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Abstract — Scatter search is a population-based method that has recently been shown
to yield promising outcomes for solving combinatorial and nonlinear optimization
problems.  Based on formulations originally proposed in the 1960s for combining
decision rules and problem constraints, such as the surrogate constraint method,
scatter search uses strategies for combining solution vectors that have proved effective
in a variety of problem settings.

In this paper, we present a scatter search implementation designed to find high quality
solutions for the NP-hard linear ordering problem, which has a significant number of
applications in practice.  The LOP, for example, is equivalent to the so-called
triangulation problem for input-output tables in economics.  Our implementation goes
beyond a simple exercise on applying scatter search, by incorporating innovative
mechanisms to combine solutions and to create a balance between quality and
diversification in the reference set.  We also use a tracking process that generates
solution statistics disclosing the nature of combinations and the ranks of antecedent
solutions that produced the best final solutions.  Our extensive computational
experiments with more than 300 instances establishes the effectiveness of our
procedure in relation to those previously identified to be best.
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1.  Introduction

The goal of the research presented in this paper is to expand the scatter search
methodology by implementing innovative strategies to apply its underlying framework to
the linear ordering problem.  The linear ordering problem (or LOP) has generated a
considerable amount of research interest over the years, as documented in Grotschel, et
al. (1984) and Chanas and Kobylanski (1996).  Because of its practical and theoretical
relevance, we use this problem as a test case for our strategies and search mechanisms.

Given a matrix of weights E = { eij }m×m, the LOP consists of finding a permutation p of
the columns (and rows) in order to maximize the sum of the weights in the upper
triangle.  In mathematical terms, we seek to maximize:
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where p(i) is the index of the column (and row) in position i in the permutation.  Note
that in the LOP, the permutation p provides the ordering of both the columns and the
rows.  The equivalent problem in graphs consists of finding, in a complete weighted
graph, an acyclic tournament with a maximal sum of arc weights (Reinelt, 1985).

In economics, the LOP is equivalent to the so-called triangulation problem for input-
output tables, which can be described as follows.  The economy of a region (generally a
country) is divided into m sectors and an m×m input-output table E is constructed
where the entry eij denotes the amount of deliveries (in monetary value) from sector i to
sector j in a given year.  The triangulation problem then consists of simultaneously
permuting the rows and columns of E, to make the sum of the entries above the main
diagonal as large as possible.  An optimal solution then orders the sectors in such a
way that the suppliers (i.e., sectors that tend to produce materials for other industries)
come first, followed by the consumers (i.e., sectors that tend to be final-product
industries that deliver their output mostly to end users).

Instances of input-output tables from sectors in the European Economy can be found
in the public-domain library LOLIB (1997).  In the computational experimental section,
we employ these problem instances to test the merit of our scatter search
implementation.

Scatter search, from the standpoint of metaheuristic classification, may be viewed as an
evolutionary (population-based) algorithm that constructs solutions by combining
others.  It derives its foundations from strategies originally proposed for combining
decision rules and constraints in the context of integer programming.  The goal of this
methodology is to enable the implementation of solution procedures that can derive new
solutions from combined elements in order to yield better solutions than those
procedures that base their combinations only on a set of original elements.  E.g., see
the overview by Glover (1998).

In the area of scheduling, researchers introduced the notion of combining rules to
obtain improved local decisions.  Numerically weighted combinations of existing rules,
suitably restructured so that their evaluations embodied a common metric, generated
new rules.  The approach was motivated by the conjecture that information about the
relative desirability of alternative choices is captured in different forms by different
rules, and that this information can be exploited more effectively when integrated than
when treated in isolation (i.e., by choosing selection rules one at a time).  Empirical
outcomes disclosed that the decision rules created from such combination strategies
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produced better outcomes than standard applications of local decision rules.  The
strategy of creating combined rules also proved superior to a “probabilistic learning
approach” that used stochastic selection of rules at different junctures, but without the
integration effect provided by the combined rules (Crowston, et al., 1963; Fisher and
Thompson, 1963).

