
Noname manuscript No.
(will be inserted by the editor)

A Benchmark Library and a Comparison of Heuristic
Methods for the Linear Ordering Problem

Rafael Mart́ı · Gerhard Reinelt ·
Abraham Duarte

November 18, 2010

Abstract The linear ordering problem consists of finding an acyclic tourna-
ment in a complete weighted digraph of maximum weight. It is one of the
classical NP-hard combinatorial optimization problems. This paper surveys a
collection of heuristics and metaheuristic algorithms for finding near-optimal
solutions and reports about extensive computational experiments with them.
We also present the new benchmark library LOLIB which includes all instances
previously used for this problem as well as new ones.

1 Introduction

LetDn = (Vn, An) denote the complete digraph on n nodes, where Vn is the set
of nodes and An the set of arcs. A tournament T in An consists of a subset of
arcs containing for every pair of nodes i and j either arc (i, j) or arc (j, i), but
not both. T is an acyclic tournament if it does not contain any directed cycle.
Obviously, an acyclic tournament induces an ordering ⟨vi1 , vi2 . . . , vin⟩ of the
nodes (and vice versa): node vi1 is the one with no entering arcs in T , vi2 has
exactly one entering arc, etc., and vin is the node with no outgoing arc. Given
arc weights wij for every pair i, j ∈ Vn, the linear ordering problem (LOP)
consists of finding an acyclic tournament T in An such that

∑
(i,j)∈T wij is

maximal, or in other words, of finding an ordering of the nodes such that the
sum of the weights of the arcs compatible with this ordering is maximal.

R. Mart́ı
Dept. de Estad́ıstica e Investigación Operativa, University of Valencia, Valencia, Spain
E-mail: rafael.marti@uv.es

G. Reinelt
Institute for Computer Science, University of Heidelberg, Heidelberg, Germany
E-mail: gerhard.reinelt@informatik.uni-heidelberg.de

A. Duarte
Dept. Ciencias de la Computación, University Rey Juan Carlos, Madrid, Spain
E-mail: abraham.duarte@rjc.es



2 Rafael Mart́ı et al.

Alternatively, the problem can be defined as a matrix problem. Given an
(n, n) matrix C = (cij) the triangulation problem is to determine a simul-
taneous permutation of the rows and columns of C such that the sum of
superdiagonal entries becomes as large as possible (or equivalently, the sum of
subdiagonal entries is as small as possible). Note, that it does not matter if di-
agonal entries are taken into account or not. Obviously, by setting arc weights
wij = cij for the complete digraph Dn, the triangulation problem for C can be
solved as linear ordering problem in Dn. Conversely, a linear ordering problem
for Dn can be transformed to a triangulation problem for an (n, n)-matrix C
by setting cij = wij and the diagonal entries cii = 0 (or to arbitrary values).

The LOP can also be seen as a problem of ranking objects. Suppose there
are n objects which are to be ranked where there is a benefit cij if object i is
ranked before object j. The task of finding a linear ranking maximizing the
sum of benefits w.r.t. this ranking amounts to solving a LOP or triangulation
problem.

In the following we do not distinguish between the graph and the matrix
or the ranking problem and denote the objective function coefficients by cij .

Note, that if a constant is added to both entries cij and cji or if we take
diagonal entries into account, the optimality of an ordering is not affected
by this transformation. However, the quality of bounds does change. If we
add large constants, then every feasible solution is close to optimal and no
real comparison of qualities is possible (which is very relevant when we are
comparing heuristics). Therefore we transform every problem matrix C to its
normal form satisfying the following conditions:

i. All entries of C are integral and nonnegative,
ii. cii = 0, for all i = 1, . . . , n,
iii. min{cij , cji} = 0, for all 1 ≤ i < j ≤ n.

Note that this normal form is unique.
The LOP can be formulated as a 0/1 linear integer programming (IP)

problem as follows. We use 0/1 variables xij , for (i, j) ∈ An, stating whether
arc (i, j) is present in the tournament or not. Taking into account that a
tournament is acyclic if and only if it does not contain any dicycle of length 3,
it is easily seen that the LOP can be formulated as the 0/1-IP

max
∑

(i,j)∈An

cijxij

xij + xji = 1, for all i, j ∈ Vn, i < j,

xij + xjk + xki ≤ 2, for all i, j, k ∈ Vn, i < j, i < k, j ̸= k,

xij ∈ {0, 1}, for all i, j ∈ Vn.

This IP is the basis for approaches to solve the LOP to optimality. If we
replace the constraints “xij ∈ {0, 1}” by “0 ≤ xij ≤ 1” then we obtain a linear
programming problem, whose optimum objective function value provides an
upper bound on the optimum value of the LOP. In cases where we do not
know optimum solutions to the benchmark problems, we will usually take this



A Benchmark Library and a Comparison of Heuristics 3

upper bound for assessing the quality of heuristics. We will not address the
computation of optimum solutions in this paper.

The LOP has been the subject of study for a long time. Applications
mentioned in the literature are, for instance, aggregation of individual prefer-
ences [11], triangulation of input-output tables [26,8], determination of ances-
try relationships [15], scheduling with preferences [4], assessment of corruption
perception [1] and minimizing crossing numbers in graph drawing [21].

This paper is organized as follows. In Section 2 we describe simple heuristic
approaches for the LOP. Section 3 discusses metaheuristics summarizing the
most relevant work in approximate optimization for the LOP. The benchmark
problems are described in Section 4. In Section 5 we report extensive experi-
mental results targeting both short and medium computation time. Some final
remarks and an appendix with the best known solution values conclude the
paper.

2 Heuristics

In this section we review construction and improvement heuristics. Construc-
tion methods obtain a solution, i.e., a linear ordering from scratch adding
iteratively one node at each step. Improvement heuristics, also called local
search or ascent methods (in the case of maximization problems) start from
the solution obtained with a construction method and iteratively improve it
by performing local changes usually referred to as moves. The different types
of moves and selection strategies characterize the various heuristics. In this
section we consider the two typical moves: insertion and exchange.

2.1 Construction method of Chenery and Watanabe

The earliest heuristic for the LOP was introduced in 1958 by Chenery and
Watanabe [8]. It concerns an application in economy and it is a simple method
to rank the sectors of input-output tables. Sectors having a large share of
outputs to other sectors should be ranked first. We can view this method as
a greedy algorithm in which the attractiveness ai of sector i is the sum of the
elements in its corresponding row, i.e.,

ai =

n∑
j=1

cij .

The method successively constructs an ordering by selecting in each step the
most attractive sector among the sectors not ranked so far.



4 Rafael Mart́ı et al.

2.2 Construction methods of Aujac and Masson

Aujac and Masson [2] also rank sectors based on coefficients. The output coef-
ficient bij of a sector i with respect to another sector j is defined as

bij =
cij∑

k ̸=i

cik
.

The first method (AM-O) intends to rank sector i before sector j whenever
bij > bji. Since this is impossible in general, it heuristically tries to find a
linear ordering with few contradictions to this principle. Similarly, the second
method (AM-I) defines input coefficients, where cij is divided by the sum of
the entries in the corresponding column, and ranks sectors according to them.

2.3 Construction methods of Becker

Becker [3] proposed a construction method (Bci) related to the previous ones
in that it calculates special quotients to rank the sectors. For each sector i the
number

qi =

∑
k ̸=i

cik∑
k ̸=i

cki

is computed. The sector with the largest quotient qi is then ranked highest.
Its corresponding rows and columns are deleted from the matrix, and the
procedure is applied to the remaining sectors.

Becker also proposed a second construction method (Bcr) based on ro-
tations, which seems a local search method. Starting from a random order-
ing, at each iteration this method tries to improve the current ordering O =
⟨i1, i2, . . . , in⟩ by evaluating all orderings ⟨im+1, im+2, . . . , in, 1, 2, . . . , im⟩, for
m = 1, 2, . . . , n−1. If the best one among them improves O, the method takes
it as the new current ordering and continues, otherwise it stops.

2.4 Construction methods based on insertions

We have included two further constructive methods, BI1 and BI2, based on
insertions. They basically select an arbitrary unassigned object and insert it
into the partial solution at the currently best possible position. Let ⟨i1, . . . , ik⟩
be the current partial ordering. BI1 computes for every object l not ranked so
far coefficients

qt =

t−1∑
j=1

cij l +

k∑
j=t

clij ,



A Benchmark Library and a Comparison of Heuristics 5

for 1 ≤ t ≤ k, and inserts l at the position with maximum coefficient. Alter-
natively, BI2 uses coefficients

qt =
t−1∑
j=1

cij l +
k∑

j=t

clij −
t−1∑
j=1

clij −
k∑

j=t

cij l.

