

Scatter Search for the Profile Minimization Problem

JESÚS SÁNCHEZ-ORO
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
jesus.sanchezoro@urjc.es

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

ABRAHAM DUARTE
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
Abraham.Duarte@urjc.es

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

ABSTRACT

We study the problem of minimizing the profile of a network and develop a solution method by

following the tenets of scatter search. Our procedure exploits the structure of the problem and includes

strategies that produce and agile search with computational efficiencies. Among several mechanisms,

our search includes path relinking as the basis for combining solutions to generate new ones. The

profile minimization problem (PMP) is NP-Hard and has relevant applications in numerical analysis

techniques that rely on manipulating large sparse matrices. The problem was proposed in the early

1970s but the state-of-the-art does not include a method that may be considered powerful by today’s

computing standards. Our extensive computational experiments show that we have accomplished our

goal of pushing the envelope and establishing a new standard in the solution of the PMP.

Keywords: Profile minimization, metaheuristics, scatter search.

Original version: May 27, 2012
Revised version: May 23, 2013

S á n c h e z - O r o , e t a l . | 2

1. Introduction

Given a graph or network 𝐺(𝑉, 𝐸) —where 𝑉 is a set of 𝑛 vertices and 𝐸 is a set of edges— an ordering

(or permutation) 𝜑 of the vertices is a one-to-one mapping between the set {1,2, … , 𝑛} and 𝑉. An

ordering in a network can be conceptualized as locating its vertices in a line, as shown in Figure 1. For a

given ordering 𝜑, the profile 𝛿𝜑(𝑖) of vertex 𝜑(𝑖) —that is, the vertex in position 𝑖— is given by

𝛿𝜑(𝑖) = 𝑖 − 𝑓𝜑(𝑖), where 𝑓𝜑(𝑖) is the position of the left-most vertex adjacent to 𝜑(𝑖). If 𝜑(𝑖) has no

adjacent vertex to its left then 𝑓𝜑(𝑖) = 𝑖. The profile of 𝐺 with the ordering 𝜑, 𝑃(𝐺, 𝜑), is the sum of the

profiles of all its vertices. The Profile Minimization Problem (PMP) consists of finding the ordering 𝜑∗ of

𝑉 such that the profile is minimized. Mathematically, the PMP seeks 𝜑∗, over the set Φ of all possible

permutations, such that:

𝑃(𝐺, 𝜑∗) = min
𝜑∈Φ

∑ 𝛿𝜑(𝑖)

𝑛

𝑖=1

= min
𝜑∈Φ

∑(𝑖 − 𝑓𝜑(𝑖))

𝑛

𝑖=1

Figure 1 shows an example of a network with six vertices ordered in a line, where the first one is labeled

as A, the second one as B, and so on. We observe that 𝑓1 = 1 because the left-most vertex adjacent to A

is C, located in position 3, larger than 1, the position of A. As a consequence, 𝛿1 = 0. Similarly, 𝑓2 = 2

and 𝛿2 = 0. On the other hand, 𝑓3 = 1 and 𝛿3 = 3 − 1 = 2, because the left-most vertex adjacent to C,

in position 3, is A, in position 1. The rest of the calculations are shown in Figure 1 and they results in a

profile value of 𝑃(𝐺, 𝜑) = 11.

Figure 1. Sample network and profile calculation

It is possible to reduce the profile of the network in Figure 1 by permuting its vertices. Figure 2 shows

the same network with the ordering 𝜑∗ = (𝐵, 𝐷, 𝐹, 𝐸, 𝐶, 𝐴), which results in an optimal profile value of

𝑃(𝐺, 𝜑∗) = 8.

S á n c h e z - O r o , e t a l . | 3

Figure 2. Sample network reordered

Another interpretation of the PMP on a network is based on the notion of labeling. Each vertex 𝑣 in the

graph is assigned a label 𝜋(𝑣) that is nothing else than the position that the vertex would occupy if the

vertices were arranged in a line as in Figures 1 and 2. A solution is fully specified when all vertices have

been labeled. By definition, the relationship between 𝜑 and 𝜋 is such that if 𝜑(𝑖) = 𝑣 then 𝜋(𝑣) = 𝑖.

For a given 𝜋, the profile of vertex 𝑣 is calculated as 𝛿𝑣 = 𝜋(𝑣) − 𝑓𝑣, where 𝑓𝑣 is the smallest label of the

vertices adjacent to 𝑣, as long as such label is smaller than 𝜋(𝑣). Otherwise, 𝑓𝑣 = 𝜋(𝑣) and 𝛿𝑣 = 0. The

objective of the PMP is to find the labeling 𝜋∗ for which the sum of all vertex profiles is minimized. To

facilitate the description of our work, we will employ both interpretations.

The PMP was originally proposed as an approach to reducing the space requirements for storing sparse

matrices (Tewarson, 1973). In this context, the PMP was shown to be equivalent to the SumCut

problem (Agrawal et al., 1991). One of the main applications of the PMP continues to be the reduction

of the space requirements to store systems of equations. Additionally, the PMP enhances the

performance of operations on systems of nonlinear equations, such as the Cholesky factorization (Saad,

2003). Another interesting application of the PMP is described by Karp (1993) in the context of the

Human Genome Project. The main goals of this project are to identify all genes in human DNA (between

20 and 25 thousand, approximately) and determine the sequences of the approximately 3 billion

chemical base pairs associated with human DNA.

In archeology (Kendall, 1969), the PMP has been utilized in connection with the problem of organizing

items such as fossils, tools and jewels according to a specific order. This process is known as “seriation”

and consists of placing several items from the same culture in a chronological order determined by a

method of establishing dates that are relative to each other. This results in a problem for which the

reordering of the rows and columns of a matrix is required, which is equivalent to the reordering of a

linear graph. Other applications of the PMP can be found in information retrieval (Botafogo, 1993) and

fingerprinting (Karp, 1993).

