 / 623.5 268.3 / 465.4 
L-SaDE 636.0 / 729.2 300.2 / 438.6 205.6 / 369.9 

DMS-L-PSO 651.7 / 734.0 356.9 /477.0 244.4 / 392.3 
Table 9. Comparison over the 12 "Never solved" CEC test problems with n=10. 

 
Regarding the average of the minimum values (Min. columns) in Table 9, over a short 
term horizon STS produces high quality solutions, but not the best ones, compared with 
the other methods.  Specifically, within the first 1,000 evaluations only the G-CMA-ES 
(269.7), L-CMA-ES (289.0) and BLX-MA (456.7) are able to obtain smaller gaps than 
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STS (616.1).  However, the average minimum values within the first 10,000 evaluations 
show that STS has moved up to sixth place out of the 12 methods. Finally, over the long 
term horizon (100,000 function evaluations) our Scatter Tabu Search implementation 
STS produces solutions with an average optimality gap of 198.3, which is superior to 
the gap obtained by all of the competing methods (whose gaps range from 202.7 to 
306.2). 
 
If we consider now the average of the average gap values (Avg. Columns) across the 12 
instances the picture changes. Within the first 1,000 evaluations the G-CMA-ES 
(542.0), BLX-MA (711.1), SPC-PNX (750.3), BLX-GL50 (716.3), L-SaDE (729.2) and 
DMS-L-PSO (734.0) are able to obtain smaller gaps than STS (759.4).  Moreover, the 
quality of solutions obtained by STS decreases by comparison to the quality of solutions 
obtained by other methods as time goes on. Over the long term horizon (100,000 
function evaluations) our Scatter Tabu Search implementation STS produces solutions 
with an average optimality gap of 413.4, which is inferior to the gap obtained by seven 
of the competing methods (whose gaps range from 265.3 to 411.1) and superior to the 
gap obtained by three of the competing methods (whose gaps range from 430.1 to 
475.6).  This different behaviour of our STS method (comparing averages with 
minimum values) can be partially explained by the fact that the scatter search 
methodology is oriented to perform a diversified (scattered) exploration of the solution 
space and therefore some runs obtain high quality solutions and others low quality 
results but diverse solutions. 
 
Table 10 shows the average results (Min. and Avg. as in Table 9) of the 10 methods 
when tackling the 12 "Never solved" CEC test problems with n=30 (we did not find 
results for L-SaDE and DMS-L-PSO on these instances).  As in the previous experiment 
we refer the reader to the detailed tables in the Appendix and we only represent here 
summarized information. 
 

 1,000 10,000 100,000 300,000 
Method Min. / Avg. Min. / Avg. Min. / Avg. Min. / Avg. 

STS 829.3 / 957.0 614.9 / 747.3 431.3 / 540.3 394.1 / 460.3 
G-CMA-ES 570.3 / 658.4 414.4 / 526.8 405.7 / 493.0 402.1 / 485.1 

EDA 39742 / 63491 11951.1 / 26418.8 653.6 / 934.7 454.6 / 503.5 
BLX-MA 792.9 / 1198.7 443.9 / 502.4 410.7 / 457.2 407.2 / 453.9 
SPC-PNX 29793.4 / 74050.0 637.6 / 850.1 414.8 / 430.0 410.6 / 418.8 

BLX-GL50 8545.4 / 20008.7 474.8 / 545.9 433.0 / 507.5 408.7 / 484.2 
L-CMA-ES 790.8 / 1009.8 447.6 / 722.6 404.6 / 617.0 392.6 / 595.6 

DE 3473.3 / 14461.1 726.0 / 781.8 558.7 / 592.0 466.9 / 487.4 
K-PCX 27749.8 / 108623.0 27719.7 / 108602.9 866.1 / 2257.2 419.3 / 521.9 
CoEVO 908.5 / 1025.8 7496 / 822.0 625.3 / 734.5 549.2 / 652.0 

Table 10. Comparison over the 12 "Never solved" CEC test problems with n=30. 
 
Regarding the average of the minimum values (Min. columns), the results in Table 10 
confirm the pattern previously indicated in Table 9. Our STS algorithm achieves high 
quality solutions in the short term, but is outperformed during this period by some of the 
previous best ranking algorithms, In this case, within 1,000 function evaluations only 
the G-CMA-ES (570.28), L-CMA-ES (790.83) and BLX-MA (792.92) are able to 
obtain smaller gaps than STS (829.26). In the middle term, between 10,000 and 100,000 
evaluations, STS occupies the fifth place out of the 12 methods considered with respect 
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to the minimum average optimality gap. Finally, over the long term horizon, after 
300,000 function evaluations, only one method stands (slightly) ahead of STS, the L-
CMA-ES with an average gap value of 392.64, as compared to a value of 394.07 
obtained by the STS algorithm. The third place method is G-CMA-ES with a gap value 
of 402.07.   
 
If we consider now the average across the 12 instances of the average gap values (Avg. 
Columns) we see that STS performs better than in the lower dimensional problems 
reported in Table 9. Within the first 1,000 evaluations only one method (G-CMA-ES 
with 658.4) is able to obtain a smaller gap than STS (957.0).  In the middle term, 
between 10,000 and 100,000 evaluations, STS occupies the fifth place out of the 12 
methods considered with respect to the average of the average optimality gap (Avg. 
column). Over the long term horizon (300,000 function evaluations) our Scatter Tabu 
Search implementation STS produces solutions with an average optimality gap of 460.3, 
which is inferior to the gap obtained by only two of the competing methods (whose gaps 
range from 418.8 to 453.9) and superior to the gap obtained by seven of the competing 
methods (whose gaps range from 484.2 to 652.0). It seems that on these difficult and 
large instances, the memory mechanisms of STS are accumulating knowledge to exploit 
the solution space during the middle term and therefore the quality of its solutions 
steadily grows by comparison to the quality of solutions obtained by other methods as 
time goes on. 
 
We applied the Friedman test for paired samples to the data used to generate Tables 9 to 
14.  The resulting significance level of 0.000 obtained in this experiment clearly 
indicates that there are statistically significant differences among the twelve methods 
tested.  A typical post-test analysis consists of ranking the methods under comparison 
according to the average rank values computed with this test.  According to this, we 
obtain that the L-CMA-ES method is the best overall with an average rank of 3.79.  
Then we obtain the following group of 6 methods with good performance: G-CMA-ES 
(4.23), STS (4.69), BLX-GL50 (4.72), BLX-MA (4.89), K-PCX (4.96) and SPC-PNX 
(5.06) and finally a group of three methods with lower quality results: DE (7.06), 
CoEVO (7.68) and EDA (7.90). 
 
5. Conclusions 
We have described the development and implementation of an adaptive memory 
programming procedure integrating Scatter Search and Tabu Search for unconstrained 
nonlinear optimization.  Based on a series of preliminary experiments to identify 
effective ways to coordinate the underlying strategies, we are able to produce a method 
that compares favourably with previous leading methods for the testbed of problems 
where they have been applied (including the methods reported in the well-known 
CEC2005 competition). Our extensive comparison with sixteen methods previously 
published shows that the STS method obtains high quality solutions for unconstrained 
global optimization problems. 
 
