

Scatter Search Vs. Genetic Algorithms: An Experimental
Evaluation with Permutation Problems

Rafael Martía, Manuel Lagunab and Vicente Camposa

a Dpto. de Estadística e Investigación Operativa, Facultad de

Matemáticas, Universitat de València, Dr. Moliner, 50,
46100 Burjassot (Valencia), Spain. Vicente.Campos@uv.es
and Rafael.Marti@uv.es

 Research partially supported by the Ministerio de Ciencia y

Tecnología of Spain: TIC2000-1750-C06-01

b Leeds School of Business, University of Colorado, Boulder,

CO 80309-0419, USA Laguna@Colorado.edu

Abstract

The purpose of this work is to compare the performance of a scatter
search (SS) implementation and an implementation of a genetic
algorithm (GA) in the context of searching for optimal solutions to
permutation problems. Scatter search and genetic algorithms are
members of the evolutionary computation family. That is, they are
both based on maintaining a population of solutions for the purpose
of generating new trial solutions. We perform computational
experiments with four well-known permutation problems to study
and compare the performance of a SS and a GA implementation.

Keywords: Scatter search, genetic algorithms, combinatorial
optimization, permutation problems.

Last revision: March 21, 2002

Martí, Laguna and Campos 2

1. Introduction

Scatter search (SS) and genetic algorithms (GA) were both introduced in the seventies.
While Holland (1975) introduced genetic algorithms and the notion of imitating nature
and the “survival of the fittest” paradigm, Glover (1977) introduced scatter search as a
heuristic for integer programming that expanded on the concept of surrogate
constraints. Both methods fall in the category of evolutionary optimization
procedures, from the point of view that they build, maintain and evolve a set
(population) of solutions throughout the search. Although the population-based
approach makes SS and GA part of the so-called evolutionary methods, there are
fundamental differences between these two methodologies. One main difference is
that genetic algorithms were initially proposed as a mechanism to perform hyperplane
sampling rather than optimization. Over the years, however, GAs have morphed into a
methodology whose primary concern is the solution of optimization problems (Glover
1994a).

In contrast, scatter search was conceived as an extension of a heuristic in the area of
mathematical relaxation, which was designed for the solution of integer programming
problems: surrogate constraint relaxation. The following three operations come from
the area of mathematical relaxation and they are the core of most evolutionary
optimization methods including SS and GAs:

1. Building, maintaining and working with a population of elements (coded as
vectors)

2. Creating new elements by combining existing elements
3. Determining which elements are retained based on a measure of quality

Two of the best-known mathematical relaxation procedures are Lagrangean relaxation
(Everett, 1963) and surrogate constraint relaxation (Glover 1965). While Lagrangean
approaches absorb “difficult” constraints into the objective function by creating linear
combinations of them, surrogate constraint relaxation generate new constraints to
replace those considered problematic. The generation of surrogate constraints also
involves the combination of existing constraints using a vector of weights. In both
cases, these relaxation procedures search for the best combination in an iterative
manner. In Lagrangean relaxation, for example, the goal is to find the “best”
combination, which, for a minimization problem, is the one that results in the smallest
underestimation of the true objective function value. Since there is no systematic way
of finding such weights (or so-called Lagrangean multipliers) in order to produce the
smallest (possibly zero) duality gap, Lagrangean heuristics iteratively change the
weights according to the degree of violation of the constraints that have been “brought
up” to the objective function.

Scatter search is more intimately related to surrogate relaxation procedures, because
not only surrogate relaxation includes the three operations outlined above but also
has the goal of generating information from the application of these operations. In the
case of surrogate relaxation, the goal is to generate information that cannot be
extracted from the “parent constraints”. Scatter search takes on the same approach,
by generating information through combination of two or more solutions.

Similarities and differences between SS and GAs have been previously discussed in
the literature (Glover, 1994b and 1995). Hence, our goal is not to elaborate on those
discussions and further analyze the fundamental differences of these two approaches.
Instead, our main goal is to provide a direct performance comparison in the context of
a class of combinatorial optimization problems. Specifically, we make our comparison
employing four classes of problems whose solutions can be represented with a
permutation. Our SS and GA implementations are based on a model that treats the
objective function evaluation as a black box, making the search procedures context-
independent. This means that neither implementation takes advantage of the
structural details of the tests problems. We base our comparisons on experimental

Martí, Laguna and Campos 3

testing with four well-known problems: linear ordering, traveling salesperson, matrix
bandwidth reduction and a job-sequencing problem. The only information that both
the SS solver and the GA solver have with respect to these problems is the nature of
the objective function evaluation with regard to the “absolute” or “relative” positioning
of the elements in the permutation. In other words, we differentiate between two
classes of problems:

A-permutation problems⎯for which absolute positioning of the elements
is more important (e.g., linear ordering problem)

R-permutation problems⎯for which relative positioning of the elements is
more important (e.g., traveling salesperson problem)

We will see later that not all problems can be fully characterized as “absolute” or
“relative”, however, this does not render our implementations useless.

