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Abstract: In this chapter we discuss the development and application of a library of 
functions that is the optimization engine for the OptQuest system.  OptQuest is 
commercial software designed for optimizing complex systems, such as those 
formulated as simulation models.  OptQuest has been integrated with several 
simulation packages with the goal of adding optimization capabilities.  The 
optimization technology within OptQuest is based on the metaheuristic 
framework known as scatter search.  In addition to describing the functionally 
of the OptQuest Callable Library (OCL) with an illustrative example, we 
apply it to a set of unconstrained nonlinear optimization problems. 

1. INTRODUCTION 

The OptQuest Callable Library (OCL) is the optimization engine of the 
OptQuest system2.  The goal of OptQuest is to optimize complex systems, 
which are those that cannot be easily formulated as mathematical models 
and solved with classical optimization tools.  Many real world optimization 
problems in business, engineering and science are too complex to be given 
tractable mathematical formulations.  Multiple nonlinearities, combinatorial 
relationships and uncertainties often render challenging practical problems 
inaccessible to modeling except by resorting to more comprehensive tools 
(like computer simulation).  Classical optimization methods encounter grave 
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difficulties when dealing with the optimization problems that arise in the 
context of complex systems.  In some instances, recourse has been made to 
itemizing a series of scenarios in the hope that at least one will give an 
acceptable solution.  Due to the limitations of this approach, a long-standing 
research goal has been to create a way to guide a series of complex 
evaluations to produce high quality solutions, in the absence of tractable 
mathematical structures.  (Note that in the context of optimizing simulations, 
a “complex evaluation” refers to the execution of a simulation model.) 

Theoretically, the issue of identifying best values for a set of decision 
variables falls within the realm of optimization.  Until quite recently, 
however, the methods available for finding optimal decisions have been 
unable to cope with the complexities and uncertainties posed by many real 
world problems of the form treated by simulation.  The area of stochastic 
optimization has attempted to deal with some of these practical problems, 
but the modeling framework limits the range of problems that can be tackled 
with such technology. 

The complexities and uncertainties in complex systems are the primary 
reason that simulation is often chosen as a basis for handling the decision 
problems associated with those systems.  Consequently, decision makers 
must deal with the dilemma that many important types of real world 
optimization problems can only be treated by the use of simulation models, 
but once these problems are submitted to simulation there are no 
optimization methods that can adequately cope with them. 

Recent developments are changing this picture.  Advances in the field of 
metaheuristics—the domain of optimization that augments traditional 
mathematics with artificial intelligence and methods based on analogs to 
physical, biological or evolutionary processes—have led to the creation of 
optimization engines that successfully guide a series of complex evaluations 
with the goal of finding optimal values for the decision variables.  One of 
those engines is the search algorithm embedded in OCL. 

OCL is designed to search for optimal solutions to the following class of 
optimization problems: 

 
Max or Min F(x)  
 
Subject to Ax < b (Constraints) 
 gl < G(x) < gu (Requirements) 
 l < x < u (Bounds) 
where x can be continuous or discrete with an arbitrary step size. 

 
The objective F(x) may be any mapping from a set of values x to a real 

value.  The set of constraints must be linear and the coefficient matrix “A” 
and the right-hand-side values “b” must be known.  The requirements are 
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simple upper and/or lower bounds imposed on a function that can be linear 
or non-linear.  The values of the bounds “gl” and “gu” must be known 
constants.  All the variables must be bounded and some may be restricted to 
be discrete with an arbitrary step size. 

In a general-purpose optimizer such as OCL, it is preferable to separate 
the solution procedure from the complex system to be optimized.  A 
potential disadvantage of this “black box” approach is that the optimization 
procedure is generic and does not know anything about what goes on inside 
of the box and therefore does not use any problem-specific information 
(Figure 1).  The clear advantage, on the other hand, is that the same 
optimizer can be used for many complex systems. 

 

Complex System
Input Output

 

Figure 1. Complex system as a black box 

OCL is a generic optimizer that overcomes the deficiency of black box 
systems of the type illustrated in Figure 1, and successfully embodies the 
principle of separating the method from the model.  In such a context, the 
optimization problem is defined outside the complex system.  Therefore, the 
evaluator can change and evolve to incorporate additional elements of the 
complex system, while the optimization routines remain the same.  Hence, 
there is a complete separation between the model that represents the system 
and the procedure that is used to solve optimization problems defined within 
this model. 
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Figure 2. Coordination between optimization and system evaluation 

The optimization procedure uses the outputs from the system evaluator, 
which measures the merit of the inputs that were fed into the model.  On the 
basis of both current and past evaluations, the optimization procedure 
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decides upon a new set of input values (see Figure 2).  The optimization 
procedure is designed to carry out a special “non-monotonic search,” where 
the successively generated inputs produce varying evaluations, not all of 
them improving, but which over time provide a highly efficient trajectory to 
the best solutions.  The process continues until an appropriate termination 
criterion is satisfied (usually based on the user’s preference for the amount 
of time to be devoted to the search).   

OCL allows the user to build applications to solve problems using the 
“black-box” approach for evaluating an objective function and a set of 
requirements.  Figure 3 shows a conceptualization of how OCL can be used 
to search for optimal solutions to complex optimization problems. 

 

User-written
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Figure 3. OCL linked to a user-written application 

Figure 3 assumes that the user has a system evaluator that given a set of 
input values, it returns a set of output values that can used to guide a search.  
For example, the evaluator may have the form of a computer simulation that, 
given the values of a set of decision variables, it returns the value of one or 
more performance measures (that define the objective function and possibly 
a set of requirements).  The user-written application uses OCL functions to 
define an optimization problem and launch a search for the optimal values of 
the decision variables. 