The associated procedures for combining constraints likewise employed a mechanism of
generating weighted combinations.  In this case, nonnegative weights were introduced
to create new constraint inequalities, called surrogate constraints, in the context of
integer and nonlinear programming (Glover, 1965, 1968).  The approach isolated
subsets of (original) constraints that were gauged to be most critical, relative to trial
solutions that were obtained based on the surrogate constraints.  This critical subset
was used to produce new weights that reflected the degree to which the component
constraints were satisfied or violated.  In addition, the resulting surrogate constraints
served as source constraints for deriving new inequalities (cutting planes) which in turn
provide material for creating further surrogate constraints.

The main function of surrogate constraints was to provide ways to evaluate choices that
could be used to generate and modify trial solutions.  A variety of heuristic processes
that employed such evaluations evolved from this foundation.  As a natural extension,
these processes led to the related strategy of combining solutions, as a primal
counterpart to the dual strategy of combining constraints, which became manifest in
scatter search.

2.  Main Scatter Search Elements

Our solution method for the linear ordering problem is based on the scatter search
template in Glover (1998).  The procedure combines the following elements:

a) Diversification Generator
b) Improvement Method
c) Reference Set Update Method
d) Subset Generation Method
e) Solution Combination Method

We describe the implementation of each of these elements, as adapted in the context of
the linear ordering problem.

a) Diversification Generator

This element of the scatter search approach is particularly important, given the goal of
developing a method that balances diversification and intensification in the search.  For
this purpose, we have developed and tested 10 diversification generation methods.  Six
of these methods are based on GRASP (Feo and Resende, 1995) constructions with a
greedy function that selects sectors based on a measure of attractiveness.

DG01. A GRASP construction where the attractiveness of a sector is the sum
of the elements in its corresponding row.  The method randomly selects
from a short list of the most attractive sectors and constructs the
solution starting from the first position of the permutation.

DG02. A GRASP construction where the attractiveness of a sector is the sum
of the elements in its corresponding column.  The method randomly
selects from a short list of the most attractive sectors and constructs
the solution starting from the first position of the permutation.
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DG03. A GRASP construction where the attractiveness of a sector is the sum
of the elements in its corresponding row divided by the sum of the
elements in its corresponding column.  The method randomly selects
from a short list of the most attractive sectors and constructs the
solution starting from the first position of the permutation.

DG04, DG05 and DG06.  These methods are identical to the first three, except
that the selection of sectors is from a short list of the least attractive
and the solution is constructed starting from the last position of the
permutation.

DG07. A mixed procedure derived from the previous 6.  The procedure
generates an even number of solutions from each of the previous six
methods and combines these solutions in a single set.  That is, if n
solutions are required, then each method DG0i (for i = 1, …, 6)
contributes with n/6 solutions.

DG08. A random generator.  This method simply generates random
permutations.

DG09. A method suggested in Glover (1998) which generates diversified
permutations in a systematic way without reference to the objective
function.

DG10. A method using frequency-based memory, as proposed in tabu search
(Glover and Laguna, 1997).  This method is based on modifying a
measure of attractiveness proposed by Becker (1967) with a frequency
measure that discourages sectors from occupying positions that they
have frequently occupied in previous solution generations.

We now provide a detailed description of DG10, and then show that this generator
outperforms the others in terms of solution quality and diversification power.  The
DG10 generator is based on the notion of constructing solutions employing modified
frequencies.  The generator exploits the permutation nature of a linear ordering.  A
frequency counter is maintained to record the number of times an element i appears in
position j.  The frequency counters are used to penalize the “attractiveness” of an
element with respect to a given position, as in the approach of Laguna and Glover
(1993).  To illustrate, suppose that the generator has created 30 solutions to be
included in a set of solutions P.  If 20 of the 30 solutions have element 3 in position 5,
then the frequency counter freq(3,5) = 20.  This frequency value is used to bias the
potential assignment of element 3 in position 5 during subsequent constructions, and
therefore, inducing diversification with respect to the solutions already in P.

The attractiveness of assigning element i to position j is given by the greedy function
G(i,j), as proposed in Becker (1967).  We modify the value of G(i,j) to reflect previous
assignments of element i to position j, as follows:
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Where MaxF is the maximum Freq(i,j) value for all i and j, and MaxG is the maximum
G(i,j) value for all i and j.
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It is important to point out that in each iteration of the construction procedure, G(i,j) is
an adaptive function since its value depends on attributes of the unassigned elements.
A pseudo-code of the diversification generator to produce a set P with PSize solutions,
appears in Figure 1.

