
To appear in Optimization Software Class Libraries, Stefan Voss and David L. Woodruff
(eds.), Kluwer Academic Publishers, Boston.

1

Chapter #

The OptQuest Callable Library

MANUEL LAGUNA1 and RAFAEL MARTÍ
University of Colorado at Boulder and Universitat de Valencia

Key words: metaheuristic optimization, evolutionary methods, scatter search.

Abstract: In this chapter we discuss the development and application of a library of
functions that is the optimization engine for the OptQuest system. OptQuest is
commercial software designed for optimizing complex systems, such as those
formulated as simulation models. OptQuest has been integrated with several
simulation packages with the goal of adding optimization capabilities. The
optimization technology within OptQuest is based on the metaheuristic
framework known as scatter search. In addition to describing the functionally
of the OptQuest Callable Library (OCL) with an illustrative example, we
apply it to a set of unconstrained nonlinear optimization problems.

1. INTRODUCTION

The OptQuest Callable Library (OCL) is the optimization engine of the
OptQuest system2. The goal of OptQuest is to optimize complex systems,
which are those that cannot be easily formulated as mathematical models
and solved with classical optimization tools. Many real world optimization
problems in business, engineering and science are too complex to be given
tractable mathematical formulations. Multiple nonlinearities, combinatorial
relationships and uncertainties often render challenging practical problems
inaccessible to modeling except by resorting to more comprehensive tools
(like computer simulation). Classical optimization methods encounter grave

1 Partially supported by the visiting professor fellowship program of the University of

Valencia (Grant Ref. No. 42743).
2 OptQuest is a registered trademark of OptTek Systems, Inc. (www.opttek.com).

2 Chapter #

difficulties when dealing with the optimization problems that arise in the
context of complex systems. In some instances, recourse has been made to
itemizing a series of scenarios in the hope that at least one will give an
acceptable solution. Due to the limitations of this approach, a long-standing
research goal has been to create a way to guide a series of complex
evaluations to produce high quality solutions, in the absence of tractable
mathematical structures. (Note that in the context of optimizing simulations,
a “complex evaluation” refers to the execution of a simulation model.)

Theoretically, the issue of identifying best values for a set of decision
variables falls within the realm of optimization. Until quite recently,
however, the methods available for finding optimal decisions have been
unable to cope with the complexities and uncertainties posed by many real
world problems of the form treated by simulation. The area of stochastic
optimization has attempted to deal with some of these practical problems,
but the modeling framework limits the range of problems that can be tackled
with such technology.

The complexities and uncertainties in complex systems are the primary
reason that simulation is often chosen as a basis for handling the decision
problems associated with those systems. Consequently, decision makers
must deal with the dilemma that many important types of real world
optimization problems can only be treated by the use of simulation models,
but once these problems are submitted to simulation there are no
optimization methods that can adequately cope with them.

Recent developments are changing this picture. Advances in the field of
metaheuristics—the domain of optimization that augments traditional
mathematics with artificial intelligence and methods based on analogs to
physical, biological or evolutionary processes—have led to the creation of
optimization engines that successfully guide a series of complex evaluations
with the goal of finding optimal values for the decision variables. One of
those engines is the search algorithm embedded in OCL.

OCL is designed to search for optimal solutions to the following class of
optimization problems:

Max or Min F(x)

Subject to Ax < b (Constraints)
 gl < G(x) < gu (Requirements)
 l < x < u (Bounds)
where x can be continuous or discrete with an arbitrary step size.

The objective F(x) may be any mapping from a set of values x to a real

value. The set of constraints must be linear and the coefficient matrix “A”
and the right-hand-side values “b” must be known. The requirements are

#. The OptQuest Callable Library 3

simple upper and/or lower bounds imposed on a function that can be linear
or non-linear. The values of the bounds “gl” and “gu” must be known
constants. All the variables must be bounded and some may be restricted to
be discrete with an arbitrary step size.

In a general-purpose optimizer such as OCL, it is preferable to separate
the solution procedure from the complex system to be optimized. A
potential disadvantage of this “black box” approach is that the optimization
procedure is generic and does not know anything about what goes on inside
of the box and therefore does not use any problem-specific information
(Figure 1). The clear advantage, on the other hand, is that the same
optimizer can be used for many complex systems.

Complex System
Input Output

Figure 1. Complex system as a black box

OCL is a generic optimizer that overcomes the deficiency of black box
systems of the type illustrated in Figure 1, and successfully embodies the
principle of separating the method from the model. In such a context, the
optimization problem is defined outside the complex system. Therefore, the
evaluator can change and evolve to incorporate additional elements of the
complex system, while the optimization routines remain the same. Hence,
there is a complete separation between the model that represents the system
and the procedure that is used to solve optimization problems defined within
this model.

Optimization
Procedure

Input

Output

System
Evaluator

Figure 2. Coordination between optimization and system evaluation

The optimization procedure uses the outputs from the system evaluator,
which measures the merit of the inputs that were fed into the model. On the
basis of both current and past evaluations, the optimization procedure

4 Chapter #

decides upon a new set of input values (see Figure 2). The optimization
procedure is designed to carry out a special “non-monotonic search,” where
the successively generated inputs produce varying evaluations, not all of
them improving, but which over time provide a highly efficient trajectory to
the best solutions. The process continues until an appropriate termination
criterion is satisfied (usually based on the user’s preference for the amount
of time to be devoted to the search).

OCL allows the user to build applications to solve problems using the
“black-box” approach for evaluating an objective function and a set of
requirements. Figure 3 shows a conceptualization of how OCL can be used
to search for optimal solutions to complex optimization problems.

User-written
Application

OptQuest
Callable Library

System
Evaluator

Figure 3. OCL linked to a user-written application

Figure 3 assumes that the user has a system evaluator that given a set of
input values, it returns a set of output values that can used to guide a search.
For example, the evaluator may have the form of a computer simulation that,
given the values of a set of decision variables, it returns the value of one or
more performance measures (that define the objective function and possibly
a set of requirements). The user-written application uses OCL functions to
define an optimization problem and launch a search for the optimal values of
the decision variables.

2. SCATTER SEARCH

The optimization technology embedded in OCL is the metaheuristic
known as scatter search. Scatter search has some interesting commonalties
with genetic algorithms (GA), although it also has a number of quite distinct
features. Several of these features have come to be incorporated into GA
approaches after an intervening period of approximately a decade, while
others remain largely unexplored in the GA context.

