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Abstract 
 

The purpose of this work is to compare the performance of a scatter 
search (SS) implementation and an implementation of a genetic 
algorithm (GA) in the context of searching for optimal solutions to 
permutation problems.  Scatter search and genetic algorithms are 
members of the evolutionary computation family.  That is, they are 
both based on maintaining a population of solutions for the purpose 
of generating new trial solutions.  We perform computational 
experiments with four well-known permutation problems to study 
and compare the performance of a SS and a GA implementation. 
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1. Introduction 

Scatter search (SS) and genetic algorithms (GA) were both introduced in the seventies.  
While Holland (1975) introduced genetic algorithms and the notion of imitating nature 
and the “survival of the fittest” paradigm, Glover (1977) introduced scatter search as a 
heuristic for integer programming that expanded on the concept of surrogate 
constraints.  Both methods fall in the category of evolutionary optimization 
procedures, from the point of view that they build, maintain and evolve a set 
(population) of solutions throughout the search.  Although the population-based 
approach makes SS and GA part of the so-called evolutionary methods, there are 
fundamental differences between these two methodologies.  One main difference is 
that genetic algorithms were initially proposed as a mechanism to perform hyperplane 
sampling rather than optimization.  Over the years, however, GAs have morphed into a 
methodology whose primary concern is the solution of optimization problems (Glover 
1994a). 
 
In contrast, scatter search was conceived as an extension of a heuristic in the area of 
mathematical relaxation, which was designed for the solution of integer programming 
problems: surrogate constraint relaxation.  The following three operations come from 
the area of mathematical relaxation and they are the core of most evolutionary 
optimization methods including SS and GAs: 
 

1. Building, maintaining and working with a population of elements (coded as 
vectors) 

2. Creating new elements by combining existing elements 
3. Determining which elements are retained based on a measure of quality 

 
Two of the best-known mathematical relaxation procedures are Lagrangean relaxation 
(Everett, 1963) and surrogate constraint relaxation (Glover 1965).  While Lagrangean 
approaches absorb “difficult” constraints into the objective function by creating linear 
combinations of them, surrogate constraint relaxation generate new constraints to 
replace those considered problematic.  The generation of surrogate constraints also 
involves the combination of existing constraints using a vector of weights.  In both 
cases, these relaxation procedures search for the best combination in an iterative 
manner.  In Lagrangean relaxation, for example, the goal is to find the “best” 
combination, which, for a minimization problem, is the one that results in the smallest 
underestimation of the true objective function value.  Since there is no systematic way 
of finding such weights (or so-called Lagrangean multipliers) in order to produce the 
smallest (possibly zero) duality gap, Lagrangean heuristics iteratively change the 
weights according to the degree of violation of the constraints that have been “brought 
up” to the objective function. 
 
Scatter search is more intimately related to surrogate relaxation procedures, because 
not only surrogate relaxation includes the three operations outlined above but also 
has the goal of generating information from the application of these operations.  In the 
case of surrogate relaxation, the goal is to generate information that cannot be 
extracted from the “parent constraints”.  Scatter search takes on the same approach, 
by generating information through combination of two or more solutions. 
 
Similarities and differences between SS and GAs have been previously discussed in 
the literature (Glover, 1994b and 1995).  Hence, our goal is not to elaborate on those 
discussions and further analyze the fundamental differences of these two approaches.  
Instead, our main goal is to provide a direct performance comparison in the context of 
a class of combinatorial optimization problems.  Specifically, we make our comparison 
employing four classes of problems whose solutions can be represented with a 
permutation.  Our SS and GA implementations are based on a model that treats the 
objective function evaluation as a black box, making the search procedures context-
independent.  This means that neither implementation takes advantage of the 
structural details of the tests problems.  We base our comparisons on experimental 
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testing with four well-known problems: linear ordering, traveling salesperson, matrix 
bandwidth reduction and a job-sequencing problem.  The only information that both 
the SS solver and the GA solver have with respect to these problems is the nature of 
the objective function evaluation with regard to the “absolute” or “relative” positioning 
of the elements in the permutation.  In other words, we differentiate between two 
classes of problems: 
 

A-permutation problems⎯for which absolute positioning of the elements 
is more important (e.g., linear ordering problem) 

 
R-permutation problems⎯for which relative positioning of the elements is 
more important (e.g., traveling salesperson problem) 

 
We will see later that not all problems can be fully characterized as “absolute” or 
“relative”, however, this does not render our implementations useless. 
 