The pseudo-code in Figure 1 is written using general mathematical notation.  However,
the actual implementation takes advantage of quick updating mechanisms that are
hard to represent mathematically.  For example, the value of MaxF in step 13 can be
maintained by keeping track of the updates of the frequency matrix Freq.

Clearly, the performance of the diversification generator depends on the value of the
parameter β .  In order to determine effective values for this parameter, we have created
a measure of diversity for a set of solutions.  The diversity measure is calculated as
follows:

1. Calculate the median position of each sector i in the solutions in P.
2. Calculate the dissimilarity of each solution in the population with respect to

the median position.  The dissimilarity is calculated as the sum of the absolute
difference between the position in the solution under consideration and the
median solution.

3. Calculate d as the sum of all the individual dissimilarities.

To illustrate, suppose that P consists of the following three orderings: (A,B,C,D),
(B,D,C,A), (C,B,A,D).  Then the median position of sector A is 3, since it occupies
positions 1, 3 and 4 in the given orderings.  In the same way, the median positions of B,
C and D are 2, 3 and 4, respectively.  Note that the median positions might not induce
an ordering, as in the case of this example.  The dissimilarity of the first solution is then
calculated as follows:

Figure 1.  Pseudo-code of diversification generator DG10.

1. P = Ø.
2. Freq(i,j) = 0, for all i and j.
While (|P| < PSize) do

3. p(i) = 0 for all i.
4. N = { 1,..., m } (The set of unassigned elements.)
5. j = MaxF = MaxG = 1.
While (N ≠ Ø) do

6. NijiFreq
MaxF
MaxG

jiGjiG ∈∀
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8. MaxG = G(i*,j)
9. N = N - { i*}
10. p(i*) = j
11. j = j + 1

End while
12. Freq(i,p(i)) = Freq(i,p(i)) + 1, for all i.
13. ( ) { }( )mjNijiFreqMaxF

ji
,,1,,,max

,
K∈∈=

If (p ∉ P) then P = P ∪ {p}
End while
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d1 = |1-3| + |2-2| + |3-3| + |4-4| = 2.

In the same way, the dissimilarities of the other two solutions are d2 = 4 and d3 = 2.
The diversity measure for P is then given by d = 2+4+2 = 8.

Since we are interested in finding a β -value that generates balanced populations, we
use two relative measures: one based on the diversity value d, and one based on the
objective function value C.  Given a set of populations Π  = { P1, P2, …, Pn }, where Pi has
been generated with iβ , we calculate )(id∆  and )(iC∆  for each population Pi as follows:
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Figure 2 shows the values of our relative measures of quality and diversity when the
diversification generator is executed with different β -values.

This figure discloses that a value of 0.3 for β  provides a good balance between diversity
and quality in the population.  As β  increases, the diversity increases but the quality

decreases.  Therefore the value of )()( iCid ∆+∆  is highest at 3.0=β , with a similar
contribution from both relative deviation measures.

We use our measure of diversity and quality to compare the performance of the 10
competing diversification generators.  Figure 3 shows the C∆ , d∆  and dC ∆+∆  values
achieved by each procedure.

Figure 2.  Diversity vs. quality for different β -values.
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As expected, the random generator (DG08) produces the maximum diversity (as
measured by the dissimilarity value).  DG09 matches the diversity of DG08 using a
systematic approach instead of randomness.  The mixed method DG07 provides a good
balance between dissimilarity and quality, by the union of solutions generated with
methods DG01 to DG06. Clearly, DG10 outperforms the competing methods, by
producing the highest combined score.

b) Improvement Method

The improvement method is based on the neighborhood search developed for the LOP in
Laguna, Martí and Campos (1998).  Two neighborhoods were considered in that study:

N1 = {p′ : INSERT_MOVE(p(j), i), for j = 1, ..., m-1 and i = j+1}
N2 = {p′ : INSERT_MOVE(p(j), i), for j = 1, ..., m and i = 1, 2, ..., j-1, j+1, ..., m}

N1 consists of permutations that are reached by switching the positions of contiguous
sectors p(j) and p(j+1).  N2 consists of all permutations resulting from executing general
insertion moves, as defined above.  In conjunction with these neighborhoods, two
strategies are defined.  The best strategy selects the move with the largest move value
among all the moves in the neighborhood.  The first strategy, on the other hand, scans
the list of sectors (in the order given by the current permutation) in search for the first
sector p(f) whose movement results in an strictly positive move value (i.e., a move such
that CE(p′) > CE(p)).  The move selected by the first strategy is then
INSERT_MOVE(p(f), i*), where i* is the position that maximizes CE(p′).  Note that for N1,
i* = f+1, while for N2, i* is chosen from i = 1, 2, ..., f-1, f+1, ..., m.  Therefore, the first
strategy used in combination with N1 is equivalent to searching for the first improving
move in the neighborhood.