2. Scatter Search Implementation

Our scatter search implementation is summarized in Figure 1 and operates as follows.
A generator of permutations, which focuses on diversification and not on the quality of
the resulting solutions, is used at the beginning of the search to build a set P of
PopSize solutions (step 1). The generator, proposed by Glover (1998), uses a
systematic approach to creating a diverse set of permutations. As is customary in
scatter search, an improvement method is applied to the solutions in P in order to
obtain a set of solutions of reasonable quality and diversity. The improvement method
consists of the local search (LS) procedure described in the following section.

The reference set, RefSet, is a collection of b solutions that are used to generate new
solutions by way of applying a solution combination method. The construction of the
initial reference set in step 3 starts with the selection of the best b/2 solutions from P.
These solutions are added to RefSet and deleted from P. The minimum distance from
each improved solution in P-RefSet to the solutions in RefSet is computed. Then, the
solution with the maximum of these minimum distances is selected. This solution is
added to RefSet and deleted from P and the minimum distances are updated. This
process is repeated b/2 times. The resulting reference set has b/2 high-quality
solutions and b/2 diverse solutions. The distance between two permutations
p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) depends on the type of problem being solved.
For A-permutation problems, the distance is given by:

 ∑
=

−=
n

i
ii qpqpd

1

),(.

The distance for R-permutation problems is defined as:

d(p,q) = number of times pi+1 does not immediately follow pi in q,
for i = 1, …, n-1

The combination procedure is applied in step 5 to all pairs of solutions in the current
RefSet. Since the reference set consists of b solutions, the number of trial solutions
generated with the combination method is b(b-1)/2 when applied to the initial
reference set. Note that only pairs with at least one new solution are combined in
subsequent executions of this step and therefore the number of combinations varies
after the initial reference set. The combined solutions are improved in the same way
as mentioned above, that is, with the application of the LS procedure. The reference
set is then updated by selecting the best b solutions from the union of RefSet and the

Martí, Laguna and Campos 4

improved trial solutions. Steps 5, 6 and 7 in the outline of Figure 1 are performed as
long as at least one new trial solution is admitted in the reference set.

1. Generate solut ions — Apply the diversification generation method to
generate a set of PopSize solutions.

2. Improve solut ions — Apply the LS method to improve solutions
generated in Step 1.

3. Build the reference set — Choose the “best” b solutions to build the
initial RefSet.

4. Init ial ize — Make BestSol the best solution in the current RefSet
and GlobalImprove = 0

do {
 while (new solutions in RefSet and objective function evaluations <

MaxEval) do {
 5. Combine solut ions — Generate trial solutions from pairs of

reference solutions where at least one solution in the pair is new.
 6. Improve solut ions — Apply the local search method to improve

the solutions generated in step 5.
 7. Update reference set — Choose the best b solutions from the

union of the current RefSet and the set of improved trial
solutions.

 }
 8. Update the best — Set CurrentBest as the best solution in the

RefSet.
 if(CurrentBest improves BestSol)
 BestSol = CurrentBest
 GlobalImprove = 0
 else
 GlobalImprove = GlobalImprove + 1

 9. Rebuild RefSet — Remove the worst b/2 solutions from the

RefSet. Generate PopSize improved solutions applying steps 1
and 2. Choose b/2 “diverse” solutions and add them to RefSet.

} while (objective function evaluations < MaxEval)

Figure 1. Scatter Search outline

When no new solutions qualify to be added to the RefSet, step 9 performs a partial
rebuilding of the reference set. We keep the best b/2 solutions in the RefSet and
delete the other b/2. As in step 1, a set P of PopSize improved solutions is generated
and the b/2 with maximum diversity are added to complete the RefSet. The procedure
stops when MaxEval objective function evaluations have been performed.

Since the SS and GA implementations will share the combination and improvement
methods, we first provide the details for the GA procedure and then describe the
mechanisms to combine solutions and the local search used for improving trial
solutions.

3. GA Implementation

Just as in the case of the scatter search, we have implemented a standard genetic
algorithm for the purpose of comparing performance. Our description of scatter
search in the previous section is more detailed, because SS is not as known in the
literature as GAs, even though they both date back to the mid seventies. The GA
implementation follows the scheme of Michalewicz (1996) and is summarized in Figure
2.