2.5 Improvement methods based on insertions

Removing a node from the current ordering and inserting it at a different posi-
tion is a simple possibility for searching for an improvement. Laguna et al. [24]
define move(Oj , i) as the modification which deletes Oj from its current posi-
tion j in permutation O and inserts it at position i (i.e., between the objects
currently in positions i − 1 and i). The move value is the difference between
the objective function values after and before the move. The method LSi scans
the list of nodes (in the order given by the current permutation) in search for
the first node whose movement results in an strictly positive move value.

A different approach based on insertions is the method known as k-opt,
which basically selects k elements of a solution and locally optimizes with
respect to these elements (i.e., considers all subsets of k objects Oi1 , . . . , Oik

in the current permutation and finds the best assignment of these objects to
the positions i1, . . . , ik). Since the number of possible new assignments grows
exponentially with k, we have only implemented 2-opt and 3-opt.

2.6 Improvement based on exchanges

This heuristic checks whether the objective function can be improved if the
positions of two objects in the current ordering are exchanged. All such pos-
sibilities are checked and the method stops when no further improvement is
possible this way.

In [24] a limited version of this improvement method is considered. The
authors tested a method in which only contiguous sectors are considered for
exchange (swap) and concluded that better solutions can be obtained with
general insertions. However, as far as we know, general exchanges (between
any pair of sectors) have never been tested. We will consider them in our
computational comparison.

2.7 Kernighan and Lin improvement

Kernighan and Lin [22] introduced compound moves as a series of simple
moves. In contrast to pure improvement heuristics, they allow that some of
the simple moves (such as insertions or exchanges) are not improving. However,
it is required that the composition produces an improvement. Algorithm KL1

considers sequences of up to n exchange moves. Each of the simple moves is



6 Rafael Mart́ı et al.

the best available one, but it can be a non-improving. If the composition of
k moves, for some 1 ≤ k ≤ n, results in an improvement, then it is performed.
Otherwise the moves are discarded and the original solution is restored. Vari-
ant KL2 works in the same way composing sequences of insertion moves.

2.8 Local Enumeration

This heuristic chooses windows ⟨ik, ik+1, . . . , ik+L−1⟩ of a given length L of
the current ordering ⟨i1, i2, . . . , in⟩ and determines the optimum subsequence
of the respective objects by enumerating all possible orderings. The window is
moved along the complete sequence until no more improvements can be found.
We implemented this method, denoted LE, with length L = 8.

3 Metaheuristics

In recent years, a series of methods have appeared under the name metaheuris-
tics, a term coined by Glover [14] in 1986. Basically, we consider a metaheuris-
tic as combination of simple heuristics with some scheme of randomization
and additional features, which can be interpreted as learning mechanism and
systematic exploration of search spaces. The following approaches fall into this
category. We give only short descriptions of these procedures here because they
are discussed in depth in the recent book by Mart́ı and Reinelt [27].

3.1 KLM - Kernighan and Lin multi-start method

Multi-start procedures exploit a local or neighborhood search procedure by
applying it from multiple random initial solutions. It is well known that search
methods based on local optimization that aspire to find global optima usually
require some type of diversification to overcome local optimality. Without
diversification, such methods can reduce to tracing paths that are confined
to a small area of the solution space, making it almost impossible to find a
global optimum. We apply the Kernighan and Lin method from different initial
random solutions until a pre-specified time limit is reached.

3.2 CK - Chanas and Kobilansky multi-start method

Chanas and Kobylanski [8] proposed a multi-start method, called CK, based
on the following symmetry property. If the permutation O = ⟨O1, O2, . . . , On⟩
is an optimum solution to the maximization problem, then an optimum so-
lution to the minimization problem is O∗ = ⟨On, On−1, . . . , O1⟩. The method
utilizes this property to escape local optimality: once a local optimum solu-
tion O is found, the process is re-started from the permutation O∗ (REVERSE
operation).



A Benchmark Library and a Comparison of Heuristics 7

In a global iteration, CK performs insertions as long as the solution im-
proves. Given a solution, the algorithm explores move(Oj , i) for all Oj and i
in O, and performs the best one. When no further improvement is possible,
it generates a new solution by applying the REVERSE operation from the
last solution obtained, and performs a new global iteration. The method halts
when the best solution found cannot be improved further in the current global
iteration.

3.3 GRASP - Greedy Randomized Adaptive Search Procedure

Each GRASP iteration [12] consists of constructing a trial solution and then
applying an improvement procedure to find a local optimum (i.e., the final
solution for that iteration). In [5] we can find several GRASP algorithms em-
bedded in a scatter search procedure for the LOP. The best one combines a
randomized adaptive construction based on the greedy evaluation e, with a
local search based on a best insertion (i.e., move to the best solution in the
neighborhood defined by insertion moves). The evaluation e(i) of object i is
the sum of the elements in its corresponding matrix row:

e(i) =

n∑
j=1

cij .

3.4 TS - Tabu Search

Tabu search [16] is a metaheuristic that guides a local search procedure to
explore the solution space beyond local optimality by allowing non-improving
moves in the local search. The basic tabu search algorithm proposed in [24]
implements a short-term memory structure alternating two phases: intensifi-
cation and diversification. It is based on insertions as the improvement phase
of the GRASP algorithm described above. However, instead of scanning the
objects in search for a move in their original order, they are randomly selected
in the intensification phase based on a measure of influence.

The basic method is complemented with a long-term intensification based
on the path relinking methodology [25], and with a long-term diversification
based on the REVERSE operation proposed in CK. Both long-term strategies
incorporate frequency information (memory structures) recorded during the
application of the short-term phase.

3.5 SS - Scatter Search

Scatter search is an evolutionary or population based method [25] that operates
on a relatively small set of solutions, called reference set, combining them to
obtain new and hopefully better solutions. In [5] an SS algorithm is described



8 Rafael Mart́ı et al.

in which solutions are generated with a diversification method, combined with
a min-max method based on a voting scheme, and improved with the local
search method employed in the GRASP method referenced above.

Some preliminary tests [5] disclose the best strategies to implement these
three methods. We can highlight the use of a frequency-based procedure as the
diversification generator method and the combination of multiple solutions.

3.6 VNS - Variable Neighborhood Search

Variable neighborhood search [20] is based on a simple and effective idea: a
systematic change of the neighborhood within a local search algorithm. In [13]
a VNS algorithm is proposed based on neighborhoods Nk, k = 1, . . . , n, where
the neighborhood of the solution p, Nk(p), is the set of solutions that are
obtained when we apply k − 1 insertion moves to p.

The VNS algorithm applies three steps: shaking, in which the current so-
lution is perturbed, improving, in which a local optimum with respect to the
current neighborhood is obtained, and updating, in which a change in the
neighborhood is performed. The authors proposed in [13] a hybrid algorithm
in which VNS is combined with memory structures for improved outcomes.

3.7 GA and MA - Genetic and Memetic Algorithms

In [31] a genetic algorithm coupled with a local search procedure, called
memetic algorithm, is developed. As in SS above, it basically consists of gener-
ating, improving, and combining solutions. In the initialization, a population
of individuals is obtained by first generating a set of random permutations
(solutions) and then applying a local search procedure, based on insertions, to
each of them.

In each iteration of the algorithm, called generation, new solutions are
generated by applying crossover and mutation to randomly selected solutions
in the population (according to a uniform distribution). Local search is applied
again to improve each new solution. The new population is created by merging
the best solutions in the population and the new improved solutions. It is
worth mentioning that the authors consider four different crossover operators:
DPX (similar distance from parents), CX (cycle crossover), OB (order based
crossover) and RANK (computing the average ranking of the elements). In
computational experiments CX and OB performed best.

In [19] a similar method based on combining a classical GA with a local
search is presented. It is called hybrid genetic algorithm (HGA) and it is very
similar to the method in [31]. The local search is also based on exchanges. Addi-
tionally, this method also applies the CX and OB crossover operators. However,
instead of DPX and RANK, it applies PMX (partially matched crossover).



A Benchmark Library and a Comparison of Heuristics 9

3.8 SA - Simulated Annealing

Simulated annealing proceeds in the same way as ordinary local search, but
incorporates some randomization in move selection to avoid getting trapped in
a local optimum by means of non-improving moves. The moves are accepted
according to probabilities taken from the analogy with the annealing process.
As far as we know there is no previous implementation of SA for the LOP
although some methods, such as the noising algorithm by Charon and Hudry
[7] are based on the same principle. We implemented an SA method based on
insertion moves like the other local search based metaheuristics in this section.

