
Designing Effective Improvement Methods for Scatter Search

An experimental study on global optimization

Lars Magnus Hvattum
Department of Industrial Economics and Technology Management,
the Norwegian University of Science and Technology, Norway
Lars.M.Hvattum@iot.ntnu.no

Abraham Duarte
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain
Abraham.Duarte@urjc.es

Fred Glover
OptTek Systems, Inc., Boulder, CO, USA
Glover@OptTek.com

Rafael Martí
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

Abstract

Scatter search (SS) is a metaheuristic framework that explores solution spaces by evolving a set

of reference points. These points (solutions) are initially generated with a diversification

method and the evolution of these reference points is induced by the application of four

methods: subset generation, combination, improvement and update. In this paper we

consider the application of the SS algorithm to the unconstrained global optimization problem

and study its performance when coupled with different improvement methods. Specifically,

we design and implement new procedures that result by combining SS with eight different

improvement methods. We also propose an SS procedure (on the space of parameters) to

determine the values of the key search parameters used to create the combined methods. We

finally study whether improvement methods of different quality have a direct effect on the

performance of the SS procedure, and whether this effect varies depending on attributes of

the function that is minimized. Our experimental study reveals that the improvement method

is a key element in an effective SS method for global optimization, and finds that the best

improvement methods for high-dimensional functions are the Coordinate Method and two

versions of Scatter Search itself. More significantly, extensive computational tests conducted

with 12 leading methods from the literature show that our resulting method outperforms

competing methods in the quality of both average solutions and best solutions obtained.

Key Words: Global optimization, Scatter search, Evolutionary methods.

Original version: August 29, 2011

First revision: December 21, 2011

Second revision: June 18, 2012

mailto:Lars.M.Hvattum@iot.ntnu.no
mailto:Abraham.Duarte@urjc.es
mailto:Glover@OptTek.com
mailto:Rafael.Marti@uv.es

The Improvement Method in Scatter Search / 2

1. Introduction

The unconstrained continuous global optimization problem may be formulated as follows:

(P) Minimize f(x)

subject to nulxuxl  ,,, ,

where f(x) is a nonlinear function and x is a vector of continuous and bounded variables.

Nonlinear functions provide a good benchmark with hard instances to test optimization

methodologies. For detailed information regarding previous work on global optimization we

refer the reader to the excellent web site of the “Soft Computing and Intelligent Information

Systems” research group at the University of Granada (http://sci2s.ugr.es/eamhco). Most of

the metaheuristic methodologies have been applied to unconstrained global optimization as it

is illustrated in Table 1, only considering one method for each methodology.

Method Full-name Reference Methodology

BLX-GL50 Hybrid real coded genetic algorithm García-Martínez and

Lozano (2005)

Genetic algorithms

DTS Direct Tabu Search Hedar and Fukushima

(2006)

Tabu Search

MA-SWW Memetic algorithms based on local search

chains

Molina et al. (2010) Memetic

Algorithms

JADE Adaptive differential evolution with optional

external archive

Zhang and Sanderson

(2009)

Adaptive DE

SADE Self-adapted differential evolution Qin et al. (2009) Differential

evolution

OLPSO Orthogonal learning particle swarm

optimization

Zhan et al. (2011) Particle Swarm

Optimization

STS Scatter tabu search Duarte et al. (2010) Scatter search

Table 1. Final parameters used in tests for the CEC05 instances.

In this paper we study a new version of Scatter Search (SS) for solving (P) that integrates and

extends the SS methods developed by Laguna and Martí (2005) and Duarte et al. (2010). In

particular we study the hybridization of SS with eight different improvement methods, some of

them also based on the SS methodology themselves (Hvattum and Glover, 2009), thus

proposing a nesting scatter search. Scatter Search is an evolutionary method that has been

successfully applied to hard optimization problems. Unlike genetic algorithms and other

evolutionary methods, it operates on a small set of solutions and employs diversification

strategies of the form proposed in tabu search, which give precedence to strategic learning

based on adaptive memory, with limited recourse to randomization. The fundamental

concepts and principles were first proposed in the 1970s as an extension of formulations,

dating back to the 1960s, for combining decision rules and problem constraints. (The

constraint combination approaches, known as surrogate constraint methods, now

independently provide an important class of relaxation strategies for global optimization.) The

SS framework is flexible, allowing the development of alternative implementations with

varying degrees of sophistication, including the use of a local search procedure. The scatter

search (SS) literature keeps growing with examples of successful applications, such as those

documented in Gallego, et al. (2009), Martí et al. (2009) and Duarte, et al. (2010 and 2011).

http://sci2s.ugr.es/eamhco

The Improvement Method in Scatter Search / 3

The main goal of this paper consists of proposing new procedures that result by combining SS

with eight different improvement methods; two of them based themselves on SS to solve large

nonlinear functions. All the Improvement Methods were adapted from their original

implementations to improve their performance. In particular, each Improvement Method is

parameterized with 6 different key search parameters: the initial step length, the minimum

(smallest) step length, the maximum number of function evaluations, the maximum allowed

distance from the starting solution to any solution evaluated by this method, the maximum

allowed distance from the current solution to any solution evaluated by this method, and a

proximity threshold indicating that a solution should not be evaluated if its distance to a

previously evaluated solution is smaller than a given threshold.

Often when using metaheuristics, manual methods are used to determine good parameter

values. If we have to fix parameters, a typical way to proceed would be to lock

parameters and vary the other, find good values for it, and then repeat by locking other

parameters. However, this neglects any interdependence between different parameters and

would lead us to a selection dependent on the sequence of parameters tested. We therefore

proceed in a different way, applying a new scatter search procedure over the space of

parameters to determine a good set of values for the parameters

We finally study whether improvement methods of different quality have a direct effect on the

performance of the SS procedure, and whether this effect varies depending on attributes of

the function that is minimized. Our findings disclose that the best improvement methods for

high-dimensional problems are the Coordinate Method and these two improving methods

based on SS (nested scatter search). Additionally, we also identify parameters for

implementing these improvement methods that are critical for their effective performance.

The rest of the paper is organized as follows. Section 2 describes previous SS methods for

unconstrained global optimization as well as our proposal to combine SS with local search

(including a nested SS). The eight local search methods to hybridize with SS are described in

Section 3, and the associated parameter calibration in Subsection 3.1. The sets of instances

are introduced in Section 4 and the experiments in Section 5. The paper finishes with the

associated conclusions in Section 6.

2. Scatter Search Designs

We begin by describing previous work that gives a foundation for our present study, starting

with the SS method for (P) developed by Laguna and Marti (2005), which excludes the use of

an improvement method. The pseudo-code in Figure 1 shows their initial design. The method

starts with the creation of an initial reference set of solutions (RefSet) ordered according to

quality and initiates the search by assigning the value of TRUE to the Boolean variable

NewSolutions. In step 3, NewSubsets is constructed and NewSolutions is switched to FALSE.

Since we are focusing our attention on subsets of size 2, the cardinality of NewSubsets

corresponding to the initial reference set is given by , which accounts for all pairs of

solutions in RefSet. The pairs in NewSubsets are selected one at a time in lexicographical order

and the Solution Combination Method is applied to generate one or more solutions in step 5.