#. The OptQuest Callable Library 5

Scatter search is designed to operate on a set of points, called reference
points, which constitute good solutions obtained from previous solution
efforts. Notably, the basis for defining “good” includes special criteria such
as diversity that purposefully go beyond the objective function value. The
approach systematically generates combinations of the reference points to
create new points, each of which is mapped into an associated feasible point.
The combinations are generalized forms of linear combinations,
accompanied by processes to adaptively enforce constraint-feasibility and
encourage requirement-feasibility.

The scatter search process is organized to (1) capture information not
contained separately in the original points, (2) take advantage of auxiliary
heuristic solution methods (to evaluate the combinations produced and to
actively generate new points), and (3) make dedicated use of strategy instead
of randomization to carry out component steps.

Figure 4. Scatter search outline

Figure 4 sketches the scatter search approach in its original form.
Extensions can be created to take advantage of memory-based designs
typical of tabu search. Two particular features of the scatter search proposal
deserve mention. The use of clustering strategies has been suggested for

1. Apply a diversification generation method to build a starting set
of solutions. Designate a subset of the best points (judged by
quality and diversity) to be reference points.

while (stopping criteria are not satisfied) {
2. Form combinations of subsets of the current reference

points to create new points. The combinations are (a)
chosen to produce points both inside and outside the
convex region spanned by the reference points, and (b)
modified by generalized mapping processes to yield
feasible points according to the constraints in the problem
(both linear and integrality constraints).

3. Update the reference set by selecting points that can
improve the quality and/or diversity of the set.

if (no new combinations can be explored in the current set) {
4. Extract a collection of the best points in the current

reference set to be used as starting points for a new
application of the diversification generation method.

}
}

6 Chapter #

selecting subsets of points in step 2, which allows different blends of
intensification and diversification by generating new points “within clusters”
and “across clusters.” Also, the solutions generated by the combination
method in step 2 are often subjected to an improvement method, which
typically consists of a local search procedure. The improvement method is
capable of starting from a feasible or an infeasible solution created by the
combination method.

It is interesting to observe similarities and contrasts between scatter
search and the original GA proposals. Both are instances of what are
sometimes called “population based” approaches. Both incorporate the idea
that a key aspect of producing new elements is to generate some form of
combination of existing elements. On the other hand, GA approaches are
predicated on the idea of choosing parents randomly to produce offspring,
and further on introducing randomization to determine which components of
the parents should be combined. By contrast, the scatter search approach
does not emphasize randomization, particularly in the sense of being
indifferent to choices among alternatives. Instead, the approach is designed
to incorporate strategic responses, both deterministic and probabilistic, that
take account of evaluations and history. Scatter search focuses on
generating relevant outcomes without losing the ability to produce diverse
solutions, due to the way the generation process is implemented. For
example, the approach includes the generation of new points that are not
convex combinations of the original points. The new points constitute forms
of extrapolations, endowing them with the ability to contain information that
is not contained in the original reference points.

Scatter search is an information-driven approach, exploiting knowledge
derived from the search space, high-quality solutions found within the space,
and trajectories through the space over time. The incorporation of such
designs is responsible for enabling OCL to efficiently search the solution
space of optimization problems in complex systems.

3. THE OCL OPTIMIZER

OCL seeks to find an optimal solution to a problem defined on a vector x
of bounded variables. The scatter search method implemented in OCL
begins by generating a starting set of diverse points. This is accomplished
by dividing the range of each variable into 4 sub-ranges of equal size. Then,
a solution is constructed in two steps. First, a sub-range is randomly
selected. The probability of selecting a sub-range is inversely proportional
to its frequency count (which keeps track of the number of times the
subrange has been selected). Second, a value is randomly chosen from the
selected sub-range. The starting set of points also includes the following
solutions:

#. The OptQuest Callable Library 7

• All variables are set to the lower bound
• All variables are set to the upper bound
• All variables are set to the midpoint x = l + (u - l)/2
• Other solutions suggested by the user

A subset of diverse points is chosen as members of the reference set. A

set of points is considered diverse if its elements are “significantly” different
from one another. OCL uses a Euclidean distance measure to determine
how “close” a potential new point is from the points already in the reference
set, in order to decide whether the point is included or discarded.

When the optimization model includes discrete variables, a simple
rounding procedure is used to map fractional values to discrete values.
When the model includes linear constraints newly created points are
subjected to a feasibility test before they are sent to the evaluator (i.e., before
the objective function value F(x) and the requirements G(x) are evaluated).
Note that the evaluation of the objective function may entail the execution of
a simulation, and therefore it is important to be sure to evaluate only those
solutions that are feasible with respect to the set of constraints. For ease of
notation, we represent the set of constraints as Ax ≤ b, although equality
constraints are also allowed. The feasibility test consists of checking (one
by one) whether the linear constraints are satisfied. If the solution is
infeasible with respect to one or more constraints, OCL formulates and
solves a linear programming (LP) problem. The LP (or mixed-integer
program, when x contains discrete variables) has the goal of finding a
feasible solution x* that minimizes the absolute deviation between x and x*.
Mathematically, the problem can be formulated as:

 Minimize +− + dd

 subject to Ax* ≤ b
 0* =+−− +− ddxx
 l ≤ x* ≤ u
 −d , +d ≥ 0

where −d and +d are, respectively, negative and positive deviations of x*
from the infeasible point x. When constraints are not specified, infeasible
points are made feasible by simply adjusting variable values to their closest
bound and rounding when appropriately. That is, if x > u then x* = u and if
x < l then x* = l.

Once the reference set has been created, a combination method is applied
to initiate the search for optimal solutions. The method consists of finding
linear combinations of reference solutions. The combinations are based on

8 Chapter #

the following three types, which assume that the reference solutions are x′
and x ′′ :

dxx −′=
dxx +′=
dxx −′′=

where
2

xxrd
′−′′

= and r is a random number in the range (0, 1). The

number of solutions created from the linear combination of two reference
solutions depends on the quality of the solutions being combined.
Specifically, when the best two reference solutions are combined, they
generate up to 5 new solutions, while when the worst two solutions are
combined they generate only one.