3.9 ILS - Iterated Local Search

In [31] an iterated local search algorithm is proposed. This method iterates
between local search phases by applying three main steps: perturb a locally
optimal solution with exchange moves, apply the local search based on inser-
tions to the perturbed solution, and determine the new solution to be per-
turbed based on the search history. The authors perform a comparison in this
paper which favors the memetic algorithm.

4 The library of benchmark problems

We have compiled a comprehensive set of benchmark instances including all
problem instances that have so far been used for conducting computational
experiments. Furthermore we have included new instances. In their original
definition, some problem instances are not in normal form. For the computa-
tions documented here, all instances have been transformed to normal form.
We give a brief description of the origin and the characteristics of the groups
of instances.

4.1 Input/Output matrices

This is a well-known set of instances, first used in [18]. It contains 50 real-world
linear ordering problems taken from input-output tables from various sources.
They are comparatively easy and are thus more of interest for economists than
for the assessment of approximate methods for hard problems. The original
entries in these tables were not necessarily integral, but for the Linear Ordering
Library LOLIB they were scaled to integral values.

4.2 SGB instances

These instances were used in [24] and are taken from the Stanford Graph-
Base [23]. They are random instances with entries drawn uniformly distributed
from [0, 25000]. The set has a total of 25 instances with n = 75.



10 Rafael Mart́ı et al.

4.3 Random instances of type A

This is a set with 175 random instances that has been widely used for exper-
iments. Problems of type I (called RandomAI ) are generated from a [0,100]
uniform distribution. This type of problems was proposed in [29] and gener-
ated in [5]. Problems were originally generated from a [0, 25000] uniform dis-
tribution in [24] and modified afterwards, sampling from a significatively more
narrow range (i.e., [0,100]) to make them harder to solve. Sizes are n =100,
150, and 200, and there are 25 instances in each set giving a total of 75. We
have extended this set including 25 additional instances with size n =500.

Instances of type II (called RandomAII ) are generated by counting the
number of times a sector appears in a higher position than another in a set of
randomly generated permutations. This type of instances was proposed in [6]
and generated in [5]. For a problem of size n, n

2 permutations are generated.
There are 25 instances for each n, where n = 100, 150, and 200.

4.4 Random instances of type B

For these random instances, the superdiagonal entries are drawn uniformly dis-
tributed from [0, U1] and the subdiagonal entries from [0, U2], where U1 ≥ U2.
For the problems p40-i with n = 40, we set U1 = 100 and U2 = 100+4(i−1).
For n = 44 and 50 we set U1 = 100 and U2 = 100 + 2(i− 1) for the problems
p44-i and p50-i, respectively.

4.5 Instances of Mitchell and Borchers

These instances have been used in [28]. They are random matrices where the
subdiagonal entries are uniformly distributed in [0, 99] and the superdiagonal
entries are drawn uniformly from [0, 39]. Finally, a certain percentage of the
entries was set to zero.

4.6 Instances of Schiavinotto and Stützle

Some further benchmark instances have been used in [31]. These instances were
generated from the real-world input-output tables of 4.1 by replicating them to
obtain larger problems. Thus, the distribution of numbers in these instances
somehow reflects real input-output tables, but otherwise they behave more
like random problems. That data set has been called XLOLIB; instances with
n =150 and 250 are available. For each original input-output instance, two
instances, one of size n = 150 and another one of size n = 250 were generated.
The original set contains 98 instances (49 with size 150 and 49 with size 250).
We have removed 20 of these instances because there entries were so large that
the sum of entries was not representable as a four byte integer. Therefore, this
set finally has 78 instances.



A Benchmark Library and a Comparison of Heuristics 11

Table 1 Number of instances in each set

Set #Instances #Optima #Upper Bounds

IO 50 50 –

SGB 25 25 –

RandomAI 100 – 100

RandomAII 75 25 50

RandomB 90 70 20

MB 30 30 –

XLOLIB 78 – 78

Special 36 29 6

Total 484 229 255

4.7 Further special instances

We included some further problem instances that were used for experiments
in some publications.

– EX instances

These instances were used in particular in [9] and [10].

– econ instances

The problems instances econ36 through econ77 were generated from the
matrix usa79. They turned out not to be solvable as linear program using
only 3-dicycle inequalities.

– atp instances

These instances were created from the results of ATP tennis tournaments
in 1993/1994. Nodes correspond to a selection of players and the weight of
an arc (i, j) is the number of victories of player i against player j.

– Paley graphs

Paley graphs have been used in [17] to prove results about the acyclic sub-
digraph polytope. They are a special class of tournaments where adjacency
comes from an algebraic definition. They are constructed from the mem-
bers of a suitable finite field by connecting pairs of elements that differ in
a quadratic residue.

Table 1 summarizes the number of instances (#Instances) in each set de-
scribed above. Moreover, it specifies the number of instances where the opti-
mum is known (#Optima) or where only an upper bound is known (#Upper
Bounds). In the computational experiments we call OPT-I to the set of 229
instances where the optimum is known, and UB-I to the set of 255 instances
where only an upper bound is known.

LOLIB is available at the web sites

– http://comopt.ifi.uni-heidelberg.de/software/LOLIB

– http://heur.uv.es/optsicom/LOLIB



12 Rafael Mart́ı et al.

Also the constants eliminated by the transformation to normal form can be
found there. In the appendix of this paper we list all problems with their
optimum solution values or currently known best lower and upper bounds.

5 Computational Comparison

We divide our experimentation into three parts according to the classification
of the instances and methods introduced in previous sections.

In the first experiment we consider the 229 instances of OPT-I and the sim-
ple heuristics described in Section 2. In this experiment for each instance and
each method we compute the relative deviation Dev (in percent) between the
best solution value Value obtained with the method and the optimal value for
that instance. For each method, we also report the number of instances #Opt
for which an optimum solution could be found. In addition, we calculate the
so-called score statistic [30] associated with each method. For each instance,
the nrank of method M is defined as the number of methods that found a
better solution than the one found by M. In the event of ties, the methods
receive the same nrank, equal to the number of methods strictly better than all
of them. The value of Score is the sum of the nrank values for all the instances
in the experiment, thus, the lower the Score the better the method.

Tables 2 and 3 report about our results for 7 constructive and 7 improving
heuristics respectively on the OPT-I set. We do not report running times in
these tables because these methods are very fast and their running times are
extremely short (below 1 milisecond).

Table 2 shows results for:

– CW: Chenery and Watanabe algorithm
– AM-O: Aujac and Masson algorithm (output coefficients)
– AM-I: Aujac and Masson algorithm (input coefficients)
– Bcq: Becker algorithm (based on quotients)
– Bcr: Becker algorithm (based on rotations)
– BI1: Best Insertion algorithm (variant 1)
– BI2: Best Insertion algorithm (variant 2)

In Table 3 the results obtained with the following improvement methods
(started with a random initial solution) are given:

– LSi: Local Search based on insertions
– 2opt: Local Search based on 2-opt
– 3opt: Local Search based on 3-opt
– LSe: Local Search based on exchanges
– KL1: Kernighan-Lin based on exchanges
– KL2: Kernighan-Lin based on insertions
– LE: Local enumeration

Results in Table 2 clearly indicate that OPT-I instances pose a challenge for
the simple heuristics with average percentage deviations ranging from 3.49%



A Benchmark Library and a Comparison of Heuristics 13

Table 2 Constructive methods on OPT-I instances

CW AM-O AM-I Bcq Bcr BI1 BI2

IO

Dev(%) 19.07 32.94 31.45 4.07 30.19 3.24 4.18

Score 231 291 266 101 289 89 104

#Opt 0 0 0 0 0 0 0

SGB

Dev(%) 12.83 26.15 26.15 3.57 31.56 3.89 3.03

Score 100 125 125 54 175 56 40

#Opt 0 0 0 0 0 0 0

RandomAII

Dev(%) 2.60 36.50 36.55 1.57 37.75 1.09 1.26

Score 100 135 136 68 162 34 48

#Opt 0 0 0 0 0 0 0

RandomB

Dev(%) 10.13 24.69 24.69 7.04 26.41 5.24 4.87

Score 276 368 368 194 454 124 106

#Opt 0 0 0 0 0 0 0

MB

Dev(%) 8.40 43.37 43.37 2.90 40.30 2.49 2.27

Score 120 178 178 80 154 52 48

#Opt 0 0 0 0 0 0 0

Special

Dev(%) 12.05 34.16 33.11 4.58 27.86 5.01 5.41

Score 110 161 156 56 153 64 65

#Opt 2 1 2 2 2 1 2

OPT-I

Avg. Dev(%) 10.85 32.97 32.55 3.95 32.35 3.49 3.50

Sum #Opt 2 1 2 2 2 1 2

to 32.97%. On the other hand, the improvement methods are able to obtain
better solutions with average percentage deviations (shown in Table 3) rang-
ing from 0.57% to 2.30%. We have not observed significant differences when
applying the improvement method from different initial solutions. For exam-
ple, as shown in Table 3 the LSi method exhibits a Dev value of 0.16% on the
RandomAII instances when it is started from random solutions. When it is run
from the CW or the Bcr solutions, it obtains a Dev value of 0.17% and 0.18%
respectively.