2. SCATTER SEARCH 

The optimization technology embedded in OCL is the metaheuristic 
known as scatter search.  Scatter search has some interesting commonalties 
with genetic algorithms (GA), although it also has a number of quite distinct 
features.  Several of these features have come to be incorporated into GA 
approaches after an intervening period of approximately a decade, while 
others remain largely unexplored in the GA context. 
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Scatter search is designed to operate on a set of points, called reference 
points, which constitute good solutions obtained from previous solution 
efforts.  Notably, the basis for defining “good” includes special criteria such 
as diversity that purposefully go beyond the objective function value.  The 
approach systematically generates combinations of the reference points to 
create new points, each of which is mapped into an associated feasible point.  
The combinations are generalized forms of linear combinations, 
accompanied by processes to adaptively enforce constraint-feasibility and 
encourage requirement-feasibility. 

The scatter search process is organized to (1) capture information not 
contained separately in the original points, (2) take advantage of auxiliary 
heuristic solution methods (to evaluate the combinations produced and to 
actively generate new points), and (3) make dedicated use of strategy instead 
of randomization to carry out component steps. 
 

Figure 4. Scatter search outline 

Figure 4 sketches the scatter search approach in its original form.  
Extensions can be created to take advantage of memory-based designs 
typical of tabu search.  Two particular features of the scatter search proposal 
deserve mention.  The use of clustering strategies has been suggested for 

1. Apply a diversification generation method to build a starting set 
of solutions.  Designate a subset of the best points (judged by 
quality and diversity) to be reference points. 

while (stopping criteria are not satisfied) { 
2. Form combinations of subsets of the current reference 

points to create new points.  The combinations are (a) 
chosen to produce points both inside and outside the 
convex region spanned by the reference points, and (b) 
modified by generalized mapping processes to yield 
feasible points according to the constraints in the problem 
(both linear and integrality constraints). 

3. Update the reference set by selecting points that can 
improve the quality and/or diversity of the set. 

if (no new combinations can be explored in the current set) { 
4. Extract a collection of the best points in the current

reference set to be used as starting points for a new
application of the diversification generation method. 

} 
} 
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selecting subsets of points in step 2, which allows different blends of 
intensification and diversification by generating new points “within clusters” 
and “across clusters.”  Also, the solutions generated by the combination 
method in step 2 are often subjected to an improvement method, which 
typically consists of a local search procedure.  The improvement method is 
capable of starting from a feasible or an infeasible solution created by the 
combination method. 

It is interesting to observe similarities and contrasts between scatter 
search and the original GA proposals.  Both are instances of what are 
sometimes called “population based” approaches.  Both incorporate the idea 
that a key aspect of producing new elements is to generate some form of 
combination of existing elements.  On the other hand, GA approaches are 
predicated on the idea of choosing parents randomly to produce offspring, 
and further on introducing randomization to determine which components of 
the parents should be combined.  By contrast, the scatter search approach 
does not emphasize randomization, particularly in the sense of being 
indifferent to choices among alternatives.  Instead, the approach is designed 
to incorporate strategic responses, both deterministic and probabilistic, that 
take account of evaluations and history.  Scatter search focuses on 
generating relevant outcomes without losing the ability to produce diverse 
solutions, due to the way the generation process is implemented.  For 
example, the approach includes the generation of new points that are not 
convex combinations of the original points.  The new points constitute forms 
of extrapolations, endowing them with the ability to contain information that 
is not contained in the original reference points. 

Scatter search is an information-driven approach, exploiting knowledge 
derived from the search space, high-quality solutions found within the space, 
and trajectories through the space over time. The incorporation of such 
designs is responsible for enabling OCL to efficiently search the solution 
space of optimization problems in complex systems. 

3. THE OCL OPTIMIZER 

OCL seeks to find an optimal solution to a problem defined on a vector x 
of bounded variables.  The scatter search method implemented in OCL 
begins by generating a starting set of diverse points.  This is accomplished 
by dividing the range of each variable into 4 sub-ranges of equal size.  Then, 
a solution is constructed in two steps.  First, a sub-range is randomly 
selected.  The probability of selecting a sub-range is inversely proportional 
to its frequency count (which keeps track of the number of times the 
subrange has been selected).  Second, a value is randomly chosen from the 
selected sub-range.  The starting set of points also includes the following 
solutions: 
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•  All variables are set to the lower bound 
•  All variables are set to the upper bound 
•  All variables are set to the midpoint x = l + (u - l)/2 
•  Other solutions suggested by the user 

 
A subset of diverse points is chosen as members of the reference set.  A 

set of points is considered diverse if its elements are “significantly” different 
from one another.  OCL uses a Euclidean distance measure to determine 
how “close” a potential new point is from the points already in the reference 
set, in order to decide whether the point is included or discarded. 

When the optimization model includes discrete variables, a simple 
rounding procedure is used to map fractional values to discrete values.  
When the model includes linear constraints newly created points are 
subjected to a feasibility test before they are sent to the evaluator (i.e., before 
the objective function value F(x) and the requirements G(x) are evaluated).  
Note that the evaluation of the objective function may entail the execution of 
a simulation, and therefore it is important to be sure to evaluate only those 
solutions that are feasible with respect to the set of constraints.  For ease of 
notation, we represent the set of constraints as Ax ≤ b, although equality 
constraints are also allowed.  The feasibility test consists of checking (one 
by one) whether the linear constraints are satisfied.  If the solution is 
infeasible with respect to one or more constraints, OCL formulates and 
solves a linear programming (LP) problem.  The LP (or mixed-integer 
program, when x contains discrete variables) has the goal of finding a 
feasible solution x* that minimizes the absolute deviation between x and x*.  
Mathematically, the problem can be formulated as: 

 
 Minimize +− + dd  
 
 subject to Ax* ≤ b 
  0* =+−− +− ddxx  
  l ≤ x* ≤ u 
  −d , +d  ≥ 0 
 

where −d  and +d  are, respectively, negative and positive deviations of x* 
from the infeasible point x.  When constraints are not specified, infeasible 
points are made feasible by simply adjusting variable values to their closest 
bound and rounding when appropriately.  That is, if x > u then x* = u and if 
x < l then x* = l. 

