
Variable Neighborhood Search for the
Linear Ordering Problem

CARLOS G. GARCIA
Departamento de Economía de las Instituciones. Estadística Económica
Universidad de La Laguna, Spain. Cggarcia@ull.es

DIONISIO PÉREZ-BRITO
Departamento de Estadística, Investigación Operativa y Computación
Universidad de La Laguna, Spain. Dperez@ull.es

VICENTE CAMPOS
Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Spain
Vicente.Campos@uv.es

RAFAEL MARTÍ *
Departamento de Estadistica e Investigacion Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

Latest revision: February 3, 2005.

Abstract
Given a matrix of weights, the Linear Ordering Problem (LOP) consists of finding a permutation of the
columns and rows in order to maximize the sum of the weights in the upper triangle. This NP-complete
problem can also be formulated in terms of graphs, as finding an acyclic tournament with a maximal sum
of arc weights in a complete weighted graph. In this paper we first review the previous methods for the
LOP and then propose a heuristic algorithm based on the Variable Neighborhood Search (VNS)
methodology. The method combines two neighborhoods for an efficient exploration of the search space.
We explore different search strategies and propose a hybrid method in which the VNS is coupled with a
short term tabu search for improved outcomes. Our extensive experimentation with both real and random
instances shows that the proposed procedure competes with the best-known algorithms in terms of
solution quality, and has reasonable computing-time requirements.

KeyWords: Combinatorial Optimization, Metaheuristics, Linear Ordering Problem

* Corresponding author

Variable Neighborhood Search for the LOP / 2

1. Introduction
Given a matrix of weights E = {eij}m×m, the LOP consists of maximizing the expression:

C p eE p
j i

m

i

m

i j
() =

= +=

−

∑∑
11

1

p .

where pi is the index of the column (and row) in position i in the permutation. In economics, the LOP is
equivalent to the so-called triangulation problem for input-output tables, which can be described as
follows. The economy of a region (generally a country) is divided into m sectors and an m×m input-
output table E is constructed, where the entry eij denotes the amount of deliveries (in monetary value)
from sector i to sector j in a given year. The triangulation problem then consists of simultaneously
permuting the rows and columns of E to make the sum of the entries above the main diagonal as large as
possible. An optimal solution then orders the sectors in such a way that the suppliers (i.e. sectors that
tend to produce materials for other industries) come first, followed by the consumers (i.e. sectors that tend
to be final-product industries that deliver their output mostly to end users).

The motivation for our current development is to expand the VNS methodology (Hansen and Mladenovic,
1999) for global optimization by implementing different search strategies to apply its underlying
framework to the linear ordering problem. As will be shown in the computational experiments, the
proposed procedure provides high quality solutions within an extremely short computational time.

The next section summarizes the relevant literature on this problem. In Section 3 we provide a
description of the different variants proposed to solve the LOP based on the VNS framework, including a
hybrid method that combines the VNS with a short-term tabu search algorithm. These sections are
followed by the results of our computational testing over a set of previously reported instances and the
associated conclusions.

2. The Linear Ordering Problem
The linear ordering problem has generated a considerable amount of research interest since 1958, when
Chenery and Watanabe outlined some ideas on how to obtain solutions for this problem. Table 1
summarizes the most relevant approaches to this problem.

 Reference Contribution
 Chenery and Watanabe (1958) Seminal paper
 Becker (1967) Greedy heuristic
 Grotschel et al. (1984) Exact Branch and Cut
 Reinelt (1985) Review
 Chanas and Kobylanski (1996) Multi-Start heuristic
 Reinelt (1997) LOLIB
 Laguna et al. (1999) Tabu Search
 Mitchell and Borchers (2000) Exact Cutting Plane
 Campos et al. (2001) Scatter Search

Table 1. Summary of relevant literature

Becker (1967) proposes a heuristic based on calculating quotients to rank each sector (using the
interpretation from economics). The sector with the largest quotient is ranked highest. The
corresponding column and row are then deleted from the matrix and the procedure is applied to the
remaining sectors. Becker’s method is quite fast and produces reasonable results considering its
simplicity.

Grotschel et al. (1984) describe an exact solution algorithm for the Linear Ordering Problem that could be
considered as the very first true branch and cut algorithm. This method exploits the linear description of
the LOP polytope and is able to obtain optimal solutions for a set of real world instances. Reinelt (1985)
summarizes the relevant methods and applications to this problem. This author also maintains a public-
domain library, so-called LOLIB (1997), with 49 instances of input-output tables from sectors in the

Variable Neighborhood Search for the LOP / 3

European economy. This website also contains optimal solutions (obtained with the branch and cut
mentioned above) for these instances. We will use these results in our computational experiments to
measure the quality of the heuristic methods. There have been other important contributions in the
context of exact methods for the LOP. For instance, Mitchell and Borchers (2000) propose a cutting
plane algorithm based on a primal-dual interior point method to solve the first relaxation, and on the
simplex method for the last few relaxations. Their computational results show the effectiveness of the
proposed procedure. However, since our goal is to develop a heuristic method for this problem, we focus
mainly on previous heuristic developments.

The multi-start method by Chanas and Kobylanski (1996) is based on an insertion mechanism that
searches for the best position to insert a sector in the partial ordering under construction. Sectors are
scanned according to the order of the current solution. When no further improvement is possible (hence a
local optimal solution is found), the process is re-started from the reverse permutation of the local
optimum found. The method is based on the symmetry property of the LOP, in which if the permutation
(p1, p2, …pm) is an optimal solution to the maximization problem, then an optimal solution to the
minimization problem is given by the permutation (pm, pm-1,…, p1). It is expected that the re-starting from
a reversed local optimum would induce a diversification component over the search.