We applied the non-parametric Friedman test for multiple correlated sam-
ples to the best solutions obtained by each of the 7 constructive methods. This
test computes, for each instance, the rank value of each method according to
solution quality (where rank 7 is assigned to the best method and rank 1 to the
worst one). Then, it calculates the average rank values of each method across
all the instances solved. If the averages differ greatly, the associated p-value
or significance will be small. The resulting p-value of 0.000 obtained in this
experiment clearly indicates that there are statistically significant differences



14 Rafael Mart́ı et al.

Table 3 Improvement methods on OPT-I instances

LSi 2opt 3opt LSe KL1 KL2 LE

IO

Dev(%) 1.08 0.64 0.23 1.73 1.35 4.24 0.01

Score 243 181 125 295 239 232 49

#Opt 0 1 4 0 1 0 43

SGB

Dev(%) 0.16 0.81 0.53 1.35 0.63 0.28 1.09

Score 42 122 84 154 100 63 135

#Opt 1 0 0 0 0 1 0

RandomAII

Dev(%) 0.16 0.77 0.38 0.62 0.61 0.09 0.54

Score 46 161 81 134 134 29 112

#Opt 0 0 0 0 0 0 0

RandomB

Dev(% 0.79 4.04 2.13 3.78 3.51 0.61 3.56

Score 124 400 232 387 359 95 362

#Opt 1 0 0 0 0 1 0

MB

Dev(%) 0.02 0.57 0.14 3.10 0.40 0.01 0.17

Score 64 178 113 210 149 41 83

#Opt 0 0 0 0 0 4 3

Special

Dev(%) 1.19 3.30 2.05 3.21 2.40 0.89 3.52

Score 69 144 82 138 120 49 156

#Opt 4 2 2 2 3 3 3

OPT-I

Avg. Dev(%) 0.57 1.69 0.91 2.30 1.49 1.02 1.48

Sum #Opt 5 3 6 2 4 8 49

among the 7 methods tested. Specifically, the rank values produced by this
test are 6.2 (BI2), 6.2 (BI1), 5.6 (Bcq), 3.9 (CW), 2.2 (AM-I), 2.1 (AM-O) and
1.9 (Bcr). Heuristics BI1, BI2 and Bcq consistently provide the best solutions
among the constructive heuristics. Considering that BI1 and BI2 obtain very
similar rank values, we compared both with two well-known nonparametric
tests for pairwise comparisons: the Wilcoxon test and the Sign test. The for-
mer one answers the question: Do the two samples (solutions obtained with
BI1 and BI2 in our case) represent two different populations? The resulting
p-value of 0.857 indicates that the values compared could come from the same
method. On the other hand, the Sign test computes the number of instances
on which an algorithm supersedes another one. The resulting p-value of 0.792
indicates that there is no clear winner between BI1 and BI2 when we consider
all the instances in the OPT-I set. If we apply these two pairwise tests to
compare BI1 and Bcq we obtain a p-value of 0.000 (in both tests) indicating
that there are significant differences between these constructive methods.

Regarding the improvement methods, LSi and KL2 seem the best ones,
although the differences among methods are smaller than in the constructive



A Benchmark Library and a Comparison of Heuristics 15

procedures. The significance level of the Friedman test is 0.000 indicating that
there are statistically significant differences among the 7 methods tested, and
the rank values in this test are: 5.7 (KL2), 5.4 (LSi), 4.8 (3opt), 4.1 (LE),
3.1 (KL1), 2.8 (2opt) and 2.2 (LSe). Considering that KL2 and LSi obtain very
similar rank values, we compared both with the Wilcoxon test and the Sign
test. The resulting p-value of 0.005 obtained in the former one indicates that
the values compared come from different methods (using the typical signifi-
cance level of α = 0.05 as the threshold between rejecting or not rejecting the
null hypothesis). On the other hand, the resulting p-value of 0.000 obtained in
the Sign test indicates that KL2 consistently beats LSi when we consider all
the instances in the OPT-I set.

In our second experiment we consider the metaheuristics described in Sec-
tion 3 to solve the OPT-I instances. Table 4 reports the values Dev, #Opt and
Score obtained with the following 10 methods executed for 10 seconds on each
instance:

– TS: Tabu Search
– MA: Memetic Algorithm
– VNS: Variable Neighbourhood Search
– SA: Simulated Annealing
– SS: Scatter Search
– GRASP: Greedy ramdomized adaptive search procedure
– ILS: Iterated Local Search
– GA: Genetic Algorithm
– KLM: Kernighan-Lin multi-start
– CKM: Chanas and Kobilansky multi-start

Table 4 shows that most of the metaheuristic algorithms considered are able
to obtain all the optimal solutions within the time limit of 10 seconds consid-
ered (they actually obtain it in around 1 second). The Friedman test indicates
that there are statistically significant difference among the methods although
some rank values are very similar: 7.15 (ILS), 7.15 (MA), 7.00 (TS), 6.80 (VNS),
6.38 (GRASP), 6.00 (SS), 5.92 (CKM), 4.30 (KLM), 2.80 (SA) and 1.51 (GA). It must
be noted that ILS and MA obtain the optimum value in all the instances but
one of OPT-I and TS obtains 215 optima out of 229 instances. As expected,
the associated p-value of the Wilcoxon and Sign tests when comparing ILS and
MA is 1, indicating that we cannot differentiate between both methods in this
case. On the other hand, both pairwise tests provide a p-value lower than 0.05
when comparing ILS and TS, indicating that there are significant differences
between the results of these two methods (although they present the same
average percentage deviation to optima: 0.00%). We conclude that instances
in OPT-I are easy for the best metaheuristics and therefore not adequate to
compare them.

We have also computed the upper bound obtained with the linear pro-
gramming formulation (LP relaxation) described in Section 1 on the OPT-I
instances. The percentage gap between the value of this relaxation and the



16 Rafael Mart́ı et al.

Table 4 Metaheuristic algorithms on OPT-I instances running for 10 seconds

TS MA VNS SA SS GRASP ILS GA CKM KLM

IO

Dev(%) 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.38 0.23 0.00

Score 50 50 50 304 97 58 50 382 373 50

#Opt 50 50 50 16 42 49 50 9 10 49

SGB

Dev(%) 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.76 0.01 0.00

Score 25 25 25 222 52 33 25 245 159 77

#Opt 25 25 25 0 20 23 25 0 7 16

RandAII

Dev(%) 0.00 0.00 0.00 0.08 0.01 0.01 .00 21.44 0.01 0.02

Score 25 25 53 222 92 136 25 250 102 136

#Opt 25 25 19 0 13 5 25 0 11 6

RandB 70

Dev(%) 0.00 0.00 0.02 0.25 0.01 0.00 0.00 0.75 0.13 0.00

Score 70 70 109 546 123 70 70 676 381 82

#Opt 70 70 64 10 62 70 70 1 28 68

MB

Dev(%) 0.00 0.00 0.00 1.33 0.00 0.00 0.00 35.53 0.00 0.00

Score 30 30 30 270 112 80 30 300 41 169

#Opt 30 30 30 0 16 21 30 0 28 10

Special

Dev(%) 0.02 0.00 0.11 0.39 0.09 0.05 0.00 1.38 0.14 0.01

Score 77 30 75 189 126 98 30 251 158 107

#Opt 15 28 20 6 12 14 28 4 9 15

OPT-I

Dev(%) 0.00 0.00 0.02 0.35 0.02 0.01 0.00 10.04 0.09 0.01

#Opt 215 228 208 32 165 182 228 14 93 124

optimal solution value provides a measure of its quality. Specifically, the av-
erage gap on each subset of instances is: 0.00% (IO), 0.00% (SGB), 0.08%
(RandomAII), 1.47% (15 RandomB instances with n ≤ 150), 0.00% (MB) and
0.88% (Special). We can conclude that the value of the upper bound is close
to the optimal value on the OPT-I instances.