Combining the selection strategies with the neighborhood definitions results in four
greedy local search procedures: first(N1), best(N1), first(N2), and best(N2).  The
experimentation in Laguna, Martí and Campos (1998) showed that the greedy
procedure first(N2) was the most effective.  Based on this finding, we partition N2 into m

N 2
j  neighborhoods

Figure 3. Diversity vs. quality for alternative Diversification Generation
Methods.
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N 2
j  = {p′ : INSERT_MOVE(p(j), i), i = 1, 2, ..., j-1, j+1, ..., m}

associated with each sector p(j), for j = 1, ..., m.  We therefore base our improvement
method on choosing the best insertion associated with a given sector as proposed in
Laguna, Martí and Campos (1998).

c) Reference Set Update Method

The Reference Set Update Method accompanies each application of the Improvement
Method, and is generally examined right after the Improvement Method, because of its
linking role with the Subset Generation Method.  The update operation consists of
maintaining a record of the b best solutions found, where the value of b is treated as a
constant search parameter.  The issues associated with this updating function are
conceptually straightforward.

Glover (1998) provides a detailed pseudo-code description of the procedure for
maintaining RefSet (i.e., the Reference Set), called the RefSet Update Routine.  This
routine is organized to handle vectors of 0-1 variables.  We have adapted the RefSet
Update Routine to handle permutation vectors, as needed in our current application.

d) Subset Generation Method

This procedure consists of creating different subsets X of RefSet, as a basis for
implementing the subsequent combination method.  The scatter search methodology
prescribes that the set of combined solutions (i.e., the set of all combined solutions that
the implementation intends to generate) is produced in its entirety at the point where X
is created.  Therefore, once a given subset X is created, there is no merit in creating it
again.  This creates a situation that differs noticeably from those considered in the
context of genetic algorithms, where the combinations are typically determined by the
spin of a roulette wheel.

The procedure seeks to generate subsets X of RefSet that have useful properties, while
avoiding the duplication of subsets previously generated.  The approach for doing this is
organized to generate four different collections of subsets of RefSet, SubSetType 1, 2, 3
and 4, with the following characteristics:

SubsetType 1: all 2-element subsets.
SubsetType 2: 3-element subsets derived from the 2-element subsets by

augmenting each 2-element subset to include the best
solution not in this subset.

SubsetType 3: 4-element subsets derived from the 3-element subsets by
augmenting each 3-element subset to include the best
solutions not in this subset.

SubsetType 4: the subsets consisting of the best i elements, for i = 5 to b.

A central consideration of this design is that RefSet itself might not be static, because it
might be changing as new solutions are added to replace old ones (when these new
solutions qualify to be among the current b best solutions found).  In our
implementation, however, we maintain a static updating of RefSet, but use a broad
definition of “best” for the membership in this set.  In other words, we do not allow
RefSet to dynamically change its size, but we use two criteria to allow solutions to
initially become members of this set.  One criterion is the quality of the solution (as
given by the objective function value) and the other is the diversity of the solution (as
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given by the dissimilarity measure).  In this sense, our definition of “best” to construct
the first RefSet is broader than one that considers only the value of the objective
function.

After the first RefSet has been created, subsequent membership in the set can only be
obtained by means of solution quality.  That is, RefSet changes when the Combination
Method generates solutions of higher quality and the process stops when RefSet
converges.

e) Solution Combination Method

The Solution Combination Method as well as the Improvement Method are elements of
scatter search that are context-dependent.  Although it is possible to design “generic”
combination procedures, it is more effective to base the design on specific
characteristics of the problem setting.  Our Solution Combination Method, which is
applied to each subset generated in the previous step, uses a min-max construction
based on votes.

