
Advanced Scatter Search for the Max-Cut Problem

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

ABRAHAM DUARTE
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
Abraham.Duarte@urjc.es

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

Abstract

The Max-Cut problem consists of finding a partition of the nodes of a weighted graph
into two subsets such that the sum of the weights between both sets is maximized. This
is an NP-hard problem that can also be formulated as an integer quadratic program.
Several solution methods have been developed since the 1970s and applied to a variety
of fields, particularly in engineering and layout design. We propose a heuristic method
— based on the scatter search methodology — for finding approximate solutions to this
optimization problem. Our solution procedure incorporates some innovative features
within the scatter search framework: 1) the solution of the maximum diversity problem
to increase diversity in the reference set, 2) a dynamic adjustment of a key parameter
within the search, and 3) the adaptive selection of a combination method. We perform
extensive computational experiments to first study the effect of changes in critical
scatter search elements and then to compare the efficiency of our proposal with previous
solution procedures.

Keywords: Max-cut problem, scatter search, metaheuristics, evolutionary algorithms

Version: June 1, 2007

Advanced Scatter Search for the Max-Cut Problem / 2

1. Introduction
Consider a graph G = (V, E) with vertex set V = {1,… n} and edge set E. Let wij be the
weight associated with edge (i, j) ∈ E. A cut (S, S′) is a partition of V into two sets S,
S′ = V-S and its value cut(S, S′) is given by the expression:

∑
∈
∈

=′

'

),(
Sv
Su

uvwSScut .

The Max-Cut problem consists of finding a cut in G with maximum value. Karp (1972)
showed that the Max-Cut is an NP-hard problem. Table 1 summarizes the approaches
(in chronological order) that are most relevant to the work described here.

Reference Procedure Comments
Sahni and Gonzales (1976) Greedy heuristic Simple and fast
Lovász (1979) Semidefinite

programming
Relaxation from the quadratic
formulation

Goemans and Williamson (1995) Randomized method Performance guarantee of 0.878
Burer et al. (2001) CirCut Rank-2 relaxation heuristic
Festa et al. (2002) GRASP and VNS Outperforms previous heuristic methods
Krishnan and Mitchell (2006) Cut and Price Exact method for mid-size instances

Table 1. Summary of relevant literature.

The Max-Cut is a classical optimization problem with several practical applications
(Chang and Du. 1987; Chen et al. 1983) that has received a great deal of attention in the
last two decades. Beginning with the simple approach introduced by Sahni and
Gonzales (1976) and some variations (Poljak and Tuza, 1982; Haglin and Venkatesen,
1991), the literature contains a large number of solution methods for this problem.
Goemans and Williamson (1995) worked with a relaxation based on semidefinite
programming and obtained both, an upper bound on the optimal value — which we will
refer to as SDP — and a heuristic method with a performance guarantee of 0.878. This
heuristic, however, requires of extremely long running times (e.g., instances with
n = 200 call for 3 hours of CPU time) and thus a parallel version was proposed by
Homer and Peinado (1997). More recently, Burer et al. (2001) introduced the CirCut
method, also based on a relaxation of the problem. CirCut experiments show that — in
terms of solutions quality — it outperforms all previous procedures in shorter
computational time. Finally, Festa et al. (2002) developed six different algorithms
based on the variable neighborhood search (VNS), GRASP and Path Relinking (PR)
methodologies. In their experimentation, the authors show that their VNS algorithm
coupled with PR (referred to as VNSPR) obtains high quality solutions, although at the
expense of long computational times. We include both CirCut and VNSPR in the
computational experience described in Section 6. In this experimentation we target
large graph sizes, with up 3000 vertices. Recent works on exact methods for the Max-
Cut problem, such as the Cut and Price procedure by Krishnan and Mitchell (2006), are
capable of optimally solving medium size instances (i.e., n ≈ 500).

The motivation for our work is the implementation of a scatter search (SS) procedure
that includes some new elements that could become part of the standard methodology.
Just as important, it is our goal of providing a procedure for the Max-Cut problem that
is capable of producing high quality approximations in a reasonable amount of
computer time. Scatter search (Laguna and Martí, 2003) consists of five methods and

Advanced Scatter Search for the Max-Cut Problem / 3

their associated strategies (see Figure 1). Three of them, the Diversification Generation,
the Improvement and the Combination Methods, are problem dependent and are
designed specifically for the problem being solved. Although it is possible to design
“generic” procedures, it is more effective to base the design on the specific
characteristics of the problem setting. The other two, the Reference Set Update and the
Subset Generation Methods are context independent, and standard implementations are
available.

1. Diversification generation
2. Improvement
3. Reference set update
while (termination criteria not satisfied)
{
 4. Subset generation
 5. Combination
 6. Improvement
 7. Reference set update
}

Figure 1. Scatter search framework

The first two steps in Figure 1 — diversification generation (described in Section 2) and
improvement (described in Section 3) — yield a population P of solutions from which
the initial reference set (RefSet) is constructed. The initial RefSet must balance solution
quality and diversity and therefore the standard update in step 3 selects the best
|RefSet|/2 solutions from P and then the |RefSet|/2 solutions in P\RefSet that are most
diverse with respect to those solutions already in the reference set. We will describe a
new way of performing this step in Section 5.1.

In our implementation, step 4 is done by generating all pairs of reference solutions that
have not been combined before. Details about the combination methods tested in this
study are presented in Section 4. The reference set update in step 5 collects all the
solutions generated in step 4 and all the solutions in the current reference solutions and
— from this pool — it chooses the best solutions (in terms of quality) to form the new
reference set. This is the so-called static update by quality (see Laguna and Martí
2003).