In our third experiment we target the 255 instances in UB-I where we only
have an upper bound for comparison. We do not consider the simple heuristics
anymore (since they already had difficulties to solve the easier problems in
OPT-I) and limit this comparison to the metaheuristic algorithms considered
above. In this experiment, we first determine the best known value for all the
instances in UB-I. According to the previous experiment (Table 4) ILS, MA and
TS, seem to be the best methods. We therefore run them for one hour on each
instance to determine the best known value BestValue for the 255 instances
in UB-I.

We give for each instance and each method the relative deviation D.Best
(in percent) between the best solution value Value obtained with the method
and the best known value BestValue as well as the relative deviation D.UB
(in percent) between Value and the upper bound. For each method, we also



A Benchmark Library and a Comparison of Heuristics 17

report the number of instances #Best for which the value of the solution
is equal to BestValue. As in the previous experiment we calculate the score
statistic. Tables 5 and 6 report the values of these four statistics on the UB-I
instances when running the 10 metaheuristic algorithms for 10 and 600 seconds
respectively.

According to the differences among methods observed in Table 5, where
the deviations w.r.t. the best solution known range from 0.05% to 16.15%, we
can conclude that the instances in set UB-I are more difficult to solve than
those in OPT-I (where the deviations range from 0.00% to 10.04%).

Results in Table 5 show that MA is able to obtain the largest number of
best solutions (97 of a total of 255 instances) in short runs (10 seconds). No
other method is able to obtain more than 55 best solutions, which clearly indi-
cates the superiority of MA. On the other hand, considering average percentage
deviations with respect to the best solutions, the differences among the meth-
ods appear to be very small. MA and ILS present on average a deviation of
0.05% and 0.06% respectively, while TS, SS and VNS present averages devia-
tions of 0.24% 0.27% and 0.29%, respectively. This indicates that although
these methods are not able to match most of the best solution values, they
obtain solutions with values very close to the best.

Considering the deviations with respect to the upper bound, most of the
methods present similar values ranging from 6.66% to 7.40% (with the excep-
tion of GA (21.98%)). The associated p-value of the Friedman test is 0.000
indicating that there are differences among the 10 metaheuristic procedures
observed in this table. The rank values obtained with this non-parametric test
are: 9.4 (MA), 8.9 (ILS) 7.3 (TS), 6.3 (VNS), 6.2 (SS), 4.9 (GRASP), 4.1 (SA),
3.6 (KLM), 3.2 (CKM) and 1.0 (GA). We perform now pairwise comparison be-
tween MA and ILS. The resulting p-value of 0.000 obtained in both the Wilcoxon
and the Sign tests clearly indicates that there are significant differences be-
tween the results of both methods. Similarly, we obtain a p-value of 0.000 on
both tests when comparing ILS and TS, or MA and TS.



18 Rafael Mart́ı et al.

Table 5 Metaheuristic algorithms on UB-I instances running for 10 seconds

TS MA VNS SA SS GRASP ILS GA CKM KLM

RandAI

D.Best 0.12 0.05 0.47 1.77 0.27 0.42 0.09 10.59 0.76 0.98

D.UB 17.81 17.75 18.10 18.88 17.92 18.05 17.79 26.28 18.34 18.45

Score 269 115 581 741 423 561 200 1000 818 792

#Best 5 33 0 0 1 0 17 0 0 0

RandAII

D.Best 0.01 0.00 0.01 0.07 0.02 0.04 0.00 35.97 0.06 0.02

D.UB 0.38 0.38 0.39 0.44 0.40 0.41 0.38 36.21 0.44 0.40

Score 84 26 93 200 133 176 53 216 216 128

#Best 3 39 8 0 0 0 14 0 0 0

RandB

D.Best 0.00 0.00 0.00 0.31 0.02 0.00 0.00 0.91 0.01 0.14

D.UB 3.20 3.20 3.26 3.51 3.22 3.20 3.21 4.08 3.22 3.34

Score 20 20 76 180 57 20 24 195 60 104

#Best 20 20 11 0 13 20 19 0 12 7

XLOLIB

D.Best 0.64 0.14 0.44 0.56 0.71 1.17 0.15 24.01 1.76 1.95

D.UB 3.21 2.72 3.01 3.13 3.27 3.72 2.73 25.96 4.30 4.48

Score 385 126 269 343 398 538 123 780 656 668

#Best 0 1 0 0 0 0 1 0 0 0

Special

D.Best 0.45 0.05 0.52 2.07 0.35 0.68 0.06 9.29 0.40 0.45

D.UB 9.61 9.26 9.67 11.04 9.52 9.81 9.27 17.35 9.57 9.61

Score 25 8 32 64 21 32 8 69 21 23

#Best 3 4 2 0 3 3 4 0 3 3

UB-I

D.Best 0.24 0.05 0.29 0.95 0.27 0.46 0.06 16.15 0.60 0.71

D.UB 6.84 6.66 6.89 7.40 6.87 7.04 6.68 21.98 7.17 7.26

#Best 31 97 21 0 17 23 55 0 15 10

Results in Table 6 are in line with those of Table 5 (although as expected,
the longer the run time the lower the deviations). The average percentage
deviations with respect to the best solutions of 0.05% achieved with MA in
10 seconds runs is reduced to 0.01% in the 600 seconds runs. Similarly, the
average percentage deviations with respect to the best solutions of 0.06% and
0.24% achieved with ILS and TS in 10 seconds runs, drops to 0.03% and 0.16%
respectively in the 600 seconds runs. On the other hand, MA is able to match
205 best known solutions, while none of the other methods obtains more than
108 best known solutions (which is the case of the ILS method followed by TS

with 65). These results confirm that MA is the best method followed by ILS

and TS. As in the previous experiment, we applied the Friedman test, obtain-
ing a p-value of 0.000 and the following rank values: 9.25 (MA), 8.30 (ILS),
7.67 (TS), 5.99 (KLM), 5.57 (VNS), 5.24 (GRASP), 5.02 (SS), 3.58 (SA), 3.22 (CKM)
and 1.16 (GA). Pairwise comparison between best methods (MA and ILS, MA



A Benchmark Library and a Comparison of Heuristics 19

Table 6 Metaheuristic algorithms on UB-I instances running for 600 seconds

TS MA VNS SA SS GRASP ILS GA CKM KLM

RandAI

D.Best 0.10 0.00 0.41 0.40 0.18 0.28 0.09 1.14 0.44 0.27

D.UB 17.78 17.72 18.06 18.04 17.87 17.93 17.79 18.65 18.06 17.90

Score 253 103 640 679 418 492 254 895 703 488

#Best 20 97 0 0 2 2 23 0 0 15

RandAII

D.Best 0.00 0.00 0.01 0.11 0.01 0.02 0.00 0.10 0.03 0.01

D.UB 0.38 0.38 0.38 0.49 0.39 0.39 0.38 0.47 0.40 0.38

Score 102 50 181 485 272 324 139 379 379 190

#Best 21 50 16 0 2 0 14 0 0 9

RandB

D.Best 0.00 0.00 0.03 0.01 0.04 0.00 0.00 0.87 0.00 0.00

D.UB 3.20 3.20 3.24 3.21 3.24 3.20 3.20 4.05 3.20 3.20

Score 20 20 80 79 86 20 20 200 20 20

#Best 20 20 12 12 11 20 20 0 20 20

XLOLIB

D.Best 0.42 0.02 0.37 0.63 0.84 0.59 0.04 2.18 1.15 0.59

D.UB 2.99 2.61 2.94 3.20 3.40 3.16 2.62 4.70 3.70 3.15

Score 298 121 289 426 529 407 113 702 622 438

#Best 0 33 0 0 0 0 44 0 0 0

Special

D.Best 0.26 0.02 0.23 1.20 0.24 0.55 0.00 2.25 0.18 0.15

D.UB 9.44 9.24 9.42 10.27 9.43 9.70 9.22 11.21 9.38 9.35

Score 24 9 23 47 24 35 7 70 22 16

#Best 4 5 3 2 3 3 7 0 3 4

UB-I

D.Best 0.16 0.01 0.21 0.47 0.26 0.29 0.03 1.31 0.36 0.20

D.UB 6.76 6.63 6.81 7.04 6.87 6.88 6.64 7.82 6.95 6.80

#Best 65 205 31 14 18 25 108 0 23 48

and TS, ILS and TS) result in a p-value of 0.000 with the Wilcoxon and Sign
tests in all the cases.