The method scans (from left to right) each reference permutation in the subset, and
uses the rule that each reference permutation votes for its first element that is still not
included in the combined permutation (referred to as the “incipient element”).  The
voting determines the next element to enter the first still unassigned position of the
combined permutation.  This is a min-max rule in the sense that if any element of the
reference permutation is chosen other than the incipient element, then it would
increase the deviation between the reference and the combined permutations.
Similarly, if the incipient element were placed later in the combined permutation than
its next available position, this deviation would also increase.  So the rule attempts to
minimize the maximum deviation of the combined solution from the reference solution,
subject to the fact that other reference solutions in the subset are also competing to
contribute.

This voting scheme can be implemented using a couple of variations that depend on the
way votes are modified:

(V1) The vote of a given reference solution is weighted according to the incipient
element’s position (referred to as the “incipient position”).  A smaller
incipient position gets a higher vote.  For example, if the element in the
first position of some reference permutation is not assigned to the
combined permutation during the first 4 assignments, then the vote is
weighted more heavily to increase the chances of having that element
assigned to position 5 of the combined permutation.  The rule emphasizes
the preference to this assignment versus having a later occurring element
of some other reference permutation (which is the incipient element for
that other permutation) become assigned.

(V2) A bias factor that gives more weight to the vote of a reference permutation
with higher quality.  Within the current organization of our scatter search
implementation such a factor should be very slight because it is expected
that high quality solutions will be strongly represented anyway.

We chose to implement V1 with a tie-breaking rule that is based on solution quality.
The rule is used when more than one element receives the same votes. Then the element
with highest weighted vote is selected, where the weight of a vote is directly proportional
to the objective function value of the corresponding reference solution.
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3.  Overall Procedure

The proposed procedure can be summarized as follows:

1. Start with P = Ø.  Use the diversification generator DG10 to construct a solution s.
Apply the Improvement Method to s to obtain the improved solution *s .  If Ps ∉*

then, add *s  to P (i.e., *sPP ∪= ), otherwise, discard s*.  Repeat this step until
|P| = PSize.

2. Order the solutions in P according to their objective function value (where the best
overall solution is first on the list).

3. Build RefSet from P, with |RefSet| = b1+b2 (i.e., b = b1+b2).  Take the first b1

solutions in P and assign them to RefSet.  For each solution x in P-RefSet, calculate
the minimum dissimilarity d(RefSet,x) to all solutions in RefSet.  Select the solution
x′ with the maximum dissimilarity d(RefSet,x′) of all x in P-RefSet.  Add x′ to RefSet,
until |RefSet| = b1+b2.  Make NewElements = TRUE.

While (NewElements) do

4. Calculate the number of subsets (MaxSubset) that include at least one new
element.  Make NewElements = FALSE.

For (SubsetCounter = 1, …, MaxSubset) do

5. Generate the next subset r from RefSet with the Subset Generation Method.
This method generates one of four types of subsets with number of elements
ranging from 2 to |RefSet|.  Let subset r = { r1, …, rk }, for 2 ≤ k ≤ |RefSet|.

6. Apply the Solution Combination Method to r to obtain a new solution sr.

7. Apply the Improvement Method to sr, to obtain the improved solution *
rs .

If ( *
rs  is not in RefSet and the objective function value of *

rs  is better than the
objective function value of the worst element in RefSet ) then

8. Add *
rs  to RefSet and delete the worst element currently in RefSet.

9. Make NewElements = TRUE.

End if

End for

End while

The procedure starts with the generation of PSize distinct solutions.  These solutions
are originally generated to be diverse and subsequently improved by the application of
the Improvement Method (step 1).  The set P of PSize solutions is ordered in step 2, in
order to facilitate the task of creating the reference set in step 3.  The reference set
(RefSet) is constructed with the first b1 solutions in P and b2 solutions that are diverse
with respect to the members in RefSet.
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The search consists of a “while-loop” and a “for-loop” that are designed to control both
the presence of new elements and the examination of all the subsets with at least one
new element.  In step 4, the number of subsets with at least one new element is
counted and this value is assigned to MaxSubset.  The Boolean variable NewElements is
made FALSE before the subsets are examined, since it is not known whether a new
solution will enter the reference set in the current examination of the subsets.  The
actual generation of the subsets occurs in step 5.  Note that only subsets with at least
one new element are generated in this step.  A solution is generated in step 6 by
applying the Combination Method.  Step 7 attempts to improve this solution with the
application of the Improvement Method.  If the improved solution from step 7 is better
than the worst solution in the reference set, then the improved solution becomes a new
element of RefSet.  The solution is added in step 8 and the NewElements indicator is
switched to TRUE in step 9.