Our experimentation shows that the improvement method can be significantly improved 
when a memory structure is introduced.  This is especially true with the line search 
based method, but is still true with the popular Nelder and Mead simplex method.  
Moreover, our study reveals that a combination of line search with the simplex, both 
with a memory structure, produces high quality outcomes. 
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We anticipate that significant opportunity exists for creating an improved version of our 
method since a number of intensification and diversification mechanisms that have been 
previously proposed with Scatter Search and Tabu Search remain to be examined in the 
present context. The fact that the two most competitive previous methods made use of 
TS and SS strategies, and that the successes achieved by our present method derives 
from a marriage of such memory-based strategies, suggests that appropriately designed 
memory mechanisms will prove valuable in future explorations of methods for solving 
P. 
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    f8     f13     f14     f16     f17     f18   
Eval.  Method min max avg min max avg min max avg min max avg min max avg min max avg 

10
00

  

STS 2.03E+1 2.09E+1 2.07E+1 1.10E+0 5.20E+0 2.45E+0 3.48E+0 4.51E+0 4.04E+0 1.95E+2 6.25E+2 3.10E+2 1.88E+2 7.38E+2 4.01E+2 9.37E+2 1.25E+3 1.13E+3 
G-CMA-ES 2.05E+1 2.09E+1 2.08E+1 2.26E+0 5.28E+0 3.84E+0 4.07E+0 4.52E+0 4.28E+0 1.12E+2 4.05E+2 2.19E+2 1.43E+2 1.01E+3 2.74E+2 3.04E+2 1.06E+3 8.43E+2 

EDA 2.04E+1 2.09E+1 2.07E+1 5.84E+1 1.24E+4 3.76E+3 3.90E+0 4.52E+0 4.35E+0 2.81E+2 4.42E+2 3.62E+2 3.49E+2 4.68E+2 4.07E+2 9.27E+2 1.21E+3 1.10E+3 
BLX-MA 2.01E+1 2.06E+1 2.05E+1 6.80E-1 1.33E+1 6.82E+0 3.92E+0 4.57E+0 4.33E+0 1.93E+2 4.20E+2 3.03E+2 2.66E+2 6.14E+2 4.24E+2 8.47E+2 1.15E+3 1.05E+3 
SPC-PNX 2.09E+1 2.13E+1 2.12E+1 8.93E+0 9.41E+1 2.80E+1 3.95E+0 4.49E+0 4.27E+0 2.86E+2 4.03E+2 3.33E+2 3.11E+2 4.37E+2 3.62E+2 1.01E+3 1.17E+3 1.11E+3 

BLX-GL50 2.03E+1 2.09E+1 2.07E+1 5.66E+1 3.43E+3 6.47E+2 3.73E+0 4.48E+0 4.29E+0 2.85E+2 3.99E+2 3.40E+2 2.91E+2 4.72E+2 3.92E+2 1.02E+3 1.16E+3 1.18E+2 
L-CMA-ES 2.04E+1 2.09E+1 2.07E+1 2.61E+0 5.92E+0 3.87E+0 4.11E+0 5.00E+0 4.73E+0 1.68E+2 2.27E+3 4.98E+2 2.72E+2 2.47E+3 1.46E+3 4.07E+2 2.14E+3 9.92E+2 

DE 2.04E+1 2.10E+1 2.08E+1 1.07E+2 4.62E+3 1.62E+3 3.99E+0 4.51E+0 4.34E+0 3.36E+2 5.03E+2 4.08E+2 2.91E+2 4.92E+2 3.86E+2 9.80E+2 1.24E+3 1.16E+3 
K-PCX 2.04E+1 2.09E+1 2.07E+1 8.93E+1 9.84E+3 2.38E+3 4.13E+0 4.63E+0 4.39E+0 3.78E+2 5.59E+2 4.47E+2 4.07E+2 6.67E+2 5.27E+2 1.09E+3 1.30E+3 1.22E+3 
CoEVO 2.03E+1 2.09E+1 2.06E+1 6.30E+0 1.41E+1 1.00E+1 3.66E+0 4.58E+0 4.29E+0 2.59E+2 5.01E+2 4.08E+2 3.67E+2 5.90E+2 4.67E+2 1.03E+3 1.33E+3 1.17E+3 
L-SaDE 2.04E+1 2.10E+1 2.07E+1 4.48E+0 9.38E+0 6.92E+0 3.77E+0 4.44E+0 4.26E+0 2.35E+2 3.67E+2 3.07E+2 3.07E+2 4.67E+2 3.66E+2 1.03E+3 1.18E+3 1.11E+3 

DMS-L-PSO 2.05E+1 2.09E+1 2.07E+1 3.95E+0 6.75E+0 5.59E+0 3.22E+0 4.41E+0 4.12E+0 2.58E+2 3.62E+2 2.97E+2 2.73E+2 4.32E+2 3.41E+2 1.06E+3 1.17E+3 1.11E+3 

10
00

0 

STS 2.02E+1 2.05E+1 2.03E+1 4.63E-1 1.19E+0 7.40E-1 2.68E+0 4.07E+0 3.54E+0 1.23E+2 2.39E+2 1.71E+2 1.47E+2 2.53E+2 1.89E+2 5.17E+2 1.08E+3 9.53E+2 
G-CMA-ES 2.03E+1 2.07E+1 2.05E+1 4.90E-1 1.84E+0 9.70E-1 2.95E+0 4.51E+0 3.91E+0 7.95E+1 1.69E+2 1.11E+2 1.17E+2 9.99E+2 1.95E+2 3.00E+2 1.03E+3 6.02E+2 

EDA 2.03E+1 2.07E+1 2.05E+1 2.43E+0 5.45E+0 4.40E+0 3.90E+0 4.28E+0 4.08E+0 1.32E+2 2.38E+2 2.05E+2 1.95E+2 2.69E+2 2.36E+2 3.61E+2 8.03E+2 5.16E+2 
BLX-MA 2.01E+1 2.04E+1 2.02E+1 6.80E-1 2.52E+0 1.43E+0 2.91E+0 4.03E+0 3.51E+0 1.03E+2 1.32E+2 1.13E+2 1.31E+2 1.90E+2 1.57E+2 8.00E+2 8.99E+2 8.07E+2 
SPC-PNX 2.09E+1 2.12E+1 2.11E+1 7.73E-1 2.83E+0 1.54E+0 3.56E+0 4.02E+0 3.83E+0 1.50E+2 2.05E+2 1.85E+2 1.62E+2 2.23E+2 2.01E+2 3.03E+2 9.30E+2 5.42E+2 

BLX-GL50 2.03E+1 2.07E+1 2.05E+1 1.54E+0 3.69E+0 2.95E+0 3.31E+0 4.13E+0 3.85E+0 1.46E+2 1.98E+2 1.73E+2 1.68E+2 2.22E+2 2.03E+2 3.01E+2 9.92E+2 4.30E+2 
L-CMA-ES 2.00E+1 2.07E+1 2.04E+1 5.10E-1 1.60E+0 8.80E-1 3.84E+0 4.98E+0 4.57E+0 9.39E+1 5.00E+2 1.49E+2 1.39E+2 2.31E+3 1.08E+3 3.00E+2 1.10E+3 8.40E+2 