In the course of searching for a global optimum, the combination method
may not be able to generate solutions of enough quality to become members
of the reference set. If the reference set does not change and all the
combinations of solutions have been explored, a diversification step is
triggered (see step 4 in Figure 4). This step consists of rebuilding the
reference set to create a balance between solution quality and diversity. To
preserve quality, a small set of the best (elite) solutions in the current
reference set is used to seed the new reference set. The remaining solutions
are eliminated from the reference set. Then, the diversification generation
method is used to repopulate the reference set with solutions that are diverse
with respect to the elite set. This reference set is used as the starting point
for a new round of combinations.

3.1 Constraints Vs. Requirements

So far, we have assumed that the complex system to be optimized can be
treated by OCL as a “black box” that takes x as an input to produce F(x) as
an output. We have also assumed that for x to be feasible, the point must be
within a given set of bounds and, when applicable, also satisfy a set of linear
constraints. We assume that both the bounds and the coefficient matrix are
known. However, there are situations where the feasibility of x is not known
prior to performing the process that evaluates F(x), i.e., prior to executing the
“black box” system evaluator. In other words, the feasibility test for x
cannot be performed in the input side of the black box but instead has to be
performed within the black box and communicated as one of the outputs.
This situation is depicted in Figure 5.

This figure shows that when constraints are included in the optimization
model, the evaluation process starts the mapping x → x*. If the only

#. The OptQuest Callable Library 9

constraints in the model are integrality restrictions, the mapping is achieved
with a simple rounding mechanism that transforms fractional values into
integer values for the discrete variables. If the constraints are linear, then the
mapping consists of formulating and solving the abovementioned linear
programming problem. Finally, if the constraints are linear and the model
also includes discrete variables, then the linear programming formulation
becomes a mixed-integer programming problem that is solved accordingly.
Obviously, if the optimization model has neither constraints nor discrete
variables then x* = x.

Constraint
Mapping

Complex System
Evaluator

Penalty
Function

x x*
F(x*)

G(x*)
P(x*)

Figure 5. Solution evaluation

The mapped solution is processed through the complex system evaluator

to obtain a set of performance measures. One of these measures is used as
the objective function value F(x) and provides the means for the search to
distinguish good from bad solutions. Other measures G(x) associated with
the performance of the system can be used to define a set of requirements.
A requirement is expressed as a bound on the value of a performance
measure G(x). Thus, a requirement may be defined as an upper or a lower
bound on an output of the complex system evaluator. Instead of discarding
requirement-infeasible solutions, OCL handles them with a composite
function P(x) that penalizes the requirement violations. The penalty is
proportional to the degree of the violation and is not static throughout the
search. OCL assumes that the user is interested in finding a requirement-
feasible solution if one exists. Therefore, requirement-infeasible solutions
are penalized more heavily when no requirement-feasible solution has been
found during the search than when one is already available.

To illustrate the evaluation process in the context of a simulated system,
consider an investment problem for which x represents the allocation of
funds to a set of investment instruments. The objective is to maximize the
expected return. Assume that a Monte Carlo simulation is performed to
estimate the expected return F(x) for a given fund allocation. Hence, in this
case, the complex system evaluator consists of a Monte Carlo simulator.

Restrictions on the fund allocations, which establish relationships among
the x variables, are handled within the linear programming formulation that

10 Chapter #

maps infeasible solutions into feasible ones. Thus, a restriction of the type
“the combined investment in instruments 2 and 3 should not exceed the total
investment in instrument 7,” results in the linear constraint x2 + x3 ≤ x7. On
the other hand, a restriction that limits the variability of the returns (as
measured by the standard deviation) to be no more than a critical value c
cannot be enforced in the input side of the Monte Carlo simulator. Clearly,
the simulation must be executed first in order to estimate the variability of
the returns. Suppose that the standard deviation of the returns is represented
by G(x), then the requirement in this illustrative situation is expressed as
G(x) ≤ c.

Note that the constraint-mapping mechanism within OCL does not
handle nonlinear constraints. However, nonlinear constraints can be
modeled as requirements and incorporated within the penalty function P(x).
For example, suppose that an optimization model must include the following
nonlinear constraint:

1202
121 ≤− xxx

Then, the system evaluator calculates, for a given solution x, the left-hand
side of the nonlinear constraint and communicates the result as one of the
outputs. OCL uses this output and compares it to the right-hand side value
of 120 to determine the feasibility of the current solution. If the solution is
not feasible a penalty term is added to the value of the objective function
F(x).

4. OCL FUNCTIONALITY

The OptQuest Callable Library consists of a set of 23 functions that are
classified into four categories:

General
Variables, Constraints and Requirements
Solutions
Parameter Setting

The functions are classified according to their purpose and the library is
available for both C and Visual Basic applications. Table 1 shows the
complete set of OCL functions. A problem can be formulated and optimized
with as few as 5 functions, which are indicated with an asterisk in Table 1.

#. The OptQuest Callable Library 11

Table 1. OCL Functions

Category Function Brief Description
OCLGoodBye Deletes a model and frees OCL’s memory
OCLInitPop* Generates the starting set of reference

solutions

General

OCLSetup* Allocates memory for an optimization
model

OCLDefineVar* Defines a decision variable
OCLDefineReq Defines a requirement
OCLConsCoeff Changes the value of a constraint

coefficient
OCLConsRhs Changes the values of the right-hand-side

of a constraint

Variables,
Constraints
and
Requirements

OCLConsType Changes the type of constraint
OCLGenerateAllSolutions Generates all solutions to a pure discrete

problem
OCLGetBest Retrieves the best solution currently in

OCL’s memory
OCLGetPopSolution Retrieves a solution from the current

reference set
OCLGetSolution* Retrieves a trial solution for evaluation
OCLPutPopSolution Replaces one of the solutions that is

currently in the reference set
OCLPutSolution* Places the evaluation of a trial solution in

OCL’s memory
OCLSugPopSolution Places a suggested solution in a temporary

memory to be added to the reference set
when the set is rebuilt

Solutions

OCLSugSolution Places a suggested solution in OCL’s
database

Parameter
Setting

OCLSetBoundFreq Sets the frequency parameter for the
boundary search strategy

 OCLSetCheckDup Activates or deactivates the use of the
database to check for duplicated solutions

 OCLSetObjPrecision Sets the number of digits of precision for
the objective function

 OCLSetVarPrecision Sets the number of digits of precision for
the decision variables

 OCLSetFileSolutions Activates a log file of solutions
 OCLSetPopSize Sets the size of the reference set
 OCLSetRandomSeed Sets the seed for the random number

generator
 OCLSetSolutions Sets the targeted total number solutions

generated during the search
* Required function.