Lin and Yuan (1994) proved that the PMP of an arbitrary graph is equivalent to the interval graph

completion problem, which was shown to be NP-complete by Garey and Johnson (1979). However,

special classes of graphs can be solved optimally in polynomial time. For example, Lin and Yuan (1994)

proposed several polynomial-time algorithms to find the optimal solution of the PMP for paths, wheels,

S á n c h e z - O r o , e t a l . | 4

complete bipartite graphs and D4-trees (trees with diameter 4). Likewise, Guan and Williams (2003)

developed an algorithm to find the optimal solution of the PMP for triangulated graphs.

The SumCut problem (Gibbons et al., 1991; Penrose et al., 2001; Petit et al., 2002) and the PMP are

equivalent in the sense that a solution to one problem provides a solution to the other problem by

reversing the corresponding permutation. Consequently, the optimum of one problem corresponds to

the optimum of the other (Agrawal et al., 1991). The profile minimization problem is also related to the

Bandwidth Reduction Problem (BRP), which consists of finding a permutation of the rows and the

columns in a matrix, such that all the non-zero elements are confined to a band that is the closest to the

main diagonal.

Algorithmically, the PMP has been tackled since the late sixties. To the best of our knowledge, the first

heuristic in the literature consists of a constructive procedure proposed by Cuthill and McKee (1969)

known as the Reverse Cuthill-McKee algorithm (RCM). Their procedure is based on constructing a level

structure of the vertices. Poole, et al. (1976) improved the RCM algorithm by changing the selection of

the root node within a more general level structure. The method is known in the literature as GPS.

Gibbs (1976) developed GK, a procedure that uses a pseudo-diameter to produce a new level structure.

GK outperforms GPS in solution quality but it requires more computational time. Lewis (1982)

introduces new implementations that improve the performance of both GK and GPS. His experimental

results confirm the superiority of GK over GPS in terms of solution quality.

The best heuristic for the PMP in the literature belongs to Lewis (1994). It uses the Simulated Annealing

(SA) methodology in combination with existing constructive procedures. The SA search starts from a

solution constructed with RCM or GK, whichever is better according to the objective function value. In

typical SA fashion, neighborhood exploration is performed with moves that are randomly generated.

Improving moves are always executed and non-improving moves are only executed with a probability

that depends on the current temperature. A so-called cooling schedule controls the systematic

reductions of the temperature and the search ends when the temperature reaches a pre-specified

minimum level.

2. Scatter Search

Scatter search (Laguna and Martí, 2003) is a metaheuristic whose framework includes five methods that

are designed to build, maintain and transform a population of solutions (see Figure 3). Three of these

methods, the Diversification Generation, the Improvement and the Combination Methods, are problem

dependent and therefore their strategies take advantage of information that is context-specific. On the

other hand, the Reference Set Update and the Subset Generation Methods have standard

implementations that are context-independent. The scatter search (SS) literature keeps growing with

examples of successful applications, such as those documented in Gallego, et al. (2009), Martí et al.

(2009) and Duarte, et al. (2010 and 2011).

S á n c h e z - O r o , e t a l . | 5

Figure 3. Scatter search framework

The procedure starts with the application of the Diversification Generation method (which we describe

in Section 3 in the context of the PMP) and the Improvement method (described in Section 4), obtaining

as a result a population 𝑃 of solutions from which the initial reference set (𝑅𝑒𝑓𝑆𝑒𝑡) of size 𝑏 is

constructed. The initial 𝑅𝑒𝑓𝑆𝑒𝑡 must balance solution quality and diversity and therefore the standard

update in step 3 (Figure 3) selects the best 𝑏/2 solutions from 𝑃 and then the 𝑏/2 solutions in

𝑃\𝑅𝑒𝑓𝑆𝑒𝑡 that are most diverse with respect to those solutions already in the reference set. We point

out that selecting the most diverse solutions from a set is an NP-hard problem (see for instance Duarte

and Martí, 2007) and hence we perform this step heuristically. In particular, after selecting the 𝑏/2 best

solutions (i.e., the ones with the best objective function value), the remaining solutions are added one at

a time. The first one to be added is the solution in 𝑃\𝑅𝑒𝑓𝑆𝑒𝑡 that is the most diverse with respect to

the solutions currently in 𝑅𝑒𝑓𝑆𝑒𝑡. Diversity is typically measured with a function that maximizes the

minimum distance between the solution under consideration and the set of solutions where the

solution will be added (in this case 𝑅𝑒𝑓𝑆𝑒𝑡). As discussed above, a solution 𝑠 to the PMP is fully

characterized by its ordering 𝜑𝑠 and equivalently by the labeling 𝜋𝑠 of the vertices in 𝐺. The distance

between 𝑠 and 𝑅𝑒𝑓𝑆𝑒𝑡 is given by:

𝑑(𝑠, 𝑅𝑒𝑓𝑆𝑒𝑡) = min
𝑟∈𝑅𝑒𝑓𝑆𝑒𝑡

(∑|𝜋𝑠(𝑣) − 𝜋𝑟(𝑣)|

𝑛

𝑣=1

)

The distance is the sum of the absolute differences of the labels assigned to each vertex in the candidate

solution 𝑠 and all the reference solutions 𝑟. Since the labels represent positions, the calculation is

equivalent to the so-called positional distance (Das and Roberts, 2004). Once a solution 𝑠 is selected

from 𝑃\𝑅𝑒𝑓𝑆𝑒𝑡, it is added to 𝑅𝑒𝑓𝑆𝑒𝑡 and the process is repeated 𝑏/2 times, choosing at each step the

solution 𝑠∗ with the maximum distance to the solutions currently in the reference set, that is:

𝑠∗ = arg max
𝑠∈𝑃\RefSet

 𝑑(𝑠, 𝑅𝑒𝑓𝑆𝑒𝑡)

In our implementation, step 4 in Figure 3 consists of generating all pairs of reference solutions that have

not been combined before. Details about the combination method (based on the path relinking

methodology) are presented in Section 5. The reference set update in step 7 is different from the

updating performed in step 3. In order to maintain the diversity among the solutions in 𝑅𝑒𝑓𝑆𝑒𝑡, a

1. Diversification generation

2. Improvement

3. Reference set update

while (termination criteria not satisfied)

4. Subset generation

5. Combination

6. Improvement

7. Reference set update

S á n c h e z - O r o , e t a l . | 6

solution 𝜑 is admitted if it improves the best solution in it, or alternatively, if it improves the worst

solution and its distance with the closest solution to 𝜑 in 𝑅𝑒𝑓𝑆𝑒𝑡 is larger than a pre-established

threshold 𝑑𝑡ℎ𝑟𝑒𝑠ℎ. If solution 𝜑 qualifies to enter in RefSet, then it replaces the closest solution with

objective function value lower than or equal to 𝜑.