We now turn our attention to the computational experiments used to assess the merit
of our scatter search implementations.  Details of such experiments are provided in the
next section.

4. Computational Experiments

The overall procedure described in section 3 was implemented in C, and all experiments
were performed on a Pentium 166 Mhz personal computer.

Parameter Tuning

The first set of experiments is designed to find the best values for the key parameters of
our scatter search implementation.  For this experiment, we use 15 instances from the
public-domain library LOLIB (1997) and 15 randomly generated instances with 100
sectors and with weight values uniformly distributed between 0 and 100.  The following
values were tested during these experiments:

PSize 50, 100, and 150
b 10, 20 and 40
(b1, b2) (5, 5), (10,10), (5, 15), (15, 5) and (20, 20)

The experiments reveled that a significant change in the solution quality is due to the
increase in PSize.  The experiments were inconclusive about the advantage of increasing
the size of the reference set (i.e., the value of b) beyond 20 when PSize is no more than
100.  In the same way, the experiments showed that the best results are obtained when
b1 = b2.  For the next set of experiments, we set our key parameters to the following
values: PSize = 100, b = 20 and b1 = b2 = 10.

Tracking Combination Strategies

This experiment is designed to assess the contribution of the different types of
combinations embedded in our implementation.  In other words, we would like to know
if the best solution was generated from the combination of 2, 3 or 4 reference solutions.
(The answer could be “all of the above”, since the best solution can result from a
succession of combinations, each of a different type.)  In general, we undertake to
identify how often, across a set of benchmark problems, the best solutions came from
various combinations of k reference solutions.

Since SubsetType 1 through 4 respectively generate solutions from 2 to up to b
reference solutions, we keep a 4 element array RS(i) for each solution in rank i of RefSet
(corresponding to SubsetType 1 to 4).  The array starts (0,0,0,0), meaning that there are
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no sources, and then counts the number of times those different subset types are used.
For instance, suppose three solutions with (2,0,0,1), (5,1,0,0) and (0,1,0,0) are
combined by SubsetType 2. Then the new solution is accompanied by the array (7,3,0,1)
— the sum of the other arrays, plus 1 added to position 2.

We use 15 instances from LOLIB and the RS arrays corresponding to the solutions
generated during the search to find the percentage of time that each subset type is used
to combine solutions that become members of the reference set.  The percentages are
86.9%, 11%, 2% and 0.1%, for SubsetType 1, 2, 3 and 4, respectively.  This experiment
provides an idea of the relative importance of these combination strategies.  (However,
we observe that these percentages could change if the subset types were generated in a
different sequence.)

We perform the same experiment with 15 randomly generated instances with 100
sectors and with weight values uniformly distributed between 0 and 100.  The results
are similar to those obtained before, with values of 80.3%, 15.1%, 4.3% and 0.4%, for
SubsetType 1, 2, 3, and 4, respectively.

Tracking Best Solutions

An item of special relevance in scatter search is to know not only how often the best
solutions come from different types of combinations, but also to know the ranks of the
reference solutions that generated these best solutions.  That is, a trace could be
enlightening that says: the overall best solution came from combining the 3rd and 5th
best solutions — where one of these came from combining the 1st, 2nd and 6th best
solutions, and the other came from ... etc.  This trace gives us an idea of what solutions
are important as components of others.

For this experiment, we keep at most 20 best solutions in RefSet.  Then we create a 20
by 20 matrix Source(i,j), where Source(i,j) counts the number of times a solution of rank
j was a reference point for the current solution for rank i.  (To begin, this matrix is “all
0”.)  Then, suppose next that the current solution to be assigned rank 2 is created from
3 reference points, of rank 1, 4 and 6.  Before shifting the records so that the previous
rank 2 will be the new rank 3, etc., we create a “working space” Work(j) that will become
the row Source(2,j) after the shift.  Work(j) in the present example just sums the
contents of the three rows Source(1,j), Source(4,j) and Source(6,j), and then also
increases Work(1), Work(4) and Work(6) by 1.  The data structure is maintained and
updated by this basic type of process.