If a newly created solution improves upon the worst solution currently in RefSet, the new

The Improvement Method in Scatter Search / 4

solution replaces the worst and RefSet is reordered in step 6. The NewSolutions flag is

switched to TRUE and the subset s that was just combined is deleted from NewSubsets in steps

7 and 8, respectively.

Laguna and Martí (2005) tested several alternatives for generating and updating the reference

set. The combinations generated by their approach are linear and limited to joining pairs of

solutions. They also tested the use of a two-phase intensification.

Input: The function to minimize, f, and its domain.
Output: A solution, x

1
.

1. Start with D = Ø. Use the Diversification Generation Method to construct a solution x. If xD then

add x to D (i.e., D = D {x}), otherwise, discard x. Repeat this step until |D| = DSize. Build
RefSet = { x

1
, …, x

b
 } with b diverse solutions in D with a one-by-one max-min selection.

2. Evaluate the solutions in RefSet and order them according to their objective function value such
that x

1
 is the best solution and x

b
 the worst. Make NewSolutions = TRUE.

while (NewSolutions) do
 3. Generate NewSubsets, which consists of all pairs of solutions in RefSet that include at least one

new solution. Make NewSolutions = FALSE.

 while(NewSubsets) do
 4. Select the next subset s in NewSubSets.
 5. Apply the Solution Combination Method to s to obtain one or more new solutions x.
 if(x is not in RefSet and) then
 6. Make x

b
 = x and reorder RefSet.

 7. Make NewSolutions = TRUE.
 end if
 8. Delete s from NewSubsets.
 end while
end while

Figure 1. Outline of basic scatter search.

Duarte et al. (2010) extended the Laguna and Martí study by incorporating two improvement

methods within their SS approach, the first one based on line searches and the second one

based on the well-known Nelder-Mead method. As in Laguna and Martí (2005), the SS

algorithm of this work is based on the SS template (Glover, 1998) which consists of the

following five methods:

a. A diversification-generation method to generate a collection of diverse trial solutions,
using an arbitrary trial solution (or seed solution) as an input. In the approach of the
indicated studies, the range of each variable is divided into four sub-ranges of equal size.
A random sub-range is selected with a probability that is inversely proportional to its
frequency count (the number of times it has been selected before). Finally, a random
value is selected uniformly within the corresponding sub-range, obtaining an initial
solution. If the difference between the new solution and any other solution previously
generated is smaller than a pre-established threshold, the solution is discarded.

b. An improvement method to transform a trial solution into one or more enhanced trial
solutions. Neither the input nor output solutions are required to be feasible, though the
output solutions will more usually be expected to be so.

c. A reference-set update method to build and maintain a reference set consisting of the b
“best” solutions found (where the value of b is typically small, e.g. no more than 20).
New solutions are obtained by combining solutions in the reference set as indicated

The Improvement Method in Scatter Search / 5

below. Solutions gain membership to the reference set according to their quality or their
diversity.

d. A subset-generation method to operate on the reference set, to produce several subsets
of its solutions as a basis for creating combined solutions. As in most SS
implementations, we limit the design of our present study to combine pairs of solutions.

e. A solution-combination method to transform a given subset of solutions produced by the
Subset Generation Method into one or more combined solution vectors. The
combination method typically considers the line through two solutions, x and y, given by

the representation z() = x+  (y – x) where  is a scalar weight. In our implementation
we consider three points in this line: the convex combination z(1/2), and the exterior
solutions z(-1/3) and z(4/3). We evaluate these three solutions and return the best as the
result of combining x and y.

The SS algorithm of Duarte et al. (2010) differs in three main ways from the design used by

Laguna and Martí (2005). First, in step 1 of Figure 1, instead of directly admitting a generated

solution to become part of D, the algorithm only admits those solutions x whose distance

d(x,D) to the solutions already in D is larger than a pre-established threshold value, dthresh:

dthreshyxdDxd
Dy




),(min),(

Second, Duarte et al. (2010) solve a max-min diversity problem (Duarte and Martí, 2007) to

build the Reference Set instead of generating a collection of diverse solutions by a one-pass

heuristic. Instead of the one-by-one selection of diverse solutions, they proposed solving the

maximum diversity problem (MDP) that consists of finding, from a given set of elements and

corresponding distances between elements, the most diverse subset of a given size. To use the

MDP within SS, we must recognize that the original set of elements is given by P minus the

|RefSet|/2 best solutions. Also, the most diverse subset that we are asking the MDP to

construct is RefSet, which is already partially populated with the |RefSet|/2 best solutions

from P. Therefore, the authors modified the D2 method (Glover et al. 1998) to solve the

special MDP for which some elements have already been chosen.

Finally, the Improvement Method is selectively applied to the best b solutions resulting from

the combination method (in the inner while loop of Figure 1). Duarte et al. (2010) did not focus

in particular on high-dimensional functions (the number of dimensions is limited to 30 in their

study), but presented the currently best direct search method for finding global solutions for

low-dimensional problems.

Hvattum and Glover (2009) present and evaluate several direct search methods for finding

local optima of high-dimensional functions, including several classical methods and two novel

methods based on SS. The purpose of this work was to illuminate the differences between the

methods in terms of the number of function evaluations required to find a locally optimal

solution. It turns out that several classical methods perform badly according to this criterion,

especially when the number of dimensions increases. However, these classical methods are

nevertheless used quite frequently as central parts of metaheuristics designed to find globally

optimal solutions. An underlying motivation for the work of Hvattum and Glover (2009) was

that if a metaheuristic implementation employs a local improvement method, the ability of

The Improvement Method in Scatter Search / 6

metaheuristic to efficiently find global optima of functions may depend on the ability of the

improvement method to find local optima.

As previously indicated, the current paper extends the studies on scatter search (SS) described

above by combining (hybridizing) SS with eight different improvement methods and

determining values for key search parameters used to create the combined methods.

Input: The function to minimize, f, and its domain. A threshold value used when building initial solutions
dthresh, and the number of initial solutions to build Dsize. The maximum number of function
evaluations, MaxEval, and the sizes of the two parts of the reference set, b1 and b2.
Output: A solution, x

1
.

Start with D = Pool = RefSet = Ø.
while (|D| <DSize) do

1. Use the Diversification Generation Method to construct a solution x.

2. If xD and d(x,D) >dthresh then add x to D (i.e., D = D {x}).
3. Evaluate the solutions in D and build RefSet = { x

1
, …, x

b1
 } with the best b1 solutions according

to f. NumEval = |D|
end while
while (NumEval<MaxEval) do

4. Solve the max-min diversity problem in D to obtain b2 diverse solutions (b2=b-b1) with respect
to the solutions already in RefSet.

5. Build RefSet = { x
1
, …, x

b
} with the b1 quality and b2 diverse solutions.

6. Evaluate the solutions in RefSet and order them according to their objective function value
(where x

1
 is the best solution).

7. Make NewSolutions = TRUE
while (NewSolutions) do

8. Pool = Ø. NewSolutions = FALSE
9. Generate NewSubset, which consists of all pairs of solutions in RefSet that include at

least one new solution.

while (NewSubset) do
10. Select the next subset s in NewSubset.