Insertions are also used as the primary mechanism to move from one solution to another in the tabu
search algorithm by Laguna et al. (1999). Specifically, INSERT_MOVE(pj, i) consists of deleting sector
pj from its current position j to be inserted in position i (i.e., between the current sectors pi-1 and pi). This
operation results in the ordering p′, as follows:

()
()′ =

<

>

⎧
⎨
⎪

⎩⎪
− − +

− + +

p
p p p p p p p i
p p p p p p p i

i j i j j m

j j i j i m

1 1 1 1

1 1 1 1

, , , , , , , , ,
, , , , , , , , ,
K K K

K K K

for
for

j
j

The objective function value corresponding to p′ is obtained with the following calculation:

()
() ()
() ()

⎪
⎪
⎩

⎪⎪
⎨

⎧

>−+

<−+
=′

∑

∑

+=

−

=

jieepC

jieepC
pC i

jk
ppppE

j

ik
ppppE

E

kjjk

jkkj

for

for

1

1

Starting from a randomly generated permutation p, the short-term TS procedure alternates between an
intensification and a diversification phase. At each iteration of the intensification phase, a sector is
randomly selected. The probability of selecting sector j is proportional to an influence measure. The
method scans the neighborhood N(pj) in search of the first move with a strictly positive value (i.e., a move
such that CE(p′) > CE(p)). The neighborhood N(pj) consists of all permutations resulting from the
insertion of pj in another position:

N(pj) = {p′ : INSERT_MOVE(pj, i), for i = 1, 2, ..., j-1, j+1, ..., m}

The first improving move is selected, and if there is no improving move in the neighborhood, we select
the best available although it may result in a non-improving move (resulting in a deterioration of the
current objective function value). The moved sector becomes tabu-active for a pre-established number of
iterations, and therefore it cannot be selected for insertions during this time. In the diversification phase,
the probability of selecting a sector is inversely proportional to the number of times that it has been
previously selected. The basic procedure stops when a number of global iterations (intensification phase
followed by diversification phase) are performed without improving CE(p*) where p* is the best solution
found so far. We will refer to this short term memory tabu search method as ST_TS.

Laguna et al. (1999) also propose an extended tabu search method in which ST_TS is coupled with both
long-term intensification and diversification. The intensification is based on the path relinking
methodology, while the diversification is inspired on the symmetry property previously introduced by
Chanas and Kobylanski (1996). The path relinking process consists of making moves starting from an
initiating solution in the direction of a set of elite solutions also referred to as guiding solutions. Both the
initiating solution and the set of elite solutions consist of the best solutions found during the ST_TS

Variable Neighborhood Search for the LOP / 4

application. The long-term diversification constructs solutions that are “far away” from those in the elite
set and constitutes a diversifying element that also complements the intensification goal of the path
relinking strategy. We will refer to this complete tabu search algorithm as LT_TS. The authors compare
both procedures, ST_TS and LT_TS, with the previous heuristic methods by Becker, and Chanas and
Kobylanski in the 49 LOLIB instances as well as 75 randomly generated problems. The experiments
show that Becker’s procedure is clearly inferior and LT_TS outperforms all other methods in terms of
solution quality.

Campos et al. (2001) adapt the Scatter Search evolutionary method to the LOP according to the so-called
template given in Glover (1998), which is based on the following five elements:

1. Diversification Generator

A constructive method based on modifying a measure of attractiveness proposed by Becker (1967)
with a frequency measure that discourages sectors from occupying positions that they have
frequently occupied in previous solution generations.

2. Improvement Method
A local search “hill climbing” heuristic based on choosing the best insertion in N(pj) associated with
a given sector j as described above.

3. Reference Set Update Method
This is a generic (or context independent) Scatter Search element that builds and maintains the
reference set consisting of the “best” solutions found (where the meaning of best includes not only
quality but also diversity). Solutions gain membership to the reference set according to their quality
or their diversity. See Laguna and Martí (2003) for a detailed description of this and the next
element.

4. Subset Generation Method
This is also a generic procedure and consists of creating different subsets of the reference set as a
basis for implementing the subsequent combination method. Simple implementations apply the
combination method only to pairs of solutions in the reference set, while more advanced SS designs
consider subsets of different cardinalities for combination.

5. Solution Combination Method
The method scans (from left to right) each reference permutation in the subset, and uses the rule that
each reference permutation votes for its first element that is still not included in the combined
permutation. The voting determines the next element to enter the first still unassigned position of the
combined permutation.

The Diversification Generation Method is used to build a set P of 100 diverse solutions. The initial
reference set is built according to the Reference Set Update Method. The reference set, RefSet, is a
collection of both high quality solutions and diverse solutions that are used to generate new solutions by
means of applying the Combination Method. The construction of the initial reference set starts with the
selection of the 10 best solutions from P. These solutions are added to RefSet and deleted from P. For
each solution in P-RefSet, the minimum of the distances to the solutions in RefSet is computed. The
solution with the maximum of these minimum distances is then selected. This solution is added to RefSet
and deleted from P and the minimum distances are updated. The process is repeated 10 times. The
resulting reference set has 10 high quality solutions and 10 diverse solutions. The solutions in RefSet are
ordered according to quality, where the best solution is the first one in the list. The subsets from the
RefSet are created according to the Subset Generation Method and are selected one at a time in
lexicographical order. The Solution Combination Method is applied to generate one trial solution from
each subset. These trial solutions are subjected to the Improvement Method. The Reference Set Update
Method is applied once again to build the new RefSet with the best solutions, according to the objective
function value, from the current RefSet and the set of new improved solutions. If RefSet changes after the
application of the reference set update method, then a new combination step is performed by applying the
subset generation method to create subsets in which at least one solution is new. If the RefSet has not
changed and no new solution qualifies to enter, the method finishes.