Figure 4 shows the average of rows 1, 10 and 20 of the Source matrix after running
scatter search on 15 LOLIB instances.

The interpretation of the lines in Figure 4 is as follows.  Consider the line associated
with rank 1.  Then, a count of almost 18 in the first point of this line indicates that
rank 1 solutions were generated 18 times from other rank 1 solutions.  Similarly, rank
1 solutions were generated 8 times from rank 2 solutions.  The decaying effect exhibited
by all the lines indicate that high quality solutions tend to generate new solutions that
are admitted to the reference set.  This is evident by the counts corresponding to rank 1
in the x-axis.  During the search, rank 1 solutions generated 18 rank 1 solutions, 4
rank 10 solutions and 1 rank 20 solution, on average.
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We performed the same experiment using randomly generated instances and observed
the same behavior depicted in Figure 4.  The magnitude of the counts, however,
drastically changed, because the number of solutions added to the reference set in the
LOLIB problems is in the order of 20, while this value is in the order of 100 for
randomly generated problems.

Assessing Performance

In the following set of experiments we compare the performance of two variants of our
scatter search implementation with three methods: Chanas and Kobylanski (1996),
Tabu Search (Laguna, Martí and Campos, 1998) and a greedy procedure described
below.  The two variants of scatter search are SS20-100 and SS40-200, indicating that
b = 20 and 40 and PSize = 100 and 200, respectively.  In both variants, b1 = b2.  Given
the results of our experiments tracking the combination method, we restrict the
procedure to exclusively operate with SubsetType 1, 2 and 3.

The greedy local search procedure is based on deleting a sector from its current position
and inserting it in another position.  An iteration of the algorithm consists of scanning
the list of sectors in search for the first one whose movement results in an improvement
of the objective function value.  The algorithm ends when there is no improving move.

We have tested the procedures on four sets of instances:

(1) LOLIB Instances.  These instances from the public-domain library consist of
input-output tables from sectors in the European economy.  Total number of
instances is 49.

(2) SGB Instances.  These instances from the Stanford GraphBase (Knuth, 1993)
consist of input-output tables from sectors in the economy of the United
States.  The set has a total of 25 instances with 75 sectors.

(3) Random Type I.  These instances are generated from a (0,100) uniform
distribution.  Reinelt (1985) considers these instances.  We generate

Figure 4. Plot of rows 1, 10 and 20 from the Source matrix.
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instances of sizes ranging from 35 to 200.  There are 25 instances in each
set for a total of 125.

(4) Random Type II.  These instances are generating by counting the number of
times a sector appears in a higher position than anther in a set of randomly
generated permutations.  For a problem of size m, m/2 permutations are
generated.  Chanas and Kobilansky (1996) consider these instances.  We
generate instances of sizes 100, 150 and 200.  There are 25 instances in
each set for a total of 75.

To reduce the computational effort related to avoiding duplications in the population,
we have implemented the following hash function to compare solutions and avoid
duplications:

( ) 2

1

)(ipiphash
m

i
∑

=

=

We have empirically determined that two different solutions almost always have
different hash values (with a few rare exceptions).  Therefore, in our implementation,
when two solutions have the same hash value we consider that both are the same and
eliminate one of them from further consideration.  This implementation results in
average computational-time savings of about 7% in LOLIB instances and 1.5% in
random instances when compared to a full duplication checking mechanism.  The
scatter search procedure yields significantly lower duplications in random instances
than in real-world examples.  Intuitively, this can be explained by the relationships
between sectors in real-world examples, which tend to favor the generation of similar
solutions.

Tables 1 to 5 show, for each procedure, the average objective function value, the
average percent deviation from optimality, the number of optimal solutions, and the
average CPU time in seconds.  Since optimal solutions are not known for the SGB and
the large random instances, the deviation in Tables 3, 4 and 5 is reported considering
the best solution found during each experiment.  Also for these tables, the number of
best solutions found is reported instead of the number of optimal solutions.  We refer to
Chanas and Kobylanski’s method as CK, and as CK10 to the application of the method
from 10 randomly generated initial solutions.  The tabu search method will be denoted
as TS.