11. Apply the Solution Combination Method to s to obtain new solutions , , and

 .

12. Evaluate , , and . Increase NumEval by 3.

13. Add , , and to Pool (Pool = Pool { , , })
14. Apply the Improvement Method to a selection of the new solutions produced by

the Solution Combination Method. Replace these solutions with the outputs of the
Improvement Method. Update NumEval adding the number of evaluations
performed. The details of using the Improvement Method are given in Section 2.1.

15. Delete s from NewSubset.
end while

 while (Pool) do
16. Select the next solution x in Pool.
17. Let yx be the closest solution in RefSet to x.
if(f(x) <f(x

1
) or (f(x) <f(x

b
) and d(x,yx)>dthresh))do

18. Add x to the RefSet and remove x
b
 (RefSet = RefSet \ {x

b
 }  {x}).

19. Make NewSolutions = TRUE and order RefSet according to the objective
function values (as in step 6.)

20. Remove x from Pool.
 end if
end while

21. Remove the worst b2 solutions from the RefSet.
end while

end while

Figure 2. Outline of the proposed scatter search.

The Improvement Method in Scatter Search / 7

We note that the successful design of the combined methods depends heavily on both the

identity and the values of parameters studied. Our design includes adaptive mechanisms for

modifying the parameter values, and these mechanisms and the analysis that provides initial

parameter values constitute one of the main contributions of our study. Figure 2 gives an

outline of our full scatter search procedure with the steps for combining its component

algorithms. In the first while-loop (lines 1 to 3) the best generated solutions are added to the

initial reference set.

The second while-loop (lines 4 to 21) constitutes the main iterations of the SS procedure. It is

divided into two parts; in the first one (lines 4 to 7) the reference set is completed by adding

diverse solutions to the quality solutions already in it. In the second part (lines 8 to 20) the

reference set is evolved by applying the subset generation method (lines 9 and 10), the

combination method (lines 11 to 13), the improvement method (lines 14 and 15) and the

reference set update method (lines 16 to 20). The procedure finishes when a maximum

number of function evaluations MaxEval is reached.

3. The Improvement Method

From the perspective of the overall Scatter Search approach, we consider the Improvement

Method as a black box optimizer subject to a set of search parameters. We have included in

our computational experience the following 8 different improvement methods. Note that the

last two are a scatter search implementations themselves and therefore their inclusion in the

general SS algorithm constitutes a nested method.

 NM: Nelder-Mead Simplex Method

 MDS: Multidirectional Search

 CS: Coordinate Search Method

 HJ: Hooke and Jeeves Method

 SW: Solis and Wets’ Algorithm

 ROS: Rosenbrock’s Algorithm

 SSR: Scatter Search with randomized subset combination

 SSC: Scatter Search with clustering subset combination

A brief description of these methods follows. The Nelder-Mead, NM, (Nelder and Mead, 1965)

is a classical direct search method that has frequently been used as a sub-solver in global

optimization (Herrera et al., 2006). The method works by creating a simplex around the initial

point and then applies four operations called reflection, expansion, contraction and shrinkage

to modify the simplex and thereby improving the worst point of the simplex. Another simplex

based method is the multi-directional search, MDS, (Wright, 1996), which differs from NM in

that it attempts to improve the best point rather than the worst point in every iteration, and

that reflection, expansion, and contraction works on the whole simplex rather than just the

worst point.

Coordinate search (CS) is a simple pattern search (Kolda et al., 2003; Schwefel, 1995) starting

from a single point and with a given step length. A search for improving points is made along

The Improvement Method in Scatter Search / 8

each of the cartesian directions using the current step length. If an improving point is found it

becomes the current point, otherwise, having tested 2n points without improving the current

step length is reduced before the search continues. The method of Hooke and Jeeves (1961) is

slightly more advanced than CS. Having completed a search through all 2n directions the

method will make a tentative jump based on the improvements found, but if no improvements

are found in the next cycle the jump is retracted before continuing as normal.

Rosenbrock's algorithm (Rosenbrock, 1960) with improvements by Palmer (1969) also starts by

searching along each of the Cartesian directions, but modifies the directions used based on

previous improvements encountered. This facilitates dealing with functions that have long,

turning valleys which the search follows to a local optimum. The stochastic direct search SW of

Solis and Wets (1981) does not rely on a set of search directions, but generates a new sample

direction at every iteration based on n random samples from normal distributions. The step

length is influenced by the variance of the normal distributions, and the direction is influenced

by the expected values of the normal distributions. The expected values are based on a bias

that is updated depending on whether previous sampled points have been successfully

improving the current solution.

Finally, the two direct search methods based on SS, as developed in Hvattum and Glover

(2009), maintain a pool of solution points, with a special focus on the best point which is

always included when combining a subset of solutions. The combination of solutions is made

by searching along a line that goes through the best point and the centroid of the remaining

points in the selected subset. The two methods differ by the way that subsets are selected for

combination: SSR uses guided randomization to find subsets, whereas SSC uses the k-clustering

algorithm (MacQueen, 1967).

It is well known that, in the context of global optimization, improvement methods based on

local search are highly dependent on parameters such as the step length to discretize the

continuous domain. In our case we have three sets of parameters: one concerning the main

mechanisms of the SS, one concerning the interaction between these mechanisms and the

Improvement Method, and one for the Improvement Method itself. For the main mechanisms

of SS we use the same settings as in Duarte et al. (2010), and for settings specific to each direct

search method we use standard values, as in Hvattum and Glover (2009). In addition, some

values can be specified by the SS method when using direct search as an improvement

method. To obtain high quality solutions we have considered the following additional settings

in the application of the methods above:

- δINIT, the initial step length.

- δMIN, the minimum (smallest) step length.

- νMAX, the maximum number of function evaluations.

- ηS, the maximum allowed distance from the starting solution to any solution

evaluated by this method.

- ηC, the maximum allowed distance from the current solution (that is, the best

solution produced so far by the Improvement Method) to any solution evaluated

by this method.

The Improvement Method in Scatter Search / 9

- ε, a proximity threshold indicating that a solution x should not be evaluated if its

distance to a previously evaluated solution y is smaller than ε times the current

step length. We set ε = 0.01, as recommended in Hvattum and Glover (2009).

These values are calculated every time the Improvement Method is applied. This calculation is

described below (see Section 3.1). They mainly depend on the size of the problem, n, and

some user defined parameters (that will be set in the next section) as we describe below.

As it is customary in Scatter Search, solutions in the Reference Set (RefSet) are ordered

according to their quality, where x1 is the first one (the best one found so far) and xb is the last

one (the worst one in the current RefSet). Let f1 and fb be the value of x1 and xb respectively.

Given a solution x in the RefSet with value f(x), to apply the improvement method we first

compute its maximum number of function evaluations as:

 where {

 }

That is, the maximum number of function evaluations allowed within the Improvement

Method depends on the quality of the solution x, on the number of dimensions n, and two

user specified parameters,  and . Since the application of the Improvement Method is time-

consuming we apply it selectively; i.e. we only submit to the Improvement Method the best

solutions in the RefSet. In mathematical terms: we only apply it if νMAX≥γn where γ is a search

parameter.