The authors compare the performance of their approach with the multi-start method developed by Chanas
and Kobylanski and with the previously reported LT_TS tabu search. The experiments show that TS and
the SS variants have very small average deviations from optimality for the LOLIB instances. Both
procedures outperform previous approaches, including the multi-start method mentioned above.

Variable Neighborhood Search for the LOP / 5

Moreover, they are quite robust, as is evident from the negligible change in the deviation values across
tables. We will consider both methods in our computational testing in Section 4.

3. The Variable Neighborhood Search Method
The Variable Neighborhood Search (VNS) is rapidly becoming a well-established method in
metaheuristics (see for instance Hansen et al., 2001). VNS is based on a simple and effective idea: a
systematic change of neighborhood within a local search algorithm. In this section we adapt the VNS to
the LOP. We follow the description given in Hansen and Mladenovic (2003). To apply the method we
first need to define different neighborhoods for our problem. As is stated by Hansen and Mladenovic,
VNS is based on three principles:

1. A local minimum with respect to one neighborhood is not necessarily so with another.
2. A global minimum is a local minimum with respect to all possible neighborhood

structures.
3. For many problems local minima with respect to one or several neighborhoods are

relatively close to each other.

Principle 2 is true for all the optimization problems. However, principles 1 and 3 may or may not hold
depending on the problem at hand.

We have considered two classical neighborhoods in combinatorial optimization problems: switching and
insertion. N1 consists of permutations that are reached by switching the positions of contiguous sectors.
N2 consists of all permutations resulting from executing general insertion moves. Adapting the notation
introduced in Laguna et al. (1999), these neighborhoods are:

N1(p) = {p’ : INSERT_MOVE(pj, i), for i = j-1, j+1 and for any sector pj in p}
N2(p) = {p’: INSERT_MOVE(pj, i), for i = 1, 2, ..., j-1, j+1, ..., m and for any sector pj in p}

We define Nk(p) for k=3,.., kmax as the set of solutions that are obtained when we apply the general
insertion move k-1 times from p. For instance, p’∈N3(p) if p’∈N2(p’’) for some p’’∈N2(p). For the shake
of simplicity we will denote this recursive neighborhood as N3(p)=N2(N2(p))=N2

(2)(p). Therefore, in
general we define Nk(p) =N2

(k-1)(p) for k=3,.., kmax.

In this section we first introduce two restricted versions of the VNS in which only two neighborhoods, N1
and N2, are considered. The first one, named Variable Neighborhood Descent, implements a
deterministic search, while the second, named Restricted VNS, includes random elements. Then, we
describe the standard VNS method which uses the kmax neighborhoods defined above. The comparison
between the restricted and the standard VNS methods will allow us to measure the relative contribution of
using a large number of neighborhoods in the search. A new VNS variant based on frequency memory is
then introduced (Freq_VNS), and the section finishes with three hybrid methods, VNTS, Freq_VNTS and
Freq_VNSD. All these methods, with the exception of the two restricted versions, use the kmax
neighborhoods to perform the search.

Variable Neighborhood Descent

A first implementation to combine both neighborhoods in a deterministic way is given by the Variable
Neighborhood Descent (VND). In its generic form, k is initially set to 1; then, in each step, a best
neighbor p’ of p, is determined in Nk(p): if p’ is better than p, then p is replaced with p’ and k is set to 1;
otherwise, if k=1 then k is set to 2, else the method finishes. In other words, the algorithm performs a
local search for the best solution in N1 and only resorts to performing one move in N2 when the search is
trapped in a local optimum found in N1. We will refer to this method as VND_best.

We have also tested a variant in which instead of finding the best solution in the neighborhood, the
method scans it (in the order given by the current solution p) in search of the first solution p’ that
improves p. This variant will be denoted as VND_first.

Restricted Variable Neighborhood Search

This restricted version of VNS only implements neighborhoods N1 and N2. It repeatedly performs three
steps combining stochastic and deterministic strategies. In the first one, called shaking, a solution p’ is
randomly generated in Nk(p). In the second one, a local search method is applied from p’ to obtain a local

Variable Neighborhood Search for the LOP / 6

optimum p’’. In the third one, if p’’ is better than p, p is replaced with p’’ and k is set to 1; otherwise, k is
switched (from 1 to 2 or from 2 to 1 in this case of two neighborhoods). As in the VND, k is initially set
to 1 and the method resorts to N2 when N1 (now in combination with the local search) fails to improve on
the current solution. However, if N2 also fails to improve on the incumbent solution, instead of stopping
the search, VNS sets k=1 and randomly selects another trial solution in N1, repeating the three steps again.
The sequence is repeated until a Maxiter number of consecutive iterations is performed with no further
improvement.

As the local search method in this VNS algorithm, we have implemented a descent procedure based on
neighborhood N2, that in each iteration scans the list of sectors (in the order given by the current
permutation) in search of the first sector (pf) whose movement results in a strictly positive move value
(i.e., the first improving move in the neighborhood such that CE(p’) > CE(p)). The move selected by this
first strategy is then INSERT_MOVE(pf, i*), where i* is the position that maximizes CE(p’). This local
search was tested and compared with other alternatives in Laguna et al. (1999), showing remarkable
results.