Once the reference set has been created, a combination method is applied 
to initiate the search for optimal solutions.  The method consists of finding 
linear combinations of reference solutions.  The combinations are based on 
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the following three types, which assume that the reference solutions are x′  
and x ′′ : 

 
dxx −′=  
dxx +′=  
dxx −′′=  

 

where 
2

xxrd
′−′′

=  and r is a random number in the range (0, 1).  The 

number of solutions created from the linear combination of two reference 
solutions depends on the quality of the solutions being combined.  
Specifically, when the best two reference solutions are combined, they 
generate up to 5 new solutions, while when the worst two solutions are 
combined they generate only one. 

In the course of searching for a global optimum, the combination method 
may not be able to generate solutions of enough quality to become members 
of the reference set.  If the reference set does not change and all the 
combinations of solutions have been explored, a diversification step is 
triggered (see step 4 in Figure 4).  This step consists of rebuilding the 
reference set to create a balance between solution quality and diversity.  To 
preserve quality, a small set of the best (elite) solutions in the current 
reference set is used to seed the new reference set.  The remaining solutions 
are eliminated from the reference set.  Then, the diversification generation 
method is used to repopulate the reference set with solutions that are diverse 
with respect to the elite set.  This reference set is used as the starting point 
for a new round of combinations. 

3.1 Constraints Vs. Requirements 

So far, we have assumed that the complex system to be optimized can be 
treated by OCL as a “black box” that takes x as an input to produce F(x) as 
an output.  We have also assumed that for x to be feasible, the point must be 
within a given set of bounds and, when applicable, also satisfy a set of linear 
constraints.  We assume that both the bounds and the coefficient matrix are 
known.  However, there are situations where the feasibility of x is not known 
prior to performing the process that evaluates F(x), i.e., prior to executing the 
“black box” system evaluator.  In other words, the feasibility test for x 
cannot be performed in the input side of the black box but instead has to be 
performed within the black box and communicated as one of the outputs.  
This situation is depicted in Figure 5. 

This figure shows that when constraints are included in the optimization 
model, the evaluation process starts the mapping x → x*.  If the only 
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constraints in the model are integrality restrictions, the mapping is achieved 
with a simple rounding mechanism that transforms fractional values into 
integer values for the discrete variables.  If the constraints are linear, then the 
mapping consists of formulating and solving the abovementioned linear 
programming problem. Finally, if the constraints are linear and the model 
also includes discrete variables, then the linear programming formulation 
becomes a mixed-integer programming problem that is solved accordingly.  
Obviously, if the optimization model has neither constraints nor discrete 
variables then x* = x. 

Constraint
Mapping

Complex System
Evaluator

Penalty
Function

x x*
F(x*)

G(x*)
P(x*)

 

Figure 5. Solution evaluation 

 
The mapped solution is processed through the complex system evaluator 

to obtain a set of performance measures.  One of these measures is used as 
the objective function value F(x) and provides the means for the search to 
distinguish good from bad solutions.  Other measures G(x) associated with 
the performance of the system can be used to define a set of requirements.  
A requirement is expressed as a bound on the value of a performance 
measure G(x).  Thus, a requirement may be defined as an upper or a lower 
bound on an output of the complex system evaluator.  Instead of discarding 
requirement-infeasible solutions, OCL handles them with a composite 
function P(x) that penalizes the requirement violations.  The penalty is 
proportional to the degree of the violation and is not static throughout the 
search.  OCL assumes that the user is interested in finding a requirement-
feasible solution if one exists.  Therefore, requirement-infeasible solutions 
are penalized more heavily when no requirement-feasible solution has been 
found during the search than when one is already available. 

To illustrate the evaluation process in the context of a simulated system, 
consider an investment problem for which x represents the allocation of 
funds to a set of investment instruments.  The objective is to maximize the 
expected return.  Assume that a Monte Carlo simulation is performed to 
estimate the expected return F(x) for a given fund allocation.  Hence, in this 
case, the complex system evaluator consists of a Monte Carlo simulator. 

Restrictions on the fund allocations, which establish relationships among 
the x variables, are handled within the linear programming formulation that 
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maps infeasible solutions into feasible ones.  Thus, a restriction of the type 
“the combined investment in instruments 2 and 3 should not exceed the total 
investment in instrument 7,” results in the linear constraint x2 + x3 ≤ x7.  On 
the other hand, a restriction that limits the variability of the returns (as 
measured by the standard deviation) to be no more than a critical value c 
cannot be enforced in the input side of the Monte Carlo simulator.  Clearly, 
the simulation must be executed first in order to estimate the variability of 
the returns.  Suppose that the standard deviation of the returns is represented 
by G(x), then the requirement in this illustrative situation is expressed as 
G(x) ≤ c. 

Note that the constraint-mapping mechanism within OCL does not 
handle nonlinear constraints.  However, nonlinear constraints can be 
modeled as requirements and incorporated within the penalty function P(x).  
For example, suppose that an optimization model must include the following 
nonlinear constraint: 

1202
121 ≤− xxx  

Then, the system evaluator calculates, for a given solution x, the left-hand 
side of the nonlinear constraint and communicates the result as one of the 
outputs.  OCL uses this output and compares it to the right-hand side value 
of 120 to determine the feasibility of the current solution.  If the solution is 
not feasible a penalty term is added to the value of the objective function 
F(x). 