Although we initially set the parameter νMAX to the value above, we implemented a reactive

mechanism to increase this value if the improvement method succeeds. Let v be the number

of function evaluations performed within the Improvement Method. Initially, the method

stops when v = νMAX; however, when a new best solution is found, we modify v by setting:

v := max{0,v- ζn } where ζ is a parameter specified by the user.

This mechanism allows the Improvement Method to continue as long as it finds new best

solutions. However, to avoid letting the Improvement Method keep finding small

improvements for a long time, we set a threshold on the improvement achieved by the new

best solution found. Specifically, we only reduce the value of v if the improvement in the best

solution found is larger than χ(f1– f2) where f2 is the value of the second best solution in the

Reference Set and χ is a search parameter.

The initial step length is set to δINIT = θδREF and the minimum step length is set to δMIN = κδINIT

where δREF is the distance from the solution x to the closest solution in the reference set and θ

and κ are user specified parameters. Finally, the calculation of ηS and ηC also involves the use

of specified parameters: τ and φ. We set ηS = τδINIT, and ηC = φδINIT.

With respect to the memory structures, it must be noted that although previously evaluated

solutions are temporary stored by the Improvement Method, only the starting solution and

the final solution are stored permanently. That is, all solutions are stored during the execution

of the Improvement Method, to avoid multiple evaluations of very similar solutions (as defined

through ε), and the starting and final solutions are carried over to subsequent calls to the

The Improvement Method in Scatter Search / 10

Improvement Method. Since both the calculations of vMAX and the use of χ include references

to nominal solution values, the resulting SS is not a true direct search method, as these should

only require ordinal information about function values (Lewis et al., 2001).

3.1 Parameter calibration

As a result of the description above and considering that some settings depend on others, we

can conclude that the following 9 parameters , , γ, ζ, χ ,θ, κ, τ and φ need to be determined.

We note that there is a strong bias in the literature to consider it desirable for a method to

have only a very small number of parameters, or even better to have no parameters at all. We

support this view in principle, but point out that if specific parameters have a meaningful role

within a method, then it would be imprudent to avoid examining them and subjecting them to

analysis. In addition, once values are assigned to parameters, they are effectively turned into

constants and the resulting algorithm becomes parameter-free from the standpoint of the

user. The key is to identify a procedure capable of discovering good parameter values to

produce an effective algorithm. We address this consideration in this section, using scatter

search itself as a strategy for parameter determination

Since the local search procedures used as the improvement method in our scatter search

algorithm are very different, it is likely that they require different parameters balancing how

much effort is used in the improvement method. For a relatively simple method it is better to

use more effort outside of the improvement method, whereas an efficient improvement

method may be allowed to spend much effort improving selected solution points. Similarly, if

the function optimized has few local optima, using more effort in the Improvement Method

may be more beneficial than if the function has many local optima. This is the background for

calibrating the parameters for each improvement method separately and on functions similar

to those for which the method is eventually used.

For each of the nine parameters initial tests are made to reveal intervals of values where the

parameters make sense (Lbound and UBound in Table 2), as well as an initial guess for a good

set of parameter values. Let x be a vector of the nine parameter values, and let l and u be

vectors of lower and upper bounds for parameter values giving a reasonable performance, and

let xINIT be the initial guess for a good set of values. Let G be a set of functions g, and let vm(x,g)

be the number of function evaluations required by the SS using Improvement Method m and

parameter values x to solve function g. To find final parameter values we can now solve (P)

while taking

 ∑ .

Often when using metaheuristics, manual methods are used to determine good parameter

values. A typical way to proceed would be to lock eight parameters and vary the ninth, find

good values for the ninth, and then repeat by locking eight other parameters. However, this

neglects any interdependence between different parameters and would lead us to a selection

dependent on the sequence of parameters tested. We therefore proceed in a different way,

applying a scatter search to determine a good set of values for the parameters (i.e., since the

The Improvement Method in Scatter Search / 11

problem of finding good parameter values is cast in the framework of (P), we use the SS

method, bootstrapped with our initial guess xINIT).

When using SS to determine good parameters values, the function ∑ is

treated as any other function, and we apply our SS procedure following a normal execution:

first generating a set of diverse values for the parameters using the diversification generation

method. Then, we use the reference set update method to create the initial RefSet, selecting a

specified number of parameter sets (treated as solutions) based on their quality and an

additional number of such sets based on their diversity (solving the min-max diversity problem

as described above). The SS iterations combine, improve and replace solutions (sets of

parameters) in the RefSet by applying the subset-generation, improvement and combination

methods, continuing as long as each iteration yields an improvement. When the improvement

method is applied to a set of parameters values in the role of a solution x, the method is

started from the initial guess for good parameter values. When evaluating a set of parameter

values, each is solved using SS, with the improvement method operating on the

parameter set x. The SS method is halted after a limited number of iterations (50000), giving a

solution corresponding to a set of parameter values that has received the best evaluation. This

is repeated for each of the eight improvement methods, in order to produce a set of

parameter values that is applicable to each method, giving rise to the eight sets of parameter

values reported in Table 2.

 Lbound Ubound NM MDS SW HJ ROS CS SSC SSR

α 0.50 4.00 2.24 2.97 2.53 1.97 2.31 1.94 1.96 1.97

β 7.00 21.00 17.50 9.94 15.72 12.61 16.37 15.37 13.09 11.46

γ 1.70 15.00 6.45 5.24 7.13 10.06 3.35 10.34 7.60 7.89

ζ 3.20 9.20 5.55 5.42 5.56 3.20 7.64 3.20 4.53 7.27

χ 0.00 10.00 6.68 3.71 7.34 5.21 8.21 5.41 8.13 3.61

θ 0.17 1.50 1.11 0.22 1.45 1.50 1.50 0.57 1.04 0.84

κ 0.00 0.06 0.04 0.01 0.06 0.02 0.02 0.06 0.03 0.00

τ 2.20 22.00 17.23 19.78 14.90 12.14 13.01 10.33 14.06 15.20

φ 7.00 16.00 10.15 13.83 11.70 11.00 7.79 11.03 9.77 13.09

Table 2. Final parameters used in tests for the CEC05 instances.

Three sets of test instances are described in Section 4. We have calibrated parameter settings

separately for the CEC05 instances and the LM-HG instances, by selecting a few representative

instances from each instance set as G. We note from the parameter values in Table 2 that the

values for χ, τ and φ are quite high. Additional testing has revealed that ignoring these

mechanisms of the algorithm does not reduce the final solution quality obtained. Thus, the

overall algorithm can be simplified by the withdrawal of the modification of the function

evaluations’ number ν.

4. Sets of Instances

In order to test the search strategies and implementations described in this paper, we consider

three sets of instances. In all these instances the optimum (minimum) objective function value

is known. Moreover, they are scalable for any size of dimension. We consider the following

features for each function:

The Improvement Method in Scatter Search / 12

 unimodal functions where there is only one optimal value within the domain and
multimodal functions where there is more than one (in general, much more than one).

 non-shifted functions if the optimum value is located in the centre of the search space
and shifted functions if the function is displaced.

 non-rotated functions if the optimum can be found through the Cartesian axes, and
rotated functions if the function is rotated with respect to the Cartesian axes.

 separable functions as those than can be decomposed in terms of mono-dimensional
functions (one for each dimension) and non separable functions where this
decomposition is not possible.