2. Scatter Search Implementation 

Our scatter search implementation is summarized in Figure 1 and operates as follows.  
A generator of permutations, which focuses on diversification and not on the quality of 
the resulting solutions, is used at the beginning of the search to build a set P of 
PopSize solutions (step 1).  The generator, proposed by Glover (1998), uses a 
systematic approach to creating a diverse set of permutations.  As is customary in 
scatter search, an improvement method is applied to the solutions in P in order to 
obtain a set of solutions of reasonable quality and diversity.  The improvement method 
consists of the local search (LS) procedure described in the following section. 
 
The reference set, RefSet, is a collection of b solutions that are used to generate new 
solutions by way of applying a solution combination method.  The construction of the 
initial reference set in step 3 starts with the selection of the best b/2 solutions from P.  
These solutions are added to RefSet and deleted from P.  The minimum distance from 
each improved solution in P-RefSet to the solutions in RefSet is computed.  Then, the 
solution with the maximum of these minimum distances is selected.  This solution is 
added to RefSet and deleted from P and the minimum distances are updated.  This 
process is repeated b/2 times.  The resulting reference set has b/2 high-quality 
solutions and b/2 diverse solutions.  The distance between two permutations 
p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) depends on the type of problem being solved.  
For A-permutation problems, the distance is given by: 
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The distance for R-permutation problems is defined as: 
 

d(p,q) = number of times pi+1 does not immediately follow pi in q, 
for i = 1, …, n-1 

 
The combination procedure is applied in step 5 to all pairs of solutions in the current 
RefSet.  Since the reference set consists of b solutions, the number of trial solutions 
generated with the combination method is b(b-1)/2 when applied to the initial 
reference set.  Note that only pairs with at least one new solution are combined in 
subsequent executions of this step and therefore the number of combinations varies 
after the initial reference set.  The combined solutions are improved in the same way 
as mentioned above, that is, with the application of the LS procedure.  The reference 
set is then updated by selecting the best b solutions from the union of RefSet and the 
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improved trial solutions.  Steps 5, 6 and 7 in the outline of Figure 1 are performed as 
long as at least one new trial solution is admitted in the reference set. 
 

1. Generate solut ions — Apply the diversification generation method to 
generate a set of PopSize solutions. 

2. Improve solut ions — Apply the LS method to improve solutions 
generated in Step 1. 

3. Build the reference set  — Choose the “best” b solutions to build the 
initial RefSet. 

4. Init ial ize — Make BestSol the best solution in the current RefSet 
and GlobalImprove = 0 

do { 
 while ( new solutions in RefSet and objective function evaluations < 

MaxEval ) do { 
 5. Combine solut ions — Generate trial solutions from pairs of 

reference solutions where at least one solution in the pair is new. 
 6. Improve solut ions — Apply the local search method to improve 

the solutions generated in step 5. 
 7. Update reference set  — Choose the best b solutions from the 

union of the current RefSet and the set of improved trial 
solutions. 

 } 
 8. Update the best — Set CurrentBest as the best solution in the 

RefSet. 
 if( CurrentBest improves BestSol ) 
  BestSol = CurrentBest 
  GlobalImprove = 0 
 else 
 GlobalImprove = GlobalImprove + 1 
 
 9. Rebuild RefSet — Remove the worst b/2 solutions from the 

RefSet.  Generate PopSize improved solutions applying steps 1 
and 2.  Choose b/2 “diverse” solutions and add them to RefSet. 