Martí, Laguna and Campos 5

1. Generate solut ions — Build P by randomly generating PopSize
permutations.

2. Improve solut ions — Apply the LS method to improve solutions
generated in Step 1.

while (objective function evaluations < MaxEval) do {
 3. Evaluate solut ions — Evaluate the solutions in P and update

the best solution found if necessary.
 4. Survival of the fi t test — Calculate the probability of surviving

based on solution quality. Evolve P by choosing PopSize solutions
according to their probability of surviving.

 5. Combine solut ions — Select a fraction pc of the solutions in P to
be combined. Selection is at random with the same probability
for each element of P. The selected elements are randomly paired
for combination, with each pair generating two offspring that
replace their parents in P.

 6. Mutate solut ions — A fraction pm of the solutions in P is selected
for mutation. The mutated solution replaces the original in P.

}

Figure 2. GA outline

Offspring generated with the combination procedure in step 5 and mutations
generated in step 6 are subjected to the improvement method referred to in step 2.
The improvement method is the same as the one used in the scatter search
implementation and described in the following section.

3. Improvement Method

Insertions are used as the primary mechanism to move from one solution to another
in our improvement method. We define MOVE(pj, i) to consist of deleting pj from its
current position j in p to be inserted in position i (i.e., between the current elements
pi-1 and pi). This operation results in the ordering p′ as follows:

()
()⎩

⎨
⎧

>
<

=′
++−

+−−

jippppppp

jippppppp
p

nijijj

njjiji

for,,,,,,,,,

for,,,,,,,,,

1111

1111

Since the local search method is context independent, the only available mechanism
for computing the move value is submitting p′ for evaluation and comparing its value
with the value of p. In order to reduce the computational effort associated with
evaluating moves for possible selection and to increase the search efficiency, we define
INSERT(pj) as the set of promising insert positions for pj. We consider inserting pj only
in those positions in INSERT(pj). Then, the neighborhood N of the current solution is
given as:

N = {p′ : MOVE(pj, i), for j = 1, ..., n and i ∈ INSERT(pj)}

We partition N into n sub-neighborhoods Nj associated with each element pj as:

Nj = {p′ : MOVE(pj, i), i ∈ INSERT(pj)}

The set INSERT(pj) depends on whether the problem is an A-permutation or a
R-permutation problem. In A-permutation problems we accumulate in FreqIns(i,j) the
number of times that element i has been inserted in position j improving the current
solution. Then, given an element i, we compute m(i) as the position j where the value
of FreqIns(i,j) is maximum. We consider that m(i) and the positions around it are
desirable positions for inserting element i. This information is used to assign
INSERT(pj) the following values:

Martí, Laguna and Campos 6

INSERT(pj) = [m(pj) – RANGE, m(pj) + RANGE]

The value of RANGE is an additional search parameter. In R-permutation problems
we accumulate in FreqIns(i,j) the number of times that element i has been inserted in
the position immediately preceding element j. Then we compute m(i) as the element j
with maximum FreqIns(i,j) value. We define pp(e) as the previous position of element e
in the current solution. Then we can consider that pp(m(i)) is a desirable position for
inserting element i. In this case, INSERT(pj) is assigned the following values:

INSERT(pj) = { pp(e) / FreqIns(pj,e) ≥ α m(pj) }

where the value of α is dynamically adjusted to obtain a set with 2*RANGE elements.
The implementation is such that we avoid ordering all the elements in FreqIns(i,j), so
we are able to construct the set INSERT(pj) with a low computational effort.

The rule for selecting an element for insertion is based on frequency information.
Specifically, the number of times that element j has been moved resulting on an
improved solution is accumulated in freq(j). The probability of selecting element j is
proportional to its frequency value freq(j).

Starting from a trial solution constructed with either the diversification generator or
any of the combination methods, the local search (LS) procedure chooses the best
insertion associated with a given element. At each iteration, an element pj in the
current solution p is probabilistically selected according its freq(j) value. The solution
p′ with the lowest value in Nj is selected. The LS procedure execute only improving
moves. An improving move is one for which the objective function value of p′ is better
(strictly smaller for minimization problems or strictly larger for maximization
problems) than the objective function value of p. The LS procedure terminates when
no improving move is found after NTrials elements are consecutively selected and the
exploration of their neighborhood fails to find an improving move.