Based on these features, the sets of instances previously reported follow. The easiest

instances are those that are unimodal and non-shifted. On the other hand, the hardest

instances are those that are multimodal, shifted, rotated and non-separable.

LM-HG1: consists of 10 unimodal and shifted functions, each one with dimension n = 2, 4, 8,
16, 32, 64, 128, 256 and 512. These instances have been previously used by Hvattum
and Glover (2009), and are based on functions listed in Laguna and Martí (2005).
They are modified so that the global optimum has a value of 0, and most of them are
separable. Their names are: Branin, Booth, Matyas, Rosenbrock, Zakharov, Trid,
SumSquares, Sphere, Staircased-Rosenbrock and Staircased-LogAbs.

LM-HG2: consists of 16 multimodal and shifted functions, each one with dimension n = 2, 4, 8,

16, 32, 64, 128, 256 and 512. These instances are generated in the same way as LM-
HG1, and are also based on functions in Laguna and Martí (2005). Their names are:
B2, Easom, Goldstein and Price, Shubert, Beale, SixHumpCamelBack, Schwefel,
Colville, Perm(0.5), Perm0(10), Rastrigin, Griewank, Powell, Dixon and Price, Levy,
and Ackley.

CEC05: consists of 12 multimodal functions obtained by composition and hybridization of

functions in the HG data set (biased, rotated, shifted and added). We consider
n = 10, n = 30 and n = 50. These instances are described in detail in Suganthan et al.
(2005) under the label “Never solved instances”. Table 3 summarizes the names and
main features of each function.

Name Features’ functions
F8: Shifted rotated Ackley Multimodal Rotated Shifted Non-separable

F13: Shifted exp.Griewank + Rosenbrock Multimodal Non-rotated Shifted Non-separable

F14: Shifted rotated expanded Scaffer Multimodal Rotated Shifted Non-separable

F16: Rotated Rastriginl Multimodal Rotated Non-Shifted Non-separable

F17: Rotated Rastrigin et al. biased Multimodal Rotated Non-Shifted Non-separable

F18: Rotated hybrid Ackley et al. Multimodal Rotated Non-Shifted Non-separable

F19: Hybrid F18 with narrow basin opt. Multimodal Non-rotated Non-Shifted Non-separable

F20: Hybrid F18 with optimum on bound Multimodal Non-rotated Non-Shifted Non-separable

F21: Rotated Rosenb. + Rast. + Wei. + Griew. Multimodal Rotated Non-Shifted Non-separable

F22: Variant of F21s Multimodal Non-rotated Non-Shifted Non-separable

F23: Non continuous F22 Multimodal Non-rotated Non-Shifted Non-separable

F24: Wei+ Rot Scaffer+ Ackley + Rast.+ Griew. Multimodal Rotated Non-Shifted Non-separable

Table 3. CEC05 test functions

The Improvement Method in Scatter Search / 13

5. Computational Experiments

This section describes the computational experiments we have performed to first test the

efficiency of our SS procedure, focusing in particular on the use of different improvement

methods and then to compare the outcome with those obtained by other state of the art

methods. We have employed the set of instances described in the previous section since they

have been widely used in previous papers. We compute the gap between a heuristic solution x

and the optimal solution x* as |f(x) – f(x*)|, and say that a heuristic solution x is effectively

optimal if the gap is smaller than 10-8.

5.1 Results on LM-HG1 Instances

The eight direct search methods that we consider are only able to solve unimodal functions,

and they were tested on the LM-HG1 instances in Hvattum and Glover (2009). We consider the

dimensions n = 2k with k ranging from 1 to 9. Each execution is repeated 10 times with

different random starting points for each dimension (but the same starting points for all the

methods). If for a given dimension, 2k, at least one of these 10 executions is able to find the

global optimum we try another 10 executions with a higher dimension 2k+1. Otherwise we stop

the process. All tested direct search strategies have the same maximum number of function

evaluations (50,000). Table 4 shows example results for the Branin function, where we report

the average number of function evaluations required to reach an optimal solution for the

different dimensions, n. If not all of the 10 runs ended with an optimal solution, we report the

ratio of successful runs in brackets. Each column contains the results of an improvement

method as: NM (Nelder-Mead Simplex Method), MDS (Multidirectional Search), CS

(Coordinate Search Method), HJ (Hooke and Jeeves Method), ROS (Rosenbrock’s Algorithm),

SW (Solis and Wets’ Algorithm), SSC (Scatter Search with clustering subset combination) and

SSR (Scatter Search with randomized subset combination).

n NM MDS CS HJ ROS SW SSR SSC

2 43.8 57.2 51.6 67.9 44.3 71.1 57.1 59.4
4 224.0 188.4 116.0 171.5 116.6 143.5 102.8 103.3

8 (0.0) 663.7 290.5 394.8 282.9 341.1 197.1 202.8

16 (0.0) 3015.7 680.5 979.9 647.8 928.9 406.6 374.2

32 (0.0) 11516.6 1550.7 (0.9) 1542.2 2032.8 779.7 783.2

64 (0.0) 46751.7 3628.4 (0.9) 6544.6 4558.6 1636.6 1626.4

128 (0.0) (0.0) 8031.5 (0.8) 28666.7 9922.3 3448.8 3443.7

256 (0.0) (0.0) 18172.5 (0.6) (0.1) 24043.6 7173.4 7184.6

512 (0.0) (0.0) (0.9) (0.7) (0.0) (0.2) 15206.9 15221.8

Table 4. Number of function evaluations required by the Imp. Methods on the Branin function.

Table 5 summarizes the performance of the stand-alone direct search methods for all

functions in the LM-HG1 set, where we report the largest dimension n for which the method

successfully found the optimal solution in all 10 runs. The last row of the table gives the

average k over all functions, where the method successfully solved the function in all 10 runs

for dimension 2k, assuming k=0 if the method was not successful for any set of 10 runs. The

table shows that SSR and SSC present the best performance, closely followed by CS, since they

are able to solve the problems with largest dimensions (n = 512) in most of the cases.

The Improvement Method in Scatter Search / 14

Having evaluated the performance of each direct search as a standalone solver for unimodal

functions we now aim to evaluate their performance when included as improvement methods

in the SS. We use the same framework for testing as above, but test the SS using either of the

direct search methods as improvement methods. We denote the methods SS+IM where IM is

an improvement method. In addition we test the version presented in Duarte et al. (2010),

which is denoted by STS, as well as using no improvement method, which is denoted simply as

SS. Again, we run 10 times for each dimension and each method, using different random seeds

for each dimension but the same seeds for all methods. This means that all the SS methods will

generate the same initial pools, the same first reference set, and the same first combined

solutions. After this the runs will diverge based on which improvement method is being used.

f NM MDS SW HJ ROS CS SSC SSR

Branin 4 64 256 16 128 256 512 512
Booth 4 32 256 256 64 256 512 512

Matyas 4 16 256 128 128 256 256 256

Rosenbrock 4 0 4 0 32 2 32 64

Zakharov 4 16 32 16 64 16 32 32

Trid 4 8 16 16 32 16 16 16

SumSquares 4 32 64 512 64 512 512 512

Sphere 4 64 512 512 32 512 512 512

Stair-Ros. 0 0 0 2 32 2 32 64

Stair-LogAbs 2 32 2 256 4 512 512 512

Avg. k 1.7 3.8 5.1 5.4 5.4 6.1 7.2 7.4

Table 5. Largest successful dimension for Imp. Methods on the LM-HG1 functions.