} while ( objective function evaluations < MaxEval ) 

Figure 1.  Scatter Search outline 
 
When no new solutions qualify to be added to the RefSet, step 9 performs a partial 
rebuilding of the reference set.  We keep the best b/2 solutions in the RefSet and 
delete the other b/2.  As in step 1, a set P of PopSize improved solutions is generated 
and the b/2 with maximum diversity are added to complete the RefSet.  The procedure 
stops when MaxEval objective function evaluations have been performed. 
 
Since the SS and GA implementations will share the combination and improvement 
methods, we first provide the details for the GA procedure and then describe the 
mechanisms to combine solutions and the local search used for improving trial 
solutions. 
 
 
3. GA Implementation 

Just as in the case of the scatter search, we have implemented a standard genetic 
algorithm for the purpose of comparing performance.  Our description of scatter 
search in the previous section is more detailed, because SS is not as known in the 
literature as GAs, even though they both date back to the mid seventies.  The GA 
implementation follows the scheme of Michalewicz (1996) and is summarized in Figure 
2. 
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1. Generate solut ions — Build P by randomly generating PopSize 
permutations. 

2. Improve solut ions — Apply the LS method to improve solutions 
generated in Step 1. 

while (objective function evaluations < MaxEval ) do { 
 3. Evaluate solut ions — Evaluate the solutions in P and update 

the best solution found if necessary. 
 4. Survival of the fi t test  — Calculate the probability of surviving 

based on solution quality.  Evolve P by choosing PopSize solutions 
according to their probability of surviving. 

 5. Combine solut ions — Select a fraction pc of the solutions in P to 
be combined.  Selection is at random with the same probability 
for each element of P.  The selected elements are randomly paired 
for combination, with each pair generating two offspring that 
replace their parents in P. 

 6. Mutate solut ions — A fraction pm of the solutions in P is selected 
for mutation.  The mutated solution replaces the original in P. 

} 

Figure 2.  GA outline 
 
Offspring generated with the combination procedure in step 5 and mutations 
generated in step 6 are subjected to the improvement method referred to in step 2.  
The improvement method is the same as the one used in the scatter search 
implementation and described in the following section. 
 
3. Improvement Method 

Insertions are used as the primary mechanism to move from one solution to another 
in our improvement method.  We define MOVE(pj, i) to consist of deleting pj from its 
current position j in p to be inserted in position i (i.e., between the current elements 
pi-1 and pi).  This operation results in the ordering p′ as follows: 
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Since the local search method is context independent, the only available mechanism 
for computing the move value is submitting p′ for evaluation and comparing its value 
with the value of p.  In order to reduce the computational effort associated with 
evaluating moves for possible selection and to increase the search efficiency, we define 
INSERT(pj) as the set of promising insert positions for pj.  We consider inserting pj only 
in those positions in INSERT(pj).  Then, the neighborhood N of the current solution is 
given as: 
 

N = {p′ : MOVE(pj, i), for j = 1, ..., n  and i ∈ INSERT(pj)} 
 
We partition N into n sub-neighborhoods Nj associated with each element pj  as: 
 

Nj = {p′ : MOVE(pj, i),  i ∈ INSERT(pj)} 
 
The set INSERT(pj) depends on whether the problem is an A-permutation or a 
R-permutation problem.  In A-permutation problems we accumulate in FreqIns(i,j) the 
number of times that element i has been inserted in position j improving the current 
solution.  Then, given an element i, we compute m(i) as the position j where the value 
of FreqIns(i,j) is maximum.  We consider that m(i) and the positions around it are 
desirable positions for inserting element i.  This information is used to assign 
INSERT(pj) the following values: 
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INSERT(pj) = [ m(pj) – RANGE, m(pj) + RANGE ] 
 
The value of RANGE is an additional search parameter.  In R-permutation problems 
we accumulate in FreqIns(i,j) the number of times that element i has been inserted in 
the position immediately preceding element j.  Then we compute m(i) as the element j 
with maximum FreqIns(i,j) value.  We define pp(e) as the previous position of element e 
in the current solution.  Then we can consider that pp(m(i)) is a desirable position for 
inserting element i.  In this case, INSERT(pj) is assigned the following values: 
 

INSERT(pj) = { pp(e) / FreqIns(pj,e) ≥ α m(pj) } 
 
where the value of α is dynamically adjusted to obtain a set with 2*RANGE elements.  
The implementation is such that we avoid ordering all the elements in FreqIns(i,j), so 
we are able to construct the set INSERT(pj) with a low computational effort. 
 