3. Combination Methods

The combination methods, as referred to in scatter search, or operators, as referred to
in genetic algorithms, are key elements in the implementation of these optimization
procedures. Combination methods are typically adapted to the problem context. For
example, linear combinations of solution vectors have been shown to yield improved
outcomes in the context of nonlinear optimization (Laguna and Martí 2000). An
adaptive structured combination that focuses on absolute position of the elements in
solutions to the linear ordering problem was shown effective in Campos, et al. (2001).
(This combination method is labeled #7 below.) In order to design a context-
independent combination methodology that performs well across a wide collection of
different permutation problems, we propose a set of 10 combination methods from
which one is probabilistically selected according to its performance in previous
iterations during the search.

In our implementation of scatter search, solutions in the RefSet are ordered according
to their objective function value. So, the best solution is in the first one in RefSet and
the worst is the last one. When a solution obtained with combination method i
(referred to as cmi) qualifies to be the jth member of the current RefSet, we add b-j+1 to
score(cmi). Therefore, combination methods that generate good solutions accumulate
higher scores and increase their probability of being selected. To avoid initial biases,
this mechanism is activated after the first InitIter combinations, and before this point
the selection of the combination method is made completely at random.

In the GA implementation, when a solution obtained with combination method cmi is
better than its parent solutions, score(cmi) is increased by one. If the combination
method is a mutation operator, then the score is increased by one when the mutated

Martí, Laguna and Campos 7

solution is better than the original solution. Preliminary experiments showed that
there was no significant difference between using this scheme from the beginning of
the search and waiting InitIter combinations to activate it. Therefore, the probabilistic
selection procedure is activated from the beginning of the GA search. A description of
the ten combination methods follows, where we refer to the solutions being combined
as “reference solutions” and to the resulting solution as the “trial solution” (although
in the GA literature reference solutions are known as “parents” and trial solutions as
“offspring”).

Combination Method 1

This is an implementation of a classical GA crossover operator. The method randomly
selects a position k to be the crossing point from the range [1, n/2]. The first k
elements are copied from one reference solution while the remaining elements are
randomly selected from both reference solutions. For each position i (i = k+1, …, n)
the method randomly selects one reference solution and copies the first element that
is still not included in the new trial solution.

Combination Method 2

This method is a special case of 1, where the crossing point k is always fixed to one.

Combination Method 3

This is an implementation of what is known in the GA literature as the partially
matched crossover. The method randomly chooses two crossover points in one
reference solution and copies the partial permutation between them into the new trial
solution. The remaining elements are copied from the other reference solution
preserving their relative ordering.

Combination Method 4

This method is a case of what is referred to in the GA literature as a mutation
operator. The method selects two random points in a chosen reference solution and
inverts the partial permutation between them. The inverted partial permutation is
copied into the new trial solution. The remaining elements are directly copied from
the reference solution preserving their relative order.

Combination Method 5

This combination method also operates on a single reference solution. The method
scrambles a sublist of elements randomly selected in the reference solution. The
remaining elements are directly copied from the reference solution into the new trial
solution.

Combination Method 6

This is a special case of combination method 5 where the sublist always starts in
position 1 and the length is randomly selected in the range [2, n/2].

Combination Method 7

The method scans (from left to right) both reference solutions, and uses the rule that
each reference solution votes for its first element that is still not included in the new
trial solution (referred to as the “incipient element”). The voting determines the next
element to enter the first still unassigned position of the trial solution. This is a min-
max rule in the sense that if any element of the reference solution is chosen other than
the incipient element, then it would increase the deviation between the reference and
the trial solutions. Similarly, if the incipient element were placed later in the trial
solution than its next available position, this deviation would also increase. So the
rule attempts to minimize the maximum deviation of the trial solution from the
reference solution under consideration, subject to the fact that other reference solution
is also competing to contribute. A bias factor that gives more weight to the vote of the

Martí, Laguna and Campos 8

reference solution with higher quality is also implemented for tie breaking. This rule is
used when more than one element receives the same votes. Then the element with
highest weighted vote is selected, where the weight of a vote is directly proportional to
the objective function value of the corresponding reference solution.

Combination Method 8

In this method the two reference solutions vote for their incipient element to be
included in the first still unassigned position of the trial solution. If both solutions
vote for the same element, the element is assigned. If the reference solutions vote for
different elements but these elements occupy the same position in both reference
permutations, then the element from the permutation with the better objective
function is chosen. Finally, if the elements are different and occupy different
positions, then the one in the lower position is selected.

Combination Method 9

Given two reference solutions p and q, this method probabilistically selects the first
element from one of these solutions. The selection is biased by the objective function
value corresponding to p and q. Let e be the last element added to the new trial
solution. Then, p votes for the first unassigned element that is position after e in the
permutation p. Similarly, q votes for the first unassigned element that is position after
e in q. If both reference solutions vote for the same element, the element is assigned
to the next position in the new trial solution. If the elements are different then the
selection is probabilistically biased by the objective function values of p and q.