Table 6 shows results for the SS methods on the unimodal instances of LM-HG1. We notice

that the largest problems solved now are smaller than when using only the direct search

methods. This is to be expected, since the direct search methods are tailored for unimodal

functions, whereas the SS is more general. The relative merit of the improvement methods are

quite similar to that reported in Table 5, perhaps with the exception that HJ and CS perform

equally well as SSC and SSR when used as improvement methods. All methods using any

improvement method outperforms the SS without an improvement method (second column in

this table).

f SS STS SS+NM SS+MDS SS+SW SS+HJ SS+ROS SS+CS SS+SSC SS+SSR

Branin 2 16 4 4 8 8 16 16 16 16

Booth 2 8 4 4 16 128 8 128 128 128

Matyas 2 16 8 4 32 128 32 256 256 256

Rosenbrock 0 4 2 2 2 4 4 4 4 2

Zakharov 2 8 4 4 8 16 8 16 8 8

Trid 2 8 4 4 8 32 8 16 16 16

SumSquares 2 16 4 4 16 32 32 32 32 32

Sphere 2 32 4 4 64 32 64 32 32 32

Stair-Ros. 0 4 2 2 2 4 2 2 4 2

Stair-LogAbs 0 4 0 0 0 128 2 128 256 256

Avg. k 0.7 3.2 1.7 1.6 3.0 4.7 3.3 4.7 4.8 4.6

Table 6. Largest successful dimension for SS on the LM-HG1 functions.

The Improvement Method in Scatter Search / 15

5.2 Results on LM-HG2 Instances

Table 7 reports results from the same test reported in Table 6 using now the multimodal

functions of set LM-HG2. The relative results follow the same pattern as for the unimodal

functions, although the instances seem to be more difficult and only slightly smaller

dimensions can be solved consistently. As in the previous experiment, the results in this table

clearly indicate that the Scatter Search algorithm with either the CS, SSC or SSR exhibits the

best results, with an average value of the largest k (with n=2k) that it is able to solve (in all of

the ten runs) of 3.1, 3.1 and 3.4 respectively. Moreover, it improves the previous scatter

search algorithm, STS, which presents an average value of 2.9.

f SS STS SS+NM SS+MDS SS+SW SS+HJ SS+ROS SS+CS SS+SSC SS+SSR

B2 0 2 2 2 4 8 4 16 16 32

Easom 0 2 2 2 2 2 4 2 4 4

Golds.&Price 0 8 2 2 4 8 8 8 8 8

Shubert 0 8 0 2 4 8 2 2 2 2

Beale 2 8 4 4 4 8 16 16 8 16

SixH.C.Back 2 16 2 4 16 32 16 32 64 64

Schwefel 0 8 2 2 2 4 0 2 2 2

Colville 0 4 0 0 4 8 4 8 8 4

Perm(0.5) 2 4 2 2 2 2 2 2 2 2

Perm0(10) 0 4 2 2 4 4 4 4 4 4

Rastrigin 0 16 0 0 2 4 2 2 2 2

Griewank 0 0 0 0 0 2 2 2 0 32

Powell 4 16 4 4 16 64 16 64 128 128

Dixon&Price 2 8 2 2 8 8 8 8 16 16

Levy 2 256 4 4 16 128 128 512 128 64

Ackley 0 8 0 0 0 32 8 32 32 32

Avg. k 0.4 2.9 0.9 1.0 1.9 3.1 2.5 3.1 3.1 3.4

Table 7. Largest successful dimension for SS on the LM-HG2 functions.

5.3 Results on CEC05 Instances

To further analyze the consequences of using the different improvement methods, we run

experiments on the CEC05 instances as reported in Suganthan et al. (2005). We use the same

random seeds for all the methods, and collect results for 25 runs for each function and

dimension (following the experimental design of that paper). Tables 8 and 9 show average gap

values for the functions using n=10 and n=50 respectively. Each row in both tables reports the

results after 1,000, 10,000, and 100,000 iterations respectively.

Iterations SS STS SS+NM SS+MDS SS+SW SS+HJ SS+ROS SS+CS SS+SSC SS+SSR

1,000 780.1 773.2 645.5 737.5 552.7 652.9 627.4 575.7 613.1 601.9

10,000 733.1 585.9 425.8 565.5 366.0 426.7 449.8 415.4 398.2 432.1

100,000 646.8 399.0 297.1 351.8 246.4 309.3 341.1 298.4 291.6 314.4

Table 8. Average gap values over 25 runs on CEC05 instances with n=10.

Results in Tables 8 and 9 indicate that the choice of improvement method is a key factor in the

SS algorithm. In CEC05 low dimensional functions (n=10), SS+SW is the best performer

The Improvement Method in Scatter Search / 16

followed by SS+SSC. Moreover, all our variants give better results than the recent STS (Duarte

et al., 2010). The difference between the methods becomes evident already after 1,000

iterations. The performance on high-dimensional functions (n=50) reported in Table 9 is

perhaps more important. This time, the simplex based methods SS+NM and SS+MDS do not

fare equally well. The best performers are SS+CS, SS+SSC and SS+SSR, which is consistent with

the results on the LM-HG instances reported in Tables 6 and 7.

Iterations SS STS SS+NM SS+MDS SS+SW SS+HJ SS+ROS SS+CS SS+SSC SS+SSR

1,000 1029.3 1041.8 993.7 1050.1 859.2 753.7 830.7 752.8 765.1 758.6

10,000 908.8 839.1 725.7 898.2 640.6 632.8 634.9 635.0 643.6 617.6

100,000 824.0 662.4 623.9 749.9 563.2 573.5 572.6 532.2 523.0 527.9

Table 9. Average gap values over 25 runs on CEC05 instances with n=50.

Having determined the best improving methods in the previous experiments, we perform our

final experiments to compare the best variants, SS+SSC, SS+SSR, SS+SW and SS+CS, with the

best methods identified in previous studies when executed over the set of instances CEC05.

Specifically we consider STS (Duarte et al., 2010) BLX-GL50 (García-Martinez and Lozano,

2005), BLX_MA (Molina et al., 2005), CoEVO (Posik, 2005), JADE- Adaptive differential

evolution (Zhang and Sanderson 2009), DMS-L-PSO (Liang and Suganthan, 2005), EDA (Yuan

and Gallagher, 2005), G-CMA-ES (Auger and Hansen, 2005a), k_PCX (Sinha et al., 2005), L-CMA-

ES (Auger and Hansen, 2005b), SaDE (Qin et al., 2009) and SPC-PNX (Ballester et al., 2005).