The rule for selecting an element for insertion is based on frequency information.  
Specifically, the number of times that element j has been moved resulting on an 
improved solution is accumulated in freq(j).  The probability of selecting element j is 
proportional to its frequency value freq(j). 
 
Starting from a trial solution constructed with either the diversification generator or 
any of the combination methods, the local search (LS) procedure chooses the best 
insertion associated with a given element.  At each iteration, an element pj in the 
current solution p is probabilistically selected according its freq(j) value.  The solution 
p′ with the lowest value in Nj is selected.  The LS procedure execute only improving 
moves.  An improving move is one for which the objective function value of p′ is better 
(strictly smaller for minimization problems or strictly larger for maximization 
problems) than the objective function value of p.  The LS procedure terminates when 
no improving move is found after NTrials elements are consecutively selected and the 
exploration of their neighborhood fails to find an improving move. 
 
 
3. Combination Methods 

The combination methods, as referred to in scatter search, or operators, as referred to 
in genetic algorithms, are key elements in the implementation of these optimization 
procedures.  Combination methods are typically adapted to the problem context.  For 
example, linear combinations of solution vectors have been shown to yield improved 
outcomes in the context of nonlinear optimization (Laguna and Martí 2000).  An 
adaptive structured combination that focuses on absolute position of the elements in 
solutions to the linear ordering problem was shown effective in Campos, et al. (2001).  
(This combination method is labeled #7 below.)  In order to design a context-
independent combination methodology that performs well across a wide collection of 
different permutation problems, we propose a set of 10 combination methods from 
which one is probabilistically selected according to its performance in previous 
iterations during the search. 
 
In our implementation of scatter search, solutions in the RefSet are ordered according 
to their objective function value.  So, the best solution is in the first one in RefSet and 
the worst is the last one.  When a solution obtained with combination method i 
(referred to as cmi) qualifies to be the jth member of the current RefSet, we add b-j+1 to 
score(cmi).  Therefore, combination methods that generate good solutions accumulate 
higher scores and increase their probability of being selected.  To avoid initial biases, 
this mechanism is activated after the first InitIter combinations, and before this point 
the selection of the combination method is made completely at random. 
 
In the GA implementation, when a solution obtained with combination method cmi is 
better than its parent solutions, score(cmi) is increased by one.  If the combination 
method is a mutation operator, then the score is increased by one when the mutated 
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solution is better than the original solution.  Preliminary experiments showed that 
there was no significant difference between using this scheme from the beginning of 
the search and waiting InitIter combinations to activate it.  Therefore, the probabilistic 
selection procedure is activated from the beginning of the GA search.  A description of 
the ten combination methods follows, where we refer to the solutions being combined 
as “reference solutions” and to the resulting solution as the “trial solution” (although 
in the GA literature reference solutions are known as “parents” and trial solutions as 
“offspring”). 
 
Combination Method 1 

This is an implementation of a classical GA crossover operator.  The method randomly 
selects a position k to be the crossing point from the range [1, n/2].  The first k 
elements are copied from one reference solution while the remaining elements are 
randomly selected from both reference solutions.  For each position i (i = k+1, …, n) 
the method randomly selects one reference solution and copies the first element that 
is still not included in the new trial solution. 
 
Combination Method 2 

This method is a special case of 1, where the crossing point k is always fixed to one. 
 
Combination Method 3 

This is an implementation of what is known in the GA literature as the partially 
matched crossover.  The method randomly chooses two crossover points in one 
reference solution and copies the partial permutation between them into the new trial 
solution.  The remaining elements are copied from the other reference solution 
preserving their relative ordering. 
 