Combination Method 10

This is a deterministic version of combination method 9. The first element is chosen
from the reference solution with the better objective function value. Then reference
solutions vote for the first unassigned successor of the last element assigned to the
new trial solution. If both solutions vote for the same element, then the element is
assigned to the new trial solution. Other wise, the “winner” element is determined
with a score, which is updated separately for each reference solution in the
combination. The score values attempt to keep the proportion of times that a
reference solution “wins” close to its relative importance, where the importance is
measured by the value of the objective function. The scores are calculated to minimize
the deviation between the “winning rate” and the “relative importance”. For example,
if two reference solutions p and q have objective function values of value(p) = 40 and
value(q) = 60, than p should contribute with 40% of the elements in the new trial
solution and q with the remaining 60% in a maximization problem. The scores are
updated so after all the assignments are made, the relative contribution from each
reference solution approximates the target proportion. More details about this
combination method can be found in Glover (1994b).

4. Test Problems

We have used four combinatorial optimization problems to compare the performance
of the scatter search and GA implementations. Solutions to these problems are
naturally represented as permutations:

• the bandwidth reduction problem
• the linear ordering problem
• the traveling salesman problem
• a single machine sequencing problem.

Martí, Laguna and Campos 9

We target these problems because they are well known, they are different among
themselves and problem instances with known optimal or high-quality solutions are
readily available. Existing methods to solve these problems range from construction
heuristics and metaheuristics to exact procedures. We now provide a brief description
of each problem class.

The bandwidth reduction problem (BRP) refers to finding a configuration of a matrix
that minimizes its bandwidth. The bandwidth of a matrix { }ijaA = is defined as the

maximum absolute difference between i and j for which 0≠ija . The BRP consists of

finding a permutation of the rows and columns that keeps the nonzero elements in a
band that is as close as possible to the main diagonal of the matrix, the objective is to
minimize the bandwidth. This NP-hard problem can also be formulated as a labeling
of vertices on a graph, where edges are the nonzero elements of the corresponding
symmetrical matrix. Metaheuristics proposed for this problem include a simulating
annealing implementation by Dueck and Jeffs (1996) and a tabu search approach by
Martí, et al (2001).

The Linear Ordering Problem (LOP) is also a NP-hard problem that has a significant
number of applications. This problem is equivalent to the so-called triangulation
problem for input-output tables in economics and has generated a considerable
amount of research interest over the years, as documented in Grötschel, Jünger and
Reinelt (1984), Chanas and Kobylanski (1996), Laguna, Martí and Campos (1999) and
Campos, et al (2001). Given a matrix of weights the LOP consists of finding a
permutation of the columns (and simultaneously the rows) in order to maximize the
sum of the weights in the upper triangle, the equivalent problem in graphs is that of
finding, in a complete weighted graph, an acyclic tournament with a maximal sum of
arc weights. For a complete description of this problem, its properties and
applications see Reinelt (1985).

The Traveling Salesman Problem (TSP) consists of finding a tour (cyclic permutation)
visiting a set of cities that minimizes the total travel distance. A incredibly large
amount of research has been devoted to this problem, which would be impossible and
impractical to summarize here. However, a couple of valuable references about the
TSP are Lawler, et al (1985) and Reinelt (1994).

Finally, the fourth problem is a single machine-sequencing problem (SMS) with delay
penalties and setup costs. At time zero, n jobs arrive at a continuously available
machine. Each job requires a specified number of time units on the machine and a
penalty (job dependent) is charged for each unit that job commencement is delayed
after time zero. In addition, there is a setup cost sij charged for scheduling job j
immediately after job i. The objective is to find the schedule that minimizes the sum of
the delay and setup costs for all jobs. Note that if delay penalties are ignored, the
problem becomes an asymmetric traveling salesman problem. Barnes and Vanston
(1981) reported results on three branch and bound algorithms of instances with up 20
jobs and Laguna, Barnes and Glover (1993) developed a TS method that is tested in a
set of instances whose size ranges between 20 and 35 jobs.

5. Computational Experiments

For our computational testing, we have employed the following problem instances:

• 37 BRP instances from the Harwell-Boeing Sparse Matrix Collection found in
http://math.nist.gov/MatrixMarket/data/Harwell-Boeing. This collection
consists of a set of standard test matrices arising from problems in linear
systems, least squares, and eigenvalue calculations from a wide variety of

Martí, Laguna and Campos 10

scientific and engineering disciplines. The size of these instances ranges
between 54 and 685 rows with an average of 242.9 rows (and columns).