4. OCL FUNCTIONALITY 

The OptQuest Callable Library consists of a set of 23 functions that are 
classified into four categories: 

 
General 
Variables, Constraints and Requirements 
Solutions 
Parameter Setting 

 
The functions are classified according to their purpose and the library is 
available for both C and Visual Basic applications.  Table 1 shows the 
complete set of OCL functions.  A problem can be formulated and optimized 
with as few as 5 functions, which are indicated with an asterisk in Table 1. 
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Table 1. OCL Functions 

Category Function Brief Description 
OCLGoodBye Deletes a model and frees OCL’s memory 
OCLInitPop* Generates the starting set of reference 

solutions 

General 

OCLSetup* Allocates memory for an optimization 
model 

OCLDefineVar* Defines a decision variable 
OCLDefineReq Defines a requirement 
OCLConsCoeff Changes the value of a constraint 

coefficient 
OCLConsRhs Changes the values of the right-hand-side 

of a constraint 

Variables, 
Constraints 
and 
Requirements 

OCLConsType Changes the type of constraint 
OCLGenerateAllSolutions Generates all solutions to a pure discrete 

problem 
OCLGetBest Retrieves the best solution currently in 

OCL’s memory 
OCLGetPopSolution Retrieves a solution from the current 

reference set 
OCLGetSolution* Retrieves a trial solution for evaluation 
OCLPutPopSolution Replaces one of the solutions that is 

currently in the reference set 
OCLPutSolution* Places the evaluation of a trial solution in 

OCL’s memory 
OCLSugPopSolution Places a suggested solution in a temporary 

memory to be added to the reference set 
when the set is rebuilt 

Solutions 

OCLSugSolution Places a suggested solution in OCL’s 
database 

Parameter 
Setting 

OCLSetBoundFreq Sets the frequency parameter for the 
boundary search strategy 

 OCLSetCheckDup Activates or deactivates the use of the 
database to check for duplicated solutions 

 OCLSetObjPrecision Sets the number of digits of precision for 
the objective function 

 OCLSetVarPrecision Sets the number of digits of precision for 
the decision variables 

 OCLSetFileSolutions Activates a log file of solutions 
 OCLSetPopSize Sets the size of the reference set 
 OCLSetRandomSeed Sets the seed for the random number 

generator 
 OCLSetSolutions Sets the targeted total number solutions 

generated during the search 
* Required function. 
 
Additional functions in the library are used to change parameter settings or 
perform advanced operations such as monitoring and changing the 
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composition of the reference set.  Regardless of the complexity of the 
application that uses OCL as its optimization engine, the following general 
structure must be followed: 
 

•  Allocate memory for the optimization model by indicating the 
number of variables, constraints and requirements in the problem, as 
well as defining the direction of the optimization as minimize or 
maximize (OCLSetup). 

•  Define decision variables (OCLDefineVar). 
•  Initialize the reference set (OCLInitPop) or generate all solutions in 

the case of small pure integer problems (OCLGenerateAllSolutions). 
•  Iterate by retrieving a solution from OCL’s database 

(OCLGetSolution), evaluating the solution (user-provided system 
evaluator) and placing the evaluated solution back into OCL’s 
database (OCLPutSolution). 

 
Suppose that we would like to use the C version of OCL to search for the 
optimal solution to the following unconstrained nonlinear optimization 
problem: 
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According to the general structure of OCL, we need to start by allocating 
memory and indicating the direction of the optimization.  To do this, we use 
the OCLSetup function, which has the following prototype: 
 
long OCLSetup(long nvar, long ncons, long req, char

*direc, long lic);
 
nvar An integer indicating the number of decision variables in the 

problem 
ncons An integer indicating the number of constraints in the problem 
req An integer indicating the number of requirements in the problem 
direc An array of characters with the word “MAX” to indicate 

maximization or “MIN” to indicate minimization 
lic A valid license number 
 
Therefore, the OCLSetup function call for our example would look like this: 
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nprob = OCLSetup(4, 0, 0, "MIN", ??????);
 
where nprob is a positive integer that indicates a unique problem number 
within OCL’s memory.  If OCLSetup returns a negative value, then the setup 
operation has failed.  (Note that in an actual code “??????” must be 
replaced with a valid license number.)  After setting up the problem, we 
need to define the decision variables using the OCLDefineVar function that 
has the following prototype: 
 
long OCLDefineVar(long nprob, long var, double low,

double sug, double high, char *type, double step);
 
nprob A unique number that identifies an optimization problem within 

OCL’s memory.  This is the identifier returned by OCLSetup. 
var An integer indicating the variable number that corresponds to the 

current definition. 
low A double indicating the minimum value for the corresponding 

variable. 
sug A double indicating the suggested value for the corresponding 

variable.  The suggested value is typically included in the initial 
reference set, unless the value results in an infeasible solution.  
The OCLNULL value can be used when no suggested value is 
available. 

high A double indicating the maximum value for the corresponding 
variable. 

type An array of characters with the word “CON” to define a 
continuous variable or “DIS” to define a discrete variable. 

step A double indicating the step size for a discrete variable.  Step 
sizes may be integer or fractional and must be strictly greater 
than zero.  Step sizes for continuous variables are ignored. 

 
The function call to define the variables in our example can be programmed 
as follows: 
 
for (i = 1; i <= 4; ++i)

OCLDefineVar(nprob, i, -10, OCLNULL, 10, “CON”, 1);
 
Note that although we use a “1” as the last argument of the function, this 
value is ignored because all the variables are defined as continuous. 

We are now ready to build the starting reference set.  This step is 
performed with a call to the OCLInitPop function.  The “Pop” in the 
function name refers to “population”, which is the terminology preferred in 
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the GA community.  The prototype of this function consists of a single 
argument containing the unique problem identifier returned by OCLSetup.  
The function call looks as follows, assuming that nprob is the identifier 
returned by OCLSetup: 
 

OCLInitPop(nprob); 
 
It is important to point out that all the functions in OCL return an integer 
value.  If the return value is positive, the function call was successful.  
Otherwise, if the return value is negative, the function call failed and the 
return value is the error code.   

After a successful initialization of the reference set, the search can begin.  
The search is performed with a series of calls to three functions: 
OCLGetSolution, a user-provided system evaluator and OCLPutSolution.  
The first function retrieves a solution from OCL’s database, the second 
evaluates the solution and the third places the evaluated solution back into 
OCL’s database.  The prototype for OCLGetSolution is: 
 
long OCLGetSolution(long nprob, double *sol);

sol A pointer to an array of doubles where OCL places the solution.  
The array should have enough space to hold the variable values 
in positions 1 to nvar, as defined in OCLSetup. 