Combination Method 4 

This method is a case of what is referred to in the GA literature as a mutation 
operator.  The method selects two random points in a chosen reference solution and 
inverts the partial permutation between them.  The inverted partial permutation is 
copied into the new trial solution.  The remaining elements are directly copied from 
the reference solution preserving their relative order. 
 
Combination Method 5 

This combination method also operates on a single reference solution.  The method 
scrambles a sublist of elements randomly selected in the reference solution. The 
remaining elements are directly copied from the reference solution into the new trial 
solution. 
 
Combination Method 6 

This is a special case of combination method 5 where the sublist always starts in 
position 1 and the length is randomly selected in the range [2, n/2]. 
 
Combination Method 7 

The method scans (from left to right) both reference solutions, and uses the rule that 
each reference solution votes for its first element that is still not included in the new 
trial solution (referred to as the “incipient element”).  The voting determines the next 
element to enter the first still unassigned position of the trial solution.  This is a min-
max rule in the sense that if any element of the reference solution is chosen other than 
the incipient element, then it would increase the deviation between the reference and 
the trial solutions.  Similarly, if the incipient element were placed later in the trial 
solution than its next available position, this deviation would also increase.  So the 
rule attempts to minimize the maximum deviation of the trial solution from the 
reference solution under consideration, subject to the fact that other reference solution 
is also competing to contribute.  A bias factor that gives more weight to the vote of the 
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reference solution with higher quality is also implemented for tie breaking.  This rule is 
used when more than one element receives the same votes.  Then the element with 
highest weighted vote is selected, where the weight of a vote is directly proportional to 
the objective function value of the corresponding reference solution. 
 
Combination Method 8 

In this method the two reference solutions vote for their incipient element to be 
included in the first still unassigned position of the trial solution.  If both solutions 
vote for the same element, the element is assigned.  If the reference solutions vote for 
different elements but these elements occupy the same position in both reference 
permutations, then the element from the permutation with the better objective 
function is chosen.  Finally, if the elements are different and occupy different 
positions, then the one in the lower position is selected. 
 
Combination Method 9 

Given two reference solutions p and q, this method probabilistically selects the first 
element from one of these solutions.  The selection is biased by the objective function 
value corresponding to p and q.  Let e be the last element added to the new trial 
solution.  Then, p votes for the first unassigned element that is position after e in the 
permutation p.  Similarly, q votes for the first unassigned element that is position after 
e in q.  If both reference solutions vote for the same element, the element is assigned 
to the next position in the new trial solution.  If the elements are different then the 
selection is probabilistically biased by the objective function values of p and q. 
 
Combination Method 10 

This is a deterministic version of combination method 9.  The first element is chosen 
from the reference solution with the better objective function value.  Then reference 
solutions vote for the first unassigned successor of the last element assigned to the 
new trial solution.  If both solutions vote for the same element, then the element is 
assigned to the new trial solution.  Other wise, the “winner” element is determined 
with a score, which is updated separately for each reference solution in the 
combination.  The score values attempt to keep the proportion of times that a 
reference solution “wins” close to its relative importance, where the importance is 
measured by the value of the objective function.  The scores are calculated to minimize 
the deviation between the “winning rate” and the “relative importance”.  For example, 
if two reference solutions p and q have objective function values of value(p) = 40 and 
value(q) = 60, than p should contribute with 40% of the elements in the new trial 
solution and q with the remaining 60% in a maximization problem.  The scores are 
updated so after all the assignments are made, the relative contribution from each 
reference solution approximates the target proportion.  More details about this 
combination method can be found in Glover (1994b). 
 
 
4. Test Problems 

We have used four combinatorial optimization problems to compare the performance 
of the scatter search and GA implementations.  Solutions to these problems are 
naturally represented as permutations: 

 

• the bandwidth reduction problem 
• the linear ordering problem 
• the traveling salesman problem 
• a single machine sequencing problem. 
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We target these problems because they are well known, they are different among 
themselves and problem instances with known optimal or high-quality solutions are 
readily available.  Existing methods to solve these problems range from construction 
heuristics and metaheuristics to exact procedures.  We now provide a brief description 
of each problem class. 
 