DE 2.02E+1 2.07E+1 2.05E+1 6.52E+0 1.18E+1 9.05E+0 3.68E+0 4.18E+0 4.02E+0 1.83E+2 2.61E+2 2.30E+2 2.16E+2 2.67E+2 2.41E+2 6.44E+2 1.01E+3 8.23E+2 
K-PCX 2.00E+1 2.02E+1 2.00E+1 2.59E+0 4.66E+0 3.63E+0 3.67E+0 4.51E+0 4.25E+0 1.73E+2 2.22E+2 1.95E+2 1.72E+2 2.42E+2 2.14E+2 8.48E+2 1.06E+3 9.52E+2 
CoEVO 2.01E+1 2.06E+1 2.04E+1 1.13E+0 3.67E+0 2.22E+0 3.56E+0 4.29E+0 4.01E+0 1.53E+2 3.03E+2 2.34E+2 2.40E+2 4.08E+2 3.12E+2 8.38E+2 1.12E+3 1.02E+3 
L-SaDE 2.03E+1 2.07E+1 2.05E+1 9.80E-1 1.88E+0 1.43E+0 3.19E+0 4.10E+0 3.84E+0 1.42E+2 1.89E+2 1.68E+2 1.72E+2 2.42E+2 2.00E+2 5.62E+2 9.70E+2 8.17E+2 

DMS-L-PSO 2.01E+1 2.05E+1 2.04E+1 6.24E-1 1.92E+0 1.38E+0 2.69E+0 3.85E+0 3.38E+0 1.17E+2 1.70E+2 1.41E+2 1.39E+2 1.86E+2 1.61E+2 8.00E+2 1.01E+3 8.97E+2 

10
00

00
   

STS 2.01E+1 2.02E+1 2.02E+1 2.27E-1 5.73E-1 4.54E-1 2.10E+0 3.56E+0 2.87E+0 9.19E+1 1.15E+2 1.01E+2 1.04E+2 1.45E+2 1.16E+2 3.00E+2 9.85E+2 7.72E+2 
G-CMA-ES 2.00E+1 2.00E+1 2.00E+1 4.70E-1 1.05E+0 7.00E-1 2.08E+0 3.51E+0 3.01E+0 7.92E+1 9.68E+1 9.13E+1 9.48E+1 2.04E+2 1.23E+2 3.00E+2 7.18E+2 3.32E+2 

EDA 2.02E+1 2.04E+1 2.05E+1 1.59E+0 3.29E+0 2.61E+0 2.92E+0 3.99E+0 3.61E+0 1.32E+2 1.79E+2 1.64E+2 1.50E+2 2.01E+2 1.83E+2 3.00E+2 8.00E+2 4.20E+2 
BLX-MA 2.01E+1 2.04E+1 2.02E+1 3.80E-1 1.23E+0 7.70E-1 6.80E-1 3.20E+0 2.03E+0 8.96E+1 1.11E+2 1.02E+2 1.04E+2 1.56E+2 1.27E+2 8.00E+2 8.84E+2 8.03E+2 
SPC-PNX 2.08E+1 2.11E+1 2.10E+1 3.49E-1 1.32E+0 8.38E-1 1.39E+0 3.61E+0 3.05E+0 9.11E+1 1.40E+2 1.10E+2 9.89E+1 1.51E+2 1.19E+2 3.00E+2 9.01E+2 4.40E+2 

BLX-GL50 2.02E+1 2.05E+1 2.04E+1 3.70E-1 1.12E+0 7.50E-1 1.38E+0 3.03E+0 2.17E+0 7.23E+1 1.06E+2 9.35E+1 9.72E+1 1.21E+2 1.09E+2 3.00E+2 8.00E+2 4.20E+2 
L-CMA-ES 2.00E+1 2.00E+1 2.00E+1 1.90E-1 8.20E-1 4.90E-1 3.36E+0 4.43E+0 4.01E+0 6.14E+1 1.21E+2 1.05E+2 1.23E+2 1.33E+3 5.49E+2 3.00E+2 8.00E+2 4.97E+2 

DE 2.02E+1 2.05E+1 2.04E+1 4.58E-1 4.05E+0 1.81E+0 2.73E+0 3.79E+0 3.52E+0 1.52E+2 1.96E+2 1.73E+2 1.09E+2 2.09E+2 1.72E+2 3.00E+2 3.00E+2 3.00E+2 
K-PCX 2.00E+1 2.00E+1 2.00E+1 3.28E-1 1.07E+0 6.53E-1 1.53E+0 3.30E+0 2.35E+0 8.75E+1 1.13E+2 9.59E+1 8.82E+1 1.14E+2 9.73E+1 3.00E+2 9.51E+2 7.52E+2 
CoEVO 2.01E+1 2.04E+1 2.03E+1 4.69E-1 2.15E+0 1.14E+0 3.26E+0 4.14E+0 3.71E+0 1.23E+2 2.73E+2 1.77E+2 1.45E+2 2.97E+2 2.12E+2 8.00E+2 1.03E+3 9.02E+2 
L-SaDE 2.00E+1 2.00E+1 2.00E+1 1.20E-1 3.12E-1 2.20E-1 2.58E+0 3.34E+0 2.92E+0 8.63E+1 1.12E+2 1.01E+2 9.90E+1 1.36E+2 1.14E+2 3.00E+2 9.01E+2 7.19E+2 

DMS-L-PSO 2.00E+1 2.00E+1 2.00E+1 2.54E-1 4.73E-1 3.69E-1 1.48E+0 2.89E+0 2.36E+0 5.16E+1 1.05E+2 9.48E+1 9.99E+1 1.19E+2 1.10E+2 3.00E+2 9.35E+2 7.61E+2 

Table 11.  Optimality gap values for f8, f13, f14, f16, f17, f18 and n = 10 
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    f19     f20     f21     f22     f23     f24   
 Method min max avg min max avg min max avg min max avg min max avg min max avg 

10
00

  

STS 1.07E+3 1.29E+3 1.14E+3 8.89E+2 1.31E+3 1.13E+3 1.00E+3 1.44E+3 1.30E+3 8.73E+2 1.33E+3 1.08E+3 1.26E+3 1.41E+3 1.33E+3 9.55E+2 1.39E+3 1.25E+3 
G-CMA-ES 3.04E+2 1.06E+3 8.86E+2 3.01E+2 1.07E+3 8.50E+2 5.00E+2 1.27E+3 9.05E+2 7.86E+2 9.49E+2 8.29E+2 5.59E+2 1.28E+3 1.08E+3 2.00E+2 9.94E+2 5.89E+2 

EDA 9.92E+2 1.19E+3 1.11E+3 9.31E+2 1.20E+3 1.11E+3 1.28E+3 1.42E+3 1.35E+3 8.54E+2 1.05E+3 9.94E+2 1.31E+3 1.41E+3 1.36E+3 1.04E+3 1.21E+3 1.13E+3 
BLX-MA 8.12E+2 1.16E+3 1.02E+3 8.82E+2 1.14E+3 1.16E+3 5.11E+2 1.34E+3 1.18E+3 7.03E+2 1.10E+3 9.81E+2 1.03E+3 1.45E+3 1.32E+3 2.09E+2 1.44E+3 1.07E+3 
SPC-PNX 1.05E+3 1.19E+3 1.13E+3 1.05E+3 1.20E+3 1.13E+3 7.93E+2 1.30E+3 1.20E+3 8.53E+2 1.21E+3 1.07E+3 1.27E+3 1.43E+3 1.37E+3 8.06E+2 1.35E+3 1.24E+3 