The process terminates when no new solutions become part of 𝑅𝑒𝑓𝑆𝑒𝑡. That is, if at a given iteration,

𝑅𝑒𝑓𝑆𝑒𝑡 does not change after step 7, then the search ends.

3. Diversification Generation Method

We develop four diversification generation methods (labeled C1 to C4) to build a population 𝑃 of

solutions. These methods are based on the GRASP methodology (Feo and Resende, 1989; Resende,

Smith and Feo, 1994; Resende, et al. 2010). To describe these methods we define 𝑈 as the set of

vertices that have not been labeled and 𝐿 = 𝑉 \ 𝑈 as the set of the vertices that have already been

labeled. Initially, all vertices are in 𝑈 (i.e., 𝑈 = 𝑉). C1 starts by selecting the vertex 𝑣 ∈ 𝑈 with the

smallest degree (i.e., the vertex with the least number of adjacent vertices). In this step, ties are broken

arbitrarily. The chosen vertex 𝑣 is given the first label and therefore 𝜋(𝑣) = 1 and 𝜑(1) = 𝑣. Then

𝑈 = 𝑈 \ {𝑣} and 𝐿 = 𝐿 ∪ {𝑣} and a candidate list 𝐶𝐿 consisting of the set of vertices adjacent to 𝑣 is

constructed:

𝐶𝐿 = {𝑢: (𝑣, 𝑢) ∈ 𝐸}

A greedy function value is calculated for each vertex 𝑣 in 𝐶𝐿 as follows:

𝑔1(𝑣) = |𝑁𝐿(𝑣)|−|𝑁𝑈(𝑣)|

where 𝑁𝐿(𝑣) = {𝑢 ∈ 𝐿: (𝑣, 𝑢) ∈ 𝐸} and 𝑁𝑈(𝑣) = {𝑢 ∈ 𝑈: (𝑣, 𝑢) ∈ 𝐸}. The greedy function 𝑔1(𝑣)

measures the level of “urgency” of labeling vertex 𝑣 next. The function considers that it is more urgent

to label a vertex for which most of its adjacent vertices have already been labeled. A greedy procedure

would choose, at each step, the vertex 𝑣 with the largest 𝑔1(𝑣) value. However, in the GRASP

framework, constructions are semi-greedy and the implementation includes a so-called restricted

candidate list (𝑅𝐶𝐿). The 𝑅𝐶𝐿 includes top candidates that are equally preferred and hence equally

likely to be chosen:

𝑅𝐶𝐿 = {𝑣 ∈ 𝐶𝐿: 𝑔(𝑣) > 𝑔1
𝑚𝑖𝑛 + 𝛼1(𝑔1

𝑚𝑎𝑥 − 𝑔1
𝑚𝑖𝑛)}

where 𝑔1
𝑚𝑖𝑛 (𝑔1

𝑚𝑎𝑥) is the minimum (maximum) value of 𝑔1(𝑣) for all 𝑣 in 𝐶𝐿. A vertex 𝑣 from 𝑅𝐶𝐿 is

chosen randomly, then the next available label is assigned to it, and the 𝑈 and 𝐿 sets are updated. 𝐶𝐿 is

also updated by adding the unlabeled vertices that are neighbors of the selected vertex 𝑣 (i.e. 𝐶𝐿 =

𝐶𝐿 ∪ 𝑁𝑈(𝑣)). The construction ends when all vertices have been labeled.

The second construction procedure (C2) is similar to C1 but implements in a different way the semi-

greedy selection. Instead of calculating the greedy function value first and then randomly selecting from

a restricted candidate list, C2 first takes from 𝐶𝐿 a random sample of vertices. Then, the vertex with the

largest 𝑔1(𝑣) value in the sample is selected. The size of the random sample is controlled by the

S á n c h e z - O r o , e t a l . | 7

parameter 𝛼2, which represents a fraction of the size of the candidate list (i.e., the random sample

includes 𝛼2|𝐶𝐿| vertices). As before, once the vertex is selected, the next available label is assigned to it

and the 𝑈 and 𝐿 sets are updated.

The 𝑔1(𝑣) greedy function does not take into consideration the values of the labels assigned to the

vertices adjacent to 𝑣. For instance, if 𝑖 is the next available label, 𝑔1(𝑣) does not include in its

calculation the labels that vertices in 𝑁𝐿(𝑣) have received (which may be any between 1 and 𝑖 − 1).

Clearly, the “urgency” of vertex 𝑣 is greater if its adjacent vertices have received labels that are much

smaller than 𝑖. The following greedy function takes this into consideration:

𝑔2(𝑣) = (|𝑁𝐿(𝑣)|−|𝑁𝑈(𝑣)|) ∑ |𝜋(𝑣) − 𝜋(𝑢)|

𝑢∈𝑁𝐿(𝑣)

This greedy function is used to formulate two additional construction methods. C3 is the same as C1 but

with 𝑔2 as the greedy function. C4 is the same as C2 but with 𝑔2 as the greedy function.

4. Improvement Method

For our improvement method we tested both a search neighborhood defined by swap moves and one

defined by insert moves. The representation of a solution as an ordering of the vertices is useful to

conceptualize these search neighborhoods. A 𝑠𝑤𝑎𝑝(𝑖, 𝑗) is the exchange of positions of vertices 𝑣, 𝑢

that are currently in positions 𝑖 and 𝑗, respectively. That is, 𝜑(𝑖) = 𝑣 and 𝜑(𝑗) = 𝑢. An 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑗) is

the movement of vertex 𝑣 = 𝜑(𝑖) to position 𝑗. After the move, 𝑣 precedes 𝑢 if 𝑖 > 𝑗 and 𝑣 follows 𝑢 if

𝑖 < 𝑗. Since both of these moves produce a neighborhood of size 𝒪(𝑛2), a fast calculation of the move

value is critical in order to search such a neighborhood efficiently and identify the best move to make.