Table 1.  Results with LOLIB instances.

greedy CK CK10 TS SS20-100 SS40-200
value 22033729.5 22018008.3 22040892.1 22040108.5 22041229.8 22041234.9
optima dev. 0.15% 0.15% 0.02% 0.04% 0.01% 0.01%
number of optima 11 11 27 33 42 44
run time (sec.) 0.01 0.10 1.06 0.49 2.35 7.1

Table 2.  Results with random type I instances (m = 35).

greedy CK CK10 TS SS20-100 SS40-200
value 34325.6 34293.0 34444.5 34463.3 34487.1 34487.1
optima dev. 0.47% 0.56% 0.12% 0.07% 0.00% 0.00%
number of optima 0 1 4 16 25 25
run time (sec.) 0.00 0.03 0.26 0.22 2.21 8.65
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Table 3.  Results with SGB Instances.

greedy CK CK10 TS SS20-100 SS40-200
value 6125873.0 6141798.8 6144422.7 6144287.5 6144980.8 6145072.3
best dev. 0.312% 0.054% 0.011% 0.013% 0.002% 0.001%
number of best 0 0 0 5 18 22
run time (sec.) 0.10 2.73 31.93 3.03 14.05 51.81

Table 4. Results with random type I instances (m = 100, 150 and 200).

greedy CK CK10 TS SS20-100 SS40-200
value 645919.8 645809.3 646790.6 648030.4 648591.3 648705.4
best dev. 0.45% 0.48% 0.29% 0.11% 0.02% 0.01%
number of best 0 0 0 5 21 49
run time (sec.) 0.08 6.90 67.12 12.74 63.82 217.27

Table 5.  Results with random type II instances (m = 100, 150 and 200).

greedy CK CK10 TS SS20-100 SS40-200
value 549997.0 550010.3 550067.3 550114.3 550112.3 550118.1
best dev. 0.02% 0.02% 0.01% 0.00% 0.00% 0.00%
number of best 0 0 0 41 14 45
run time (sec.) 0.07 4.30 44.51 7.91 43.36 170.93

The greedy procedure is clearly inferior in terms of solution quality, although given its
simplicity, its performance is quite acceptable.  The performance of the greedy and CK
methods is very similar within each of the four problem sets, but their deviation from
the optimal (or best) solutions is significantly higher in the case of the random
instances type I.  Both the greedy and the CK procedures are performed from a
randomly generated initial solution.  TS and the SS variants, on the other hand, are
quite robust, as evident by the negligible change in the deviation values across tables.

It is difficult to measure solution quality in terms of percent deviation, since TS and
both SS variants have very small average deviations from optimality.  In terms of
number of optima (or best solutions), TS is very competitive, considering that is able to
match 33 (out of 49) optima in the LOLIB and 16 (out of 25) optima in the small random
type I problems (see Tables 1 and 2).  TS is also computationally efficient, requiring a
maximum of less than 13 seconds per problem, on the average.  The most robust
method is SS40-200 in terms of number of optima or best solutions found.  However,
this is done at the expense of higher computational times.

It should be mentioned that the optimal solutions to the random type I problem
instances with 35 sectors were found by solving the following integer programming
problem:
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In this formulation, xij = 1if sector i goes before sector j in the ordering, and 0 otherwise.
The problems were solved with CPLEX 6.0 on a Pentium machine with 450 Mhz.  The
minimum time required was 101 seconds with a maximum of 13.3 hours and an
average of 1.5 hours.

Finally, Figure 5 shows a performance graph that compares four procedures using 10
random type I instances of size 100.  The procedures were run for 20 seconds and the
best solution found was reported every second.  The greedy procedure is performed from
random starts.  Note that SS20-100 uses the first 3 seconds to generate the set P and
construct the RefSet.  When the optimization process starts, the procedure quickly
moves to the range of high quality solutions and maintains its lead during the rest of
the solution time.

5. Conclusions

The objective of our study has been to expand and advance the knowledge associated
with the implementation of scatter search procedures.  Unlike its close cousin, tabu
search, scatter search has not yet been extensively studied.  In particular, we have
undertaken to examine the critical issue of what form of diversification proves effective
in this setting.  We have also exploited a definition of quality that depends not only on
an objective function value, or even on the properties of a given solution in isolation,
but which considers the relative differences of the solutions maintained in the reference
set.  Finally, we have generated solution statistics that show the origins of the best
solutions, both in terms of the types of combinations that produced them and in terms
of the ranks of the ancestor solutions.  Our resulting scatter search implementation is
highly effective and rivals the best procedures in the literature.
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