BLX-GL50 1.03E+3 1.18E+3 1.11E+3 9.97E+2 1.16E+3 1.12E+3 1.24E+3 1.37E+3 1.33E+3 8.99E+2 1.07E+3 1.01E+3 1.25E+3 1.36E+3 1.34E+3 1.02E+3 1.27E+3 1.17E+3 
L-CMA-ES 3.94E+2 2.16E+3 9.81E+2 3.22E+2 2.24E+3 9.88E+2 4.11E+2 2.37E+3 1.10E+3 7.13E+2 2.26E+3 1.11E+3 5.54E+2 2.17E+3 1.36E+3 2.00E+2 2.34E+3 1.39E+3 

DE 1.10E+3 1.21E+3 1.16E+3 1.08E+3 1.25E+3 1.18E+3 1.23E+3 1.41E+3 1.35E+3 9.86E+2 1.17E+3 1.07E+3 1.28E+3 1.42E+3 1.36E+3 1.17E+3 1.35E+3 1.25E+3 
K-PCX 1.11E+3 1.32E+3 1.22E+3 1.06E+3 1.34E+3 1.21E+3 1.22E+3 1.40E+3 1.34E+3 9.37E+2 1.22E+3 1.09E+3 1.25E+3 1.45E+3 1.40E+3 4.86E+2 9.95E+2 7.63E+2 
CoEVO 1.09E+3 1.32E+3 1.18E+3 1.08E+3 1.25E+3 1.17E+3 1.09E+3 1.44E+3 1.34E+3 1.07E+3 1.36E+3 1.20E+3 1.18E+3 1.47E+3 1.34E+3 8.79E+2 1.42E+3 1.28E+3 
L-SaDE 1.06E+3 1.15E+3 1.11E+3 1.02E+3 1.16E+3 1.11E+3 1.07E+3 1.34E+3 1.30E+3 9.04E+2 1.86E+3 9.91E+2 1.19E+3 1.35E+3 1.30E+3 7.78E+2 1.32E+3 1.13E+3 

DMS-L-PSO 1.06E+3 1.17E+3 1.12E+3 1.09E+3 1.19E+3 1.13E+3 1.10E+3 1.31E+3 1.27E+3 8.78E+2 1.09E+3 9.84E+2 9.88E+2 1.35E+3 1.27E+3 1.08E+3 1.35E+3 1.25E+3 

10
00

0 

STS 7.24E+2 1.10E+3 9.59E+2 6.47E+2 1.10E+3 9.53E+2 4.11E+2 1.25E+3 9.46E+2 7.80E+2 1.10E+3 9.01E+2 6.16E+2 1.32E+3 1.17E+3 2.00E+2 1.29E+3 6.52E+2 
G-CMA-ES 3.00E+2 1.03E+3 6.75E+2 3.00E+2 9.90E+2 6.85E+2 5.00E+2 1.25E+3 7.05E+2 7.41E+2 8.98E+2 7.81E+2 5.59E+2 1.28E+3 9.49E+2 2.00E+2 9.72E+2 3.04E+2 

EDA 3.52E+2 8.01E+2 4.96E+2 3.40E+2 8.02E+2 4.75E+2 5.01E+2 5.41E+2 5.10E+2 7.78E+2 8.05E+2 7.92E+2 5.60E+2 5.66E+2 5.60E+2 2.01E+2 2.05E+2 2.02E+2 
BLX-MA 3.69E+2 9.23E+2 7.72E+2 8.00E+2 8.01E+2 8.00E+2 5.00E+2 1.16E+3 7.41E+2 3.00E+2 8.00E+2 7.21E+2 5.59E+2 1.19E+3 9.81E+2 2.00E+2 5.00E+2 2.24E+2 
SPC-PNX 3.25E+2 8.05E+2 4.96E+2 3.25E+2 8.17E+2 5.36E+2 3.00E+2 1.17E+3 6.80E+2 8.12E+2 9.05E+2 8.35E+2 7.53E+2 1.19E+3 9.84E+2 2.01E+2 2.17E+2 2.05E+2 

BLX-GL50 3.01E+2 1.03E+3 4.53E+2 3.01E+2 9.54E+2 4.50E+2 5.00E+2 1.25E+3 6.95E+2 7.71E+2 8.65E+2 7.96E+2 5.59E+2 1.27E+3 6.65E+2 2.00E+2 2.00E+2 2.00E+2 
L-CMA-ES 3.00E+2 1.45E+3 8.16E+2 3.00E+2 1.17E+3 7.75E+2 3.00E+2 1.85E+3 8.32E+2 5.00E+2 2.08E+3 9.12E+2 5.54E+2 2.17E+3 1.22E+3 2.00E+2 2.30E+3 1.22E+3 

DE 6.21E+2 1.02E+3 8.30E+2 6.18E+2 1.03E+3 8.58E+2 7.08E+2 1.02E+3 8.10E+2 8.12E+2 8.74E+2 8.38E+2 6.50E+2 9.25E+2 8.47E+2 2.78E+2 4.94E+2 3.98E+2 
K-PCX 8.47E+2 1.08E+3 9.76E+2 8.60E+2 1.07E+3 9.74E+2 9.42E+2 1.14E+3 1.12E+3 5.50E+2 9.30E+2 7.43E+2 1.03E+3 1.20E+3 1.16E+3 4.08E+2 4.13E+2 4.11E+2 
CoEVO 6.87E+2 1.09E+3 9.74E+2 6.74E+2 1.10E+3 9.83E+2 6.19E+2 1.24E+3 1.00E+3 7.89E+2 1.03E+3 8.74E+2 7.77E+2 1.28E+3 1.15E+3 4.48E+2 1.23E+3 9.03E+2 
L-SaDE 5.43E+2 9.86E+2 8.32E+2 5.10E+2 9.75E+2 8.13E+2 4.77E+2 1.07E+3 6.89E+2 4.12E+2 8.00E+2 7.69E+2 5.59E+2 1.12E+3 7.49E+2 2.00E+2 2.00E+2 2.00E+2 

DMS-L-PSO 7.39E+2 1.00E+3 8.80E+2 8.01E+2 1.02E+3 9.01E+2 5.07E+2 1.04E+3 8.51E+2 3.98E+2 8.00E+2 7.57E+2 5.59E+2 1.11E+3 8.61E+2 2.00E+2 5.06E+2 2.49E+2 

10
00

00
   

STS 3.00E+2 9.72E+2 7.30E+2 3.00E+2 9.74E+2 7.16E+2 2.01E+2 1.11E+3 6.56E+2 3.01E+2 8.77E+2 7.58E+2 5.59E+2 1.20E+3 8.64E+2 2.00E+2 5.01E+2 2.24E+2 
G-CMA-ES 3.00E+2 7.69E+2 3.26E+2 3.00E+2 3.00E+2 3.00E+2 5.00E+2 5.00E+2 5.00E+2 7.16E+2 7.44E+2 7.29E+2 5.59E+2 5.59E+2 5.59E+2 2.00E+2 2.00E+2 2.00E+2 