• 49 LOP instances from the public-domain library LOLIB (1997) found in
http://www.iwr.uni-heidelberg.de/groups/comopt/software/LOLIB. These
instances consist of input-output tables from economic sectors in the
European community and their size ranges between 44 and 60 rows with an
average of 48.5 rows (and columns).

• 31 TSP instances from the public-domain library TSPLIB (1995) found in
http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib. These
instances range in size between 51 and 575 cities with an average of 159.6
cities.

• 40 SMS instances from Laguna, Barnes and Glover (1993) available upon
request from laguna@colorado.edu. The best solutions available for these
instances are not proven optimal, however they are the best upper bounds ever
found. These instances range in size between 20 and 35 jobs with an average
of 26.0 jobs.

In order to apply the different strategies described above, we have classified the BRP
and SMS as A-permutation problems and the LOP and TSP as R-permutation
problems. Note that the objective function in the SMS problem is influenced by both
the absolute position of the jobs (due to the delay penalties) and the relative position of
the jobs (due to the setup costs). Our classification is based on the knowledge that
the delay penalties in the tested instances are relatively larger when compare to the
setup cost. In cases when this knowledge is not available, it would be recommended
to run the procedure twice on a sample set of problems in order to establish the
relative importance of the positioning of elements in the permutation.

The solution procedures were implemented in C++ and compiled with Microsoft Visual
C++ 6.0, optimized for maximum speed. All experiments were performed on a Pentium
III at 800 MHz. The scatter search parameters PopSize, MaxIter, b and InitIter were set
to 100, 2, 10 and 50 respectively, as recommended in Campos et al. (1999). The
parameters associated with the local search procedure were set after some preliminary
experimentation (RANGE = 3 and Ntrials = 25). The GA parameters were set to
PopSize = 100, pc = 0.25 and pm = 0.01, as recommended in Michalewicz (1996). Both
procedures used the stopping criterion of 1 million objective function evaluations.

In our experiments we compare the SS implementation with two versions of the GA
procedure: 1) without local search (GA) and 2) with local search (GALS). SS always
uses local search by design. The two GA versions complement each other in that one
uses part of its objective function evaluation “budget” to perform local searches and
the other uses its entire budget to apply the combination operators and evolve the
population of solutions. In our first experiment we restrict the use of combination
methods in such a way that both GA versions use combination methods 1-6 and SS
uses combination methods 7-10. Recall that combination methods 1-3 are crossover
operators and combination methods 4-7 are mutation operators. Combination
methods 7-10 are more strategic in nature and one is completely deterministic.

Table 1 shows the average percent deviation from the best-known solution to each
problem . The procedures were executed once with a fixed random seed and the
average is over all instances. It should be mentioned that in the case of LOP and TSP
the best solutions considered are the optimal solutions as given in the public libraries.
In the case of the BRP the best solutions are from Martí et al (2001) and the best
solutions for the SMS instances are due to Laguna et al (1993).

Martí, Laguna and Campos 11

Method BRP LOP SMS TSP
GA 59.124% 6.081% 4.895% 95.753%
GALS 55.500% 0.005% 0.832% 143.881%
SS 58.642% 0.000% 0.291% 43.275%

Table 1. Percent deviation from best

Table 1 shows that SS has a better average performance than GA in all problem types
but is inferior to GALS when solving BRP instances. The three methods are able to
obtain high quality results for the LOP and the SMS problem instances. The results
for the TSP are less desirable, but it should be noted that these problems are on
average larger than the LOP and SMS instances. Table 2 presents the average percent
improvement of SS over the two GA versions. The largest improvement occurs when
solving TSP instances and the negative improvement associated with GALS shows the
better average performance of this method when compared to SS.

Method BRP LOP SMS TSP
GA 0.3% 6.5% 4.4% 26.8%
GALS -2.0% 0.0% 0.5% 41.3%

Table 2. Percent improvement of SS over GA and GALS

Table 2 shows that in general the use of local search within the GA framework results
in improved outcomes, with the TSP as a notable exception to this general rule. For
the TSP, the performance of the GA implementation deteriorates when coupled with
the local search procedure. The SS vs. GALS in the case of BRP instances deserves a
closer examination, because it is the only case in which either GA implementation
outperforms SS. Figure 3 shows the trajectory of the average percent deviation from
the best-known solution as the SS and GALS searches progress.