For instance, to evaluate the move 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑗) for 𝑗 > 𝑖, it is easy to see that only the profile of the

vertices 𝑣 for which 𝑖 ≤ 𝜋(𝑣) ≤ 𝑛 needs to be recalculated. Therefore, if the profile values for all

vertices in the current solutions are stored, then the calculation of the move value may be done by

updating only those relevant profile-values and adding them to the values that the move does not

affect. Additionally, the updates to the profile values may be accumulated. For instance if we first

evaluate the 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑗), then 𝑛 − 𝑖 + 1 values must be recalculated, i.e., those corresponding to the

vertices with labels between 𝑖 and 𝑛. If we then evaluate 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑗 + 1) without storing any

information from the previous evaluation, we would need to recalculate once again 𝑛 − 𝑖 + 1 values.

However, observing the change of the profile values from one trial move to the other, it can be

determined that the only changes occur in the vertices with labels 𝜋(𝑣) ≥ 𝑗 + 1.

S á n c h e z - O r o , e t a l . | 8

Figure 4. Illustrative representation of a move

Figure 4 illustrates two insertion moves applied to solution 𝜑 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹}, on the left side of the

figure. The first move inserts vertex 𝐵 in position 4, obtaining the solution 𝜑′ = {𝐴, 𝐶, 𝐷, 𝐵, 𝐸, 𝐹} at the

top right side of Figure 5, where vertices that changed their 𝛿𝑖 value are highlighted (i.e., vertices

𝐶, 𝐷, 𝐵, 𝐸 and 𝐹). The insertion of 𝐵 in position 5 that yields a new solution 𝜑′′ is depicted at the

bottom right of Figure 4. Considering that the improvement procedure evaluates insertions as a

sequence of swap moves, evaluating the insertion of 𝐵 in position 5 after evaluating the insertion of 𝐵 in

position 4 requires the updating of vertices 𝐸, 𝐵 and 𝐹, only. Calculation savings are achieved because

there is no need to update 𝐶 and 𝐷 again.

Therefore, an efficient way of searching the insert neighborhood is to evaluate the 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑗) as a

sequence of swaps of the vertices in positions (𝑖, 𝑖 + 1), then (𝑖 + 1, 𝑖 + 2) and so forth until (𝑗 − 1, 𝑗).

These values are stored because the sequence is the same for 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑗 + 1) with the addition of the

𝑠𝑤𝑎𝑝(𝑗, 𝑗 + 1). We have implemented this strategy and the corresponding one for the case when 𝑗 < 𝑖.

By implementing the search as a sequence of swaps of vertices in adjacent positions, the only possible

moves values are -1, 0 and +1. Consider the 𝑠𝑤𝑎𝑝(𝑖, 𝑖 + 1) that exchanges the labels of vertex 𝑣 from

𝜋(𝑣) = 𝑖 to 𝑖 + 1 and vertex 𝑢 from 𝜋(𝑢) = 𝑖 + 1 to 𝑖. Then, the move value is given by:

𝑣𝑎𝑙𝑢𝑒(𝑖, 𝑖 + 1) = {

−1 if 𝑓𝑣 > 𝑖 and 𝑓𝑢 < 𝑖 + 1

0 if (𝑓𝑣 > 𝑖 and 𝑓𝑢 ≥ 𝑖 + 1) or (𝑓𝑣 ≤ 𝑖 and 𝑓𝑢 < 𝑖 + 1)

+1 if 𝑓𝑣 ≤ 𝑖 and 𝑓𝑢 ≥ 𝑖 + 1

This characteristic renders a first improving strategy impractical. A first improving refers to the strategy

of stopping the neighborhood search after finding the first move that improves the current solution.

Since our neighborhood search is structured in such a way that complex moves (i.e., 𝑖𝑛𝑠𝑒𝑟𝑡(𝑖, 𝑗) for a

S á n c h e z - O r o , e t a l . | 9

𝑗 > 𝑖 + 1) are achieved by a sequence of simple moves ((i.e., 𝑠𝑤𝑎𝑝(𝑖, 𝑖 + 1)), stopping after a finding

any improvement results in a process where improvements of more than one unit are not possible in a

single move. Therefore, our implementation uses the best improving strategy in which the entire

neighborhood is searched and the move with the best value is selected.

5. Combination Methods

We have developed one combination method (CM1) and a variant (CM2). The combination method

follows the strategy known as path relinking (Glover and Laguna, 1997). The main idea behind path

relinking (PR) is to construct a path between two elite solutions where the guide is not limited to the

value of the objective function of the problem. PR was suggested in connection with tabu search

because choice mechanisms in neighborhood-based searches often use the objective function as the

only oracle to measure the quality of a move (just as we do in the improvement method described

above). PR attempts to create search paths where the objective function is only one of the elements

employed to determine the direction. PR also exploits the principle that the neighborhood of an elite

solution might contain other high-quality solutions that could be found if the elite solution is

approached from a direction that is different from the one that was used to find the elite solution in the

first place. PR is implemented by choosing one or more elite solutions as the initiating solution and one

or more as the guiding solutions. Strategies are then built around the notion of applying

transformations to the initiating solution with the goal of moving it toward the guiding solution(s). Since

all solutions that have been found during a search are connected by the path that the search followed to

find them, building a new path between elite solutions may be conceptualized as a relinking exercise,

and hence the name of the strategy.

Let 𝑠 be the initiating (or starting) solution and 𝑡 the guiding (or target) solution. CM1 starts by

identifying the set 𝐷 of vertices that have different labels in 𝑠 and 𝑡, that is, 𝐷 = {𝑣: 𝜋𝑠(𝑣) ≠ 𝜋𝑡(𝑣)}. A

set of solutions is generated by swapping the labels of vertex 𝑣 and vertex 𝜑𝑠(𝜋𝑡(𝑣)) in the initiating

solution, for all 𝑣 ∈ 𝐷. Note that after these swaps, 𝜋𝑠(𝑣) equals 𝜋𝑡(𝑣) and the initiating solution

moves closer to the guiding solution. This step generates |𝐷| trial solutions from which we select the

best according to the objective function value. The chosen solution becomes the new initiating solution

and the process continues until 𝐷 = ∅, that is, until the labeling in 𝑠 is the same as in 𝑡. The procedure,

referred to as Greedy Path Relinking in (Resende, et al. 2010), returns the best trial solution found.