When no new solutions are admitted to the reference set after step 7 in Figure 1, the SS
methodology dictates that the search either terminates or a RefSet rebuilding step is
performed. The rebuilding step consists of eliminating all but the best reference
solution and reinitializing the process from the first step in Figure 1. In our
implementation, we have chosen to terminate the SS method after a pre-specified
number of RefSet rebuilding steps. Section 6 describes our experimentation to test the
effectiveness of the proposed methods as well as to compare the SS algorithm with the
state-of-the-art methods for the Max-Cut problem.

2. Diversification Generation Method
Festa et al. (2002) proposed the GRASP (Festa and Resende, 2001) construction C1 for
the Max-Cut problem. It uses two greedy functions that take into account the

Advanced Scatter Search for the Max-Cut Problem / 4

contribution of the vertices to the objective function. Specifically, for each vertex v
they define σ(v) and σ′(v) as:

∑
∈

=
Su

vuwv)(σ ∑
′∈

=σ′
Su

vuwv)(

C1 starts by randomly selecting a vertex in S and another vertex in S′ and then, at each
step, it randomly selects a vertex v in the restricted candidate list (RCL). If σ(v) > σ′(v)
then v is placed in S′; otherwise it is placed in S. RCL consists of the unselected
vertices v ∈ V′ = V \ {S ∪ S′} such that σ(v) > µ or σ′(v) > µ where

)}(min),(minmin{min vvw
VvVv

σ′σ=
′∈′∈

)}(max),(maxmax{max vvw
VvVv

σ′σ=
′∈′∈

10)(min
max

min ≤α≤−α+=µ www

The parameter α is randomly selected between 0 and 1 at the beginning of each
construction. We illustrate how this method works when applied to the example of
Figure 2. The circles represent the vertices (numbered from 1 to 5) and the numbers
next to the edges their respective weights.

C1 starts by assigning a vertex to S and another to S′. Say for instance that vertices 1
and 5 are selected and are assigned as follows: S = {5} and S′ = {1}. The method then
computes σ and σ′ for the remaining vertices:

σ′(2) = 0, σ (2) = 5, σ′(3) = 9, σ(3) = 14, σ′(4) = 0, and σ(4) = 0

It calculates wmin = 0, wmax = 14 and — considering for example α = 0.5 — it obtains
µ = 7. The resulting restricted candidate list is RCL = {3, 3′}, where 3 means vertex 3
by virtue of its σ value and 3′ means vertex 3 by virtue of its σ′ value. A random
selection is made from the RCL, say 3 and therefore vertex 3 is assigned to S′. In the
next step, the method computes σ and σ′ for the unselected vertices, σ′(2) = 0, σ (2) = 5,
σ′(4) = 7, σ(4) = 10, and obtains RCL = {4, 4′}. We assume that 4′ is randomly
selected and the vertex is added to S. In the last step, σ′(2) = 0 and σ(2) = 13 and
RCL = {2} resulting in the assignment of vertex 2 to S′. Thus the solution is S = {4, 5},
S′ = {1, 2, 3} with the value cut(S, S′) = 49.

5

Figure 2. Example of a graph with edge weights

2

3 4

1

15
5

14
10

8
9

7

Advanced Scatter Search for the Max-Cut Problem / 5

We now propose a new construction method C2 — also based on the GRASP
methodology. It starts by considering that all the vertices are in S′ (S = ∅, S′ = V,
cut(S, S′) = 0). We define the evaluation of each vertex v as the increase in the value of
the cut when v is moved from S′ to S.

)(),(}){\},{(vcutSScutvSvScut ∆+′=′∪

where)()()(vvvcut σ−σ′=∆

At each step, C2 randomly selects a vertex in RCL and moves it from S′ to S. In this
construction method, RCL is formed by those vertices v in S′ with an evaluation
∆cut(v) > th.

10)(min
max

min ≤α≤∆−∆α+∆= cutcutcutth

where ,)(maxmax vcutcut
Sv

∆=∆
′∈

))(min,0max(min vcutcut
Sv

∆=∆
′∈

.

Instead of randomly selecting an α-value at the beginning of each construction, as in C1,
C2 works with a fixed value of α for all constructions. In the experiments reported in
Section 6 we compare the performance of C2 when employing different values of α.

In the example of Figure 2, a C2 construction starts with the assignment of all vertices to
S′. Then, the method computes σ, σ′ and ∆cut for all vertices,

σ′(1) = 15 + 9 = 24 σ(1) = 0 ∆cut(1) = 24
σ′(2) = 5 + 8 = 13 σ(2) = 0 ∆cut(2) = 13
σ′(3) = 9 + 14 + 7 = 30 σ(3) = 0 ∆cut(3) = 30
σ′(4) = 7 + 10 + 8 = 25 σ(4) = 0 ∆cut(4) = 25
σ′(5) = 15 + 14 + 10 + 5 = 44 σ(5) = 0 ∆cut(5) = 44

This results in ∆cutmin = 13, ∆cutmax = 44, and with α = 0.5 we obtain th = 28.5.
Therefore, RCL = {3, 5} and we randomly select vertex 5 and move it from S′ to S. In
the second step, we first compute:

σ′(1) = 9 σ(1) = 15 ∆cut(1) = -6
σ′(2) = 8 σ(2) = 5 ∆cut(2) = 3
σ′(3) = 9 + 7 = 16 σ(3) = 14 ∆cut(3) = 2
σ′(4) = 7 + 8 = 15 σ(4) = 10 ∆cut(4) = 5

Then, ∆cutmin = 0, ∆cutmax = 5 and with α = 0.5 we obtain th = 2.5. Therefore,
RCL = {2, 4} and we randomly select a vertex, for example vertex 4, and move it from
S′ to S. In the next iteration, ∆cut(1) = -6, ∆cut(2) = -13 and ∆cut(3) = -12, and
therefore nothing is selected to be moved to S. The process terminates obtaining
S = {4, 5}, S′={1, 2 ,3} and cut(S,S′) = 49.