50.0%

52.0%

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

68.0%

100000 300000 500000 700000 900000

Evaluations

D
ev

ia
tio

n
fr

om
 b

es
t-k

no
w

n

GALS

SS

Figure 3. Objective function trajectory for SS and GALS solving BRP instances

The percent deviation value trajectory in Figure 3 shows that while SS results are
better than or at least as good as GALS results before 600 thousand evaluations,
GALS keeps improving while SS stagnates. Our explanation for this behavior is as
follows. In the BRP, the change in the objective function value from one solution to
another does not represent a meaningful guidance for the search. In particular, the
objective is a min-max function that in many cases results in the same evaluation for
all the solutions in the neighborhood of a given solution. Since SS relies on strategic

Martí, Laguna and Campos 12

choices, it is unable to obtain information from the evaluation of this “flat landscape”
function to direct the search. GALS, heavily relying on randomization, is able to more
effectively probe the solution space presented by BRP instances.

Figure 4 depicts the trajectory of the percent deviation from the best-known solution
to the SMS problem as the search progress. The average values of the three methods
under consideration are shown.

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

10.00%

100000 300000 500000 700000 900000

Evaluations

D
ev

ia
tio

n
fr

om
 b

es
t-k

no
w

n

GA

GALS

SS

Figure 4. Percent deviation trajectory when solving SMS instances

Figure 4 shows that the SS procedure is able to obtain high quality solutions from the
very beginning of the search. Specifically, after 100,000 objective function
evaluations, the percent deviation from the best-known solutions for the SS method is
0.7 while after 1 million evaluations the GA and the GALS methods are still at 4.8 and
0.8, respectively.

In our second experiment, we compare SS, GA and GALS when allowed to use all the
combination methods described in section 3. The results of these experiments are
summarized in Tables 3 and 4. These tables are equivalent to Tables 1 and 2 in that
they shows the percent deviation from the best known solution values and the percent
improvement of SS over GA and GALS, respectively.

Method BRP LOP SMS TSP
GA 58.244% 6.722% 4.940% 101.689%
GALS 55.102% 0.004% 0.268% 133.792%
SS 52.587% 0.000% 0.207% 54.321%

Table 3. Percent deviation from best

Method BRP LOP SMS TSP
GA 3.57% 7.21% 4.51% 23.49%
GALS 1.62% 0.00% 0.06% 33.99%

Table 4. Percent improvement of SS over GA and GALS

A direct comparison of tables 1 and 3 shows the advantage of using all combination
methods within both GA and SS. Tables 3 and 4 indicate that when all combination
methods are used, SS has a superior average performance than GA and GALS. The
performance is only marginally better in the case of LOP and SMS, but it continues to

Martí, Laguna and Campos 13

be significantly better in the case of TSP. When using all operators, including those
that incorporate a fair amount of randomization, SS is able to outperform GALS in the
BRP instances, as shown in Figure 5.

50.0%

52.0%

54.0%

56.0%

58.0%

60.0%

62.0%

64.0%

66.0%

100000 300000 500000 700000 900000

Evaluations

D
ev

ia
tio

n
fr

om
 b

es
t-k

no
w

n

GALS

SS

Figure 5. Objective function trajectory for SS and GALS solving BRP instances

Figure 6 shows the trajectory of the percent deviation from the best-known solutions
to the SMS problem as the search progress. The average values shown in Figure 6
correspond to the second experiment, where all combination methods are made
available to SS, GA and GALS.

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%
6.00%
7.00%
8.00%
9.00%

10.00%

100000 300000 500000 700000 900000

Evaluations

D
ev

ia
tio

n
fr

om
 b

es
t-k

no
w

n

GA

GALS

SS

Figure 6. Percent deviation trajectory when solving SMS instances

A comparison of figures 4 and 6 reveals that while SS shows a minor improvement
when solving SMS problems with using all combination methods, the improvement
associated with GALS is significant. GALS achieves a deviation of 1.14% at the
100,000 evaluation mark when using the 10 combination methods, which compares
quite favorably with a deviation of 4.8% at the same stage of the search when using a
fraction of the available combination methods.

Martí, Laguna and Campos 14

6. Conclusions

We have implemented a scatter search and a GA procedure for a class of combinatorial
problems whose solutions can be represented as permutations with the purpose of
comparing performance of these competing metaheuristics. The implementations are
standard and share 10 combination methods. They also share the improvement
method based on a simple hill-climbing procedure. The procedures are context-
independent in the sense that they treat the objective function evaluation as a black
box. To allow for the use of key search strategies, both implementations require that
the problems being solved be classified as either “absolute” or “relative” in terms of the
relevant factor for positioning elements in the permutation.

The performance of the procedures was assessed using 157 instances of four different
permutations problems. SS can claim superiority when solving TSP instances but
only a modest improvement over GAs with local search when solving LOP, BRP or SMS
instances. We are certain that this won’t be the last time SS will be compared against
GAs and that in any given setting one could outperform the other. Our main finding is
that both methodologies are capable of balancing search diversification and
intensification when given the same tools for combining and improving solutions.