Figure 5 illustrates how CM1 operates on two solutions, where 𝑠 is the initiating solution and 𝑡 is the

guiding solution. The relinking requires 4 steps and generates 12 intermediate solutions that are labeled

with a digit and a letter, where the digit is the step number and the letter a solution identifier. Note

that at each step, the best solution (according to the objective function value) becomes the initiating

solution for the next step. Once the guiding solution is reached, the best intermediate solution (in this

case solution 3A with a profile value of 8) is returned.

S á n c h e z - O r o , e t a l . | 10

Figure 5. Illustration of the combination method CM1

We created a variant of CM1 that we refer to as CM2 and that consists of replacing the selection

criterion of the trial solution generated during the relinking process. In particular, instead of selecting

the best solution with respect to the objective function value from the set 𝐷 of trial solutions, the next

initiating solution is selected randomly. In this way, CM2 favors diversification over intensification. As

before, CM2 returns the best solution encountered during the path relinking process.

6. Computational Experiments

We now describe the computational experiments performed to test the SS approach that we developed

for the PMP and then we discuss the associated results. The procedure was implemented in Java SE 6

and was compared against the best methods reported in the literature so far, namely, RCM (Cuthill and

McKee, 1969), and SA (Lewis, 1994). The RCM and SA results were obtained running the original C

implementations shared by the authors. We have implemented the Scatter Search (SS) procedure in

Java SE 6. All tests were performed on an Intel Core i7 2600 machine running at 3.4 GHz and with 2 GB

of RAM. The test set consists of 262 instances divided into three subsets. All instances are available at

www.optsicom.es/pmp/.

 HB — This set is derived from 73 instances in the Harwell-Boeing Sparse Matrix Collection

(Matrix Market, 2011). The data matrices in this set correspond to problems in linear systems,

least squares and eigenvalue calculations in a wide variety of scientific and engineering

disciplines. We selected the 73 problems with 𝑛 ≤ 1000 and therefore the number of vertices

ranges from 24 to 960 and the number of edges ranges from 34 to 3721.

 K-Graphs — This set contains 98 bipartite graphs with number of vertices ranging from 4 to 142

and number of edges ranging from 3 to 5016. A bipartite graph is such that the set of vertices 𝑉

can be divided into two subsets 𝑉1 and 𝑉2 in such a way there exists an edge between every pair

of vertices, one belonging to 𝑉1 and the other belonging to 𝑉2. At the same time, there is no

edge for which its endpoint vertices are in the same subset. Optimal solutions are known by

http://www.optsicom.es/pmp/

S á n c h e z - O r o , e t a l . | 11

construction (Yixun and Jinjiang, 1994) and are given by 𝑛1𝑛2 +
1

2
𝑛1(𝑛1 − 1) for 𝑛1 ≤ 𝑛2, where

𝑛1 = |𝑉1| and 𝑛2 = |𝑉2|.

 D4-Trees — This set consists of 91 instances that are based on trees with a diameter of 4 and a

number of vertices ranging from 10 to 100 and a number of edges ranging from 9 to 99. These

trees are built by choosing a root vertex 𝑣0 and adjacent vertices 𝑣1 to 𝑣𝑘, for 𝑘 ≥ 2. The

vertices adjacent to 𝑣0 form a star with 𝑣0 in the center. If 𝛾(𝑣𝑖) is the degree of vertex 𝑣𝑖 then

the 𝑣𝑖-branch has 𝛾(𝑣𝑖) − 1 leafs, because the other edge is the one connecting 𝑣𝑖 to the root

vertex 𝑣0. The trees in the D4 set are built in such a way that 𝛾(𝑣1) ≥ 𝛾(𝑣2) ≥ ⋯ ≥ 𝛾(𝑣𝑘) ≥ 2

and with a diameter of 4. This means that the tree consists of the root vertex, of all the adjacent

vertices in a star configuration and of all the vertices corresponding to the leaves of the tree.

The optimal solutions are known by construction and are given by |𝐸| + ∑ (𝛾(𝑣𝑘
𝑖=3 𝑖

) − 1).

The experiments are divided into two main blocks. The first block has the goal of studying the behavior

of the components of the solution procedure as well as determining the best values for the search

parameters. The second block of experiments has the goal of comparing our procedure with the best in

the literature. To be able to test the effectiveness of our strategies in the entire PMP class, the first set

of experiments is performed on a subset of all problem instances. In this way, we can test how well our

choices generalize to the entire set of problems. Specifically, the tuning experiments are performed on

the 30 HB instances that have less than 250 vertices. We refer to these instances as the training set and

to all other instances as the testing set.

A common practice in scatter search implementations is to arrive to the best design by choosing the

components of the solution procedure sequentially. Since we are using standard implementations for

the reference set update and the subset generation methods, the design process focuses on choosing a

diversification generator, an improvement method and a combination method. As described in the

previous sections, we have developed four diversification generation methods (C1 to C4), two

improvement methods (one based on swaps and one based on inserts) and two combination methods

(CM1 and CM2). This results in a full factorial design with 16 combinations. In the first block of

experiments, we will contrast the sequential process that selects components one at a time and adds

them to the solution procedure with the full factorial approach that identifies the best combination with

a single experiment.

For the sequential design process, we begin by comparing the four construction methods described in

Section 3. Since these methods are used for diversification purposes, the comparison metrics must

include a measure of diversity as well as a measure of solution quality. Each method (C1 to C4) is

executed to generate 100 solutions. The value of 𝛼 is chosen randomly in each construction. For

validation purposes, we also generate 100 solutions at random and refer to this set of solutions as C0.