Additional functions in the library are used to change parameter settings or
perform advanced operations such as monitoring and changing the

12 Chapter #

composition of the reference set. Regardless of the complexity of the
application that uses OCL as its optimization engine, the following general
structure must be followed:

• Allocate memory for the optimization model by indicating the
number of variables, constraints and requirements in the problem, as
well as defining the direction of the optimization as minimize or
maximize (OCLSetup).

• Define decision variables (OCLDefineVar).
• Initialize the reference set (OCLInitPop) or generate all solutions in

the case of small pure integer problems (OCLGenerateAllSolutions).
• Iterate by retrieving a solution from OCL’s database

(OCLGetSolution), evaluating the solution (user-provided system
evaluator) and placing the evaluated solution back into OCL’s
database (OCLPutSolution).

Suppose that we would like to use the C version of OCL to search for the
optimal solution to the following unconstrained nonlinear optimization
problem:

() () () ()
() ()() ()()

4,,1for 1010toSubject

118.19111.10

1901100Minimize

42
2

4
2

2

2
3

22
34

2
1

22
12

�=≤≤−

−−+−+−

+−+−+−+−

ix

xxxx

xxxxxx

i

According to the general structure of OCL, we need to start by allocating
memory and indicating the direction of the optimization. To do this, we use
the OCLSetup function, which has the following prototype:

long OCLSetup(long nvar, long ncons, long req, char

*direc, long lic);

nvar An integer indicating the number of decision variables in the

problem
ncons An integer indicating the number of constraints in the problem
req An integer indicating the number of requirements in the problem
direc An array of characters with the word “MAX” to indicate

maximization or “MIN” to indicate minimization
lic A valid license number

Therefore, the OCLSetup function call for our example would look like this:

#. The OptQuest Callable Library 13

nprob = OCLSetup(4, 0, 0, "MIN", ??????);

where nprob is a positive integer that indicates a unique problem number
within OCL’s memory. If OCLSetup returns a negative value, then the setup
operation has failed. (Note that in an actual code “??????” must be
replaced with a valid license number.) After setting up the problem, we
need to define the decision variables using the OCLDefineVar function that
has the following prototype:

long OCLDefineVar(long nprob, long var, double low,

double sug, double high, char *type, double step);

nprob A unique number that identifies an optimization problem within

OCL’s memory. This is the identifier returned by OCLSetup.
var An integer indicating the variable number that corresponds to the

current definition.
low A double indicating the minimum value for the corresponding

variable.
sug A double indicating the suggested value for the corresponding

variable. The suggested value is typically included in the initial
reference set, unless the value results in an infeasible solution.
The OCLNULL value can be used when no suggested value is
available.

high A double indicating the maximum value for the corresponding
variable.

type An array of characters with the word “CON” to define a
continuous variable or “DIS” to define a discrete variable.

step A double indicating the step size for a discrete variable. Step
sizes may be integer or fractional and must be strictly greater
than zero. Step sizes for continuous variables are ignored.

The function call to define the variables in our example can be programmed
as follows:

for (i = 1; i <= 4; ++i)

OCLDefineVar(nprob, i, -10, OCLNULL, 10, “CON”, 1);

Note that although we use a “1” as the last argument of the function, this
value is ignored because all the variables are defined as continuous.

We are now ready to build the starting reference set. This step is
performed with a call to the OCLInitPop function. The “Pop” in the
function name refers to “population”, which is the terminology preferred in

14 Chapter #

the GA community. The prototype of this function consists of a single
argument containing the unique problem identifier returned by OCLSetup.
The function call looks as follows, assuming that nprob is the identifier
returned by OCLSetup:

OCLInitPop(nprob);

It is important to point out that all the functions in OCL return an integer
value. If the return value is positive, the function call was successful.
Otherwise, if the return value is negative, the function call failed and the
return value is the error code.

After a successful initialization of the reference set, the search can begin.
The search is performed with a series of calls to three functions:
OCLGetSolution, a user-provided system evaluator and OCLPutSolution.
The first function retrieves a solution from OCL’s database, the second
evaluates the solution and the third places the evaluated solution back into
OCL’s database. The prototype for OCLGetSolution is:

long OCLGetSolution(long nprob, double *sol);

sol A pointer to an array of doubles where OCL places the solution.
The array should have enough space to hold the variable values
in positions 1 to nvar, as defined in OCLSetup.

As before, nprob is the unique problem identifier returned by OCLSetup. If
the call to OCLGetSolution is successful, the function returns a unique
solution identifier nsol. The prototype for OCLPutSolution is:

long OCLPutSolution(long nprob, long nsol, double

*objval, double *sol);

nsol A solution identifier returned by OCLGetSolution.
objval An array of doubles with the values of the objective function and

the requirements. The array should have a size of at least req+1
positions, as defined in OCLSetup. The objective function value
should be objval[0] and the ith requirement should be
objval[i]. Note that if no requirements are defined, then
objval can be dimensioned as a simple double variable.
OCLNULL may be used to instruct OCL to discard the solution.

sol An array of doubles with the values of the decision variables. If
the solution values are the same as the ones retrieved with a call
to OCLGetSolution, the value OCLNULL may be used.

#. The OptQuest Callable Library 15

The evaluation function is outside the scope of OCL and is the responsibility
of the user. For our example, we can code the evaluator simply as:

double evaluate(double *x)
{

return(100*pow(x[2]-pow(x[1],2),2)+pow(1-x[1],2)
+90*pow(x[4]-pow(x[3],2),2)+pow(1-x[3],2)
+10.1*((pow(x[2]-1,2)+pow(x[4]-1,2))
+19.8*(x[2]-1)*(x[4]-1));

}

Assuming that we want to search for the optimal solution to this problem
allowing OCL to perform a maximum of 10000 function evaluations, the
code to perform such a search has the following form:

for (i = 1; i <= 10000; i++)
{

nsol = OCLGetSolution(nprob,x);
if (nsol < 0) {
printf("OCLGetSolution error code %d\n", nsol);
exit(1);

}
objval = evaluate(x);

status = OCLPutSolution(nprob, nsol, &objval,
OCLNULL);

if (status < 0) {
printf("OCLPutSolution error code %d\n", status);
exit(1);

}

}

This code retrieves, evaluates and returns the objective function value of
10000 solutions. It also checks for possible error codes from calls to
OCLGetSolution and OCLPutSolution. Note that the partial code above
does not keep track of the best solution found. This can be done by adding
an “if” statement that compares the objective function value of the current
solution with the best objective function value found during the search.
Alternatively, the OCLGetBest function can be called at any time during the
search to retrieve the values associated with the best solution, which OCL
automatically monitors. The function is called with the following
arguments:

OCLGetBest(nprob, x, &objval);

16 Chapter #

where nprob is the unique problem identifier, x is the array where the
variable values are stored and objval is the variable where the objective
function value is returned. The entire C code for this example is shown in
Appendix A at the end of this chapter.