Basic Variable Neighborhood Search

The basic VNS method follows the same scheme of the restricted VNS based on three steps: shaking,
local search and update of the best solution. However, in this version the method uses kmax
neighborhoods. Initially k is set to 1 and in the shaking step a solution p’ is randomly generated in Nk(p).
Then, a local search method is applied from p’ to obtain a local optimum p’’. In the third step, if p’’ is
better than p, p is replaced with p’’ and k is set to 1; otherwise, k is incremented in one unit (if k=kmax, k is
set to 1). The method repeats these three phases until a Maxiter number of consecutive iterations is
performed with no further improvement. As in the previous version, we consider the N2 descent
procedure as the local search phase.

It is expected that this shaking step produces a solution that significantly moves away from the current
solution p. In the next section we will compare this VNS method with the previous restricted version to
measure the diversification power of using a larger number of neighborhoods in the shaking step.

Frequency Variable Neighborhood Search

Diversification is the notion of expanding the search to unexplored regions in the solution space. This
expansion consists of visiting solutions that have not been previously examined. Diversification
strategies are generally based on either encouraging the incorporation of new elements or discouraging
often examined elements. In particular, we use a frequency count freq(i) in a new variant of the VNS
methodology named Freq_VNS to record the number of times sector i has been moved. Therefore, each
time sector i is moved from one position to another in the shaking or the local search phase, we increment
freq(i) by one unit. We use this frequency count to generate a new solution in the shaking step. Since we
want to diversify, we select the sectors j with a small frequency value freq(j). Specifically, in the shaking
step, we randomly select kmax sectors in the incumbent solution p to be moved. The probabilistic selection
rule is inversely proportional to the frequency count. The selected sectors are moved to the best available
position (maximizing CE(p)). As in the VNS, the Freq_VNS method repeats the shaking, local search and
update phases until a Maxiter number of consecutive iterations is performed with no further improvement.
The N2 descent procedure is used again as the local search phase.

Hybrid Methods

Both, the VNS and Freq_VNS methods can be coupled with other procedures in many different ways to
improve the performance of the “pure” algorithms. As in other VNS implementations, in this paper we
target the hybridization that consists of replacing the local search with another procedure. We have
considered two variants within this scheme.

In the VNTS and Freq_VNTS algorithms, we replace the local search in the VNS and Freq_VNS with the
TS method. In other words, the Freq_VNTS method consists of three steps. In the first one, shaking, a
new solution is generated by selecting kmax sectors in the incumbent solution according to their freq-
values and moving them to the best available position. In the second step, improvement, we apply the
short term tabu search procedure ST_TS described in the previous section from the new solution. In the
third step we check whether the solution generated by the ST_TS method replaces the incumbent solution
or not. The method repeats these three steps until a pre-specified limit is reached.

Variable Neighborhood Search for the LOP / 7

Finally, we consider a hybridization of the variable neighborhood search with the VND procedure.
Following the scheme given above, in Freq_VNSD we replace the second phase, improvement, with the
VND described above.

4. Computational Experiments
The procedures described in Section 3 as well as the most relevant existing heuristics were implemented
in C, and all experiments were performed on a Pentium IV personal computer at 2 GHz. The proposed
variants and strategies were coded both separately and jointly with the purpose of assessing their relative
merit. There are eight variants of the method:

 VND_best Variable Neighborhood Descent with the Best strategy.
 VND_first Variable Neighborhood Descent with the First strategy.
 R_VNS Restricted VNS adapted from Hansen and Mladenovic (2003) with kmax=2.

VNS Basic VNS adapted from Hansen and Mladenovic (2003).
 Freq_VNS VNS in which shaking is performed according to frequencies.

VNTS Hybrid VNS in which the local search is replaced with ST_TS.
 Freq_VNTS Hybrid Freq_VNS in which the local search is replaced with ST_TS.

Freq_VNSD Hybrid Freq_VNS in which the local search is replaced with VND.

In our experiments we compare the performance of the VNS implementations for the linear ordering
problem with three previous methods: the multi-start procedure by Chanas and Kobylanski (1996), CK,
the long-term tabu search procedure (Laguna et al. 1999), LT_TS, and the scatter search procedure
(Campos et al. 2001), SS. As far as we know, these methods provide the best solutions known for this
problem.

We have tested the procedures on four sets of previously reported instances:

(1) LOLIB Instances. These instances from the public-domain library consist of input-output
tables from sectors in the European economy. Total number of instances is 49.

(2) SGB Instances. These instances from the Stanford GraphBase (Knuth, 1993) consist of
input-output tables from sectors in the United States economy. The set has a total of 25
instances with 75 sectors.

(3) Random Type I. These instances are generated from a (0,100) uniform distribution. Reinelt

(1985) introduced these instances. Campos et al. (2001) generated instances of sizes
ranging from 35 to 200. There are 25 instances in each set for a total of 100. For the first
set (size 35) the authors provide optimum solutions.

(4) Random Type II. These instances are generated by counting the number of times a sector
appears in a higher position than another in a set of randomly generated permutations. For a
problem of size m, m/2 permutations are generated. Chanas and Kobylanski (1996)
introduced these instances. Campos et al. (2001) generated instances of sizes 100, 150 and
200. There are 25 instances in each set for a total of 75.

In our first preliminary experiment we compare simple local search methods. Specifically, we compare
the VND with a descent local search, LS, based on the N2 neighborhood. Starting from a random
solution, LS finds in each step the best neighbor p’ of the current solution p. If p’ is better than p, then p
is replaced with p’ and another step is performed; otherwise the method finishes. As was done with the
VND method, we can consider two variants of the LS replacing the selection of the best with the first
improvement in the neighborhood. Laguna et al. (1999) compared two local search methods, one based
on neighborhood N1 and the other on N2, each one with the “first” and “best” variants, concluding that the
local search based on N2 is the most effective. Therefore we do not consider the local search based on N1
in this experiment.