Advanced Scatter Search for the Max-Cut Problem / 6

To finish this section, we describe a third construction method (C3) that we developed
by employing memory structures instead of randomization. The evaluation of a vertex
is modified by the frequency by which it has been selected to belong to S, favoring the
selection of those vertices with low frequency values. C3 also starts by considering all
the vertices in S′. Then, at each step, the procedure selects the vertex with the largest
modified evaluation ∆cutf(v) and moves it from S′ to S.

)()()()(vcut
MaxFreq

vfreqvcutvcut f ∆−∆=∆ β

In this expression, freq(v) is the number of times that vertex v has been assigned to S in
previous constructions. MaxFreq is the maximum of freq(v) for all v and β is an input
parameter that modifies the behavior of this construction procedure. Performance
comparisons among C1, C2 and C3 are presented and discussed in Section 6.

In order to illustrate how C3 works, we assume that the method has been used to
construct several solutions for the example in Figure 2 and that the current frequency
counts are: freq(1) = 3, freq(2) = 1, freq(3) = 6, freq(4) = 3 and freq(5) = 8. Hence,
MaxFreq is equal to 8 and, with β = 0.75, the following ∆cut and ∆cutf values are
obtained:

∆cut(1) = 24 ∆cutf(1) = 24-0.75(3/8)24 = 17.25
∆cut(2) = 13 ∆cutf(2) = 13-0.75(1/8)13 = 11.78
∆cut(3) = 30 ∆cutf(3) = 30-0.75(6/8)30 = 13.12
∆cut(4) = 25 ∆cutf(4) = 25-0.75(3/8)25 = 17.97
∆cut(5) = 44 ∆cutf(5) = 44-0.75(8/8)44 = 11.00

These calculations prescribe the selection of vertex 4, since it has the maximum ∆cutf
value. The vertex is moved from S′ to S. The second step results in a maximum ∆cutf
of 17.25 associated with vertex 1, which is then moved to S. In the next and final step
all the vertices in S′ have negative ∆cut values. The method terminates with the solution
S = {1, 4}, S′ = {2, 3, 5} and cut(S,S′) = 49.

3. Improvement Method
Glover and Laguna (1997) introduced the notion of compound moves, often called
variable depth methods, constructed from a series of simpler components. It is well-
known that one of the pioneering contributions to this type of moves was Lin and
Kernighan (1973). Within the class of variable depth procedures, a special subclass
called ejection chain procedures has recently proved useful. As described in Glover
(1996), “Ejection chain procedures are based on the notion of generating compound
sequences of moves, leading from one solution to another, by linked steps in which
changes in selected elements cause other elements to be ejected from their current state,
position or value assignment.” In this section we adapt the notion of ejection chains to
the Max-Cut problem.

Advanced Scatter Search for the Max-Cut Problem / 7

Festa et al. (2002) proposed the local search method LS1 based on the following
neighborhood structure. Given a solution (S, S′) they define move(v) as moving vertex v
from S to S′ (if v ∈ S) or from S′ to S (if v ∈ S′) and the associated move value as:

⎩
⎨
⎧

∈σ−σ
∈σ−σ

=
'if)()('

if)(')(
)(

Svvv
Svvv

vMoveValue

LS1 explores, in each iteration, the complete neighborhood; i.e. it examines all the
vertices in V to identify the vertex v with the largest move value. The method performs
move(v) as long as MoveValue(v) > 0. After an improving move, the objective function
is incremented by MoveValue(v). This local search method finishes when no
improvement move is found in the neighborhood of the current solution.

In contrast to the best strategy implemented in LS1, we propose a local search method
LS2 based on a first strategy. The best strategy selects the move with the largest move
value among all the moves in the neighborhood. The first strategy, on the other hand,
scans the list of vertices in search for the first vertex whose movement results in a
strictly positive move value.

In the Max-Cut problem, suppose that a vertex v ∈ S is adjacent to w ∈ S′ and that v is
being considered for a move to S′. This possible action triggers the consideration of
moving w in the opposite direction and the benefit of the dual move could be calculated.
In terms of ejection chains, we may say that the move of v from S to S′ caused w to be
“ejected” from S′ to S (defining a compound move of depth two). Clearly, the benefit of
moving a vertex adjacent to w from S to S′ could also be evaluated if one would like to
consider compound moves of depth three. Longer chains are possible by applying the
same logic.

In LS2, we define move2(v) as the ejection chain that starts from moving vertex v. The
chain starts by making move2(v) = move(v). If this depth-1 move is improving, it is
executed and the chain stops. Otherwise, we search for move(w) associated with a
vertex w adjacent to v allocated in the set where v has been moved. If the compound
move of depth two — move2(v) = move(v)+move(w) — is an improving move, the
move is executed and the chain stops; otherwise the chain continues until the compound
move becomes improving or the depth of the chain reaches the pre-specified limit k. If
none of the compounds moves from depth 1 to k examined in move2(v) is an improving
move, no move is performed and the exploration continues with the next vertex in the
list.

A global iteration of LS2 consists of first ordering the vertices v according to their
σ(v)-σ′(v) value (if v is in S, otherwise we use σ′(v)-σ(v)) and then scanning them in this
order in search for an improving move. In this process, σ(v)-σ′(v) or σ′(v)-σ(v) is not
the true value associated with move2(v) — unless the chain stops at a depth of one —
and it is only used as an indicator of potentially “promising” moves. The list of vertices
is reordered only after all the vertices have been examined. LS2 is a local optimizer and
hence it performs only improving moves. The method continues iterating only if in the
previous iteration (i.e., the examination of all nodes) at least one improving move has
been performed. Otherwise, LS2 stops.

Advanced Scatter Search for the Max-Cut Problem / 8

4. Combination Method
This method uses the subsets generated with the subset generation method (step 4 in
Figure 1) to combine the two elements in each subset with the purpose of creating new
trial solutions. Given that the combination method is a problem-specific procedure, we
present three alternatives for the Max-Cut problem. The next section describes how
these three methods are selected within the scatter search algorithm in order to produce
new solutions.