Considering all the runs performed with the metaheuristic procedures in
the three previous experiments, we applied the Friedman test, obtaining a
p-value of 0.000 and the following rank values overall: 8.65 (MA), 8.14 (ILS),
7.34 (TS), 6.22 (VNS), 5.75 (SS), 5.48 (GRASP), 5.13 (KLM), 3.54 (CKM), 3.53 (SA)
and 1.22 (GA). We can establish three ordered groups of methods according to
this ranking. The best methods are MA, ILS and TS. Acceptable performance
is shown by VNS, SS, GRASP and KLM, while SA, CKM and GA would be classified
as poor.

The predominant performance of MA is particularly intriguing because most
of the elements in MA are present in some of the other methods. In particular
SS and GA are also based on generating, improving and combining solutions as
MA, and they share the same local search procedure based on insertions as the



20 Rafael Mart́ı et al.

improving method. However, as described in [31], the implementation of the
local search in MA is performed with a pivoting rule mechanism that explores
the neighborhood of a solution in constant time. This reduces the CPU time of
the local search by several orders of magnitude, thus permitting MA to explore
a significantly larger number of solutions than the other competing methods.
It seems then that the implementation details, specially the incremental com-
putation of the move value, make an important difference in local search based
methods.

Table 7 10 replications of 10 seconds on UB-I instances

TS MA ILS

MAX MIN AVG MAX MIN AVG MAX MIN AVG

RandAI

D.Best 0.31 0.49 0.40 0.01 0.12 0.06 0.14 0.25 0.20

D. UB 37.50 37.61 37.56 37.32 37.38 37.35 37.39 37.47 37.43

RandAII

D.Best 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00

D. UB 0.41 0.42 0.42 0.40 0.40 0.40 0.40 0.41 0.40

XLOLIB

D.Best 0.76 1.13 0.96 0.09 0.32 0.19 0.10 0.30 0.20

D. UB 3.58 3.95 3.79 2.94 3.16 3.03 2.95 3.14 3.04

In our final experiment we test the robustness of the three best methods
identified so far: MA, ILS and TS. Specifically, we study in this experiment the
behavior of the algorithms when they are replicated (executed several times
from different random initial solutions). Table 7 shows the deviations (with
respect to best solutions and upper bounds) of the maximum value (worst
result) MAX, minimum value (best result) MIN and average value AVG of
the three methods under comparison. We perform for each method on each
problem instance 10 independent runs of 10 seconds each. We limit here the
comparison to the most challenging instances: RandAI, RandAII and XLOLIB.

Results in Table 7 indicate that the three methods are quite robust. We
observe very small variations between the MAX and MIN values in this ta-
ble. Moreover, average values, AVG, are very similar (slightly worse) to those
reported on Table 5, which correspond to a single run.

6 Conclusions

A computational comparison of 24 methods for the LOP has been presented.
Overall, experiments with 484 instances were performed to compare the pro-
cedures. This extensive experimentation allows us to confirm that classical
heuristics, mostly based on simple ordering rules, only obtain good solutions
to relatively easy instances (although we can find large instances in this set).
Within these heuristics, it turns out that the improvement methods, even when



A Benchmark Library and a Comparison of Heuristics 21

applied to random solutions, clearly outperform the constructive procedures.
When we target much more difficult instances, we need to apply complex meta-
heuristics to obtain high quality solutions. Our experimentation reveals that
the memetic algorithm implementation MA seems best suited for this problem
closely followed by iterated local search ILS, and with the tabu search TS

ranked in third place.

7 Acknowledgement

The authors thank T. Schiavinotto and T. Stützle for providing their imple-
mentation of the memetic and ILS algorithms [31]. The authors also thank
J.M. Gonzalez for his implementation of a genetic algorithm.

This research has been partially supported by the Ministerio de Ciencia e
Innovación of Spain (TIN2009-07516).

References

1. Achatz, H., Kleinschmidt P. and Lambsdorff, J.: Der Corruption Perceptions Index
und das Linear Ordering Problem, ORNews 26 (2006), 10–12.

2. Aujac, H.: La hiérarchie des industries dans un tableau des echanges industriels, Rev.
Economique 2 (1960).

3. Becker, O.: Das Helmstädtersche Reihenfolgeproblem – die Effizienz verschiedener
Näherungsverfahren, in: Computer uses in the social sciences, Bericht einer Working
Conference des Inst. f. höh. Studien u. wiss. Forsch., Wien, 1967.

4. Boenchendorf, K.: Reihenfolgenprobleme / Mean-flow-time sequencing, Mathematical
Systems in Economics 74, Verlagsgruppe Athenäum, Hain, Scriptor, 1982.

5. Campos, V., Glover, F. Laguna, M. and Mart́ı, R.: An experimental evaluation of
a scatter search for the linear ordering problem, J. of Global Optimization 21 (2001),
397–414.

6. Chanas, S. and Kobylanski, P.: A new heuristic algorithm solving the linear ordering
problem, Computational Optimization and Applications 6 (1996), 191–205.

7. Charon, I. and Hudry, O.: A survey on the linear ordering problem for weighted or
unweighted tournaments, 4OR 5 (2007), 5–60.

8. Chenery, H.B. and Watanabe, T.: International comparisons of the structure of pro-
duction, Econometrica 26 (1958), 487–521.

9. Christof, T.: Low-dimensional 0/1-polytopes and branch-and-cut in combinatorial op-
timization, Shaker, 1997.

10. Christof, T. and Reinelt, G.: Combinatorial optimization and small polytopes, Top 4
(1996), 1–64.

11. Condorcet, M.J.A.N.: Essai sur l’application de l’analyse à la probabilité des décisions
rendues à la pluralité des voix, Paris, 1785.

12. Feo, T. and Resende, M.G.C.: Greedy randomized adaptive search procedures, J. of
Global Optimization 2 (1995), 1–27.

13. Garcia, C.G., Pérez-Brito, D., Campos, V. and Mart́ı, R.: Variable neighborhood
search for the linear ordering problem, Computers and Operations Research 33 (2006),
3549–3565.

14. Glover, F.: Future paths for integer programming and links to artificial intelli-
gence,Computers and Operations Research 13 (1986), 533–549.

15. Glover, F., Klastorin, T., and Klingman, D.: Optimal weighted ancestry relation-
ships, Management Science 20 (1974), 1190–1193.

16. Glover, F. and Laguna, M.: Tabu search, Kluwer Academic Publishers, 1997.



22 Rafael Mart́ı et al.

17. Goemans, M.X. and Hall, L.A.: The strongest facets of the acyclic subgraph polytope
are unknown, in: Proc. of the 5th Int. IPCO Conference, LNCS 1084, Springer, 1996,
415–429.

18. Grötschel, M., Jünger, M. and Reinelt, G.: A cutting plane algorithm for the linear
ordering problem, Operations Research 32 (1984), 1195–1220.

19. Huang, G. and Lim, A.: Designing a hybrid genetic algorithm for the linear ordering
problem, in: Cantu-Paz, E. et al. (eds.): Proc. of Genetic and Evolutionary Computation
– GECCO 2003, LNCS 2723, Springer, 2003, 1053–1064.

20. Hansen, P. and Mladenovic, N.: Variable neighborhood search, in: Glover, F. and
Kochenberger, G. (eds.) Handbook of Metaheuristics 2003, 145–184.

21. Jünger, M. and Mutzel, P.: 2-layer straightline crossing minimization: performance
of exact and heuristic algorithms, J. of Graph Algorithms and Applications 1 (1997),
1–25.

22. Kernighan, B.W. and Lin, S.: An efficient heuristic procedure for partitioning graphs,
Bell Systems Technical Journal 49 (1979) 291–308.

23. Knuth, D.E.: The Stanford GraphBase: a platform for combinatorial computing,
Addison-Wesley, 1993.

24. Laguna, M., Mart́ı R. and Campos, V.: Intensification and diversification with elite
tabu search solutions for the linear ordering problem, Computers and Operations Re-
search 26 (1999), 1217–1230.

25. Laguna, M. and Mart́ı R.: Scatter search: methodology and implementations in C,
Kluwer Academic Publishers, 2003.

26. Leontief, W.: Quantitative input-output relations in the economic system of the United
States, The Review of Economics and Statistics 18 (1936).

27. Mart́ı R. and Reinelt, G.: The linear ordering problem: exact and heuristics methods
in combinatorial optimization, Applied Mathematical Sciences 175, Springer, 2010.

28. Mitchell, J.E. and Borchers, B.: Solving linear ordering problems, in: Frenk, H.,
Roos, K., Terlaky, T. and Zhang, S. (eds.):, High Performance Optimization, Applied
Optimization Vol. 33, Kluwer, 2000, 340–366.