The objective function value of each solution is used to calculate an average quality of each set, which is

then normalized between 0 and 1. The average diversity of a set of solutions is calculated using the

distance measure described in Section 2. That is, for a particular set of solution, the distance between a

solution and the rest in the set (i.e., the other 99 solutions) is computed and then the average of the 100

values obtained is used to represent the diversity of the set. We also normalize this diversity measure

between 0 and 1. Figure 6 compares the diversity and quality of the construction methods.

S á n c h e z - O r o , e t a l . | 12

Not surprisingly, C0 obtains the maximum diversity of all the sets. However, this set of solutions is of

minimum quality when compared to the constructions based on GRASP. The C2 set has the highest

quality but the lowest diversity. The sets generated by C3 and C4 are very similar, with C3 slightly more

diverse and C4 with slightly higher quality. In order to test the effect of adding the improvement

method to these construction procedures, we select C2 and C3 to perform additional experiments.

Ignoring the purely random generator C0, the set generated by C2 and C3 are at the extremes of the

frontier in which C1 is dominated and C4 is the most balanced non-dominated point.

Figure 6. Comparison of construction methods

The second experiment couples the construction methods C2 and C3 with the improvement methods

based on swap and insert neighborhoods, resulting in 4 different variants. Once again, the 𝛼 values

associated with C2 and C3 are chosen randomly in each construction. Table 1 shows results obtained

when applying these variants to the training set. For each variant, the table reports the average

objective function value (Obj), the percent deviation of this value from the average obtained with the

best known solutions (Dev), the number of best solutions found out of 30 (#Best) and the CPU time in

seconds.

Variant Obj Dev (%) #Best CPU Time

C2+Swap 1235.94 4.61 7 68.76
C3+Swap 1209.72 2.05 10 90.84

C2+Insert 1209.34 1.30 17 2.56
C3+Insert 1194.78 0.67 18 3.90

Table 1. Construction procedures coupled with improvement methods

The improvement method based on inserts seems to be more effective than the one based on swaps

according to the results in Table 1. The table also shows, however, that inserts are more

computationally expensive than swaps. The best combination of construction and improvement is given

by C3+Insert, CPU time notwithstanding. Therefore, in this sequential process, we have determined, so

S á n c h e z - O r o , e t a l . | 13

far, that our final scatter search should have C3 as the diversification generator and Insert as the

improvement method.

Finally, we must choose a combination method that works well with the C3+Insert. For this experiment,

we also need to add the subset generation method and the reference set update method. The subset

generation method is a standard implementation and has no parameters. The behavior of the reference

set update method depends on the values of 𝑏 and the 𝑑𝑡ℎ𝑟𝑒𝑠ℎ parameter. While we set 𝑏 to the

standard value of 10 used in the SS literature, in this experiment, we try 4 values for 𝑑𝑡ℎ𝑟𝑒𝑠ℎ (0.01,

0.05, 0.10 y 0.30). As indicated at the end of Section 2, the search terminates when no solution

generated by the application of the combination and improvement methods is admitted to the

reference set. Table 2 summarizes the results of this experiment, where the column labels have the

same meaning as in Table 1 with the addition of the 𝑑𝑡ℎ𝑟𝑒𝑠ℎ column containing the value of the

parameter that was utilized to produce the results, where 𝑀𝐷 is the maximum distance between the

labeling of two solutions. Considering the distance function formulated in Section 2, 𝑀𝐷 is computed as

follows:

𝑀𝐷 = ∑|𝑖 − (𝑛 − 𝑖 + 1)|

𝑛

𝑖=1

According to the results shown in Table 2, the best SS configuration should include CM1 as the

combination method. Within that, the best value for 𝑑𝑡ℎ𝑟𝑒𝑠ℎ seems to be 0.05, which results in the

smallest deviation from the best solutions known. The results indicate that while there is a significant

difference in performance between employing CM1 and employing CM2, the procedure is robust with

respect to the value of 𝑑𝑡ℎ𝑟𝑒𝑠ℎ. In particular, there is no significant difference between values in the

range between 0.01 and 0.10 for CM1.

Variant 𝒅𝒕𝒉𝒓𝒆𝒔𝒉 Obj Dev(%) #Best CPU Time

C3+Insert+CM1

0.01*𝑀𝐷 1187.97 0.10 25 6.54
0.05*𝑀𝐷 1187.38 0.08 25 6.37
0.10*𝑀𝐷 1187.63 0.09 24 6.71
0.30*𝑀𝐷 1188.16 0.12 24 6.73

C3+Insert+CM2

0.01*𝑀𝐷 1191.69 0.43 21 6.08
0.05*𝑀𝐷 1191.56 0.43 21 5.74
0.10*𝑀𝐷 1191.78 0.45 21 5.90
0.30*𝑀𝐷 1191.56 0.43 20 5.43

Table 2. Performance of combination methods CM1 and CM2

The final experiment of this block consists of choosing the best SS configuration by running a single full-

factorial experiment. To perform this experiment, we set 𝑏 = 10, 𝑑𝑡ℎ𝑟𝑒𝑠ℎ = 0.05 and 𝛼 is chosen

randomly in each construction. Table 3 summarizes the results obtained with the 16 variants on the

training set.

S á n c h e z - O r o , e t a l . | 14

Variant Obj Dev(%) #Best CPU Time

C1+Insert+CM1 1189.44 0.80 20 6.59
C1+Insert+CM2 1195.38 0.96 18 5.30
C1+Swap+CM1 1195.94 1.35 13 92.68
C1+Swap+CM2 1200.91 1.74 12 91.24
C2+Insert+CM1 1218.31 3.30 11 3.79
C2+Insert+CM2 1219.41 3.51 12 3.48
C2+Swap+CM1 1228.91 4.42 9 76.20
C2+Swap+CM2 1232.91 4.74 7 75.36
C3+Insert+CM1 1188.06 0.75 17 6.78
C3+Insert+CM2 1191.53 1.04 14 6.58
C3+Swap+CM1 1201.91 1.79 10 101.27
C3+Swap+CM2 1202.78 1.95 12 96.13
C4+Insert+CM1 1195.28 1.27 14 6.91
C4+Insert+CM2 1200.97 1.50 15 6.14
C4+Swap+CM1 1205.44 2.25 10 94.01
C4+Swap+CM2 1205.66 2.44 10 93.00