The bandwidth reduction problem (BRP) refers to finding a configuration of a matrix 
that minimizes its bandwidth.  The bandwidth of a matrix { }ijaA =  is defined as the 

maximum absolute difference between i and j for which 0≠ija .  The BRP consists of 

finding a permutation of the rows and columns that keeps the nonzero elements in a 
band that is as close as possible to the main diagonal of the matrix, the objective is to 
minimize the bandwidth.  This NP-hard problem can also be formulated as a labeling 
of vertices on a graph, where edges are the nonzero elements of the corresponding 
symmetrical matrix.  Metaheuristics proposed for this problem include a simulating 
annealing implementation by Dueck and Jeffs (1996) and a tabu search approach by 
Martí, et al (2001). 
 
The Linear Ordering Problem (LOP) is also a NP-hard problem that has a significant 
number of applications.  This problem is equivalent to the so-called triangulation 
problem for input-output tables in economics and has generated a considerable 
amount of research interest over the years, as documented in Grötschel, Jünger and 
Reinelt (1984), Chanas and Kobylanski (1996), Laguna, Martí and Campos (1999) and 
Campos, et al (2001).  Given a matrix of weights the LOP consists of finding a 
permutation of the columns (and simultaneously the rows) in order to maximize the 
sum of the weights in the upper triangle, the equivalent problem in graphs is that of 
finding, in a complete weighted graph, an acyclic tournament with a maximal sum of 
arc weights.  For a complete description of this problem, its properties and 
applications see Reinelt (1985). 
 
The Traveling Salesman Problem (TSP) consists of finding a tour (cyclic permutation) 
visiting a set of cities that minimizes the total travel distance.  A incredibly large 
amount of research has been devoted to this problem, which would be impossible and 
impractical to summarize here.  However, a couple of valuable references about the 
TSP are Lawler, et al (1985) and Reinelt (1994). 
 
Finally, the fourth problem is a single machine-sequencing problem (SMS) with delay 
penalties and setup costs.  At time zero, n jobs arrive at a continuously available 
machine.  Each job requires a specified number of time units on the machine and a 
penalty (job dependent) is charged for each unit that job commencement is delayed 
after time zero.  In addition, there is a setup cost sij charged for scheduling job j 
immediately after job i.  The objective is to find the schedule that minimizes the sum of 
the delay and setup costs for all jobs.  Note that if delay penalties are ignored, the 
problem becomes an asymmetric traveling salesman problem.  Barnes and Vanston 
(1981) reported results on three branch and bound algorithms of instances with up 20 
jobs and Laguna, Barnes and Glover (1993) developed a TS method that is tested in a 
set of instances whose size ranges between 20 and 35 jobs. 
 
 
5. Computational Experiments 

For our computational testing, we have employed the following problem instances: 

 

• 37 BRP instances from the Harwell-Boeing Sparse Matrix Collection found in 
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing. This collection 
consists of a set of standard test matrices arising from problems in linear 
systems, least squares, and eigenvalue calculations from a wide variety of 
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scientific and engineering disciplines.  The size of these instances ranges 
between 54 and 685 rows with an average of 242.9 rows (and columns). 

• 49 LOP instances from the public-domain library LOLIB (1997) found in 
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB.  These 
instances consist of input-output tables from economic sectors in the 
European community and their size ranges between 44 and 60 rows with an 
average of 48.5 rows (and columns). 

• 31 TSP instances from the public-domain library TSPLIB (1995) found in 
http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.  These 
instances range in size between 51 and 575 cities with an average of 159.6 
cities. 

• 40 SMS instances from Laguna, Barnes and Glover (1993) available upon 
request from laguna@colorado.edu.  The best solutions available for these 
instances are not proven optimal, however they are the best upper bounds ever 
found.  These instances range in size between 20 and 35 jobs with an average 
of 26.0 jobs. 