Results for STS are computed a new based on the same random seed as for the other SS

variants, whereas results for the other methods are gathered from the references above. Note

that all the other methods have been calibrated for the CEC05 instances.

 10,000 iterations 100,000 iterations

Method Min. Avg. Min. Avg.

SS+SSR 286.8

432.1

209.1

314.4

SS+SSC 233.2

398.2

187.4

291.6

SS+CS 222.4

415.4

205.2

298.4

SS+SW 247.2

366.0

185.9

246.4

STS 336.8

585.9

242.3

399.0

G-CMA-ES 260.0

419.4

419.4

256.0 265.3

EDA 287.1

335.1

269.4 300.6

BLX-MA 315.5

445.1

306.2 430.1

SPC-PNX 279.6

391.0

206.0 309.9

BLX-GL50 272.8

341.0

257.2 319.0

L-CMA-ES 225.9

655.8

202.7 411.1

JADE 250.5 420.5 207.9 390.7

K-PCX 488.0

564.4

257.4 475.6

CoEVO 437.5

623.5

268.3 465.4

SaDE 286.4 375.7 246.3 308.8

DMS-L-PSO 356.9

477.0

244.4 392.3

Table 10. CEC05 test problems with n=10.

The Improvement Method in Scatter Search / 17

Following the guidelines in Suganthan et al. (2005) we consider first functions with n=10 and

then with n=30. All the methods are executed 25 independent times on each instance and the

maximum number of objective function evaluation is limited to 10,000 or 100,000. We then

record the best gap value (minimum) and the average gap value over the 25 runs for each

instance. Tables 10 and 11 report the average of the minimum (Min.) and the average of the

average (Avg.) optimality gap across the 12 CEC05 instances with n=10 and n=30 respectively.

We do not report the number of optima or any related value since none of the methods

considered is able to match any of them (this is why these problems are called "Never solved

instances").

 10,000 iterations 100,000 iterations

Method Min. Avg. Min. Avg.

SS+SSR 436.2

489.0

420.4

441.7

SS+SSC 437.4

493.3

420.3

438.7

SS+CS 430.9

509.4

509.4

420.4

441.5

SS+SW 419.4

490.6

399.8

429.7

STS 617.0

752.8

415.3 550.9

G-CMA-ES 414.3

526.8

405.7 493.0

EDA 11951.1

26418.8

653.6 934.7

BLX-MA 443.9

502.4

410.7 457.2

SPC-PNX 637.6

850.1

414.8 430.0

BLX-GL50 474.8

545.9

433.0 507.5

L-CMA-ES 447.6

722.6

404.6 617.0

JADE 437.2 490.3 419.2 480.2

K-PCX 27719.7

108602.9

866.1 2257.2

SaDE 457.6 484.6 428.1 439.3

CoEVO 749.6

822.0

625.3 734.5

Table 11. CEC05 test problems with n=30.

Results in Tables 10 and 11 clearly indicate that the SS using the best choices of improvement

methods is competitive with, or even better than, the state of the art methods identified in

recent publications. Specifically, for n=10 and 100,000 iterations, SS+SW gives the best results

both when taking the best solution found among the 25 runs (185.9) and when taking the

average (246.4). The same holds true for n=30, where it obtains in 100,000 iterations a

minimum value of 399.8 and an average value of 429.7. On the short term runs (10,000

iterations) with n=10, SS+CS obtains the minimum value (222.4) closely followed by L-CMA-ES

(225.9), while the best average value is achieved by EDA. With n=30 and 10,000 iterations the

best method in terms of minimum value is G-CMA- ES (414.3) closely followed by SS+SW

(419.4), and regarding average values, SaDE, SS+SSR and JADE obtain 484.6, 489.0 and 490.3

respectively.

We applied the non-parametric Friedman test for multiple correlated samples to the best

solutions obtained by our best variant, SS+SW, and each of the 4 methods identified as the

most recent and best: G-CMA-ES, L-CMA-ES, JADE and SaDE. This test computes, for each

instance, the rank value of each method according to solution quality (where rank 5 is assigned

to the worst method and rank 1 to the best one). We use the average value over the 25 runs

obtained with each method on each of the 12 functions with n=10 and n=30 respectively.

The Improvement Method in Scatter Search / 18

Then, it calculates the average rank values of each method across all the instances solved. If

the averages differ greatly, the associated p-value or significance will be small. The resulting p-

value of 0.000 obtained in this experiment clearly indicates that there are statistically

significant differences among the five methods tested. Specifically, the rank values produced

by this test are, SS+SW (2.29), G-CMA-ES (2.40), SaDE (3.18), JADE (3.32) and L-CMA-ES (3.81),

confirming the superiority of our scatter search algorithm.

Considering that SS+SW and G-CMA-ES obtain very similar rank values, we compared both with

two well-known nonparametric tests for pairwise comparisons: the Wilcoxon test and the Sign

test. The former one answers the question: Do the two samples (solutions obtained with

SS+SW and G-CMA-ES in our case) represent two different populations? The resulting p-value

of 0.236 indicates that the values compared could come from the same method. On the other

hand, the Sign test computes the number of instances on which an algorithm supersedes

another one. The resulting p-value of 0.551 indicates that there is no clear winner between

SS+SW and G-CMA-ES on the instances considered in our study. If we apply these two pairwise

tests to compare SS+SW and SaDE we obtain a p-value of 0.005 and 0.009 respectively,

indicating that there are significant differences between both methods.

6. Conclusions

We have described the development and implementation of a Scatter Search algorithm for

unconstrained nonlinear optimization, identifying eight direct search optimizers that we have

applied as the improvement method within the scatter search framework. Six of them are

classic direct search methods known from the literature, whereas two were recently

developed especially for high-dimensional unimodal functions (Hvattum and Glover, 2009).

The performance of these improvement methods is managed by means of nine key search

parameters, which incorporate adaptive mechanisms and whose initial values we have

determined based on a series of experiments utilizing our scatter search algorithm as a

bootstrapping method to identify effective parameter settings.

Comparative tests are performed on a set of 38 test problems from three sources: unimodal

(LM-HG-1), multimodal (LM-HG2) and composed (CEC05), with the number of variables

ranging from 2 to 512. Most of these instances have been previously identified as very hard to

solve. Our experimentation shows that the improvement method is a key element in

determining the relative performance of alternative scatter search implementations. Within

our overall SS algorithm, which embeds the improving method as a parameter-controlled

subroutine, the best performing improvement method for functions with low dimension (n≤

30) is the Solis and Wets algorithm. For functions of higher dimensions (n≥ 50), the best

performance comes from Coordinate Search and two improving methods based on Scatter

Search itself. The two scatter search improving methods demonstrate an ability to yield the

most effective performances for all of the three different instance sets. Moreover, the

extensive comparison with twelve leading methods discloses that our overall scatter search

procedure (containing the improving methods by the special designs we have developed)

obtains solutions of exceptionally high quality for unconstrained global optimization problems.

The Improvement Method in Scatter Search / 19

In particular, for both n = 10 and n = 30, and using 100,000 iterations, our SS+SW procedure

obtains the best results of all methods, as measured both by the best solution found over 25

runs and by the average of these solutions. The benchmark results we have established for

best and average solutions to larger problems additionally provide a foundation to evaluate

the performance of other algorithms that may be applied to these challenging problem

instances.