Table 3. Full factorial experiment

The output of the full factorial design that Table 3 summarizes indicates that there are two

configurations that dominate all others when considering percent deviation and number of best

solutions: C1+Insert+CM1 and C3+Insert+CM1. The C3+Insert+CM1 configuration was the one identified

as the best by the sequential design process. It achieves the lowest deviation of 0.75% and the third

highest number of best solutions of 17. The C1+Insert+CM1 configuration achieves the highest number

of best solutions of 20 and an average deviation of 0.8% that is second lowest. The configuration uses a

diversification generator that is different from the one that we selected during the sequential design

process. In fact, in our analysis, C1 was dominated by the other three construction procedures in terms

of both quality and diversity (see Figure 6). Hence, the full factorial design is able to identify a

configuration that performs well when all elements are put together at once but that does not seem

attractive when the merit of each element is assessed separately. Nonetheless, the fact that the

C3+Insert+CM1 configuration is in the non-dominated set seems to indicate that in situations where

running a full factorial design is not practical, a sequential process is an approach for which it is

reasonable to expect that it will yield an effective combination of SS components. This analysis

concludes the first block of experiments.

In the second block of experiments we compare the performance of the SS procedure configured as

C1+Insert+CM1 against the best methods in the literature. In particular, the comparison includes RCM

(Cuthill and McKee, 1969) and SA (Lewis, 1994). Tables 4 and 5 show the results associated with the K-

Graphs and D4-Trees data sets, respectively. The optimal solutions to these problems are known by

construction and therefore the deviations are calculated against the optimal objective function values.

Also, the tables report the number of optimal solutions found (#Opt) instead of the number of best

solutions.

S á n c h e z - O r o , e t a l . | 15

Procedure Obj Dev(%) #Opt CPU Time

RCM 1165.64 0.00 98 1.02
SA 1167.06 0.02 97 5.87
SS 1165.64 0.00 98 0.66

Table 4. Experiments with 98 K-Graphs

Clearly, the K-Graphs do not represent a challenge to any of the procedures in our test. Only SA fails to

find the optimal solutions to one of the instances, even when employing considerably more time than its

counterparts. The situation changes when the methods are applied to the D4-Tree set. The results are

shown in Table 5 where the difficulty of these problems becomes evident. The best performance is

achieved by SS, which is able to find the optimal solution to 97.8% (i.e., 89 out of 91) of the problems.

The solution time is negligible for all procedures.

Procedure Obj Dev(%) #Opt CPU Time

RCM 282.75 173.57 2 1.01
SA 126.08 30.39 31 0.68
SS 86.12 0.01 89 0.28

Table 5. Experiments with 91 D4-Trees

We perform non-parametric tests to provide additional support to our conclusions about the

performance of the scatter search implementation. First, we apply the Friedman test for multiple

correlated samples to the best solutions obtained by each of the 3 methods in Table 5. This test

computes, for each instance, the rank value of each method according to solution quality (where rank 1

is assigned to the best method and rank 3 to the worst). Then, it calculates the average rank values for

each method across all instances. If the averages differ greatly, the associated p-value or level of

significance is small. The resulting p-value of 0.000 obtained in this experiment clearly indicates that

there are statistically significant differences among the 3 methods. The rank values produced by this

test are 1.18 (SS), 1.85 (SA), and 2.97 (RCM).

Next, we employed the Wilcoxon test and Sign test to make a pairwise comparison of SS and SA, which

consistently provide the best solutions reported in our experiments. The results of the Wilcoxon test

(with a p-value of 0.000) determined that the solutions obtained by the two methods indeed represent

two different populations. The Sign test (with a p-value of 0.000) indicated that the objective function

values of the solutions obtained with SS tend to be better (i.e., smaller) than those obtained with SA.

In the final experiment of this block, we add a procedure to our comparison set. We refer to the

additional procedure as TS-BMP because it was developed by Campos et al. (2011) for the solution of

the bandwidth minimization problem (BMP). The BMP is related to the PMP because they both have

the goal of transforming a sparse symmetric matrix into one for which the nonzero elements are close to

the main diagonal. The PMP achieves this goal with an additive objective function that penalizes a

distance measure from the main diagonal while the BMP uses a criterion that minimizes the maximum

deviation. Specifically, in the BMP, the objective is to find an ordering of the rows and columns of a

matrix 𝑀 in such a way that the nonzero elements are in a band that is as close as possible to the main

S á n c h e z - O r o , e t a l . | 16

diagonal. In other words, the goal is to find a labeling 𝜋 of the vertices of the corresponding 𝐺(𝑉, 𝐸)

graph such that bandwidth, 𝐵(𝐺, 𝜋), is minimized, where:

𝐵(𝐺, 𝜋) = 𝑚𝑎𝑥(𝐵(𝑣, 𝜋): 𝑣 ∈ 𝑉) and 𝐵(𝑣, 𝜋) = 𝑚𝑎𝑥(|𝜋(𝑣) − 𝜋(𝑢)|: (𝑣, 𝑢) ∈ 𝐸).

That is, 𝐵(𝑣, 𝜋) is the bandwidth of vertex 𝑣 for labeling 𝜋 and it is calculated as the maximum absolute

difference between label of 𝑣 and the labels of its adjacent vertices. The bandwidth of the graph is the

maximum vertex bandwidth. Given these similarities, it is reasonable to believe that a solution

procedure design for the BMP might find high quality solutions to the PMP. To test this, we applied TS-

BAND without any modifications to the HB instances. TS-BMP operates with the objective of minimizing

𝐵(𝐺, 𝜋) and upon termination the procedure returns the solution 𝜋∗ with the best value according to

this objective function. We then calculate 𝑃(𝐺, 𝜑∗) by applying the transformation 𝜑∗(𝜋∗(𝑣)) = 𝑣 for

all vertices in the graph. The results associated with this experiment are in Table 6. Since the optimal

solutions to the HB instances are not known, the deviations are calculated against the best-known

solutions and #Best refers to the number of best-known solutions found by each procedure.