 
As before, nprob is the unique problem identifier returned by OCLSetup.  If 
the call to OCLGetSolution is successful, the function returns a unique 
solution identifier nsol.  The prototype for OCLPutSolution is: 
 
long OCLPutSolution(long nprob, long nsol, double

*objval, double *sol);
 

nsol A solution identifier returned by OCLGetSolution. 
objval An array of doubles with the values of the objective function and 

the requirements.  The array should have a size of at least req+1 
positions, as defined in OCLSetup.  The objective function value 
should be objval[0] and the ith requirement should be 
objval[i].  Note that if no requirements are defined, then 
objval can be dimensioned as a simple double variable.  
OCLNULL may be used to instruct OCL to discard the solution. 

sol An array of doubles with the values of the decision variables.  If 
the solution values are the same as the ones retrieved with a call 
to OCLGetSolution, the value OCLNULL may be used. 
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The evaluation function is outside the scope of OCL and is the responsibility 
of the user.  For our example, we can code the evaluator simply as: 
 
double evaluate(double *x)
{

return(100*pow(x[2]-pow(x[1],2),2)+pow(1-x[1],2)
+90*pow(x[4]-pow(x[3],2),2)+pow(1-x[3],2)
+10.1*((pow(x[2]-1,2)+pow(x[4]-1,2))
+19.8*(x[2]-1)*(x[4]-1));

}
 
Assuming that we want to search for the optimal solution to this problem 
allowing OCL to perform a maximum of 10000 function evaluations, the 
code to perform such a search has the following form: 
 
for (i = 1; i <= 10000; i++)
{

nsol = OCLGetSolution(nprob,x);
if (nsol < 0) {
printf("OCLGetSolution error code %d\n", nsol);
exit(1);

}
objval = evaluate(x);

status = OCLPutSolution(nprob, nsol, &objval,
OCLNULL);

if (status < 0) {
printf("OCLPutSolution error code %d\n", status);
exit(1);

}

}
 
This code retrieves, evaluates and returns the objective function value of 
10000 solutions.  It also checks for possible error codes from calls to 
OCLGetSolution and OCLPutSolution.  Note that the partial code above 
does not keep track of the best solution found.  This can be done by adding 
an “if” statement that compares the objective function value of the current 
solution with the best objective function value found during the search.  
Alternatively, the OCLGetBest function can be called at any time during the 
search to retrieve the values associated with the best solution, which OCL 
automatically monitors.  The function is called with the following 
arguments: 
 

OCLGetBest(nprob, x, &objval); 
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where nprob is the unique problem identifier, x is the array where the 
variable values are stored and objval is the variable where the objective 
function value is returned.  The entire C code for this example is shown in 
Appendix A at the end of this chapter. 

4.1 Constraints and Requirements 

The illustration in the previous section does not include the OCL 
functions for constraints and requirements.  In this section, we briefly 
describe how constraints and requirements can be defined with OCL.  
Assume that we would like to add the following linear constrain to the 
optimization model for our 4-variable example problem: 
 

x1 + 8x2 - 3x4 ≤ 5 
 
Then after a call to OCLSetup and before a call to OCLInitPop, we add calls 
to the constraint-related functions: OCLConsCoeff (to change the coefficient 
of a constraint), OCLConsRhs (to change the right-hand-side of a constraint) 
and OCLConsType (to change the constraint type).  The calls to these 
functions can be made in any order, as long as they are made before the 
reference set is initialized and certainly before the search begins through 
calls to OCLGetSolution and OCLPutSolution.  The prototypes for the 
constraint-related functions are: 
 
long OCLConsCoeff(long nprob, long cons, long var,

double coeffval);

long OCLConsRhs(long nprob, long cons, double rhsval);
long OCLConsType(long nprob, long cons, long type);
 
In these prototypes, nprob is the unique problem identifier returned by 
OCLSetup, cons is the constraint number, var is the variable number, 
coeffval is the coefficient value, rhsval, is the right-hand-side value and 
type is the constraint type (“OCLLE = less-than-or-equal, OCLGE = greater-
than-or-equal, and OCLEQ = equal).  The following function calls can be 
used to define the constraint in our example: 
 

OCLConsCoeff(nprob, 1, 1, 1);
OCLConsCoeff(nprob, 1, 2, 8);

OCLConsCoeff(nprob, 1, 4, -3);
OCLConsRhs(nprob, 1, 5);
OCLConsType(nprob, 1, 1, OCLLE);
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These function calls assume that the constraint is the first one in the model.  
Also, the variable numbers match the ones used when OCLDefineVar was 
called. 

The definition of requirements is slightly different from the definition of 
constraints.  As mentioned before, a requirement is basically a bound on an 
output value of the system evaluator.  Suppose that we would like to define a 
requirement to impose the following nonlinear restriction to our illustrative 
example: 

9.154.28.10 43
2
1 ≥− xxx  

We use a call to OCLDefineReq to define the requirement.  This function 
has the following prototype: 
 
long OCLDefineReq(long nprob, long req, double low,

double high); 
 
Where nprob is the unique problem identifier returned by OCLSetup, req 
is the requirement number, low is the lower bound for the requirement, and 
high is the upper bound for the requirement.  The constant OCLNULL can be 
used to leave either low or high undefined.  The function call for our 
example is: 
 

OCLDefineReq(nprob, 1, 15.9, OCLNULL); 
 
In addition to this definition, we need to modify the system evaluator.  The 
evaluator must return the value of the objective function in objval[0] and 
the value of the requirement in objval[1].  The new evaluator looks like 
this: 
 
void evaluate(double *x, double *objval)
{

objval[0] = 100*pow(x[2]-pow(x[1],2),2)+pow(1-x[1],2)
+90*pow(x[4]-pow(x[3],2),2)+pow(1-x[3],2)
+10.1*((pow(x[2]-1,2)+pow(x[4]-1,2))

+19.8*(x[2]-1)*(x[4]-1));
objval[1] = 10.8*pow(x[1],2)-2.4*x[3]*x[4];

}
 
Other small changes are necessary to make OCL work with the requirement 
that has been defined.  Obviously, the declaration of objval must be 



18 Chapter #
 
changed from a single double to an array of doubles and the evaluate 
function must be changed from double to void.  The changes are reflected in 
the following partial code: 
 
void evaluate(double *, double *);
.
.
double objval[3];

.