EDA 3.00E+2 8.00E+2 4.00E+2 3.00E+2 8.00E+2 3.80E+2 5.00E+2 5.00E+2 5.00E+2 7.66E+2 7.78E+2 7.74E+2 5.60E+2 5.60E+2 5.60E+2 2.00E+2 2.00E+2 2.00E+2 
BLX-MA 3.00E+2 8.70E+2 7.63E+2 8.00E+2 8.00E+2 8.00E+2 5.00E+2 8.00E+2 7.22E+2 3.00E+2 8.00E+2 6.71E+2 5.59E+2 1.05E+3 9.27E+2 2.00E+2 5.00E+2 2.24E+2 
SPC-PNX 3.00E+2 8.00E+2 3.80E+2 3.00E+2 8.00E+2 4.40E+2 3.00E+2 1.17E+3 6.80E+2 3.00E+2 7.77E+2 7.49E+2 5.59E+2 9.71E+2 5.76E+2 2.00E+2 2.00E+2 2.00E+2 

BLX-GL50 3.00E+2 1.03E+3 4.49E+2 3.00E+2 9.50E+2 4.46E+2 5.00E+2 1.23E+3 6.89E+2 7.35E+2 8.28E+2 7.59E+2 5.59E+2 1.27E+3 6.39E+2 2.00E+2 2.00E+2 2.00E+2 
L-CMA-ES 3.00E+2 9.76E+2 5.16E+2 3.00E+2 9.07E+2 4.42E+2 2.00E+2 8.00E+2 4.04E+2 5.00E+2 9.00E+2 7.40E+2 4.25E+2 1.26E+3 7.91E+2 2.00E+2 2.18E+3 8.65E+2 

DE 3.00E+2 3.00E+2 3.00E+2 3.00E+2 3.00E+2 3.00E+2 5.00E+2 5.00E+2 5.00E+2 3.02E+2 7.85E+2 7.34E+2 5.59E+2 5.59E+2 5.59E+2 2.00E+2 2.00E+2 2.00E+2 
K-PCX 3.00E+2 9.42E+2 7.51E+2 3.00E+2 9.59E+2 8.13E+2 5.00E+2 1.09E+3 1.05E+3 5.27E+2 8.69E+2 6.59E+2 5.59E+2 1.11E+3 1.06E+3 4.05E+2 4.07E+2 4.06E+2 
CoEVO 5.00E+2 1.02E+3 8.45E+2 5.00E+2 1.04E+3 8.63E+2 2.01E+2 1.13E+3 6.35E+2 3.00E+2 8.46E+2 7.79E+2 4.25E+2 1.09E+3 8.35E+2 2.00E+2 1.09E+3 3.14E+2 
L-SaDE 3.00E+2 9.31E+2 7.05E+2 3.00E+2 9.07E+2 7.13E+2 3.00E+2 8.00E+2 4.64E+2 3.00E+2 8.00E+2 7.35E+2 5.59E+2 9.71E+2 6.64E+2 2.00E+2 2.00E+2 2.00E+2 

DMS-L-PSO 3.00E+2 9.33E+2 7.14E+2 8.00E+2 9.39E+2 8.22E+2 3.00E+2 8.00E+2 5.36E+2 3.00E+2 8.00E+2 6.92E+2 5.59E+2 9.71E+2 7.30E+2 2.00E+2 5.00E+2 2.24E+2 

Table 12.  Optimality gap values for f19, f20, f21, f22, f23, f24 and n = 10 
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    f8     f13     f14     f16     f17     f18   
 Method min max avg min max avg min max avg min max avg min max avg min max avg 

10
00

 

STS 2.10E+1 2.13E+1 2.12E+1 2.42E+1 1.03E+2 4.66E+1 1.34E+1 1.46E+1 1.40E+1 5.60E+2 1.15E+3 8.36E+2 5.67E+2 1.34E+3 1.06E+3 1.17E+3 1.43E+3 1.28E+3 
G-CMA-ES 2.12E+1 2.13E+1 2.12E+1 3.05E+1 4.98E+2 1.14E+2 1.37E+1 1.44E+1 1.42E+1 2.75E+2 6.01E+2 3.75E+2 3.10E+2 6.83E+2 4.79E+2 9.18E+2 9.89E+2 9.45E+2 

EDA 2.11E+1 2.13E+1 2.12E+1 4.66E+5 1.14E+6 7.50E+5 1.37E+1 1.44E+1 1.42E+1 7.60E+2 1.07E+3 9.16E+2 8.63E+2 1.14E+3 9.98E+2 1.22E+3 1.37E+3 1.30E+3 
BLX-MA 2.07E+1 2.11E+1 2.09E+1 4.09E+2 1.06E+4 3.95E+3 1.29E+1 1.44E+1 1.39E+1 5.23E+2 8.40E+2 6.43E+2 7.12E+2 1.23E+3 1.02E+3 9.60E+2 1.32E+3 1.09E+3 
SPC-PNX 2.10E+1 2.13E+1 2.12E+1 3.47E+5 1.36E+6 8.77E+5 1.40E+1 1.44E+1 1.42E+1 5.87E+2  7.87E+2 6.89E+2 1.07E+3 8.61E+2 1.21E+3  1.29E+3 

BLX-GL50 2.11E+1 2.13E+1 2.12E+1 9.28E+4 4.67E+5 2.29E+5 1.39E+1 1.44E+1 1.42E+1 5.34E+2 8.63E+2 7.06E+2 5.89E+2 9.88E+2 7.98E+2 1.12E+3 1.27E+3 1.20E+3 
L-CMA-ES 2.11E+1 2.13E+1 2.12E+1 2.98E+1 1.19E+3 2.06E+2 1.41E+1 1.50E+1 1.47E+1 3.25E+2 1.56E+3 5.96E+2 1.51E+3 2.36E+3 1.94E+3 1.02E+3 1.74E+3 1.22E+3 

DE 2.11E+1 2.13E+1 2.12E+1 3.12E+4 4.33E+5 1.62E+5 1.38E+1 1.44E+1 1.41E+1 7.17E+2 9.97E+2 8.33E+2 6.18E+2 1.07E+3 9.05E+2 1.21E+3 1.33E+3 1.28E+3 
K-PCX 2.11E+1 2.13E+1 2.12E+1 3.21E+5 2.35E+6 1.29E+6 1.40E+1 1.46E+1 1.44E+1 9.82E+2 1.36E+3 1.20E+3 1.16E+3 1.55E+3 1.36E+3 1.33E+3 1.48E+3 1.42E+3 
CoEVO 2.11E+1 2.13E+1 2.12E+1 9.68E+1 4.30E+2 2.58E+2 1.38E+1 1.44E+1 1.41E+1 7.58E+2 1.15E+3 9.75E+2 8.19E+2 1.46E+3 1.10E+3 1.24E+3 1.41E+3 1.33E+3 

10
00

0 

STS 2.06E+1 2.11E+1 2.09E+1 2.04E+0 6.61E+0 3.85E+0 1.29E+1 1.39E+1 1.34E+1 2.08E+2 5.48E+2 3.93E+2 2.74E+2 7.48E+2 4.68E+2 9.37E+2 1.20E+3 1.05E+3 
G-CMA-ES 2.10E+1 2.12E+1 2.11E+1 2.46E+0 5.62E+0 3.80E+0 1.34E+1 1.40E+1 1.38E+1 5.75E+1 5.00E+2 1.96E+2 6.88E+1 6.08E+2 3.00E+2 9.04E+2 9.14E+2 9.08E+2 