4.1 Constraints and Requirements

The illustration in the previous section does not include the OCL
functions for constraints and requirements. In this section, we briefly
describe how constraints and requirements can be defined with OCL.
Assume that we would like to add the following linear constrain to the
optimization model for our 4-variable example problem:

x1 + 8x2 - 3x4 ≤ 5

Then after a call to OCLSetup and before a call to OCLInitPop, we add calls
to the constraint-related functions: OCLConsCoeff (to change the coefficient
of a constraint), OCLConsRhs (to change the right-hand-side of a constraint)
and OCLConsType (to change the constraint type). The calls to these
functions can be made in any order, as long as they are made before the
reference set is initialized and certainly before the search begins through
calls to OCLGetSolution and OCLPutSolution. The prototypes for the
constraint-related functions are:

long OCLConsCoeff(long nprob, long cons, long var,

double coeffval);

long OCLConsRhs(long nprob, long cons, double rhsval);
long OCLConsType(long nprob, long cons, long type);

In these prototypes, nprob is the unique problem identifier returned by
OCLSetup, cons is the constraint number, var is the variable number,
coeffval is the coefficient value, rhsval, is the right-hand-side value and
type is the constraint type (“OCLLE = less-than-or-equal, OCLGE = greater-
than-or-equal, and OCLEQ = equal). The following function calls can be
used to define the constraint in our example:

OCLConsCoeff(nprob, 1, 1, 1);
OCLConsCoeff(nprob, 1, 2, 8);

OCLConsCoeff(nprob, 1, 4, -3);
OCLConsRhs(nprob, 1, 5);
OCLConsType(nprob, 1, 1, OCLLE);

#. The OptQuest Callable Library 17

These function calls assume that the constraint is the first one in the model.
Also, the variable numbers match the ones used when OCLDefineVar was
called.

The definition of requirements is slightly different from the definition of
constraints. As mentioned before, a requirement is basically a bound on an
output value of the system evaluator. Suppose that we would like to define a
requirement to impose the following nonlinear restriction to our illustrative
example:

9.154.28.10 43
2
1 ≥− xxx

We use a call to OCLDefineReq to define the requirement. This function
has the following prototype:

long OCLDefineReq(long nprob, long req, double low,

double high);

Where nprob is the unique problem identifier returned by OCLSetup, req
is the requirement number, low is the lower bound for the requirement, and
high is the upper bound for the requirement. The constant OCLNULL can be
used to leave either low or high undefined. The function call for our
example is:

OCLDefineReq(nprob, 1, 15.9, OCLNULL);

In addition to this definition, we need to modify the system evaluator. The
evaluator must return the value of the objective function in objval[0] and
the value of the requirement in objval[1]. The new evaluator looks like
this:

void evaluate(double *x, double *objval)
{

objval[0] = 100*pow(x[2]-pow(x[1],2),2)+pow(1-x[1],2)
+90*pow(x[4]-pow(x[3],2),2)+pow(1-x[3],2)
+10.1*((pow(x[2]-1,2)+pow(x[4]-1,2))

+19.8*(x[2]-1)*(x[4]-1));
objval[1] = 10.8*pow(x[1],2)-2.4*x[3]*x[4];

}

Other small changes are necessary to make OCL work with the requirement
that has been defined. Obviously, the declaration of objval must be

18 Chapter #

changed from a single double to an array of doubles and the evaluate
function must be changed from double to void. The changes are reflected in
the following partial code:

void evaluate(double *, double *);
.
.
double objval[3];

.

.
for (i = 1; i <= TOT_ITER; i++) {
nsol = OCLGetSolution(nprob, x);
evaluate(x, objval);
OCLPutSolution(nprob, nsol, objval, OCLNULL);

}

When requirements are included in an optimization model, OCLGetBest
indicates the feasibility of the best solution. The return values for
OCLGetBest can be either 0 if the best solution is requirement-feasible, 1 if
the best solution is requirement-infeasible or a negative value representing
an error code. Note that while all the solutions generated by OCL are
constraint-feasible (if the constraint space is not empty), some may be
requirement-infeasible and this is why the OCLGetBest is designed to
provide information regarding the requirement-feasibility of the best solution
found during the search.

The discussion about the functionality of OCL in which we have engaged
is not meant to be exhaustive. OCL has additional functions that can be used
to modify the way the search is performed. For example, OCL includes
functions to change the default parameter settings. A function such as
OCLSetPopSize can be used to change the number of solutions that are
carried out in the reference set throughout the search. In some applications,
changing this parameter may improve the quality of the best solution found.
Other functions, such as OCLSetBoundFreq, are meant for the advanced
user, who has a thorough understanding of both the problem context to solve
and the way the search method works.

4.2 Boundary Search Strategy

The OCLSetBoundFreq controls the application of the boundary search
strategy. This strategy is a mechanism to generate non-convex combinations
of two solutions. In particular, the set of points generated on the line defined
by x′ and x ′′ , but beyond the segment []xx ′′′, “outside” of x ′′ is given by:

#. The OptQuest Callable Library 19

()txxxx ′−′′+′′= for t > 0

Note that the “normal” combination method in OCL defines t = r/2, where r
is a random number between 0 and 1. The boundary strategy, however,
considers three strategies to generate non-convex combinations in the
(x′ , x ′′) line:

Strategy 1: Computes the maximum value of t that yields a feasible
solution x when considering both the bounds and the constraints in the
model.