.
for (i = 1; i <= TOT_ITER; i++) {
nsol = OCLGetSolution(nprob, x);
evaluate(x, objval);
OCLPutSolution(nprob, nsol, objval, OCLNULL);

}

 
When requirements are included in an optimization model, OCLGetBest 
indicates the feasibility of the best solution.  The return values for 
OCLGetBest can be either 0 if the best solution is requirement-feasible, 1 if 
the best solution is requirement-infeasible or a negative value representing 
an error code.  Note that while all the solutions generated by OCL are 
constraint-feasible (if the constraint space is not empty), some may be 
requirement-infeasible and this is why the OCLGetBest is designed to 
provide information regarding the requirement-feasibility of the best solution 
found during the search. 

The discussion about the functionality of OCL in which we have engaged 
is not meant to be exhaustive.  OCL has additional functions that can be used 
to modify the way the search is performed.  For example, OCL includes 
functions to change the default parameter settings.  A function such as 
OCLSetPopSize can be used to change the number of solutions that are 
carried out in the reference set throughout the search.  In some applications, 
changing this parameter may improve the quality of the best solution found.  
Other functions, such as OCLSetBoundFreq, are meant for the advanced 
user, who has a thorough understanding of both the problem context to solve 
and the way the search method works. 

4.2 Boundary Search Strategy 

The OCLSetBoundFreq controls the application of the boundary search 
strategy.  This strategy is a mechanism to generate non-convex combinations 
of two solutions.  In particular, the set of points generated on the line defined 
by x′  and x ′′ , but beyond the segment [ ]xx ′′′,  “outside” of x ′′  is given by: 
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( )txxxx ′−′′+′′=  for t > 0 

Note that the “normal” combination method in OCL defines t = r/2, where r 
is a random number between 0 and 1.  The boundary strategy, however, 
considers three strategies to generate non-convex combinations in the 
( x′ , x ′′ ) line: 
 

Strategy 1: Computes the maximum value of t that yields a feasible 
solution x when considering both the bounds and the constraints in the 
model. 
 
Strategy 2: Considers the fact that variables may hit bounds before 
leaving the feasible region relative to other constraints.  The first 
departure variable from the feasible region may happen because some 
variable hits a bound, which is followed by the others, before any of the 
linear constraints is violated.  In such a case, the departing variable is 
fixed at its bound when it hits it, and the exploration continues with this 
variable held constant.  OCL does this with each variable that 
encounters a bound before other constraints are violated.  The process 
finishes when the boundary defined by the other constraints is reached. 
 
Strategy 3: Considers that the exploration hits a boundary that may be 
defined by either bounds or any of the linear constraints.  When this 
happens, one or more constraints are binding and the corresponding 
t-value cannot be increased without causing the violation of at least one 
constraint.  At this point, OCL chooses a variable to make a substitution 
that geometrically corresponds to a projection that makes the search 
continue on a line that has the same direction, relative to the constraint 
that was reached, as it did upon approaching the hyperplane defined by 
the constraint.  The process continues until the last unfixed variable hits 
a constraint.  At this point, the value of all the previously fixed variables 
is computed. 

 
Each of these three boundary strategies generates a “boundary solution” 

xb outside x ′′ .  OCL also generates the solution in the midpoint between xb 
and x ′′ .  Interchanging the role of x′  and x ′′  gives the extension outside the 
“other end” of the line segment.  The mechanism results in a total of 4 non-
convex solutions out of a single combination of a pair of reference points.  
The user establishes, by setting the appropriate value using the 
OCLBoundFreq function, the percentage of combinations in which the 
boundary strategy is applied.  The default value calls for applying the 
boundary strategy 50% of the time.  Although this default value is fairly 
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robust across a variety of problem classes, for problems where the best 
values are suspected to lie near the boundary of the feasible region, 
improved solutions may be found when the frequency value is increased.  
Similarly, if the best solutions to an optimization problem are not near a 
boundary, improved outcomes may result from decreasing the frequency for 
applying the boundary strategy. 

5. OCL APPLICATION 

In this section, we apply OCL to a set of hard nonlinear and 
unconstrained optimization problems.  We have built an application based 
on OCL that allows us to test the performance of the library as compared to 
a competing generic optimizer based on genetic algorithms. 

Table 2. Test problems 
Problem number Name and parameter values Optimal value 

1 Colville 0 
2 Perm(4,0.5) 0 
3 Perm(9,108) 0 
4 Perm0(4,10) 0 
5 Perm0(10,100) 0 
6 PowerSum(8,18,44,114) 0 
7 PowerSumZ(z1,...,z8,1,15) z1=1, zi=2+zi-1 0 
8 PowerSumZ(z1,...,z10,0,2)   zi=1/i 0 
9 PowerSumZ(z1,...,z6,-6,6)   zi=i-1 0 

10 Trid(6) -50 
11 Trid(10) -210 
12 Rosenbrock(8) 0 
13 Rosenbrock(20) 0 
14 Rosenbrock2(2) 0 
15 Rosenbrock2(6) 0 
16 SixHumpCamelBack -1.0316285 
17 Levy(30) 0 
18 Beale 0 
19 Booth 0 
20 Matyas 0 
21 Powell(24) 0 
22 Griewank(20) 0 
23 Rvan(25) 0 
24 Rastrigin(10) 0 
25 Rastrigin(20) 0 
26 Schwefel1(10) 0 
27 Schwefel1(20) 0 
28 Ackley(50) 0 
29 Ackley(100) 0 
30 Sphere(100) 0 
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Table 2 shows the set of 30 test problems that we have gathered from the 
following web pages: 

 
http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfopt.htm 
http://solon.cma.univie.ac.at/~neum/glopt/my_problems.html 
http://www-math.cudenver.edu/~rvan/phd/node32.html 
 

The number between parentheses associated with some of the function 
names are the parameter values for the corresponding objective function.  A 
typical parameter refers to the number of variables in the function, since 
many of these functions expand to an arbitrary number of variables.  
Although the objective functions are built in a way that the optimal solutions 
are known, the optimization problems cannot be trivially solved by search 
procedures that do not exploit the special structure embedded in each 
function.  A detailed description of the objective functions is provided in 
Appendix B. 