 

In order to apply the different strategies described above, we have classified the BRP 
and SMS as A-permutation problems and the LOP and TSP as R-permutation 
problems.  Note that the objective function in the SMS problem is influenced by both 
the absolute position of the jobs (due to the delay penalties) and the relative position of 
the jobs (due to the setup costs).  Our classification is based on the knowledge that 
the delay penalties in the tested instances are relatively larger when compare to the 
setup cost.  In cases when this knowledge is not available, it would be recommended 
to run the procedure twice on a sample set of problems in order to establish the 
relative importance of the positioning of elements in the permutation. 
 
The solution procedures were implemented in C++ and compiled with Microsoft Visual 
C++ 6.0, optimized for maximum speed.  All experiments were performed on a Pentium 
III at 800 MHz.  The scatter search parameters PopSize, MaxIter, b and InitIter were set 
to 100, 2, 10 and 50 respectively, as recommended in Campos et al. (1999).  The 
parameters associated with the local search procedure were set after some preliminary 
experimentation (RANGE = 3 and Ntrials = 25).  The GA parameters were set to 
PopSize = 100, pc = 0.25 and pm = 0.01, as recommended in Michalewicz (1996).  Both 
procedures used the stopping criterion of 1 million objective function evaluations. 
 
In our experiments we compare the SS implementation with two versions of the GA 
procedure: 1) without local search (GA) and 2) with local search (GALS).  SS always 
uses local search by design.  The two GA versions complement each other in that one 
uses part of its objective function evaluation “budget” to perform local searches and 
the other uses its entire budget to apply the combination operators and evolve the 
population of solutions.  In our first experiment we restrict the use of combination 
methods in such a way that both GA versions use combination methods 1-6 and SS 
uses combination methods 7-10.  Recall that combination methods 1-3 are crossover 
operators and combination methods 4-7 are mutation operators.  Combination 
methods 7-10 are more strategic in nature and one is completely deterministic. 
 
Table 1 shows the average percent deviation from the best-known solution to each 
problem .  The procedures were executed once with a fixed random seed and the 
average is over all instances.  It should be mentioned that in the case of LOP and TSP 
the best solutions considered are the optimal solutions as given in the public libraries.  
In the case of the BRP the best solutions are from Martí et al (2001) and the best 
solutions for the SMS instances are due to Laguna et al (1993). 
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Method BRP LOP SMS TSP 
GA 59.124% 6.081% 4.895% 95.753% 
GALS 55.500% 0.005% 0.832% 143.881% 
SS 58.642% 0.000% 0.291% 43.275% 

Table 1. Percent deviation from best 
 
Table 1 shows that SS has a better average performance than GA in all problem types 
but is inferior to GALS when solving BRP instances.  The three methods are able to 
obtain high quality results for the LOP and the SMS problem instances.  The results 
for the TSP are less desirable, but it should be noted that these problems are on 
average larger than the LOP and SMS instances.  Table 2 presents the average percent 
improvement of SS over the two GA versions.  The largest improvement occurs when 
solving TSP instances and the negative improvement associated with GALS shows the 
better average performance of this method when compared to SS. 
 

Method BRP LOP SMS TSP 
GA 0.3% 6.5% 4.4% 26.8% 
GALS -2.0% 0.0% 0.5% 41.3% 

Table 2. Percent improvement of SS over GA and GALS 
 
Table 2 shows that in general the use of local search within the GA framework results 
in improved outcomes, with the TSP as a notable exception to this general rule.  For 
the TSP, the performance of the GA implementation deteriorates when coupled with 
the local search procedure.  The SS vs. GALS in the case of BRP instances deserves a 
closer examination, because it is the only case in which either GA implementation 
outperforms SS.  Figure 3 shows the trajectory of the average percent deviation from 
the best-known solution as the SS and GALS searches progress. 
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Figure 3. Objective function trajectory for SS and GALS solving BRP instances 
 
The percent deviation value trajectory in Figure 3 shows that while SS results are 
better than or at least as good as GALS results before 600 thousand evaluations, 
GALS keeps improving while SS stagnates.  Our explanation for this behavior is as 
follows.  In the BRP, the change in the objective function value from one solution to 
another does not represent a meaningful guidance for the search.  In particular, the 
objective is a min-max function that in many cases results in the same evaluation for 
all the solutions in the neighborhood of a given solution.  Since SS relies on strategic 
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choices, it is unable to obtain information from the evaluation of this “flat landscape” 
function to direct the search.  GALS, heavily relying on randomization, is able to more 
effectively probe the solution space presented by BRP instances. 
 