Combining the selection strategies with the method definitions results in four procedures: VND_first,
VND_best, LS_first, and LS_best. The results of preliminary experimentation with these four procedures
are reported in Tables 2 and 3. In this experiment we only consider those instances with known optimum.
Table 2 shows the results on the LOLIB instances while Table 3 shows the results with the 25 random

Variable Neighborhood Search for the LOP / 8

problems (type I). Both tables report the average deviation from optimality, the number of optimal
solutions found and the computational effort corresponding to each of the greedy procedures.

Tables 2 and 3 show that LS and VND provide similar results. Considering the LOLIB instances, both
present the same deviation with the best strategy, although VND_best is able to obtain 7 out of 49 optimal
solutions while LS_best obtains 11. We also run both methods from 10 initial random solutions and
VND_best obtains 24 optimal solutions while LS_best obtains 27. Table 3 shows that only VND_best is
able to obtain one optimal solution out of the 25 random problems considered. However, LS_best
presents the smallest average deviation from optimality with a value of 0.55. This experiment also
confirms what is well known for this problem: the random instances are more difficult to solve than the
real instances in which relationships between sectors are present. These instances are of a small size and
with these simple methods it is difficult to observe running time differences; however, if we run them
from different initial solutions it becomes clearer that VND saves time since it only resorts to N2 when the
search is trapped in N1. Both VND versions presents similar results; however, the VND_first requires a
lower computational effort than the VND_best (although it is not apparent in this experiment), therefore
in the remaining experiments we will consider the first version and called it for short as VND.

Table 2. Local search – 49 LOLIB instances.
 VND_first VND_best LS_first LS_best

Deviation 0.20% 0.19% 0.29% 0.19%
Num. of Opt. 7 7 8 11
CPU sec. 0.001 0.000 0.001 0.001

Table 3. Local search – 25 Random Type I instances of size 35.
 VND_first VND_best LS_first LS_best

Deviation 0.60% 0.63% 0.61% 0.55%
Num. of Opt. 0 1 0 0
CPU sec. 0.000 0.000 0.000 0.000

In our second preliminary experiment we study the value of kmax in the VNS algorithm. Specifically, we
consider three values: 5, 10 and m/2. The results of preliminary experimentation with these three variants
are reported in Tables 4 and 5 in which Maxiter is set to 50. As in the previous experiment we only
consider those instances with known optimum. Table 4 shows the results on the LOLIB instances while
Table 5 shows the results with the 25 random problems (type I).

Table 4. VNS – 49 LOLIB instances.
kmax 5 10 m/2
Deviation 0.03% 0.03% 0.02%
Num. of Opt. 35 35 39
CPU sec. 0.006 0.006 0.010

Table 5. VNS – 25 Random Type I instances of size 35.
kmax 5 10 m/2
Deviation 0.03% 0.03% 0.03%
Num. of Opt. 19 19 19
CPU sec. 0.005 0.006 0.006

These tables show that there are small variations in the results of these three procedures, with the
exception of the m/2 variant in the LOLIB. However, in this case the computational time is significantly
larger that in the other cases. Given that the VNS will be applied several times in the hybrid procedures,
we select 5 as the kmax value for the rest of the experiments since this value provides the best solutions in
terms of quality within low running times.

Variable Neighborhood Search for the LOP / 9

In our next experiment we compare the restricted, basic and frequency versions of the VNS method. In
particular, we consider the variants R_VNS, VNS and Freq_VNS described in Section 3. Since these
three procedures do not incorporate long term strategies, we compare them with the short-term tabu
search method by Laguna et al. (1999) described in Section 2 (ST_TS) and with the multi-start procedure
by Chanas and Kobylanski (1996), CK. We have set the stopping parameter Maxiter in the VNS versions
at 50 to approximate the running time consumed by the ST_TS method. As expected, if we increase this
value, the performance of the methods improves considerably. Tables 6 and 7 show the results on the
LOLIB and Random Type I instances with these five methods.

Table 6. Basic methods – 49 LOLIB instances.
 R_VNS VNS Freq_VNS ST_TS CK

Deviation 0.02% 0.03% 0.05% 0.04% 0.02%
Num. of Opt. 39 35 34 30 27
CPU sec. 0.008 0.006 0.007 0.009 0.02

Table 7. Basic methods – 25 Random Type I instances of size 35.
 R_VNS VNS Freq_VNS ST_TS CK

Deviation 0.15% 0.03% 0.04% 0.05% 0.12%
Num. of Opt. 10 19 17 14 4
CPU sec. 0.003 0.005 0.005 0.003 0.004

These tables show that the best solution quality is obtained by the VNS methods, which are able to match
a larger number of optimal solutions than the short term TS and CK methods. Specifically, in the LOLIB
instances, R_VNS matches 39 optimal solutions, VNS 35, Freq_VNS 34, ST_TS 30 and CK matches 27.
On the other hand, on random Type I instances, R_VNS matches 10 optimal solutions out of 25, VNS 19,
Freq_VNS 17, ST_TS 14 and CK matches 4. All the methods are extremely fast considering that their
running times are below 0.02 seconds. The performance of the CK method is clearly inferior with a
lower number of optimal solutions than those achieved by the other approaches. However, it is a simple
heuristic and its results are quite acceptable considering its simplicity.