Strategy 2: Considers the fact that variables may hit bounds before
leaving the feasible region relative to other constraints. The first
departure variable from the feasible region may happen because some
variable hits a bound, which is followed by the others, before any of the
linear constraints is violated. In such a case, the departing variable is
fixed at its bound when it hits it, and the exploration continues with this
variable held constant. OCL does this with each variable that
encounters a bound before other constraints are violated. The process
finishes when the boundary defined by the other constraints is reached.

Strategy 3: Considers that the exploration hits a boundary that may be
defined by either bounds or any of the linear constraints. When this
happens, one or more constraints are binding and the corresponding
t-value cannot be increased without causing the violation of at least one
constraint. At this point, OCL chooses a variable to make a substitution
that geometrically corresponds to a projection that makes the search
continue on a line that has the same direction, relative to the constraint
that was reached, as it did upon approaching the hyperplane defined by
the constraint. The process continues until the last unfixed variable hits
a constraint. At this point, the value of all the previously fixed variables
is computed.

Each of these three boundary strategies generates a “boundary solution”

xb outside x ′′ . OCL also generates the solution in the midpoint between xb
and x ′′ . Interchanging the role of x′ and x ′′ gives the extension outside the
“other end” of the line segment. The mechanism results in a total of 4 non-
convex solutions out of a single combination of a pair of reference points.
The user establishes, by setting the appropriate value using the
OCLBoundFreq function, the percentage of combinations in which the
boundary strategy is applied. The default value calls for applying the
boundary strategy 50% of the time. Although this default value is fairly

20 Chapter #

robust across a variety of problem classes, for problems where the best
values are suspected to lie near the boundary of the feasible region,
improved solutions may be found when the frequency value is increased.
Similarly, if the best solutions to an optimization problem are not near a
boundary, improved outcomes may result from decreasing the frequency for
applying the boundary strategy.

5. OCL APPLICATION

In this section, we apply OCL to a set of hard nonlinear and
unconstrained optimization problems. We have built an application based
on OCL that allows us to test the performance of the library as compared to
a competing generic optimizer based on genetic algorithms.

Table 2. Test problems
Problem number Name and parameter values Optimal value

1 Colville 0
2 Perm(4,0.5) 0
3 Perm(9,108) 0
4 Perm0(4,10) 0
5 Perm0(10,100) 0
6 PowerSum(8,18,44,114) 0
7 PowerSumZ(z1,...,z8,1,15) z1=1, zi=2+zi-1 0
8 PowerSumZ(z1,...,z10,0,2) zi=1/i 0
9 PowerSumZ(z1,...,z6,-6,6) zi=i-1 0

10 Trid(6) -50
11 Trid(10) -210
12 Rosenbrock(8) 0
13 Rosenbrock(20) 0
14 Rosenbrock2(2) 0
15 Rosenbrock2(6) 0
16 SixHumpCamelBack -1.0316285
17 Levy(30) 0
18 Beale 0
19 Booth 0
20 Matyas 0
21 Powell(24) 0
22 Griewank(20) 0
23 Rvan(25) 0
24 Rastrigin(10) 0
25 Rastrigin(20) 0
26 Schwefel1(10) 0
27 Schwefel1(20) 0
28 Ackley(50) 0
29 Ackley(100) 0
30 Sphere(100) 0

#. The OptQuest Callable Library 21

Table 2 shows the set of 30 test problems that we have gathered from the
following web pages:

http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfopt.htm
http://solon.cma.univie.ac.at/~neum/glopt/my_problems.html
http://www-math.cudenver.edu/~rvan/phd/node32.html

The number between parentheses associated with some of the function
names are the parameter values for the corresponding objective function. A
typical parameter refers to the number of variables in the function, since
many of these functions expand to an arbitrary number of variables.
Although the objective functions are built in a way that the optimal solutions
are known, the optimization problems cannot be trivially solved by search
procedures that do not exploit the special structure embedded in each
function. A detailed description of the objective functions is provided in
Appendix B.

Our OCL-based code has a “main” function with two arguments: the
problem number and the total number of function evaluations. The problem
number is used to select the correct objective function from the catalog of
functions inside the system evaluator. The code also uses this number to
allocate the appropriate memory using OCLSetup and to define the bounds
for each variable calling OCLDefineVar.

We compare the performance of OCL with the results obtained from
running Genocop III (http://www.coe.uncc.edu/~zbyszek/gchome.html) on
the same set of test problems. Genocop III is the third version of a genetic
algorithm designed to search for optimal solutions to optimization problems
with continuous variables and linear and nonlinear constraints. The
description of the first version of Genocop appears in the book by
Michalewicz (1994). While this GA optimizer does not handle discrete
variables, it does provide a way for explicitly defining nonlinear constraints.
The performance of the Genocop depends on a set of 12 parameters (without
counting the frequency distribution for the application of each operator). We
did not attempt to find the best parameter setting for the set of problems on
hand and instead we used the default values that the system recommends.
Similarly, we used the default values for the OCL parameters, such as the
size of the reference set and the frequency of application of the boundary
strategy. A summary of our comparison is shown in Table 3.

The results in Table 3 were obtained allowing each procedure to perform
10,000 function evaluations. The values in bold indicate which procedure
yields the solution with the better objective function value for each problem.
The following observations can be made from the results in this table.

22 Chapter #

• OCL finds solutions that on the average are better than those found
by Genocop, within the scope of the search (i.e., 10000 evaluations).

• OCL finds better solutions than Genocop more frequently (20 times
for OCL vs. 3 times for Genocop).

• Genocop is on average 4 times faster than OCL.
• Problems 2 and 6 pose grave difficulties to both OCL and Genocop.