29. Reinelt, G.: The linear ordering problem: algorithms and applications, Research and
Exposition in Mathematics 8, Heldermann, 1985.

30. Ribeiro, C.C., Uchoa, E. and Werneck, R.F.: A Hybrid GRASP with Perturbations
for the Steiner Problem in Graphs, INFORMS Journal on Computing 14 (2002), 228 -
246.

31. Schiavinotto, T. and Stützle, T.: The linear ordering problem: Instances, search
space analysis and algorithms, J. of Mathematical Modelling and Algorithms 3 (2004),
367–402.



A Benchmark Library and a Comparison of Heuristics 23

Appendix

We list all problem instances with optimum solution values (printed in bold)
or best known lower and upper bounds (in brackets). Note that after having
conducted the experiments for this paper a small number of additional optima
have been proved. But this does not affect the conclusions drawn from our
computations.

Problem Bounds Problem Bounds
be75eec 236464 be75np 716994
be75oi 111171 be75tot 980516
stabu70 362512 stabu74 541393
stabu75 553303 t59b11xx 209320
t59d11xx 147354 t59f11xx 122520
t59i11xx 8261545 t59n11xx 20928
t65b11xx 356758 t65d11xx 237739
t65f11xx 217295 t65i11xx 14469163
t65l11xx 16719 t65n11xx 32157
t65w11xx 138181029 t69r11xx 771149
t70b11xx 528419 t70d11xx 376725

t70d11xxb 366469 t70f11xx 360336
t70i11xx 24785782 t70k11xx 60659200
t70l11xx 25253 t70n11xx 52704
t70u11xx 21716400 t70w11xx 224319954
t70x11xx 283808865 t74d11xx 566089
t75d11xx 578304 t75e11xx 2739219
t75i11xx 63567735 t75k11xx 108844
t75n11xx 93777 t75u11xx 52708323
tiw56n54 91554 tiw56n58 125224
tiw56n62 176715 tiw56n66 226547
tiw56n67 226033 tiw56n72 365146
tiw56r54 102948 tiw56r58 129568
tiw56r66 209491 tiw56r67 222810
tiw56r72 270663 usa79 1813986

Table 8 Bounds for IO problems

Problem Bounds Problem Bounds
sgb75.01 2724126 sgb75.02 2616392
sgb75.03 2747384 sgb75.04 2734169
sgb75.05 2707863 sgb75.06 2707280
sgb75.07 2727928 sgb75.08 2712837
sgb75.09 2687364 sgb75.10 2733387
sgb75.11 2732686 sgb75.12 2692548
sgb75.13 2714591 sgb75.14 2733926
sgb75.15 2732810 sgb75.16 2747797
sgb75.17 2747864 sgb75.18 2579344
sgb75.19 2736221 sgb75.20 2732021
sgb75.21 2740289 sgb75.22 2710122
sgb75.23 2720981 sgb75.24 2743879
sgb75.25 2731542

Table 9 Bounds for SGB problems



24 Rafael Mart́ı et al.

Problem Bounds Problem Bounds
t1d100.01 [106852, 114468] t1d100.02 [105947, 114077]
t1d100.03 [109819, 117843] t1d100.04 [109252, 117639]
t1d100.05 [108859, 117538] t1d100.06 [108201, 117057]
t1d100.07 [108803, 117118] t1d100.08 [107480, 115756]
t1d100.09 [108549, 116527] t1d100.10 [108771, 117518]
t1d100.11 [107920, 116637] t1d100.12 [108389, 116617]
t1d100.13 [108702, 116816] t1d100.14 [105583, 114199]
t1d100.15 [108667, 117221] t1d100.16 [107426, 115781]
t1d100.17 [105612, 113860] t1d100.18 [107861, 115959]
t1d100.19 [108026, 116987] t1d100.20 [109968, 119008]
t1d100.21 [107255, 116326] t1d100.22 [108250, 116987]
t1d100.23 [106146, 113264] t1d100.24 [108782, 116959]
t1d100.25 [106933, 115311] t1d150.01 [235056, 258334]
t1d150.02 [234421, 261964] t1d150.03 [236319, 261648]
t1d150.04 [234506, 260037] t1d150.05 [234601, 260155]
t1d150.06 [234465, 257685] t1d150.07 [235283, 257133]
t1d150.08 [237230, 264958] t1d150.09 [237253, 258980]
t1d150.10 [234821, 260359] t1d150.11 [234157, 259316]
t1d150.12 [236318, 262105] t1d150.13 [237116, 262727]
t1d150.14 [234453, 259552] t1d150.15 [232065, 257699]
t1d150.16 [232948, 258626] t1d150.17 [236656, 262929]
t1d150.18 [234348, 259865] t1d150.19 [234994, 260286]
t1d150.20 [235411, 260652] t1d150.21 [233980, 259087]
t1d150.22 [235415, 260134] t1d150.23 [233492, 258077]
t1d150.24 [236016, 261151] t1d150.25 [236428, 261299]
t1d200.01 [410871, 459555] t1d200.02 [407729, 461223]
t1d200.03 [407420, 459905] t1d200.04 [410101, 465271]
t1d200.05 [411522, 462358] t1d200.06 [406451, 461499]
t1d200.07 [412482, 460054] t1d200.08 [408850, 462476]
t1d200.09 [409308, 457683] t1d200.10 [406453, 467356]
t1d200.11 [410239, 462167] t1d200.12 [412831, 465075]
t1d200.13 [409234, 459659] t1d200.14 [408879, 458933]
t1d200.15 [409061, 463328] t1d200.16 [408059, 463822]
t1d200.17 [410280, 461326] t1d200.18 [407709, 467958]
t1d200.19 [412947, 455589] t1d200.20 [406418, 455487]
t1d200.21 [408037, 469845] t1d200.22 [407333, 458596]
t1d200.23 [408552, 460653] t1d200.24 [410583, 459286]
t1d200.25 [406356, 458197] t1d500.01 [2402774, 4191813]
t1d500.02 [2411570, 4207198] t1d500.03 [2404784, 4205918]
t1d500.04 [2413600, 4221950] t1d500.05 [2391486, 4186810]
t1d500.06 [2399394, 4190956] t1d500.07 [2400739, 4198457]
t1d500.08 [2413108, 4206654] t1d500.09 [2406343, 4198840]
t1d500.10 [2404420, 4198760] t1d500.11 [2416364, 4210737]
t1d500.12 [2402581, 4194185] t1d500.13 [2405118, 4197442]
t1d500.14 [2410693, 4200887] t1d500.15 [2411718, 4208905]
t1d500.16 [2416067, 4200206] t1d500.17 [2401800, 4197344]
t1d500.18 [2421159, 4222286] t1d500.19 [2404029, 4198658]
t1d500.20 [2414713, 4207789] t1d500.21 [2405615, 4201350]
t1d500.22 [2408164, 4208557] t1d500.23 [2408689, 4197731]
t1d500.24 [2402712, 4191909] t1d500.25 [2405718, 4196590]

Table 10 Bounds for RandA1 problems



A Benchmark Library and a Comparison of Heuristics 25

Problem Bounds Problem Bounds
t2d100.01 25362 t2d100.02 28326
t2d100.03 25886 t2d100.04 26076
t2d100.05 25118 t2d100.06 25380
t2d100.07 27144 t2d100.08 23784
t2d100.09 27752 t2d100.10 26690
t2d100.11 25106 t2d100.12 26782
t2d100.13 27878 t2d100.14 25878
t2d100.15 24232 t2d100.16 28206
t2d100.17 26704 t2d100.18 26928
t2d100.19 28760 t2d100.20 25220
t2d100.21 24452 t2d100.22 27230
t2d100.23 25588 t2d100.24 24800
t2d100.25 23742 t2d150.01 [76041, 76276]
t2d150.02 [73624, 73811] t2d150.03 [69705, 69894]
t2d150.04 [73963, 74136] t2d150.05 [79723, 79847]
t2d150.06 [75440, 75604] t2d150.07 [73858, 74067]
t2d150.08 [67463, 67803] t2d150.09 [70739, 70915]
t2d150.10 [69029, 69302] t2d150.11 [72800, 72987]
t2d150.12 [72181, 72429] t2d150.13 [74580, 74739]
t2d150.14 [68132, 68331] t2d150.15 [76831, 77007]
t2d150.16 [72018, 72238] t2d150.17 [70185, 70468]
t2d150.18 [73191, 73424] t2d150.19 [75958, 76133]
t2d150.20 [67370, 67651] t2d150.21 [70297, 70571]
t2d150.22 [69287, 69515] t2d150.23 [74799, 74958]
t2d150.24 [70063, 70323] t2d150.25 [73853, 74026]
t2d200.01 [147742, 148294] t2d200.02 [144218, 144903]
t2d200.03 [141378, 142105] t2d200.04 [150878, 151471]
t2d200.05 [150236, 150854] t2d200.06 [141254, 142009]
t2d200.07 [149752, 150379] t2d200.08 [149910, 150415]
t2d200.09 [141958, 142747] t2d200.10 [149630, 150232]
t2d200.11 [147542, 148262] t2d200.12 [152470, 153064]
t2d200.13 [137618, 138514] t2d200.14 [144384, 145083]
t2d200.15 [140442, 141227] t2d200.16 [147448, 148114]
t2d200.17 [131874, 132728] t2d200.18 [151196, 151663]
t2d200.19 [137314, 138182] t2d200.20 [146508, 147051]
t2d200.21 [143568, 144221] t2d200.22 [146920, 147524]
t2d200.23 [145034, 145731] t2d200.24 [151260, 151769]
t2d200.25 [149128, 149723]