Figure 4 depicts the trajectory of the percent deviation from the best-known solution 
to the SMS problem as the search progress.  The average values of the three methods 
under consideration are shown. 
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Figure 4.  Percent deviation trajectory when solving SMS instances 
 
Figure 4 shows that the SS procedure is able to obtain high quality solutions from the 
very beginning of the search.  Specifically, after 100,000 objective function 
evaluations, the percent deviation from the best-known solutions for the SS method is 
0.7 while after 1 million evaluations the GA and the GALS methods are still at 4.8 and 
0.8, respectively. 
 
In our second experiment, we compare SS, GA and GALS when allowed to use all the 
combination methods described in section 3.  The results of these experiments are 
summarized in Tables 3 and 4.  These tables are equivalent to Tables 1 and 2 in that 
they shows the percent deviation from the best known solution values and the percent 
improvement of SS over GA and GALS, respectively. 
 

Method BRP LOP SMS TSP 
GA 58.244% 6.722% 4.940% 101.689% 
GALS 55.102% 0.004% 0.268% 133.792% 
SS 52.587% 0.000% 0.207% 54.321% 

Table 3. Percent deviation from best 
 

Method BRP LOP SMS TSP 
GA 3.57% 7.21% 4.51% 23.49% 
GALS 1.62% 0.00% 0.06% 33.99% 

Table 4. Percent improvement of SS over GA and GALS 
 
A direct comparison of tables 1 and 3 shows the advantage of using all combination 
methods within both GA and SS.  Tables 3 and 4 indicate that when all combination 
methods are used, SS has a superior average performance than GA and GALS.  The 
performance is only marginally better in the case of LOP and SMS, but it continues to 
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be significantly better in the case of TSP.   When using all operators, including those 
that incorporate a fair amount of randomization, SS is able to outperform GALS in the 
BRP instances, as shown in Figure 5. 
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Figure 5. Objective function trajectory for SS and GALS solving BRP instances 
 
Figure 6 shows the trajectory of the percent deviation from the best-known solutions 
to the SMS problem as the search progress.  The average values shown in Figure 6 
correspond to the second experiment, where all combination methods are made 
available to SS, GA and GALS. 
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Figure 6.  Percent deviation trajectory when solving SMS instances 
 
A comparison of figures 4 and 6 reveals that while SS shows a minor improvement 
when solving SMS problems with using all combination methods, the improvement 
associated with GALS is significant.  GALS achieves a deviation of 1.14% at the 
100,000 evaluation mark when using the 10 combination methods, which compares 
quite favorably with a deviation of 4.8% at the same stage of the search when using a 
fraction of the available combination methods.  
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6. Conclusions 

We have implemented a scatter search and a GA procedure for a class of combinatorial 
problems whose solutions can be represented as permutations with the purpose of 
comparing performance of these competing metaheuristics.  The implementations are 
standard and share 10 combination methods.  They also share the improvement 
method based on a simple hill-climbing procedure.  The procedures are context-
independent in the sense that they treat the objective function evaluation as a black 
box.  To allow for the use of key search strategies, both implementations require that 
the problems being solved be classified as either “absolute” or “relative” in terms of the 
relevant factor for positioning elements in the permutation. 
 
The performance of the procedures was assessed using 157 instances of four different 
permutations problems.  SS can claim superiority when solving TSP instances but 
only a modest improvement over GAs with local search when solving LOP, BRP or SMS 
instances.  We are certain that this won’t be the last time SS will be compared against 
GAs and that in any given setting one could outperform the other.  Our main finding is 
that both methodologies are capable of balancing search diversification and 
intensification when given the same tools for combining and improving solutions. 
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