EDA 2.10E+1 2.12E+1 2.11E+1 1.35E+5 5.24E+5 3.08E+5 1.34E+1 1.41E+1 1.39E+1 3.44E+2 4.50E+2 4.02E+2 4.17E+2 5.22E+2 4.66E+2 1.09E+3 1.16E+3 1.13E+3 
BLX-MA 2.07E+1 2.10E+1 2.09E+1 9.97E+0 1.96E+1 1.51E+1 1.22E+1 1.38E+1 1.34E+1 1.42E+2 5.20E+2 3.56E+2 2.44E+2 6.09E+2 3.62E+2 8.29E+2 9.09E+2 8.92E+2 
SPC-PNX 2.09E+1 2.11E+1 2.11E+1 2.11E+2 5.97E+3 2.17E+3 1.35E+1 1.40E+1 1.38E+1 2.56E+2  3.07E+2 2.68E+2 3.87E+2 3.24E+2 9.04E+2  1.07E+3 

BLX-GL50 2.09E+1 2.12E+1 2.11E+1 3.06E+1 6.99E+1 4.95E+1 1.35E+1 1.40E+1 1.39E+1 2.34E+2 4.36E+2 2.69E+2 2.43E+2 4.76E+2 3.14E+2 9.10E+2 9.13E+2 9.11E+2 
L-CMA-ES 2.09E+1 2.12E+1 2.11E+1 2.61E+0 5.02E+0 3.64E+0 1.36E+1 1.49E+1 1.43E+1 5.77E+1 8.02E+2 2.52E+2 4.33E+2 2.28E+3 1.71E+3 9.10E+2 1.49E+3 9.64E+2 

DE 2.09E+1 2.12E+1 2.11E+1 3.20E+1 2.47E+2 1.02E+2 1.36E+1 1.42E+1 1.39E+1 3.82E+2 5.71E+2 4.48E+2 4.03E+2 5.77E+2 5.07E+2 1.05E+3 1.12E+3 1.09E+3 
K-PCX 2.03E+1 2.12E+1 2.10E+1 3.21E+5 2.35E+6 1.29E+6 1.40E+1 1.45E+1 1.43E+1 9.82E+2 1.36E+3 1.19E+3 1.16E+3 1.55E+3 1.36E+3 1.26E+3 1.48E+3 1.37E+3 
CoEVO 2.10E+1 2.11E+1 2.11E+1 2.73E+1 3.86E+1 3.21E+1 1.34E+1 1.41E+1 1.38E+1 4.57E+2 6.47E+2 5.61E+2 4.30E+2 8.48E+2 6.96E+2 1.09E+3 1.20E+3 1.16E+3 

10
00

00
 

STS 2.04E+1 2.09E+1 2.06E+1 1.37E+0 2.58E+0 1.95E+0 1.13E+1 1.32E+1 1.26E+1 9.09E+1 4.02E+2 1.97E+2 1.32E+2 4.47E+2 2.47E+2 8.85E+2 9.74E+2 9.21E+2 
G-CMA-ES 2.00E+1 2.11E+1 2.07E+1 2.43E+0 3.67E+0 2.89E+0 1.27E+1 1.40E+1 1.35E+1 2.69E+1 1.28E+2 5.34E+1 6.67E+1 5.95E+2 2.92E+2 9.03E+2 9.07E+2 9.04E+2 

EDA 2.08E+1 2.11E+1 2.10E+1 1.84E+3 9.93E+3 4.52E+3 1.34E+1 1.39E+1 1.37E+1 2.20E+2 3.11E+2 2.77E+2 2.81E+2 3.49E+2 3.13E+2 9.67E+2 1.01E+3 9.80E+2 
BLX-MA 2.06E+1 2.09E+1 2.08E+1 2.78E+0 1.28E+1 8.66E+0 1.18E+1 1.34E+1 1.27E+1 1.08E+2 5.00E+2 3.35E+2 1.16E+2 5.38E+2 2.97E+2 8.00E+2 8.89E+2 8.78E+2 
SPC-PNX 2.08E+1 2.11E+1 2.10E+1 2.25E+0 6.46E+0 3.72E+0 1.32E+1 1.38E+1 1.35E+1 5.18E+1  1.33E+2 4.83E+1 3.24E+2 1.24E+2 9.06E+2  9.08E+2 

BLX-GL50 2.08E+1 2.11E+1 2.10E+1 1.25E+1 1.58E+1 1.44E+1 1.30E+1 1.37E+1 1.34E+1 1.70E+2 4.00E+2 2.18E+2 1.84E+2 4.35E+2 2.59E+2 9.03E+2 9.06E+2 9.04E+2 
L-CMA-ES 2.00E+1 2.11E+1 2.03E+1 2.09E+0 3.82E+0 2.84E+0 1.35E+1 1.47E+1 1.42E+1 5.05E+1 1.68E+2 7.41E+1 2.68E+2 2.17E+3 1.13E+3 8.00E+2 9.22E+2 9.07E+2 

DE 2.08E+1 2.11E+1 2.10E+1 2.31E+0 1.39E+1 4.55E+0 1.30E+1 1.37E+1 1.36E+1 2.82E+2 3.32E+2 3.11E+2 3.09E+2 3.81E+2 3.50E+2 9.31E+2 9.52E+2 9.39E+2 
K-PCX 2.00E+1 2.00E+1 2.00E+1 2.56E+3 4.97E+4 1.74E+4 1.40E+1 1.44E+1 1.42E+1 4.18E+2 1.32E+3 9.45E+2 1.08E+3 1.52E+3 1.31E+3 9.97E+2 1.14E+3 1.06E+3 
CoEVO 2.08E+1 2.11E+1 2.10E+1 6.73E+0 1.82E+1 1.10E+1 1.28E+1 1.39E+1 1.36E+1 2.85E+2 5.24E+2 4.06E+2 3.74E+2 6.63E+2 5.31E+2 1.05E+3 1.19E+3 1.11E+3 

30
00

00
 

STS 2.04E+1 2.06E+1 2.05E+1 1.37E+0 2.01E+0 1.72E+0 1.04E+1 1.24E+1 1.18E+1 6.91E+1 3.69E+2 1.21E+2 6.62E+1 4.36E+2 1.69E+2 8.00E+2 9.17E+2 8.91E+2 
G-CMA-ES 2.00E+1 2.00E+1 2.10E+1 1.10E+0 3.20E+0 2.49E+0 1.18E+1 1.37E+1 1.29E+1 1.53E+1 1.08E+2 3.50E+1 6.66E+1 5.95E+2 2.91E+2 9.03E+2 9.04E+2 9.04E+2 

EDA 2.08E+1 2.10E+1 2.09E+1 3.82E+1 1.29E+2 7.36E+1 1.33E+1 1.38E+1 1.36E+1 2.20E+2 2.75E+2 2.56E+2 2.69E+2 3.07E+2 2.88E+2 9.21E+2 9.43E+2 9.28E+2 
BLX-MA 2.01E+1 2.09E+1 2.07E+1 1.33E+0 1.03E+1 3.96E+0 1.18E+1 1.31E+1 1.26E+1 7.14E+1 5.00E+2 3.26E+2 1.16E+2 5.03E+2 2.79E+2 8.00E+2 8.89E+2 8.78E+2 
SPC-PNX 2.08E+1 2.10E+1 2.09E+1 1.88E+0 6.42E+0 3.59E+0 1.23E+1 1.35E+1 1.31E+1 4.08E+1  7.40E+1 4.43E+1 1.60E+2 8.54E+1 9.03E+2  9.05E+2 