We adapt combination method CB1, proposed in the context of the knapsack problem in
Laguna and Martí (2003). The method calculates a score for each variable, based on the
objective function value of the two reference solutions being combined. Let x be a
binary string of size n representing a solution to our problem, where variable xi equals 1
if element i is in set S. The score for variable i that corresponds to the combination of
reference solutions j and k is calculated with the following formula:

() () ()
() ()kcutjcut

xkcutxjcut
iscore

k
i

j
i

+
+

=

where cut(j) is the objective function value of solution j and is the value of the ij
ix th

variable in solution j. Then, the trial solution is constructed by using the score as the
probability for setting each variable to one, i.e., P(xi = 1) = score(i). This can be
implemented as follows:

⎩
⎨
⎧

>
≤

=
)(if0
)(if1

iscorer
iscorer

xi

where r is a uniform random number such that 0 ≤ r ≤ 1. We set r = 0.5 as
recommended in Laguna and Martí (2003) and obtain two trial solutions from the
combination of two reference solutions.

Given two solutions (S,S′) and (T,T′), combination method CB2 first computes the
partial solution formed with the intersection (U, U′) of both solutions where U = S ∩ T
and U′ = S′ ∩ T′. Then, for each unselected vertex v (v ∈ V \ {U ∪ U′}) the method
computes σ(v) and σ′(v) and places the vertex in the set that produces the best
evaluation. That is, if σ(v) > σ′(v) then v is placed in U′; otherwise it is placed in U. A
second solution is obtained as follows. We apply the first step in the same way,
computing the partial solution formed with the intersection of both solutions, but then,
instead of assigning each vertex to the best set as prescribed by the sigma values, they
are assigned randomly. Therefore, CB2 produces two solutions, one is quality oriented
and the other is diversity oriented.

Festa et al. (2002) proposed a path relinking (PR) algorithm to enhance their GRASP
and VNS methods for the Max-Cut problem. PR was first described in Glover and
Laguna (1993) and generally operates by starting from an initiating solution, selected
from a subset of high quality solutions, and generating a path in the neighborhood space
that leads toward other solutions called guiding solutions. This is accomplished by
selecting moves that introduce attributes — into the initiating solution — contained in

Advanced Scatter Search for the Max-Cut Problem / 9

the guiding solutions. PR, which can also be considered an extension of the standard
combination methods of scatter search, was first adapted in the context of GRASP by
Laguna and Martí (1999). Instead of directly producing a new solution when
combining two or more original solutions, PR generates paths between and beyond the
selected solutions in the neighborhood space. The character of such paths is easily
specified by reference to solution attributes that are added, dropped or otherwise
modified by the moves executed. Combination method CB3 consists of a variation of
the PR algorithm of Festa et al. (2002). Given two solutions (S,S′) and (T,T′), CB3 first
computes the path from (S,S′) to the midpoint between (S,S′) and (T,T′), and then the
path from (T,T′) to the midpoint between (T,T′) and (S,S′). The final solution in each
path is subjected to the improvement method and the two improved solutions are
returned as the output of this combination method.

To define the path between solutions (S,S′) and (T,T′), we first calculate the set of
elements assigned to different sets in both solutions, Diff = (S ∩ T′) ∪ (S′∩T). In order
to prevent symmetries we consider that vertex 1 is always in S (and T). The path from
the initiating solution (S,S′) to the guiding solution (T,T′) is obtained by simply
changing, one by one, the vertices in Diff from their current assignment to their target
assignment. We scan the vertices v in the order given by their MoveValue(v), thus
moving first the one with the largest contribution to the objective function. The
exploration from (S,S′) to (T,T′) terminates when we reach the midpoint in the path; i. e.
when we have moved |Diff|/2 vertices. An attempt to improve the resulting solution is
made and the roles of (S,S′) and (T,T′) are reversed to generate a second solution.

5. Advanced Scatter Search Elements
In this study, we have extended the basic scatter search implementation in three
different ways. The first extension consists of a new selection procedure for
constructing a reference set from a population of solutions. Traditionally, scatter search
implementations have used the criterion of maximizing the minimum distance between
the solution under consideration and the solutions already in the reference set. In such a
process, diverse solutions are selected one by one from the population P and the
distances are updated after each selection. In contrast, we suggest a method of selecting
all the diverse solutions at once by way of solving the maximum diversity problem, as
described below.

Our second extension consists of a dynamic adjustment of the depth parameter k
associated with the ejection chain mechanism. Each solution is represented in such a
way that they carry the information related to the particular k value that was used to
generate it. In this way, the depth of application of the ejection chain procedure
depends on the parameter values that are particular to the solutions being combined (as
described below).

The third extension implements a probabilistic selection of the combination methods.
The probability of selecting any of the three methods described in the previous section
is proportional to the number of high quality solutions that such methods have generated
in previous iterations. The next three sections provide the details of our proposed
extensions. The implementation framework of our scatter search follows the standard

Advanced Scatter Search for the Max-Cut Problem / 10

one developed by Laguna and Martí (2003) — and outlined in Figure 1 — with the
addition of the three advanced elements described below.

5.1 Maximum initial diversity in the RefSet
The initial reference set (RefSet) in standard scatter search implementations is
constructed by performing three steps: (1) generating a population P of diverse
solutions, (2) selecting the |RefSet|/2 best solutions in P and adding them to RefSet, and
(3) adding to RefSet the |RefSet|/2 most diverse solutions in P \ RefSet. The selection of
solutions in step 2 is made with reference to the objective function values of the
solutions in P. Thus, the best |RefSet|/2 solutions in P are added to RefSet and deleted
from P. In standard SS implementation, the third step is performed by selecting one
solution at a time. The first solution is the one in P that is the most diverse with respect
to the solutions currently in RefSet. Diversity is typically measured by a function that
maximizes the minimum distance between the solution under consideration and the set
of solutions — in this case RefSet — from which the method wants to move away.
Once a diverse solution is selected, the solution is deleted from P and added to RefSet
and the process is repeated |RefSet|/2 times.