Table 3. Comparison of OCL and Genocop III
 Objective function value CPU seconds
Prob. Var. Optimal OCL Genocop OCL Genocop

1 4 0 0.000361 0.729826 3.8 0.3
2 4 0 0.130655 1.794891 4.0 0.9
3 9 0 4.5839E+15 2.12E+16 4.8 3.7
4 4 0 0.073611 0.79538 4.3 0.8
5 10 0 74.020773 276.9857 5.4 3.7
6 4 0 0.00883 0.02553 151.6 0.6
7 8 0 8.30E+08 1.23E+14 3.5 2.9
8 10 0 0 0 5.9 3.4
9 6 0 147.688802 1452.561 6.8 1.8

10 6 -50 -49.958165 -46.481 33.6 0.4
11 10 -210 -127.15042 -31.5584 3.8 0.9
12 8 0 0.483572 5.601258 3.2 0.8
13 20 0 5.599877 7.684962 6.9 2.8
14 2 0 1.990099 36.3949 4.8 0.3
15 6 0 5.949696 273.3088 6.3 0.8
16 2 -1.03163 -1.03163 -1.03163 5.8 0.3
17 30 0 0.69632 0.300885 74.3 5.5
18 2 0 0 0.00075 4.1 0.2
19 2 0 0 0 2.8 0.2
20 2 0 0 0 4.8 0.2
21 24 0 0.085342 2.740024 8.7 3.2
22 20 0 0 1.076349 3.8 2.6
23 25 0 0.679836 37.37577 42.9 3.9
24 10 0 0 1.025595 4.5 0.9
25 20 0 0 10.5079 6.3 2.5
26 10 0 844.068704 1.387158 1.8 0.8
27 20 0 1506.06706 134.4911 2.4 2.1
28 50 0 0 0 16.8 13.4
29 100 0 0 0 103.6 46.6
30 100 0 2.418512 1114.451 60.3 43.7

In addition to comparing the performance of both systems when

considering the final solutions and the total computational time to find them,
it is important to assess how quickly each method reaches the best solutions.
Reaching good solutions quickly becomes more critical when the complexity
of the system evaluator increases. Consider, for example, an application for
which a single evaluation of the objective function consists of the execution

#. The OptQuest Callable Library 23

of a computer simulation that requires 2 CPU minutes. Clearly, in this
context, the time to generate each solution becomes negligible. At the same
time, it is not feasible to search for the best solution employing 10,000
function evaluations, unless one is willing to wait for 2 weeks to obtain a
relatively good answer. A more reasonable approach is to limit the search to
500 function evaluations, whose execution will require somewhat less than
17 hours to execute.
Figure 6 depicts the trajectory followed by OCL and Genocop when tracking
the average objective function value in a set of 28 problems that excludes
problems 2 and 6. Note that the graph is drawn on a logarithm scale to be
able to accommodate the large average objective function value of 8.8E+12
yielded by Genocop after 100 evaluations.

Figure 6. Performance graph for OCL and Genocop III

The purpose of constructing the performance graph depicted in Figure 6
is to assess the aggressiveness of each procedure as measure by the speed in
which the search is capable of finding reasonably good solutions. Based on
our testing, OCL seems to be more aggressive than Genocop. The
aggressiveness in OCL, however, does not compromise the quality of the
final solution. In other words, OCL aggressively attempts to improve upon
the best solution during the early stages of the search and at the same time it
makes use of diversifying mechanisms to be able to sustain an improving

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Evaluations

A
ve

ra
ge

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(L
og

ar
ith

m
ic

 sc
al

e)

Genocop
OCL

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

1.0E+10

1.0E+11

1.0E+12

1.0E+13

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Evaluations

A
ve

ra
ge

 o
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(L
og

ar
ith

m
ic

 sc
al

e)

Genocop
OCL

24 Chapter #

trajectory when allowed to extend the search beyond a limited number of
objective function evaluations.

The aggressiveness of OCL as compared to Genocop can be measure by
the gap between the average objective function values found by each
method. After 500 evaluations, Genocop average is more than 200 times
larger than OCL average. OCL average remains lower than Genocop values
throughout the search with the final average for Genocop being 36% higher
than OCL’s, as shown in Table 4.

Table 4. Genocop solutions compared to OCL solutions
Evaluation number Percentage deviation of the Genocop solutions from OCL

solutions
100 417266887%
500 21639%

1000 983%
5000 202%

10000 36%

The performance graph in Figure 6 and the percentage deviation values

in Table 4 seem to substantiate that OCL would be the preferred solution
method for optimizing complex systems, for which the evaluation of the
objective function determines the computational time of the search. These
exhibits also show a general trend that seems to reveal that the quality of the
solutions found by both methods becomes more alike as the number of
evaluations increases.

6. CONCLUSIONS

In this chapter, we discussed the notion of optimizing a complex system
when a “black-box” evaluator can be used to estimate performance based on
a set of input values. In many business and engineering problems, the black-
box evaluator has the form of a simulation model capable of mapping inputs
into outputs, where the inputs are values for a set of decision variables and
the outputs include the objective function value. We also addressed the
development and application of a function library that uses scatter search in
the context of optimizing complex systems.

The functionality of the library was illustrated with an illustrative
example in nonlinear optimization. Our illustration resulted in a sample
code that can be modified and expanded to apply OCL in other situations.
Finally, we tested OCL by comparing its performance with Genocop III, a
third-generation genetic algorithm. Our experiments with 30 nonlinear
optimization problems show that OCL is a search method that is both

#. The OptQuest Callable Library 25

aggressive and robust. It is aggressive because it finds high-quality solutions
early in the search. It is robust because it continues to improve upon the best
solution when allowed to search longer. These characteristics make OCL an
ideal solution method for applications in which the evaluation of the
objective function requires a non-trivial computational effort.

7. REFERENCES

Campos, V., F. Glover, M. Laguna and R. Martí (1999) “An Experimental Evaluation of a
Scatter Search for the Linear Ordering Problem,” University of Colorado at Boulder.

Campos, V., M. Laguna and R. Martí (1999) “Scatter Search for the Linear Ordering
Problem,” New Methods in Optimization, D. Corne, M. Dorigo and F. Glover (Eds.), pp.
331-339, McGraw-Hill.

Glover, F., M. Laguna and R. Martí (1999) “Scatter Search,” to appear in Theory and
Applications of Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui
(Eds.), Springer-Verlag.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial Evolution,
Lecture Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald, M. Schoenauer
and D. Snyers (Eds.), Springer-Verlag, pp. 13-54.

Laguna, M. “Scatter Search,” to appear in Handbook of Applied Optimization, P. M. Pardalos
and M. G. C. Resende (Eds.), Oxford Academic Press.

Michalewicz, Z. (1994) Genetic Algorithms + Data Structures = Evolution Programs,
Second-Extended Edition, Springer-Verlag.

Optquest Callable Library User’s Manual, Optimization Technologies, Inc., Boulder, CO,
2000 (www.opttek.com).

26 Chapter #

Appendix A

The following is the complete C code to search for the optimal solution
of the example problem in section 4 using OCL. For simplicity we have left
out the error-code checking. In actual applications, however, it is
recommended to check for the return values of the OCL function in order to
detect errors during the search.