References

Barnes, J. W. and L. K. Vaston (1981) “Scheduling Jobs with Linear Delay Penalties
and Sequence Dependent Setup Costs,” Operations Research, vol. 29, pp. 146-160.

Campos, V., M. Laguna and R. Martí (1999) “Scatter Search for the Linear Ordering
Problem,” Corne, Dorigo and Glover (Eds.) New Ideas in Optimization, McGraw-Hill,
UK.

Campos, V., F. Glover, M. Laguna and R. Martí (2001) “An Experimental Evaluation of
a Scatter Search for the Linear Ordering Problem,” Journal of Global Optimization, vol.
21, pp. 397-414.

Chanas, S. and P. Kobylanski (1996) “A New Heuristic Algorithm Solving the Linear
Ordering Problem,” Computational Optimization and Applications, vol. 6, pp. 191-205.

Dueck, G. H. and J. Jeffs (1995) “A Heuristic Bandwidth Reduction Algorithm,” J. of
Combinatorial Math. And Comp., vol. 18, pp. 97-108.

Everett, H. (1963) “Generalized Lagrangean Multiplier Method for Solving Problems of
Optimal Allocation of Resources,” Operations Research, vol. 11, pp. 399-417.

Glover, F. (1965) “A Multiphase-Dual Algorithm for the Zero-One Integer Programming
Problem,” Operations Research, vol. 13, pp. 879-919.

Glover, F. (1977) “Heuristics for Integer Programming Using Surrogate Constraints,”
Decision Sciences, vol. 8, no. 7, pp. 156-166.

Glover, F. (1994a) “Genetic Algorithms and Scatter Search: Unsuspected Potentials,”
Statistics and Computing, vol. 4, pp. 131-140.

Glover, F. (1994b) “Tabu Search for Nonlinear and Parametric Optimization with Links
to Genetic Algorithms,” Discrete Applied Mathematics, vol. 49, pp. 231-255.

Glover, F. (1995) “Scatter Search and Star-Paths: Beyond the Genetic Metaphor,”
OR Spektrum, vol. 17, no. 2-3, pp. 125-138.

Martí, Laguna and Campos 15

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial
Evolution, Lecture Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald , M.
Schoenauer and D. Snyers (Eds.), Springer, pp. 13-54.

Glover, F. and M. Laguna (1997) Tabu Search, Kluwer Academic Publishers, Boston.

Glover, F., M. Laguna and R. Martí (1999) “Scatter Search,” to appear in Theory and
Applications of Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui
(Eds.), Springer-Verlag.

Grötschel, M., M. Jünger and G. Reinelt (1984), “A Cutting Plane Algorithm for the
Linear Ordering Problem,” Operations Research, vol. 32, no. 6, pp. 1195-1220.

Holland, J. H. (1975) Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, MI.

Laguna, M., Barnes, J.W. and Glover, F. (1993), “Intelligent Scheduling with Tabu
Search: An Application to Jobs With Linear Delay Penalties and Sequence-Dependent
Setup Costs and Times”, Journal of Applied Intelligent, vol. 3, pp. 159-172.

Laguna, M., R. Martí (2000) “Experimental Testing of Advanced Scatter Search
Designs for Global Optimization of Multimodal Functions,” Technical Report TR11-
2000, Dpto de Estadística e I.O., University of Valencia.

Laguna, M., R. Martí and V. Campos (1999) “Intensification and Diversification with
Elite Tabu Search Solutions for the Linear Ordering Problem,” Computers and
Operations Research, vol. 26, pp. 1217-1230.

Lawler, Lenstra, Rinnoy Kan and Shmoys (1985) The Traveling Salesman Problem: A
Guided Tour of Combinatorial Optimization, John Wiley and Sons.

Martí, R., Laguna, M., Glover, F. and Campos, V. (2001) “Reducing the Bandwidth of a
Sparse Matrix with Tabu Search”, European Journal of Operational Research, vol. 135,
pp. 450-459.

Michalewicz, Z. (1996) Genetic Algorithms + Data Structures = Evolution Programs, 3rd
edition, Springer-Verlag, Berlin.

Reinelt, G. (1985) “The Linear Ordering Problem: Algorithm and Applications,”
Research and Exposition in Mathematics, vol. 8, H. H. Hofman and R. Wille (eds.),
Heldermann Verlag, Berlin.

Reinelt, G. (1994) “The Traveling Salesman: Computational Solutions for TSP
applications,” Lecture Notes in Computer Science, Springer Verlag, Berlin.