Instead of the one-by-one selection of diverse solutions, we propose solving the
maximum diversity problem (MDP) with the GRASP_C2 method developed by Duarte
and Martí (2007). Since the MDP is a computationally hard problem, we have chosen
GRASP_C2 because it provides a good balance between solution quality and speed,
attributes that are important in order to embed it as part of the overall SS framework.
The MDP consists of finding, from a given set of elements and corresponding distances
between elements, the most diverse subset of a given size. The diversity of the chosen
subset is given by the sum of the distances between every pair of elements. The
distance between two solutions is given as the number of edges in the cut that are
different. To use the MDP within SS, we must recognize that the original set of
elements is given by P minus the |RefSet|/2 best solutions. Also, the most diverse subset
that we are asking the MDP to construct is RefSet, which is already partially populated
with the |RefSet|/2 best solutions from P. Therefore, we have modified GRASP_C2 in
order to solve the special MDP for which some elements have already been chosen (i.e.,
the first |RefSet|/2 selected due to their quality) and cannot be removed from the
solution. Diversity between solutions is measured as the number of edges that are
different and GRASP_C2 is performed for 100 iterations. The most diverse RefSet
found by GRASP_C2 is chosen to initiate the scatter search phase that iterates the subset
generation, combination, improvement and reference set update methods (steps 4 to 7 in
Figure 1).

5.2 Dynamic adjustment of a search parameter
Section 3 introduced an adaptation of ejection chains as a mechanism for creating
compound moves within the LS2 improvement method. The method employs a
parameter k that limits the length of the chain. Instead of utilizing a fixed value for this
parameter throughout the search, we have developed a process to adjust it dynamically
as effective values for that parameter are identified. Since solutions generated during
the search (either by the diversification or combination method) are subjected to the
improvement method (steps 2 and 6 in Figure 1), there is a k-value associated with each
of them. This value is stored as part of the solution and used during the application of
the combination method as follows. Let (S,S′) and (T,T′) — with associated kS and kT

Advanced Scatter Search for the Max-Cut Problem / 11

values — be two reference solutions that are being combined. Also let cut(S,S′) and
cut(T,T′) be their respective objective function values. The parameter value used to
apply the improvement method to the trial solution that results from combining (S,S′)
and (T,T′) is:

),(),(
),(),(

TTcutSScut
kTTcutkSScut

k TS

′+′
′+′

=

Note that this combination of the k-values parallels the one used for the variable values
in CB1. Initially, the parameter values are set to a random number between 1 and 5,
which we have determined to be effective during preliminary experimentation (see
Section 6).

5.3 Adaptive selection of combination method

In Section 4, we described three combination methods. In addition to performing
preliminary experimentation to determine which of the competing approaches performs
best overall (see Section 6), we introduced a probability-based mechanism to select a
combination method every time that the search calls for the combination of two
reference solutions. The initial probability of selecting one of the three methods is set
to 1/3 at the beginning of the search. That is, initially, the three methods have the same
probability of being selected. The probability values are updated at the end of each SS
iteration in order to favor those combination methods that produce solutions of higher
quality. We consider quality solutions those that are admitted to the reference set and
therefore we maintain the counts q(i) of the solutions generated with combination
method CBi that were added to RefSet in step 7 of Figure 1. The probability P(i) of
choosing combination method CBi (to perform step 5 in Figure 1) is then given by:

()
)3()2()1(99

)(33
qqq

iqiP
+++

+
=

Note that at the beginning of the search, the q-counts are at zero, however, the
probability calculation assumes that 99 reference solutions have been generated and that
each combination method has contributed to exactly one third of them.

6. Computational Results
All experiments were performed on a personal computer with a 3.2 GHz Intel Xenon
processor and 2.0 GB of RAM. For our computational experiments we employed the
following sets of existing test problem instances.

Set 1 — This set consists of instances generated by Helmberg and Rendl (2000) who

used rudy, a machine independent graph generator by Giovanni Rinaldi, to
create 54 instances ranging from n = 800 to 3000. They consist of toroidal,
planar and random graphs with weights taking the values 1, 0, or -1. Burer et
al. (2001) and Festa et al. (2002) used these graphs in their experiments.

Set 2 — This set contains 30 instances described in Festa et al. (2002). The first ten are

small size instances with an average of 128 vertices and 300 edges, the second

Advanced Scatter Search for the Max-Cut Problem / 12

ten instances are medium size graphs with 1000 vertices and density equal to
0.60%, and the last ten are the large-size instances with 2744 vertices and
density equal to 0.22%. The weight values are either 1, 0, or -1.

In our first preliminary experiment we compare the three construction methods for the
Max-Cut problem described in Section 2. We propose a measure of diversity and a
measure of quality to compare the performance of the construction methods, C1, C2 and
C3, as well as a “pure random” method used as a baseline. C2 depends on the parameter
α — denoted C2(α) — and we test three different variants: C2(0.25), C2(0.5), and
C2(0.75). Similarly, C3 depends on the parameter β — denoted C3(β) — and we test
three different variants: C3(0.25), C3(0.5), and C3(0.75). It has been shown that an
effective diversification generation method provides a balance between solution quality
and solution diversity. That is, solutions must be of reasonable quality and be
sufficiently scattered in the solution space to allow the local search and combination
methods to reach different local optima. We have selected 15 representative instances
in Set 1, with different sizes and densities, to compare the eight construction methods
(considering the variants introduced by the several parameter values). We generated
100 different solutions to each instance with each method.