Table 11 Bounds for RandA2 problems



26 Rafael Mart́ı et al.

Problem Bounds Problem Bounds
p40-01 29457 p40-02 27482
p40-03 28061 p40-04 28740
p40-05 27450 p40-06 29164
p40-07 28379 p40-08 28267
p40-09 30578 p40-10 31737
p40-11 30658 p40-12 30986
p40-13 33903 p40-14 34078
p40-15 34659 p40-16 36044
p40-17 38201 p40-18 37562
p40-19 38956 p40-20 39658
p44-01 35948 p44-02 35314
p44-03 34335 p44-04 33551
p44-05 34827 p44-06 33962
p44-07 33171 p44-08 34127
p44-09 33403 p44-10 33778
p44-11 34016 p44-12 33850
p44-13 35385 p44-14 35801
p44-15 33827 p44-16 36188
p44-17 35454 p44-18 36669
p44-19 36436 p44-20 37438
p44-21 37786 p44-22 36722
p44-23 36605 p44-24 38286
p44-25 38129 p44-26 39107
p44-27 39170 p44-28 40264
p44-29 41819 p44-30 40387
p44-31 43817 p44-32 42545
p44-33 42355 p44-34 44988
p44-35 44114 p44-36 45575
p44-37 45297 p44-38 47414
p44-39 48979 p44-40 47774
p44-41 48137 p44-42 49511
p44-43 51014 p44-44 51949
p44-45 52857 p44-46 52776
p44-47 54122 p44-48 54355
p44-49 57279 p44-50 56444
p50-01 44667 p50-02 [43835, 44866]
p50-03 [44256, 45257] p50-04 [43928, 45026]
p50-05 [42907, 44196] p50-06 [42325, 43765]
p50-07 [42640, 43977] p50-08 [42666, 44655]
p50-09 [43711, 45183] p50-10 [43575, 45346]
p50-11 [43527, 45132] p50-12 [42809, 44671]
p50-13 [43169, 44872] p50-14 [44519, 46272]
p50-15 [44866, 46479] p50-16 [45310, 46693]
p50-17 [46011, 47751] p50-18 [46897, 48152]
p50-19 [47212, 49162] p50-20 [46779, 48155]

Table 12 Bounds for RandB problems



A Benchmark Library and a Comparison of Heuristics 27

Problem Bounds Problem Bounds
r100a2 145270 r100b2 143271
r100c2 141702 r100d2 142630
r100e2 147416 r150a0 360978
r150a1 349251 r150b0 367635
r150b1 347627 r150c0 363895
r150c1 346492 r150d0 363180
r150d1 348902 r150e0 367181
r150e1 349910 r200a0 654604
r200a1 616399 r200b0 651237
r200b1 622112 r200c0 657441
r200c1 611956 r200d0 654375
r200d1 616617 r200e0 645207
r200e1 611306 r250a0 1019120
r250b0 1013737 r250c0 1010961
r250d0 1015041 r250e0 1008267

Table 13 Bounds for MB problems

Problem Bounds Problem Bounds
atp24 172 atp48 483
atp66 761 atp76 934
atp111 [1495, 1636] atp134 [1797, 2011]
atp163 [2073, 2417] atp452 [2713, 3132]
econ36 548574 econ43 667369
econ47 828816 econ58 1221888
econ59 1209683 econ61 1218023
econ62 1235677 econ64 1272461
econ67 1388317 econ68 1438378
econ71 1558292 econ72 1835631
econ73 2046112 econ76 2649134
econ77 2674732 ex1 449

ex2 441 ex3 438
ex4 390 ex5 405
ex6 395 pal11 35

pal19 107 pal23 161
pal27 252 pal31 [285, 300]
pal43 [543, 597] pal55 [1045, 1084]

Table 14 Bounds for Spec problems



28 Rafael Mart́ı et al.

Problem Bounds Problem Bounds
be75eec 150 [3482828, 3527035] be75np 150 [7174935, 7317546]
be75oi 150 [2246534, 2259482] be75tot 150 [12287707, 12509023]
stabu1 150 [2875732, 2923697] stabu2 150 [4327538, 4398662]
stabu3 150 [4510445, 4582377] t59b11xx 150 [3239550, 3298634]

t59d11xx 150 [1462697, 1500324] t59f11xx 150 [1543733, 1578719]
t59n11xx 150 [319001, 323636] t65b11xx 150 [6454749, 6547627]
t65d11xx 150 [3559347, 3646934] t65f11xx 150 [3159526, 3231148]
t65l11xx 150 [253396, 255390] t65n11xx 150 [550849, 558953]
t69r11xx 150 [11855957, 12021166] t70b11xx 150 [9649306, 9802850]
t70d11xn 150 [5825509, 5956793] t70d11xx 150 [6174178, 6305710]
t70f11xx 150 [5150097, 5285191] t70l11xx 150 [436862, 438087]
t70n11xx 150 [948913, 959803] t74d11xx 150 [9396044, 9601749]
t75d11xx 150 [9644779, 9850135] t75e11xx 150 [41570193, 42053463]
t75k11xx 150 [1541596, 1569847] t75n11xx 150 [1743094, 1767716]
tiw56n54 150 [837945, 857599] tiw56n58 150 [1155392, 1183448]
tiw56n62 150 [1626921, 1668859] tiw56n66 150 [2107619, 2160391]
tiw56n67 150 [2372926, 2422085] tiw56n72 150 [4135907, 4222250]
tiw56r54 150 [958192, 979551] tiw56r58 150 [1219295, 1248461]
tiw56r66 150 [1940755, 1988549] tiw56r67 150 [2057645, 2107042]
tiw56r72 150 [2823758, 2888328] be75eec 250 [8894078, 9150239]

be75np 250 [17819028, 18473322] be75oi 250 [5910266, 5978555]
be75tot 250 [30993002, 32055676] stabu1 250 [7744014, 8012535]
stabu2 250 [11505924, 11898812] stabu3 250 [11909920, 12298263]

t59b11xx 250 [8419535, 8708488] t59d11xx 250 [3842563, 4015773]
t59f11xx 250 [3995868, 4162626] t59n11xx 250 [825608, 854352]
t65b11xx 250 [17273996, 17751127] t65d11xx 250 [9355335, 9745769]
t65f11xx 250 [8418226, 8739670] t65l11xx 250 [666664, 679527]
t65n11xx 250 [1431605, 1475116] t69r11xx 250 [31824632, 32688871]
t70b11xx 250 [25411146, 26133557] t70d11xn 250 [15212874, 15833337]
t70d11xx 250 [16044299, 16658483] t70f11xx 250 [13591569, 14178278]
t70l11xx 250 [1113765, 1132769] t70n11xx 250 [2445431, 2515339]
t74d11xx 250 [24444287, 25350257] t75d11xx 250 [25048727, 25972723]
t75e11xx 250 [106873878, 110318580] t75k11xx 250 [4094877, 4249417]
t75n11xx 250 [4528223, 4658704] tiw56n54 250 [2099740, 2182012]
tiw56n58 250 [2906872, 3026780] tiw56n62 250 [4143260, 4317513]
tiw56n66 250 [5371361, 5582715] tiw56n67 250 [6326881, 6536019]
tiw56n72 250 [11155793, 11520848] tiw56r54 250 [2388249, 2484343]
tiw56r58 250 [3060323, 3185528] tiw56r66 250 [4948720, 5147594]
tiw56r67 250 [5292028, 5491577] tiw56r72 250 [7455270, 7727048]

Table 15 Bounds for XLOLIB problems