Acknowledgement

This research has been partially supported by the Ministerio de Ciencia e Innovación of Spain

(TIN2009-07516 and TIN2012-35632). The authors thank the anonymous referees for

suggestions and comments that improved on the first version of this paper.

References

Auger, A., N. Hansen, 2005a. A Restart CMA Evolution Strategy With Increasing Population Size. In
Procs.of 2005 IEEE Congress on Evol. Comput. (CEC’2005), 1769-1776.

Auger, A., N. Hansen, 2005b. Performance Evaluation of an Advanced Local Search Evolutionary
Algorithm. In Procs.of 2005 IEEE Congress on Evol. Comput. (CEC’2005), 1777-1784.

Ballester, P.J., J. Stephenson, J. N. Carter, K. Gallagher, 2005. Real-Parameter Optimization Performance
Study on the CEC-2005 Benchmark with SPC-PNX. In Procs.of 2005 IEEE Congress on Evol. Comput.
(CEC’2005), 498-505.

Duarte, A. and R. Martí (2007) Tabu Search for the Maximum Diversity Problem, European Journal of
Operational Research 178, 71-84.

Duarte, A., R. Martí, E. G. Pardo and J. J.Pantrigo, “Scatter search for the cut width minimization
problem,” Annals of Operations Research, In press, DOI: 10.1007/s10479-011-0907-2, 2010.

Duarte, A., R. Martí, and F. Glover, F. Gortazar (2011) Hybrid Scatter Tabu Search for Unconstrained
Global Optimization, Annals of Operations Research, 183:95-123.

Gallego, M., A. Duarte, M. Laguna and R. Martí, “Hybrid heuristics for the maximum diversity problem,”
Computational Optimization and Applications, 44(3): 411-426, 2009.

García-Martínez, C., M. Lozano, 2005. Hybrid Real-Coded Genetic Algorithms with Female and Male
Differentiation. In Procs.of 2005 IEEE Congress on Evol. Comput. (CEC’2005), 896-903.

Glover, F., C.C., Kuo and K.S. Dhir, 1998. Heuristic algorithms for the maximum diversity problem.
Journal of Information and Optimization Sciences 19 (1), 109-132.

Herrera, F., M. Lozano and D. Molina (2006) Continuous Scatter Search: An analysis of the integration of
some combination methods and improvement strategies, European Journal of Operational Research
169, 450-476.

Hooke, R. and T.A. Jeeves (1961) Direct Search solution of numerical and statistical problems, Journal of
the Association for Computing Machinery 8, 212-229

Hvattum, L.M. and F. Glover (2009) Finding local optima of high-dimensional functions using direct
search methods. European Journal of Operational Research, 195:31-45.

Kolda, T.G., R.M. Lewis and V.J. Torczon (2003) Optimization by Direct Search: New perspectives on
some Classical and Modern Methods, SIAM Review 45, 385-482.

Laguna, M. and R. Martí (2005) Experimental testing of advanced scatter search designs for global
optimization of multimodal functions. Journal of Global Optimization, 33:235-255.

The Improvement Method in Scatter Search / 20

Lewis, R.M., V.J. Torczon, and M.W. Trosset (2001). Direct search methods: Then and now. Numerical
Analysis 2000 vol. 4, M. Bartholomew-Biggs, J. Ford, and L. Watson (Eds.) Elsevier, 191-207.

Liang, J.J., P.N. Suganthan, 2005. Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search. In
Procs.of 2005 IEEE Congress on Evol. Comput. (CEC’2005), 522-528.

MacQueen, J.B. (1967) Some Methods for classification and Analysis of Multivariate Observations,
Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, L.M. LeCam and
N. Neyman (Eds.) University of California Press, 281-297, Berkeley.

Martí, R., A. Duarte and M. Laguna, “Advanced scatter search for the max-cut problem”, INFORMS
Journal on Computing, 21(1): 26-38, 2009.

Molina, D. and Lozano, M. and García-Martínez, C. and Herrera, F. 2010. Memetic Algorithms for
Continuous Optimization Based on Local Search Chains. Evolutionary Computation, 18(1), 27-63.

Molina, D., F. Herrera, M. Lozano, 2005. Adaptive Local Search Parameters for Real-Coded Memetic
Algorithms. In Procs.of 2005 IEEE Congress on Evol. Comput. (CEC’2005), 888-895.

Nelder, J.A. and R. Mead (1965) A simplex method for function minimization, The Computer Journal 7,
308-313.

Palmer, J.R. (1969) An improved procedure for orthogonalising the search vectors in Rosenbrock's and
Swann's direct search optimisation methods, The Computer Journal 12, 69-71.

Posik, P., 2005. Real-Parameter Optimization Using the Mutation Step Co-Evolution. In Procs.of 2005
IEEE Congress on Evol. Comput. (CEC’2005), 872-879.

Qin, A. K., V. L. Huang, P. N. Suganthan, 2009. Differential evolution algorithm with strategy adaptation
for global numerical optimization, IEEE Transactions on Evolutionary Computation, vol. 13, number 2,
pp 398–417..

Qin, A.K., P.N. Suganthan, 2005. Self-Adaptive Differential Evolution Algorithm for Numerical
Optimization. In Procs.of 2005 IEEE Congress on Evol. Comput. (CEC’2005), 1785-1791.

Rosenbrock, H.H. (1960) An Automatic Method for finding the Greatest or Least Value of a Function, The
Computer Journal 3, 175-184.

Rönkkönen, J., S. Kukkonen, K.V. Price, 2005. Real-Parameter Optimization with Differential Evolution. In
Procs.of 2005 IEEE Congress on Evol. Comput. (CEC’2005), 506-513.

Schwefel, H.P. (1995) Evolution and Optimum Seeking. Wiley-Interscience.

Solis, F.J. and R.J.-B.Wets (1981) Minimization by random search techniques, Mathematical Operations
Research 6, 19-30.

Suganthan, P.N., N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari (2005). Problem definitions
and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical
Report, Nanyang Technological University, Singapore and KanGAL Report Number 2005005 (Kanpur
Genetic Algorithms Laboratory, IIT Kanpur).

Wright, M.H. (1996) Direct Search Methods: Once Scorned, Now Respectable, Numerical Analysis 1995,
F. Griffiths and G.A. Watson (Eds.) Addison Wesley Longman , 191-208, Harlow, United Kingdom.

Yuan, B., M. Gallagher, 2005. Experimental Results for the Special Session on Real-Parameter
Optimization at CEC 2005: a Simple, Continuous EDA. In Procs.of 2005 IEEE Congress on Evol.
Comput. (CEC’2005), 1792-1799.

Zhan, Z-H J. Zhang, Y. Li, Y-H. Shi, 2011. Orthogonal Learning Particle Swarm Optimization, IEEE Trans.
Evol. Comput. In press.

Zhang, J., A. C. Sanderson, 2009. JADE: Adaptive differential evolution with optional external archive,
IEEE Transactions on Evolutionary Computation, vol. 13, number 5, pp. 945–958. 2009.