We use the average objective function value of the 100 solutions as a measure of the
quality of each method. We use the average distance between each pair of solutions as
a measure of the diversity of each method. The distance between two solutions is
calculated as described earlier (Section 5.1), i.e., by counting the number of edges in the
cut that are different. Table 2 shows, for each construction variant, the average of the
quality measure (Quality), the average of the diversity measure (Diversity) and the
average of the CPU time in seconds for all 15 instances used in this experiment.

The results in Table 2 indicate that the C3(0.75) method is quite balanced, with the best
average quality of 8190.6, a relatively high average diversity value of 7787.5 and a
modest average computational time of 18.2 seconds. As expected, the Random
construction obtains the highest diversity value but the worst average quality. The
GRASP construction due to Festa et al. (2002), C1, obtains a diverse set of solutions of
reasonable quality at a large computational expense. Given these results, we selected
C3(0.75) as the diversification generation method for our SS implementation.

 Quality Diversity CPU time
Random 6560.2 9808.9 1.7
C1 7894.1 8273.1 186.6
C2(0.25) 7695.1 8318.3 22.4
C2(0.50) 7991.5 7764.0 21.0
C2(0.75) 8109.2 7270.9 18.0
C3(0.25) 8150.3 7541.5 17.0
C3(0.50) 8173.0 7688.3 16.8
C3(0.75) 8190.6 7787.5 18.2

Table 2. Quality and diversity of construction methods

In our second preliminary experiment we undertake to compare the effectiveness of the
improvement methods described in Section 3. As baseline case, we consider the
combination of the existing construction method C1 and the existing improvement
method LS1. We compare it to the combination of our proposed construction method C3

Advanced Scatter Search for the Max-Cut Problem / 13

and the ejection-chain-based improvement method LS2 with several k-values. To do
this, we generate a set of 100 solutions with C1 and apply the improvement method LS1
to them. Similarly, we generate a set of 100 solutions with C3 and apply the
improvement method LS2 to them. In order to study the impact of the parameter k, we
repeat this experiment for five different k values (k = 1, 2, 3, 4 and 5). Table 3 shows
the average objective function values (Value) obtained by each method, the average
percent deviation (Dev) from the semidefinite programming upper bound SDP
(Goemans and Williamson, 1995) and the CPU time in seconds needed to construct and
improve all 100 solutions.

 C1 + LS1 C3+LS2(k=1) C3+LS2(k=2) C3+LS2(k=3) C3+LS2(k=4) C3+LS2(k=5)
Value 8210.6 8295.8 8336.1 8347.3 8307.9 8338.4
% Dev. 7.56% 6.60% 6.14% 6.02% 6.46% 6.12%
CPU 1786.7 214.3 393.7 416.5 322.6 573.7

Table 3. Improvement methods

Table 3 shows the superior performance (in terms of both solution quality and
computational time) achieved by the combination of the construction method C3 with
the improvement method LS2 over the combination of C1 and LS1. This table also
shows that, in general, computational time increases with the value of k. In terms of
average quality, all the C3+LS2 variants are statistically equivalent. However, in an
instance-by-instance comparison, they tend to complement each other by alternating in
finding the best local optimum. This is why we implemented the mechanism described
in Section 5.2. In particular, we generate k values between 1 and 5 and randomly assign
them to the solutions generated in step 1 of Figure 1. Subsequently, the k values
associated with trial solution created by the combination method are determined as
explained in Section 5.2.

In our next preliminary experiment we compare the performance of the different
combination methods: CB1 — based on scores calculated by considering solution
quality, CB2 — based on an incremental construction from the intersection of the
combined solutions, and CB3 — based on the path relinking methodology. We consider
three variants — one for each combination method (SS_CB1, SS_CB2 and SS_CB3) —
of our SS with the diversification and improvement methods chosen above.: We also
consider the version of scatter search — labeled SS below — in which the three
combination methods are selected according to their success in previous iterations, as
described in Section 5.3. In all versions, we use |P| = 100 and |RefSet| = 10, settings that
have been shown effective in Laguna and Martí (2003). We use the same 15 instances
considered in the previous preliminary experiments. Table 4 shows, for these four
methods, the average objective function of the best solution found (Value) the average
percent deviation from the SDP upper bound (Dev) and the number of best solutions
found (Best).

 SS_CB1 SS_CB2 SS_CB3 SS
Value 8451.73 8452.20 8453.60 8459.60
% Dev. 4.73% 4.72% 4.69% 4.62%
Best 4 6 6 13

Table 4. Comparison of four SS variants

Advanced Scatter Search for the Max-Cut Problem / 14

Table 4 shows that the three combination methods provide similar results when used in
exclusivity and that they complement each other well when used as a group. As part of
this experiment, we tracked the evolution of the best solution found with the SS. Figure
3 depicts — for each SS iteration — the value of the best solution in the RefSet (Best
RefSet) the value of the best solution obtained with the combination of the solutions in
the RefSet (Best Comb) and the value of the best solution resulting from the application
of the improvement method to the combined solutions (Best Imp). The first “Best
RefSet” value shown in Figure 3 corresponds to the value after performing step 3 in
Figure 1. All other values are obtained after the execution of the while-loop in Figure 1.

Figure 3 shows the contribution of the combination and improvement methods to the
best solution found. In the first SS iterations, the combination and improvement
methods are able to produce solutions of significantly better quality than those currently
in the RefSet. As the search progresses, the improvement upon the reference solutions
becomes marginal. This is the typical behavior of SS (and most metaheuristic
searches). When no new solutions are admitted to the reference set a rebuilding step is
performed. The first rebuilding step in Figure 3 takes place at iteration 9.

1340

1350

1360

1370

1380

1390

1400

Iteration

Q
ua

lit
y

Best RefSet Best Comb. Best Improv.