In our next experiment we compare the basic and hybrid VNS methods with the best procedures for the
LOP. Specifically we compare the VNS, VNTS, Freq_VNTS, Freq_VNSD and the previous approaches
LT_TS and SS. Tables 8 to 12 show, for each procedure, the average percentage deviation from
optimality, the number of optimal solutions, and the average CPU time in seconds for each set of
instances. Since optimal solutions are not known for the SGB and the large random instances, the
deviation in Tables 10, 11 and 12 is reported considering the best solution found during each experiment.
Also for these tables, the number of best solutions found is reported instead of the number of optimal
solutions. We have set the stopping parameter Maxiter in the VNS versions at 100 to approximate the
running time consumed by the LT_TS method.

Table 8. Best methods – 49 LOLIB instances.
 VNS VNTS Freq_VNTS Freq_VNSD LT_TS SS

Deviation 0.0208% 0.0370% 0.0082% 0.016% 0.0007% 0.0133%
Num. of Opt. 40 41 46 39 47 42
CPU sec. 0.015 0.013 0.018 0.006 0.024 0.04

Table 9. Best methods – 25 Random Type I instances of size 35.
 VNS VNTS Freq_VNTS Freq_VNSD LT_TS SS

Deviation 0.0306% 0.0059% 0.0221% 0.1212% 0.006% 0%
Num. of Opt. 19 23 22 11 21 25
CPU sec. 0.009 0.011 0.012 0.005 0.014 0.023

Variable Neighborhood Search for the LOP / 10

Table 10. Best methods – 25 SGB instances of size 75.
 VNS VNTS Freq_VNTS Freq_VNSD LT_TS SS

Deviation 0.0251% 0.0087% 0.0104% 0.0135% 0.0018% 0.0023%
Num. of Opt. 7 11 14 9 14 15
CPU sec. 0.067 0.039 0.052 0.031 0.090 0.153

Table 11. Best methods – 75 random type I instances (m = 100, 150 and 200).
 VNS VNTS Freq_VNTS Freq_VNSD LT_TS SS

Deviation 0.1870% 0.1615% 0.1600% 0.2154% 0.0615% 0.0130%
Num. of Opt. 4 5 6 2 10 48
CPU sec. 1.020 0.289 0.305 0.330 0.417 0.709

Table 12. Best methods – 75 random type II instances (m = 100, 150 and 200).
 VNS VNTS Freq_VNTS Freq_VNSD LT_TS SS

Deviation 0.0053% 0.0029% 0.0019% 0.0062% 0.0014% 0.0017%
Num. of Opt. 16 20 29 9 28 18
CPU sec. 0.607 0.336 0.220 0.377 0.269 0.457

The results of our VNS variants are obtained with computational efforts that average less than 0.4 seconds
(with the exception of the basic VNS in random type I instances). Considering the metaheuristics, they
do not perform in a similar way across instances types. In particular, Table 8 shows that in the LOLIB
instances the long-term tabu search algorithm, LT_TS, is able to obtain 47 optimal solutions out of 49
instances in 0.024 seconds while the VNS variants: VNS, VNTS, Freq_VNTS and Freq_VNSD, obtain
40, 41, 46 and 39 optimal solutions in 0.015, 0.013, 0.018 and 0.006 seconds respectively. The
performance of the SS method in this experiment is clearly inferior in terms of quality considering its
running time. Table 9 shows that the best solution quality of the 25 Random Type I small instances is
obtained with the SS method, which is able to match all optimal solutions. However, it employs
significantly longer running times than the other approaches. VNTS is very competitive, considering its
23 optimal solutions achieved in 0.011 seconds (which compares favorably with the 21 optima of the
LT_TS method achieved in 0.014 seconds).

Tables 10, 11 and 12 show the results for large instances in which the optimal solution is not known. As
in the previous experiments, SS obtains very good solutions (especially in random type I instances) but it
employs longer running times than the other methods. Freq_VNTS and LT_TS are clearly the best
methods in terms of solution quality achieved within small running times. Both obtain the same number
of best solutions in the SGB instances, although LT_TS presents a smaller average percent deviation and
a larger computational time than Freq_VNTS. On the other hand, Freq_VNTS obtains 6 best solutions
and 0.16% average percent deviation in the random type I instances, while LT_TS obtains 10 best
solutions and 0.06% average percent deviation. Results in random type II instances are different since
Freq_VNTS is able to obtain 29 best solutions in 0.22 seconds of running time, which compares
favorably with all the other methods considered.

It is interesting to see that although the frequency VNS version (Freq_VNS) does not improve the
memory less variant (VNS) as shown in tables 6 and 7, when we coupled the VNS methods with tabu
search, it seems that the use of frequency based memory improves the basic VNS in solving the LOP (see
VNS, VNTS and Freq_VNTS in tables 8 to 12).

Running times in these experiments have been set to match previous reported experiments (see Laguna et
al. 1999). However, if we allow the methods to run for longer times, better solutions are obtained.
Specifically, we have run the LT_TS and Freq_VNTS methods with the stopping parameter Maxiter set
to 10,000 (instead of the 100 considered above). In the 49 LOLIB and 25 SGB instances with optimum
known, both methods are able to match all optimal solutions within less than 1 second of computer time.

Variable Neighborhood Search for the LOP / 11

The tables in the appendix show the results (best value and run time in seconds) for the rest of the
instances (which are available at http://www.uv.es/~rmarti).

Conclusions
The objective of our study has been to expand and advance the knowledge associated with the
implementation of variable neighborhood search procedures. Unlike other local search based methods,
such as tabu search, this methodology has not yet been extensively studied. In particular, we have
undertaken to examine the adaptation of VNS to solve a well known hard optimization problem: the
linear ordering problem. We have tested different variants of the procedure as well as some hybrid
methods.