BLX-GL50 2.08E+1 2.10E+1 2.09E+1 1.87E+0 1.39E+1 5.15E+0 1.05E+1 1.33E+1 1.21E+1 3.75E+1 4.00E+2 8.87E+1 4.76E+1 4.12E+2 1.35E+2 9.03E+2 9.06E+2 9.04E+2 
L-CMA-ES 2.00E+1 2.00E+1 2.00E+1 1.48E+0 2.98E+0 2.32E+0 1.28E+1 1.45E+1 1.40E+1 4.34E+1 7.65E+1 5.84E+1 2.66E+2 2.17E+3 1.07E+3 8.00E+2 9.18E+2 8.90E+2 

DE 2.08E+1 2.10E+1 2.09E+1 2.31E+0 1.39E+1 4.51E+0 1.22E+1 1.37E+1 1.33E+1 2.52E+2 2.99E+2 2.82E+2 2.76E+2 3.32E+2 3.09E+2 9.12E+2 9.15E+2 9.13E+2 
K-PCX 2.00E+1 2.00E+1 2.00E+1 2.27E+0 1.49E+1 1.19E+1 1.32E+1 1.41E+1 1.38E+1 1.85E+1 4.00E+2 7.15E+1 3.39E+1 5.45E+2 1.56E+2 8.28E+2 8.37E+2 8.30E+2 
CoEVO 2.07E+1 2.10E+1 2.09E+1 5.20E+0 1.68E+1 9.02E+0 1.25E+1 1.36E+1 1.32E+1 2.77E+2 4.43E+2 3.81E+2 3.03E+2 5.54E+2 4.54E+2 1.01E+3 1.13E+3 1.06E+3 

Table 13.  Optimality gap values for f8, f13, f14, f16, f17, f18 and n = 30 
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    f19     f20     f21     f22     f23     f24   
 Method min max avg min max avg min max avg min max avg min max avg min max avg 

10
00

 

STS 1.21E+3 1.42E+3 1.29E+3 1.20E+3 1.39E+3 1.28E+3 1.27E+3 1.43E+3 1.35E+3 1.23E+3 1.82E+3 1.52E+3 1.32E+3 1.51E+3 1.38E+3 1.37E+3 1.45E+3 1.41E+3 
G-CMA-ES 9.16E+2 1.03E+3 9.51E+2 9.17E+2 1.00E+3 9.50E+2 6.70E+2 1.11E+3 9.44E+2 1.00E+3 1.21E+3 1.08E+3 8.14E+2 1.13E+3 1.03E+3 9.58E+2 1.24E+3 9.97E+2 

EDA 1.21E+3 1.37E+3 1.32E+3 1.23E+3 1.39E+3 1.30E+3 1.37E+3 1.55E+3 1.48E+3 1.39E+3 1.79E+3 1.63E+3 1.41E+3 1.56E+3 1.50E+3 1.43E+3 1.56E+3 1.51E+3 
BLX-MA 9.45E+2 1.27E+3 1.08E+3 9.22E+2 1.37E+3 1.10E+3 1.24E+3 1.43E+3 1.32E+3 1.19E+3 1.56E+3 1.33E+3 1.29E+3 1.44E+3 1.37E+3 1.29E+3 1.51E+3 1.45E+3 
SPC-PNX 1.24E+3  1.30E+3 1.21E+3  1.28E+3 1.12E+3  1.15E+3 1.48E+3  1.59E+3 1.35E+3  1.44E+3 1.42E+3  1.46E+3 

BLX-GL50 1.13E+3 1.26E+3 1.20E+3 1.13E+3 1.28E+3 1.20E+3 1.31E+3 1.42E+3 1.37E+3 1.29E+3 1.67E+3 1.43E+3 1.30E+3 1.40E+3 1.35E+3 1.29E+3 1.46E+3 1.40E+3 
L-CMA-ES 1.01E+3 1.78E+3 1.27E+3 1.04E+3 1.49E+3 1.17E+3 1.02E+3 1.25E+3 1.17E+3 1.08E+3 2.51E+3 1.41E+3 1.06E+3 1.93E+3 1.40E+3 1.36E+3 1.91E+3 1.70E+3 

DE 1.17E+3 1.33E+3 1.28E+3 1.25E+3 1.34E+3 1.29E+3 1.37E+3 1.51E+3 1.44E+3 1.30E+3 1.72E+3 1.57E+3 1.38E+3 1.47E+3 1.42E+3 1.43E+3 1.52E+3 1.48E+3 
K-PCX 1.33E+3 1.49E+3 1.42E+3 1.33E+3 1.49E+3 1.42E+3 1.39E+3 1.65E+3 1.56E+3 1.58E+3 2.29E+3 1.91E+3 1.38E+3 1.64E+3 1.56E+3 1.48E+3 1.65E+3 1.59E+3 
CoEVO 1.18E+3 1.39E+3 1.31E+3 1.17E+3 1.41E+3 1.33E+3 1.35E+3 1.53E+3 1.43E+3 1.46E+3 1.80E+3 1.63E+3 1.37E+3 1.50E+3 1.43E+3 1.42E+3 1.53E+3 1.49E+3 

10
00

0 

STS 9.47E+2 1.21E+3 1.05E+3 9.23E+2 1.19E+3 1.04E+3 8.22E+2 1.28E+3 1.15E+3 1.07E+3 1.39E+3 1.24E+3 9.11E+2 1.28E+3 1.21E+3 1.25E+3 1.43E+3 1.34E+3 
G-CMA-ES 9.04E+2 9.21E+2 9.08E+2 9.04E+2 9.11E+2 9.06E+2 5.00E+2 1.09E+3 5.47E+2 8.63E+2 9.30E+2 9.00E+2 5.34E+2 1.10E+3 6.92E+2 2.00E+2 9.64E+2 9.26E+2 

EDA 1.10E+3 1.16E+3 1.13E+3 1.06E+3 1.15E+3 1.12E+3 1.24E+3 1.33E+3 1.28E+3 1.11E+3 1.25E+3 1.17E+3 1.22E+3 1.37E+3 1.29E+3 1.19E+3 1.29E+3 1.25E+3 
BLX-MA 8.85E+2 9.11E+2 8.95E+2 8.85E+2 9.08E+2 8.96E+2 5.01E+2 7.83E+2 5.19E+2 9.67E+2 1.05E+3 1.01E+3 6.01E+2 1.18E+3 7.34E+2 2.29E+2 5.44E+2 3.14E+2 
SPC-PNX 9.90E+2  1.01E+3 9.90E+2  1.01E+3 1.12E+3  1.15E+3 1.11E+3  1.15E+3 1.10E+3  1.15E+3 6.69E+2  8.15E+2 

BLX-GL50 9.09E+2 9.13E+2 9.11E+2 9.09E+2 9.13E+2 9.11E+2 5.80E+2 6.60E+2 6.13E+2 8.93E+2 9.36E+2 9.18E+2 6.10E+2 9.63E+2 6.94E+2 3.44E+2 1.01E+3 9.27E+2 
L-CMA-ES 9.11E+2 1.73E+3 1.03E+3 9.09E+2 9.42E+2 9.24E+2 5.00E+2 1.16E+3 6.18E+2 8.79E+2 1.21E+3 9.63E+2 5.34E+2 1.78E+3 7.51E+2 2.00E+2 1.87E+3 1.42E+3 