1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3. Best value evolution

In the next experiment we compare our SS method with the Variable Neighborhood
Search coupled with Path Relinking (VNSPR) due to Festa et al. (2002) and with the
CirCut heuristic due to Burer et al. (2001). Festa et al. (2002) proposed six different
heuristics for this problem and showed by way of experimentation that the VNSPR
outperforms the others. In that experimentation, the solution methods were run for
extremely long times. Specifically, the VNSPR required from 2.8 hours on a 1000-
vertex instance to 54.9 hours on a 2000-vertex instance. In our tests we use the VNSPR
parameters recommended by its authors but limit the execution of the methods to 0.5
hours approximately and report the best solution found within this time. As part of this
experiment, we also compare our advanced scatter search method (SS) with the standard
scatter search (Basic SS) to measure the contribution of the advanced elements proposed
in Section 5. The standard SS algorithm follows the same template as the advanced
except that it uses the following elements: the initial population of solutions is generated
with C1, improved with LS1 and combined with CB1. Both methods, Basic SS and SS,

Advanced Scatter Search for the Max-Cut Problem / 15

terminate after 5 rebuilding steps. Table 5 summarizes the results of applying the
solution methods to the 24 instances of Set 1 that Festa et al. (2002) used in their
experimentation. This table shows, for each instance and each method, the relative
percent deviation from the SDP upper bound and the CPU time in seconds.

Table 5 shows that Basic SS, SS and CirCut methods provide better solutions than
VNSPR in the allotted computational time. In the 24 instances reported in this table,
Basic SS, SS and CirCut exhibit an average percent deviation of 6.5%, 5.6% and 5.8%
respectively achieved in 1042.3, 549.1 and 147.0 seconds of computer time, which
compares favorably with the 9.7% deviation of the VNSPR achieved in 2060.3 seconds.
SS produces solutions of slightly better quality than the solutions obtained by the CirCut
method, although SS consumes more CPU time. SS obtains 16 best solutions while
CirCut obtains 12 out of 24 instances. This table also shows the contribution of the
advanced elements proposed in Section 5, since the Basic SS method on average finds
inferior solutions than the advanced SS even if we allow the basic procedure to run
longer.

 Basic SS SS VNSPR CirCut
 Dev Time Dev Time Dev Time Dev Time
G1 4.1% 569.0 3.7% 139.0 4.5% 1864.0 3.8% 204.6
G2 4.1% 643.9 3.8% 167.2 4.5% 2001.0 3.9% 210.4
G3 4.0% 619.3 3.7% 180.1 4.3% 1914.0 3.8% 218.6
G11 11.3% 335.1 10.3% 171.8 20.6% 1822.0 11.0% 25.2
G12 12.7% 326.5 11.1% 241.5 20.1% 1804.0 11.4% 26.2
G23 11.6% 315.5 10.3% 227.5 19.4% 1810.0 10.7% 25.5
G14 4.3% 412.9 3.9% 186.5 6.5% 1839.0 4.0% 71.8
G15 4.4% 417.0 3.7% 142.8 6.1% 1915.0 3.8% 68.7
G16 4.3% 426.6 4.0% 161.9 6.3% 1826.0 3.9% 68.2
G22 6.0% 1889.0 5.5% 1335.8 6.7% 3534.0 5.5% 312.4
G23 6.3% 1832.0 5.7% 1021.7 7.2% 2242.0 5.7% 285.5
G24 6.0% 1877.6 5.8% 1191.0 6.7% 2664.0 5.8% 288.4
G32 12.7% 1804.3 10.3% 900.6 19.7% 2072.0 11.0% 88.1
G33 12.7% 1807.6 11.3% 925.6 20.0% 1941.0 11.7% 80.4
G34 12.7% 1803.9 11.4% 950.2 19.9% 2008.0 11.5% 89.1
G35 4.7% 1802.4 4.4% 1257.5 6.2% 2012.0 4.2% 224.0
G36 4.7% 1805.8 4.2% 1391.9 6.5% 1894.0 4.2% 251.4
G37 4.7% 1804.8 4.3% 1386.8 5.9% 2153.0 4.3% 238.6
G43 5.6% 1098.5 5.2% 405.8 5.8% 2023.0 5.2% 122.4
G44 6.0% 1036.6 5.3% 355.9 6.1% 2054.0 5.4% 111.3
G45 5.6% 1251.4 5.3% 354.3 5.8% 2114.0 5.3% 114.8
G48 0.0% 405.2 0.0% 20.1 8.0% 1962.0 0.0% 113.7
G49 0.0% 365.0 0.0% 35.1 7.8% 1982.0 0.0% 111.9
G50 1.8% 366.2 1.0% 16.8 7.6% 1998.0 1.8% 176.4
Avg. 6.5% 1042.3 5.6% 549.1 9.7% 2060.3 5.8% 147.0

Table 5. Comparison on 21 Set 1 instances

In the next experiment we compare the performance of SS and CirCut over time on 10
large instances (n = 2744) of Set 2. These two methods were run for 2 hours and the
best solution found was reported every 200 seconds. The results of this experiment are
shown in Figure 4.

Advanced Scatter Search for the Max-Cut Problem / 16

2340
2360
2380
2400
2420
2440

200 1200 2200 3200 4200 5200 6200 7200
CPU Time

A
vg

. Q
ua

lit
y

SS
CirCut

Figure 4. Average best solution value over time

Figure 4 shows that CirCut is capable of obtaining high quality solutions from the very
beginning of the search (i.e., within the first 200 seconds). SS requires 1200 seconds to
improve upon the solutions found by CirCut but it then maintains its lead during the rest
of the execution time. We do not include the VNSPR method in this plot because
within the time limit of 7200 seconds considered in this experiment, the average value
of the best solution found with the VNSPR is 1906.57. According to Festa et al. (2002)
VNSPR requires significantly longer running times than competing procedures in order
to obtain high quality solutions. We have verified that in about 50 hours of computer
time VNSPR would obtain solutions of a similar or slightly worse quality than those
obtained with SS and CirCut.