Overall experiments with 249 instances were performed to assess the merit of the procedures developed
here. The results of our computational experiments reveal that the strategies implemented within a
relatively simple variable neighborhood procedure are capable of producing good solutions. Moreover,
we have explored some mechanisms to overcome the limitation of the basic design, as well as two
different ways to hybridize the method with other metaheuristics to obtain high quality solutions. In
particular, the combination of the VNS with a short-term memory tabu search has been shown to be
robust in terms of solution quality within a reasonable computational effort. The VNS variants were
extensively compared with a recently developed tabu search and a scatter search procedure. In summary,
our experimentation shows that the VNS methodology competes with the best known algorithms for the
linear ordering problem.

Acknowledgments
Research by Vicente Campos and Rafael Martí is partially supported by the Ministerio de Educación y
Ciencia (ref. TIC2003-C05-01) and by the Agencia Valenciana de Ciència i Tecnologia (ref.
GRUPOS03/189).

References
Becker, O. (1967) “Das Helmstädtersche Reihenfolgeproblem — die Effizienz verschiedener
Näherungsverfahren” in Computer uses in the Social Sciences, Berichteiner Working Conference, Wien,
January 1967.

Campos, V., F. Glover, M. Laguna and R. Martí (2001) “An Experimental Evaluation of a Scatter Search
for the Linear Ordering Problem”, Journal of Global Optimization 21, pp. 397-414

Chanas, S. and P. Kobylanski (1996) “A New Heuristic Algorithm Solving the Linear Ordering
Problem”, Computational Optimization and Applications, vol. 6, pp. 191-205.

Chenery, H. B. and T. Watanabe (1958) “International Comparisons of the Structure of Production”
Econometrica, Vol. 26, p. 4.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking”, in Artificial Evolution, Lecture
Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald , M. Schoenauer and D. Snyers (Eds.),
Springer, pp. 13-54.

Grotschel, M., M. Junger and G. Reinelt (1984) “A Cutting Plane Algorithm for the Linear Ordering
Problem”, Operations Research, vol. 32, no. 6, pp. 1195-1220.

Hansen, P. and N. Mladenovic (1999) “An Introduction to variable neighborhood search”, in
Metaheuristics: Advances and trends in local search paradigms for optimization, Voss, S., Martello, S.,
Osman, I.H. and Roucairol, C. (Eds.), pp. 433-458.

Hansen, P. and N. Mladenovic (2003) “Variable neighborhood search”, in Handbook of Metaheuristics,
Glover, F. and Kochenberger, G. (Eds.), pp. 145-184.

Hansen, P., N. Mladenovic and D. Pérez-Brito (2001) “Variable Neighborhood Decomposition Search”
Journal of Heuristics vol. 7, no. 4, pp. 335-350.

Laguna, M. and R. Martí (2003) Scatter Search. Methodology and Implementations in C. Kluwer
Academic Publishers.

http://www.uv.es/~rmarti

Variable Neighborhood Search for the LOP / 12

Laguna, M., R. Martí and V. Campos (1999) “Intensification and Diversification with Elite Tabu Search
Solutions for the Linear Ordering Problem,” Computers and Operations Research 26, pp. 1217-1230.

LOLIB (1997) http://www.iwr.uni-heildelberg.de/groups/comopt/software/LOLIB/

Mitchell, J.E. and B. Borchers (2000) “Solving linear ordering problems with a combined interior
point/simplex cutting plane algorithm”, In High Performance Optimization, H. Frenk et al. (Eds.), pp.
349-366, Kluwer Academic Publishers.

Reinelt, G. (1985) The Linear Ordering Problem: Algorithms and Applications, Research and Exposition
in Mathematics, Vol. 8, H. H. Hofmann and R. Wille (Eds.), Heldermann Verlag Berlin.

http://www.iwr.uni-heildelberg.de/groups/comopt/software/LOLIB/

Variable Neighborhood Search for the LOP / 13

Appendix

SGB

(size 75)

LT_TS

(value)

LT_TS

(CPU sec.)

Freq_VNTS

 (value)

Freq_VNTS

(CPU sec.)

1 6144679 5.22 6144679 4.84
2 6100491 5.19 6100491 4.72
3 6165775 4.03 6165775 4.63
4 6154958 6.23 6154958 4.89
5 6141070 4.11 6141070 4.24
6 6144055 5.61 6144055 4.20
7 6142899 4.05 6142899 4.31
8 6154094 7.02 6154094 5.63
9 6135459 3.84 6135459 4.38

10 6149271 4.13 6149271 4.92
11 6151750 4.23 6151750 4.53
12 6150469 4.56 6150469 5.08
13 6156935 7.64 6156935 4.80
14 6149693 5.69 6149693 4.86
15 6150331 7.34 6150331 6.45
16 6164959 4.48 6164959 4.89
17 6163483 5.95 6163483 5.77
18 6063548 4.20 6063548 5.00
19 6150967 4.41 6150967 4.67
20 6152224 4.14 6152224 4.53
21 6159081 4.16 6159081 4.34
22 6127019 4.25 6127019 4.78
23 6136362 3.81 6136362 4.66
24 6168513 5.31 6168513 4.59
25 6150026 3.80 6150026 4.33