Our OCL-based code has a “main” function with two arguments: the 
problem number and the total number of function evaluations.  The problem 
number is used to select the correct objective function from the catalog of 
functions inside the system evaluator.  The code also uses this number to 
allocate the appropriate memory using OCLSetup and to define the bounds 
for each variable calling OCLDefineVar. 

We compare the performance of OCL with the results obtained from 
running Genocop III (http://www.coe.uncc.edu/~zbyszek/gchome.html) on 
the same set of test problems.  Genocop III is the third version of a genetic 
algorithm designed to search for optimal solutions to optimization problems 
with continuous variables and linear and nonlinear constraints.  The 
description of the first version of Genocop appears in the book by 
Michalewicz (1994).  While this GA optimizer does not handle discrete 
variables, it does provide a way for explicitly defining nonlinear constraints.  
The performance of the Genocop depends on a set of 12 parameters (without 
counting the frequency distribution for the application of each operator).  We 
did not attempt to find the best parameter setting for the set of problems on 
hand and instead we used the default values that the system recommends.  
Similarly, we used the default values for the OCL parameters, such as the 
size of the reference set and the frequency of application of the boundary 
strategy.  A summary of our comparison is shown in Table 3. 

The results in Table 3 were obtained allowing each procedure to perform 
10,000 function evaluations.  The values in bold indicate which procedure 
yields the solution with the better objective function value for each problem.  
The following observations can be made from the results in this table. 
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•  OCL finds solutions that on the average are better than those found 
by Genocop, within the scope of the search (i.e., 10000 evaluations). 

•  OCL finds better solutions than Genocop more frequently (20 times 
for OCL vs. 3 times for Genocop). 

•  Genocop is on average 4 times faster than OCL. 
•  Problems 2 and 6 pose grave difficulties to both OCL and Genocop. 

Table 3. Comparison of OCL and Genocop III 
  Objective function value CPU seconds 
Prob. Var. Optimal OCL Genocop OCL Genocop 

1 4 0 0.000361 0.729826 3.8 0.3 
2 4 0 0.130655 1.794891 4.0 0.9 
3 9 0 4.5839E+15 2.12E+16 4.8 3.7 
4 4 0 0.073611 0.79538 4.3 0.8 
5 10 0 74.020773 276.9857 5.4 3.7 
6 4 0 0.00883 0.02553 151.6 0.6 
7 8 0 8.30E+08 1.23E+14 3.5 2.9 
8 10 0 0 0 5.9 3.4 
9 6 0 147.688802 1452.561 6.8 1.8 

10 6 -50 -49.958165 -46.481 33.6 0.4 
11 10 -210 -127.15042 -31.5584 3.8 0.9 
12 8 0 0.483572 5.601258 3.2 0.8 
13 20 0 5.599877 7.684962 6.9 2.8 
14 2 0 1.990099 36.3949 4.8 0.3 
15 6 0 5.949696 273.3088 6.3 0.8 
16 2 -1.03163 -1.03163 -1.03163 5.8 0.3 
17 30 0 0.69632 0.300885 74.3 5.5 
18 2 0 0 0.00075 4.1 0.2 
19 2 0 0 0 2.8 0.2 
20 2 0 0 0 4.8 0.2 
21 24 0 0.085342 2.740024 8.7 3.2 
22 20 0 0 1.076349 3.8 2.6 
23 25 0 0.679836 37.37577 42.9 3.9 
24 10 0 0 1.025595 4.5 0.9 
25 20 0 0 10.5079 6.3 2.5 
26 10 0 844.068704 1.387158 1.8 0.8 
27 20 0 1506.06706 134.4911 2.4 2.1 
28 50 0 0 0 16.8 13.4 
29 100 0 0 0 103.6 46.6 
30 100 0 2.418512 1114.451 60.3 43.7 

 
In addition to comparing the performance of both systems when 

considering the final solutions and the total computational time to find them, 
it is important to assess how quickly each method reaches the best solutions.  
Reaching good solutions quickly becomes more critical when the complexity 
of the system evaluator increases.  Consider, for example, an application for 
which a single evaluation of the objective function consists of the execution 
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of a computer simulation that requires 2 CPU minutes.  Clearly, in this 
context, the time to generate each solution becomes negligible.  At the same 
time, it is not feasible to search for the best solution employing 10,000 
function evaluations, unless one is willing to wait for 2 weeks to obtain a 
relatively good answer.  A more reasonable approach is to limit the search to 
500 function evaluations, whose execution will require somewhat less than 
17 hours to execute. 
Figure 6 depicts the trajectory followed by OCL and Genocop when tracking 
the average objective function value in a set of 28 problems that excludes 
problems 2 and 6.  Note that the graph is drawn on a logarithm scale to be 
able to accommodate the large average objective function value of 8.8E+12 
yielded by Genocop after 100 evaluations.  
 