In our final experiment we compare our SS approach with the CirCut method on the
complete set of instances (Set 1 and Set 2). Table 6 shows, for both methods, the
average objective function value of the best solution found (Value), the average percent
deviation from the best known solution (Dev), the number of best solutions found (Best)
and the CPU time in seconds. We do not show the deviation from the SDP upper bound
because it is not possible to compute it for the larger instances. In this experiment we
run the CirCut method for a number of iterations such that the final running time
approaches the one used by SS, which terminates after 5 RefSet rebuilding steps.

 54 Set 1 instances 30 Set 2 instances
 CirCut SS CirCut SS
Value 279999 280126 34086 34132
Dev. 0.18% 0.10% 0.16% 0.09%
Best 24 35 18 23
CPU 626.60 620.96 513.77 537.33

Table 6. Comparison of best methods

Table 6 shows that both methods, SS and CirCut, are able to obtain high quality
solutions for the Max-Cut problem in relatively short computational times. SS obtains
0.1 percent deviation in Set 1 and 0.09 in Set 2, while CirCut obtains 0.18 in Set 1 and
0.16 in Set 2. Moreover, SS is able to match 35 out of 54 best known solutions in Set 1
and 23 out of 30 in Set 2, while CirCut obtains 24 and 18 respectively.

7. Conclusions
Max-Cut is a computationally difficult optimization problem, which has served us well
as test case for a few new strategies that we are proposing to embed in the standard
scatter search framework. It is always difficult to choose a classical optimization
problem to try new ideas because state-of-the-art procedures for such problems tend to

Advanced Scatter Search for the Max-Cut Problem / 17

be the result of years of effort and hence are highly efficient. We feel comfortable with
what we have accomplished here because we have not only managed to compete with
the state-of-the-art but in fact have pushed the envelope a little further. Obviously, the
results that we obtained with our SS implementation are not all due to the strategies that
we wanted to test and that we describe in Section 5. Performance was definitely
enhanced by the context-specific methods that we developed for the Max-Cut problem.
However, our preliminary experiments do show the merit of the mechanisms in Section
5 that we hope other researchers might find effective and eventually could become
standard in future SS implementations.

Acknowledgments
This research has been partially supported by the Ministerio de Educación y Ciencia of
Spain (Grant Refs. TIN2005-08943-C02-02, TIN2006-02696), by the Comunidad de
Madrid – Universidad Rey Juan Carlos project (Ref. URJC-CM-2006-CET-0603) and
by the Generalitat Valenciana (Ref. GV/2007/047).

References
Burer, S., R.D.C. Monteiro and Y. Zang (2001) “Rank-two relaxation heuristics for
max-cut and other binary quadratic programs”, SIAM Journal on Optimization 12, 503-
521.

Chang K.C. and D.-Z. Du. (1987), "Eficient algorithms for layer assignment problems",
IEEE Transaction on Computer-Aided Design, 6:67-78.

Chen, R., Y. Kajitani, and S. Chan (1983), "A graph-theoretic via minimization
algorithm for two layer printed circuit boards", IEEE Transaction on Circuits and
Systems 30, 284-299.

Festa, P. and M.G.C. Resende (2001) "GRASP: an annotated bibliography". M.G.C.
Resende, P. Hansen, eds. Essays and Surveys in Metaheuristics. Kluwer Academic
Publishers, Boston, MA 325-367.

Festa, P., P.M. Pardalos, M.G.C. Resende and C.C. Ribeiro (2002) “Randomized
heuristics for the max-cut problem”, Optimization methods and software 7, 1033-1058.

Glover, F. (1996) "Ejection chains, reference structures and alternating methods for
traveling salesman problems" Discrete Applied Mathematics 65, 223-253

Glover, F. and M. Laguna (1997) Tabu Search. Kluwer Academic Publisher.

Goemans, M.X. and D.P. Williams (1995), Improved approximation algorithms for the
max-cut and satisfability problems using semidefinite programming, Journal of the
ACM 42, 1115-1145.

Haglin, D.J. and S.M. Venkatesen (1991), “Approximation and intractability results for
the maximum cut problem and its variants”, IEEE Transactions on Computers 40, 110-
113

Helmberg, C. and F. Rendl (2000) “A spectral bundle method for semidefinite
programming”, SIAM Journal on Optimization 10, 673-696.

Hofmeister, T. and H. Lefmann (1995), “A combinatorial design approach to max cut”,
Lecture Notes in Computer Science, 1046, 441-452

Advanced Scatter Search for the Max-Cut Problem / 18

Homer, S. and M. Peinado (1997), “Design and performance of parallel and distributed
approximation algorithms for max cut”, Journal of Parallel and Distributed Computing
46, 48-61

Karp, R.M. (1972) “Reducibility among combinatorial problems”, In: R. Miller and J.
Tatchers (Eds.), Complexity of computer computations, 85-103, Plenun Press, New-
York.

Laguna, M. and R. Martí (1999) "GRASP and Path Relinking for 2-Layer Straight Line
Crossing Minimization", INFORMS Journal on Computing 11(1) 44-52

Laguna, M. and R. Martí (2003) Scatter Search: Methodology and Implementations in
C, Kluwer Academic Publishers: Boston.

Lin, S. and B. Kernighan (1973), “An effective heuristic algorithm for the traveling
salesman problem”, Operations Research 21, 498-516.

Poljak, S. and Z. Tuza (1982), “A polynomial algorithm for constructing a large
bipartite subgraph, with an application to a satisfiability problem”, Canadian Journal of
Mathematics 34, 519-524

Sahni, S. and T. Gonzales (1976), “ P-Complete approximation problem”, Journal of
the Association for Computing Machinery 46, 48-61