Variable Neighborhood Search for the LOP / 14

Random type I

 Size 100 Size 150 Size 200

 LT_TS Freq_VNTS LT_TS Freq_VNTS LT_TS Freq_VNTS

1 271622 6.25 271549 5.56 603998 15.53 603406 11.77 1066545 34.84 1065079 20.66
2 271170 7.23 271106 5.83 605999 14.42 606406 11.78 1067416 37.14 1068188 59.63
3 273824 6.41 272794 6.38 605225 19.91 604773 23.20 1066618 61.27 1065538 21.09
4 271160 8.89 270978 5.56 603964 19.89 603436 12.44 1068817 26.91 1067354 19.64
5 272946 11.61 272459 7.53 603634 15.36 602399 14.08 1067804 33.25 1066589 21.52
6 270217 6.66 270326 5.52 602881 23.11 602138 11.84 1066104 30.61 1063958 54.75
7 273785 10.92 272892 5.67 606175 16.36 605758 12.80 1068049 47.42 1066199 34.91
8 273452 7.41 272637 7.41 612316 18.17 611411 33.58 1070932 36.41 1069708 26.67
9 273480 6.44 273326 8.17 607992 24.02 607846 12.97 1068787 29.91 1067518 25.77

10 273066 6.52 273066 5.91 608651 17.91 607272 18.03 1070623 30.28 1068891 25.81
11 270882 6.20 270671 5.72 602967 17.19 601710 12.53 1066238 44.67 1063600 24.53
12 270916 9.33 270698 11.25 605220 19.69 603997 13.91 1069983 43.64 1067668 20.59
13 271804 6.19 271695 5.70 605124 16.89 604009 18.52 1064734 32.25 1063454 22.83
14 269376 6.52 269048 9.19 605464 21.63 603980 12.06 1068576 32.67 1066317 44.80
15 274847 6.22 274403 5.67 608996 20.22 607691 12.78 1071280 28.72 1069335 22.36
16 273216 6.64 273207 6.92 606339 18.30 605393 15.03 1069493 35.09 1067831 37.02
17 273025 6.78 272735 6.06 605411 24.61 604338 11.66 1069387 58.95 1065097 23.06
18 270951 6.50 270892 5.92 603312 26.52 602122 12.06 1068233 37.34 1065858 57.52
19 270650 7.45 270648 5.81 602956 16.58 601845 12.11 1065566 30.83 1065582 26.11
20 274625 6.78 274111 11.24 605873 18.38 605116 11.69 1068789 48.53 1068946 56.81
21 274582 7.14 274197 9.25 606705 22.84 606649 35.36 1073835 31.52 1074094 25.44
22 272059 7.33 272026 5.78 604914 18.84 604541 16.95 1064220 47.42 1062753 38.88
23 271970 8.19 271881 7.19 605898 17.45 605432 12.16 1067725 40.19 1067148 38.30
24 271912 7.36 271809 6.19 606704 22.13 605205 11.25 1069591 35.33 1068543 24.63
25 270764 8.00 270477 6.55 605900 16.52 605737 11.72 1067428 29.25 1067090 26.13

Variable Neighborhood Search for the LOP / 15

Random type II

 Size 100 Size 150 Size 200
 LT_TS Freq_VNTS LT_TS Freq_VNTS LT_TS Freq_VNTS
1 135648 4.70 135648 5.33 454420 13.02 454420 14.83 1063170 21.36 1063154 25.22
2 137192 4.89 137192 5.47 453199 13.19 453194 13.27 1061259 21.08 1061259 38.59
3 135865 4.75 135865 5.39 451061 12.41 451062 14.75 1059687 21.92 1059657 20.97
4 135962 4.86 135962 5.50 453473 13.30 453472 16.98 1064725 23.78 1064711 30.64
5 135384 4.73 135384 5.42 456476 11.81 456476 24.45 1064500 24.23 1064482 20.74
6 135505 5.08 135505 7.91 454210 11.91 454204 16.97 1059401 27.81 1059383 35.86
7 136468 4.75 136468 5.42 453249 13.50 453248 13.20 1064243 23.81 1064271 28.14
8 134686 5.56 134686 5.50 449718 12.47 449717 13.48 1064468 23.17 1064484 23.61
9 136759 5.50 136751 5.44 451618 12.58 451618 17.03 1059821 22.59 1059819 20.30

10 136225 4.86 136225 6.03 450615 12.80 450617 17.06 1064348 20.19 1064356 24.63
11 135296 4.80 135296 5.69 452677 12.28 452672 15.34 1063003 21.52 1063003 20.53
12 136262 4.80 136262 5.36 452277 14.31 452271 14.47 1065731 27.13 1065733 25.84
13 136840 4.84 136840 5.44 453659 12.45 453655 16.13 1057456 26.94 1057470 19.55
14 135722 5.00 135722 5.27 450212 12.47 450212 14.94 1061322 21.53 1061300 25.16
15 134902 4.70 134898 5.95 454950 12.67 454941 20.50 1059016 23.56 1059010 45.08
16 137001 5.22 137001 13.08 452369 12.83 452369 13.31 1062815 21.28 1062795 25.09
17 136284 4.92 136284 5.83 451149 13.02 451149 19.77 1054501 21.66 1054495 34.38
18 136386 4.89 136386 7.66 452872 12.78 452872 16.58 1065141 25.64 1065131 39.25
19 137389 5.06 137389 6.81 454457 13.28 454448 12.08 1057399 28.39 1057347 20.61
20 135435 5.14 135433 6.64 449790 15.73 449786 13.74 1062760 22.19 1062758 20.59
21 135024 5.52 135016 5.47 451283 15.11 451285 13.23 1060805 26.69 1060765 20.17
22 136592 4.84 136592 5.91 450816 12.11 450816 11.77 1062479 36.50 1062487 37.16
23 135632 4.84 135632 5.70 453797 13.17 453795 12.06 1061401 23.61 1061421 34.16
24 135195 4.95 135195 5.58 451160 13.58 451160 12.73 1065109 21.41 1065093 20.44
25 134612 4.88 134612 5.41 453286 15.02 453281 12.25 1063929 21.27 1063929 24.63

	Conclusions