#include "ocl.h"
#include <stdio.h>
#include <math.h>

#define NUM_VAR 4
#define TOT_ITER 10000

double evaluate(double *);

void main(void)
{

double x[NUM_VAR+1], objval;
long nprob, nsol;
int i;

/* Allocating memory */
nprob = OCLSetup(NUM_VAR,0,0,"MIN", ??????);

/* Defining variables */
for (i = 1; i <= NUM_VAR; i++)

status = OCLDefineVar(nprob, i, -10, OCLNULL, 10,"CON", 1);

/* Initializing the reference set */
OCLInitPop(nprob);

/* Generate and evaluate TOT_ITER solutions */
for (i = 1; i <= TOT_ITER; i++) {

nsol = OCLGetSolution(nprob, x);
objval = evaluate(x);
OCLPutSolution(nprob, nsol, &objval, OCLNULL);

}

/* Display the best solution found */
status = OCLGetBest(nprob, x, &objval);
printf("Best solution value is %9.6f\n", i, objval);
for(i = 1; i <= NUM_VARIABLES; i++)

printf("x[%2d] = %9.6lf\n", i, x[i]);

/* Free OCL memory */
status = OCLGoodBye(Example);

}

/* Evaluation function */

double evaluate(double *x)
{

return(100*pow(x[2]-pow(x[1],2),2)+pow(1-x[1],2)
+90*pow(x[4]-pow(x[3],2),2)+pow(1-x[3],2)+
10.1*((pow(x[2]-1,2)+pow(x[4]-1,2))+19.8*(x[2]-1)*(x[4]-1));

}

#. The OptQuest Callable Library 27

Appendix B

This appendix contains the description of the set of test functions in
Table 2. The description consists of the objective function and the bounds
for each variable.

Colville

Minimize ())1)(1(8.19)1()1(1.10

)1()(90)1()(100)(

42
2

4
2

2

2
3

22
34

2
1

22
12

−−+−+−

+−+−+−+−=

xxxx

xxxxxxxf

Subject to -10≤ xi ≤ 10 for i=1,...,4.

Perm(n, β)

Minimize ()
2

1 1

1)(∑ ∑
= =




























−







β+=
n

k

n

i

k
ik

i
xixf

Subject to -n ≤ xi ≤ n for i=1,..., n.

Perm0(n, β)

Minimize ()
2

1 1

1)(∑ ∑
= =



































−β+=
n

k

n

i

k
k
i i

xixf

Subject to -n ≤ xi ≤ n for i=1,..., n.

PowerSum(b1,...,bn)

Minimize
2

1 1

)(∑ ∑
= =














−









=

n

k
k

n

i

k
i bxxf

Subject to 0 ≤ xi ≤ n for i=1,..., n.

28 Chapter #

PowerSumZ(z1,...,zn, l, u)

Minimize
2

1 1

)(∑ ∑
= =














−









=

n

k
k

n

i

k
i bxxf

Subject to ∑
=

=
n

i

k
ik zb

1

 k=1,..., n

l ≤ xi ≤ u for i=1,..., n.

Trid(n)

Minimize () ∑∑
==

−








−=

n

i
ji

n

i
i xxxxf

21

21)(

Subject to -n2 ≤ xi ≤ n2 for i=1,..., n.

Rosenbrock(n)

Minimize 2
12

2
2

1

2
122)1()(100)(−

=
− −+−=∑ i

n

i
ii xxxxf

Subject to -10 ≤ xi ≤ 10 for i=1,..., n.

Rosenbrock2(n)

Minimize 2
1

2

1

2
1)1()(100)(−

=
− −+−=∑ i

n

i
ii xxxxf

Subject to -10 ≤ xi ≤ 10 for i=1,..., n.

SixHumpCamelBack

Minimize 4
2

2
221

6
1

4
1

2
1 44

3
11.24)(xxxxxxxxf +−++−=

Subject to -10 ≤ x1, x2 ≤ 10

#. The OptQuest Callable Library 29

Levy(n)

Minimize

()∑
−

=

π+−++π+−+π=
1

1

2222
1

2))2(sin1()1())1(sin101(1)(sin)(
k

i
kkii xyyyyxf

Subject to
4

11 −+= i
i

xy for i=1,..., n

-10 ≤ xi ≤ 10 for i=1,..., n

Beale
Minimize

23
211

22
211

2
211)625.2()25.2()5.1()(xxxxxxxxxxf +−++−++−=

Subject to -4.5 ≤ x1, x2 ≤ 4.5

Booth
Minimize 2

21
2

21)52()72()(−++−+= xxxxxf

Subject to -10 ≤ x1, x2 ≤ 10

Matyas
Minimize 21

2
2

2
1 48.0)(26.0)(xxxxxf −+=

Subject to -10 ≤ x1, x2 ≤ 10

Powell(n)
Minimize

4
434

4
1424

2
414

2
4

1
2434)(10)2()(5)10()(jjjjjj

n

j
jj xxxxxxxxxf −+−+−++= −−−−

=
−−∑

Subject to -4 ≤ xi ≤ 5 for i=1,..., n

30 Chapter #

Griewank(n)

Minimize ∑ ∏
= =

+






−=
n

i

n

i

ii

i
xxxf

1 1

2

1cos
4000

)(

Subject to -600 ≤ xi ≤ 600 for i=1,..., n

Rvan(n)

Minimize 2
1

2

1
1

2)1()2()(−+−=∑
=

− xxxixf
n

i
ii

Subject to -10 ≤ xi ≤ 10 for i=1,..., n

Rastrigin(n)

Minimize)2cos(1010)(
1

2
∑

=

π−+=
n

i
ii xxnxf

Subject to -5.12 ≤ xi ≤ 5.12 for i=1,..., n

Schwefel1(n)

Minimize ∑
=

−+=
n

i
ii xxnxf

1

sin9829.418)(

Subject to -500 ≤ xi ≤ 500 for i=1,..., n

Ackley(n)

Minimize
∑

−
∑

−+= ==
π−

n

i
i

n

i
i x

n
x

n eeexf 11

2)2cos(112.0

2020)(

Subject to -30 ≤ xi ≤ 30 for i=1,..., n

Sphere(n)

Minimize ∑
=

=
n

i
ixxf

1

2)(

Subject to 0 ≤ xi ≤ 100 for i=1,..., n