DE 1.04E+3 1.14E+3 1.10E+3 1.04E+3 1.12E+3 1.10E+3 1.18E+3 1.28E+3 1.25E+3 1.20E+3 1.33E+3 1.26E+3 1.18E+3 1.27E+3 1.24E+3 1.17E+3 1.29E+3 1.25E+3 
K-PCX 1.28E+3 1.47E+3 1.37E+3 1.22E+3 1.47E+3 1.36E+3 1.39E+3 1.65E+3 1.56E+3 1.50E+3 2.18E+3 1.86E+3 1.38E+3 1.64E+3 1.56E+3 1.43E+3 1.65E+3 1.57E+3 
CoEVO 1.09E+3 1.23E+3 1.15E+3 1.05E+3 1.26E+3 1.16E+3 1.20E+3 1.27E+3 1.24E+3 1.16E+3 1.35E+3 1.25E+3 1.18E+3 1.31E+3 1.26E+3 1.27E+3 1.37E+3 1.32E+3 

10
00

00
 

STS 8.97E+2 1.01E+3 9.23E+2 8.85E+2 9.41E+2 9.13E+2 5.00E+2 1.16E+3 5.51E+2 1.02E+3 1.17E+3 1.07E+3 5.34E+2 1.17E+3 6.18E+2 2.00E+2 1.29E+3 1.00E+3 
G-CMA-ES 9.03E+2 9.06E+2 9.04E+2 9.03E+2 9.06E+2 9.04E+2 5.00E+2 5.00E+2 5.00E+2 7.97E+2 8.51E+2 8.27E+2 5.34E+2 1.10E+3 5.82E+2 2.00E+2 9.56E+2 9.13E+2 

EDA 9.57E+2 9.95E+2 9.76E+2 9.53E+2 1.00E+3 9.76E+2 6.15E+2 1.13E+3 7.08E+2 8.98E+2 9.42E+2 9.23E+2 6.65E+2 1.12E+3 7.70E+2 4.09E+2 1.02E+3 7.43E+2 
BLX-MA 8.74E+2 8.90E+2 8.82E+2 8.68E+2 8.89E+2 8.80E+2 5.00E+2 5.00E+2 5.00E+2 8.93E+2 9.27E+2 9.14E+2 5.34E+2 1.16E+3 5.59E+2 2.00E+2 2.00E+2 2.00E+2 
SPC-PNX 9.06E+2  9.07E+2 9.06E+2  9.07E+2 5.00E+2  5.00E+2 8.88E+2  9.09E+2 5.34E+2  5.34E+2 2.00E+2  2.00E+2 

BLX-GL50 9.03E+2 9.06E+2 9.04E+2 9.03E+2 9.04E+2 9.03E+2 5.00E+2 5.00E+2 5.00E+2 8.51E+2 9.07E+2 8.78E+2 5.34E+2 9.17E+2 5.87E+2 2.00E+2 9.94E+2 8.89E+2 
L-CMA-ES 9.07E+2 9.30E+2 9.15E+2 8.00E+2 9.22E+2 9.05E+2 4.09E+2 5.00E+2 4.96E+2 8.51E+2 9.34E+2 8.85E+2 5.34E+2 1.56E+3 6.44E+2 2.00E+2 1.86E+3 1.41E+3 

DE 9.24E+2 9.51E+2 9.36E+2 9.28E+2 9.48E+2 9.38E+2 8.50E+2 9.28E+2 8.89E+2 1.01E+3 1.09E+3 1.04E+3 8.35E+2 9.72E+2 9.15E+2 5.99E+2 8.17E+2 7.47E+2 
K-PCX 9.83E+2 1.14E+3 1.06E+3 9.80E+2 1.14E+3 1.06E+3 9.71E+2 1.04E+3 1.01E+3 1.04E+3 2.05E+3 1.77E+3 9.78E+2 1.06E+3 1.02E+3 3.52E+2 5.09E+2 4.17E+2 
CoEVO 1.05E+3 1.15E+3 1.10E+3 1.00E+3 1.18E+3 1.11E+3 7.09E+2 1.21E+3 9.94E+2 1.10E+3 1.27E+3 1.18E+3 7.62E+2 1.23E+3 1.10E+3 1.13E+3 1.33E+3 1.23E+3 

30
00

00
 

STS 8.84E+2 9.79E+2 9.02E+2 8.00E+2 9.15E+2 8.97E+2 5.00E+2 5.00E+2 5.00E+2 8.42E+2 1.05E+3 9.91E+2 5.34E+2 1.16E+3 5.75E+2 2.00E+2 1.24E+3 4.45E+2 
G-CMA-ES 9.03E+2 9.04E+2 9.04E+2 9.03E+2 9.04E+2 9.04E+2 5.00E+2 5.00E+2 5.00E+2 7.67E+2 8.42E+2 8.03E+2 5.34E+2 5.34E+2 5.34E+2 2.00E+2 9.56E+2 9.10E+2 

EDA 9.16E+2 9.31E+2 9.26E+2 9.20E+2 9.36E+2 9.27E+2 5.04E+2 1.10E+3 5.31E+2 8.83E+2 9.17E+2 8.97E+2 5.42E+2 1.10E+3 6.02E+2 2.07E+2 1.01E+3 5.79E+2 
BLX-MA 8.71E+2 8.86E+2 8.80E+2 8.68E+2 8.89E+2 8.79E+2 5.00E+2 5.00E+2 5.00E+2 8.92E+2 9.23E+2 9.08E+2 5.34E+2 1.16E+3 5.59E+2 2.00E+2 2.00E+2 2.00E+2 
SPC-PNX 9.04E+2  9.05E+2 9.04E+2  9.05E+2 5.00E+2  5.00E+2 8.61E+2  8.80E+2 5.34E+2  5.34E+2 2.00E+2  2.00E+2 

BLX-GL50 9.03E+2 9.06E+2 9.04E+2 9.03E+2 9.04E+2 9.03E+2 5.00E+2 5.00E+2 5.00E+2 8.42E+2 9.01E+2 8.74E+2 5.34E+2 9.17E+2 5.87E+2 2.00E+2 9.89E+2 8.77E+2 
L-CMA-ES 8.00E+2 9.23E+2 9.03E+2 8.00E+2 9.16E+2 8.89E+2 4.09E+2 5.00E+2 4.85E+2 8.25E+2 9.20E+2 8.71E+2 5.34E+2 5.41E+2 5.35E+2 2.00E+2 1.86E+3 1.41E+3 

DE 9.11E+2 9.16E+2 9.13E+2 9.11E+2 9.15E+2 9.13E+2 5.36E+2 6.51E+2 5.81E+2 9.41E+2 9.92E+2 9.64E+2 5.73E+2 6.79E+2 6.21E+2 2.55E+2 3.82E+2 3.14E+2 
K-PCX 8.28E+2 8.34E+2 8.31E+2 8.28E+2 8.33E+2 8.31E+2 8.58E+2 8.60E+2 8.59E+2 5.25E+2 1.96E+3 1.56E+3 8.65E+2 8.68E+2 8.66E+2 2.12E+2 2.14E+2 2.13E+2 
CoEVO 1.01E+3 1.11E+3 1.05E+3 9.83E+2 1.16E+3 1.06E+3 5.00E+2 1.18E+3 6.04E+2 1.10E+3 1.23E+3 1.16E+3 6.07E+2 1.22E+3 9.22E+2 7.60E+2 1.27E+3 1.10E+3 

Table 14.  Optimality gap values for f19, f20, f21, f22, f23, f24 and n = 30 