Figure 6. Performance graph for OCL and Genocop III 

The purpose of constructing the performance graph depicted in Figure 6 
is to assess the aggressiveness of each procedure as measure by the speed in 
which the search is capable of finding reasonably good solutions.  Based on 
our testing, OCL seems to be more aggressive than Genocop.  The 
aggressiveness in OCL, however, does not compromise the quality of the 
final solution.  In other words, OCL aggressively attempts to improve upon 
the best solution during the early stages of the search and at the same time it 
makes use of diversifying mechanisms to be able to sustain an improving 
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trajectory when allowed to extend the search beyond a limited number of 
objective function evaluations. 

The aggressiveness of OCL as compared to Genocop can be measure by 
the gap between the average objective function values found by each 
method.  After 500 evaluations, Genocop average is more than 200 times 
larger than OCL average.  OCL average remains lower than Genocop values 
throughout the search with the final average for Genocop being 36% higher 
than OCL’s, as shown in Table 4. 

Table 4. Genocop solutions compared to OCL solutions 
Evaluation number Percentage deviation of the Genocop solutions from OCL 

solutions 
100 417266887% 
500 21639% 

1000 983% 
5000 202% 

10000 36% 
 
The performance graph in Figure 6 and the percentage deviation values 

in Table 4 seem to substantiate that OCL would be the preferred solution 
method for optimizing complex systems, for which the evaluation of the 
objective function determines the computational time of the search.  These 
exhibits also show a general trend that seems to reveal that the quality of the 
solutions found by both methods becomes more alike as the number of 
evaluations increases. 

6. CONCLUSIONS 

In this chapter, we discussed the notion of optimizing a complex system 
when a “black-box” evaluator can be used to estimate performance based on 
a set of input values.  In many business and engineering problems, the black-
box evaluator has the form of a simulation model capable of mapping inputs 
into outputs, where the inputs are values for a set of decision variables and 
the outputs include the objective function value.  We also addressed the 
development and application of a function library that uses scatter search in 
the context of optimizing complex systems. 

The functionality of the library was illustrated with an illustrative 
example in nonlinear optimization.  Our illustration resulted in a sample 
code that can be modified and expanded to apply OCL in other situations.  
Finally, we tested OCL by comparing its performance with Genocop III, a 
third-generation genetic algorithm.  Our experiments with 30 nonlinear 
optimization problems show that OCL is a search method that is both 
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aggressive and robust.  It is aggressive because it finds high-quality solutions 
early in the search.  It is robust because it continues to improve upon the best 
solution when allowed to search longer.  These characteristics make OCL an 
ideal solution method for applications in which the evaluation of the 
objective function requires a non-trivial computational effort. 
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Appendix A 

The following is the complete C code to search for the optimal solution 
of the example problem in section 4 using OCL.  For simplicity we have left 
out the error-code checking.  In actual applications, however, it is 
recommended to check for the return values of the OCL function in order to 
detect errors during the search. 

#include "ocl.h"
#include <stdio.h>
#include <math.h>

#define NUM_VAR 4
#define TOT_ITER 10000

double evaluate(double *);

void main(void)
{

double x[NUM_VAR+1], objval;
long nprob, nsol;
int i;

/* Allocating memory */
nprob = OCLSetup(NUM_VAR,0,0,"MIN", ??????);

/* Defining variables */
for (i = 1; i <= NUM_VAR; i++)

status = OCLDefineVar(nprob, i, -10, OCLNULL, 10,"CON", 1);

/* Initializing the reference set */
OCLInitPop(nprob);

/* Generate and evaluate TOT_ITER solutions */
for (i = 1; i <= TOT_ITER; i++) {

nsol = OCLGetSolution(nprob, x);
objval = evaluate(x);
OCLPutSolution(nprob, nsol, &objval, OCLNULL);

}

/* Display the best solution found */
status = OCLGetBest(nprob, x, &objval);
printf("Best solution value is %9.6f\n", i, objval);
for(i = 1; i <= NUM_VARIABLES; i++)

printf("x[%2d] = %9.6lf\n", i, x[i]);

/* Free OCL memory */
status = OCLGoodBye(Example);

}

/* Evaluation function */

double evaluate(double *x)
{

return(100*pow(x[2]-pow(x[1],2),2)+pow(1-x[1],2)
+90*pow(x[4]-pow(x[3],2),2)+pow(1-x[3],2)+
10.1*((pow(x[2]-1,2)+pow(x[4]-1,2))+19.8*(x[2]-1)*(x[4]-1));

}



#. The OptQuest Callable Library 27
 
Appendix B 

This appendix contains the description of the set of test functions in 
Table 2.  The description consists of the objective function and the bounds 
for each variable. 
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n

j
jj xxxxxxxxxf −+−+−++= −−−−

=
−−∑

 

Subject to  -4 ≤ xi ≤ 5  for i=1,..., n 
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Griewank(n)  

Minimize ∑ ∏
= =

+






−=
n

i

n

i

ii

i
xxxf

1 1

2

1cos
4000

)(  

Subject to  -600 ≤ xi ≤ 600   for i=1,..., n 
 
 

Rvan(n)  

Minimize  2
1

2

1
1

2 )1()2()( −+−=∑
=

− xxxixf
n

i
ii  

Subject to  -10 ≤ xi ≤ 10   for i=1,..., n 
 
 

Rastrigin(n)  

Minimize  )2cos(1010)(
1

2
∑

=

π−+=
n

i
ii xxnxf  

Subject to  -5.12 ≤ xi ≤ 5.12   for i=1,..., n 
 
 

Schwefel1(n)  

Minimize  ∑
=

−+=
n

i
ii xxnxf

1

sin9829.418)(  

Subject to  -500 ≤ xi ≤ 500   for i=1,..., n 
 
 

Ackley(n)  

Minimize  
∑

−
∑

−+= ==
π−

n

i
i

n

i
i x

n
x

n eeexf 11

2 )2cos(112.0

2020)(  

Subject to -30 ≤ xi ≤ 30   for i=1,..., n 
 
 

Sphere(n)  

Minimize   ∑
=

=
n

i
ixxf

1

2)(  

Subject to  0 ≤ xi ≤ 100   for i=1,..., n 
 