Procedure Obj Dev(%) #Best CPU Time

TS-BMP 10046.10 55.52 1 240.60
RCM 8441.78 31.31 7 250.00
SA 8458.41 28.93 7 390.61
SS 6749.56 0.38 67 214.90

Table 6. Experiments with 73 HB instances

When the results shown in Table 6 are added to the results of our previous experiments, they support

for the position of SS as the best procedure for the PMP of those in the comparison set. However, the

following statistical tests provide additional evidence.

We applied the three statistical tests described above to the results in Table 6. The p-value of 0.000

obtained for this experiment with the Friedman test clearly indicates that there are statistically

significant differences among the 4 methods. The rank values produced by this test are 1.19 (SS), 2.52

(RCM), 2.62 (SA), and 3.67 (TS-BMP). Finally, we employed the Wilcoxon test and Sign test to make a

pairwise comparison of SS and SA for the results reported in Table 6. Both obtained a p-value of 0.000,

indicating that the solutions obtained with SS are consistently better than those obtained with SA. Table

7 in the Appendix shows the best values and associated CPU times obtained with SS on the HB instances.

7. Conclusions

Our goal was to develop a state-of-the-art solution method for the profile minimization problem. We

accomplished this goal with an implementation of a scatter search procedure that computational

experiments and statistical analysis show to be superior to the solution methods reported in the

literature. In the process of choosing the best scatter search design, we discovered that a sequential

approach is capable of producing a highly competitive design and thus validating what has been the

typical process published in the SS literature.

S á n c h e z - O r o , e t a l . | 17

Acknowledgments

This research has been partially supported by the Ministerio de Educación y Ciencia of Spain (Grant Refs.

TIN2009-07516 and) and the Government of the Community of Madrid, grant S2009/TIC-1542. We

would like to thank Professor Robert R. Lewis for sharing the source code of the RCM and SA methods.

References

Agrawal, A., P. Klein and R. Ravi, “Ordering problems approximated: single-processor scheduling and

interval graph completion,” Automata, Languages and Programming, 510: 751-762, 1991.

Botafogo, R. A., “Cluster analysis for hypertext systems,” Proceedings of the 16th Annual International

ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 116-125, 1993.

Campos, V., E. Piñana and R. Martí , “Adaptive Memory Programming for Matrix Bandwidth

Minimization” Annals of Operations Research vol. 183: 7-23, 2011.

Cuthill, E. and J. Mckee, “Reducing the bandwidth of sparse symmetric matrices,” ACM '69 Proceedings

of the 1969 24th national conference, pp. 157-172, 1969.

Das, A. and M. Roberts, “Metric distances of permutations,”

www.cra.org/Activities/craw_archive/dmp/awards/2004/Das/paper.ps, 2004

Duarte, A., R. Martí , "Tabu Search and GRASP for the Maximum Diversity Problem". European Journal of

Operational Research, 178: 71-84, 2007.

Duarte, A., R. Martí, E. G. Pardo and J. J.Pantrigo, “Scatter search for the cut width minimization

problem,” Annals of Operations Research, In press, DOI: 10.1007/s10479-011-0907-2, 2010.

Duarte, A., F. Glover, R. Martí and F. Gortázar, “Hybrid scatter tabu search for unconstrained global

optimization,” Annals of Operations Research, 183:95-123, 2011.

Feo, T. A. and M. G. C. Resende, “A probabilistic heuristic for a computationally difficult set covering

problem,” Operations Research Letters, 8(2): 67-71, 1989.

Gallego, M., A. Duarte, M. Laguna and R. Martí, “Hybrid heuristics for the maximum diversity problem,”

Computational Optimization and Applications, 44(3): 411-426, 2009.

Garey, M.R and D.S. Johnson, “Computers and Intractability: A Guide to the Theory of NP-Completeness”,

W. H. Freeman and Co., 1979.

Gibbs, N.E., “A hybrid profile reduction algorithm”, ACM Trans. Math. Softw. 2(4):378-387, 1976.

Gibbons, A., M. Paterson, J. Torán and J. Diaz, “The minsumcut problem," Algorithms and Data

Structures, 519:65-79, 1991.

Glover, F. and M. Laguna, Tabu Search, Kluwer Academic Publishers: Boston, 1997.

Guan, G. and K.L.Williams, “Profile minimization of triangulated triangles”, Discrete Mathematics, 260:

69-76, 2003.

file://vmware-host/Shared%20Folders/Papers/Profile_SS/www.cra.org/Activities/craw_archive/dmp/awards/2004/Das/paper.ps

S á n c h e z - O r o , e t a l . | 18

Karp, R., “Mapping the genome: some combinatorial problems arising in molecular biology”, STOC'93

Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pp. 278-285, 1993.

Kendall, R., “Incidence matrices, interval graphs and seriation in archaeology,” Pacific Journal of

Mathematics, vol. 28, pp. 565-570, 1969.

Laguna, M and R.Martí, “Scatter Search: methodology and implementations in C”, Clubber Academic

Publisher, 2003.

Lewis, J., “The Gibbs-Poole-Stockmeyer and Gibbs-King algorithms for reordering sparse matrices", ACM

Transactions on Mathematical Software (TOMS), 8: 190-194, 1982.

Lewis, R., “Simulated annealing for profile and fill reduction," International Journal for Numerical

Methods in Engineering, 37(6): 905-925, 1994.

Lin, Y., and J.Yuan, “Profile minimization problem for matrices and graphs.”, Acta Math. Appl. Sinica,

English-Series, Yingyong Shuxue-Xuebas, 10(1): 107-112, 1994.

Martí, R., A. Duarte and M. Laguna, “Advanced scatter search for the max-cut problem”, INFORMS

Journal on Computing, 21(1): 26-38, 2009.

Matrix Market [Online]. http://math.nist.gov/MatrixMarket/collections/hb.html, 2011

Penrose, M., J. Petit, M. Serna and J. Diaz, “Convergence theorems for some layout measures on random

lattice and random geometric graphs,” Journal of Combinatorics, Probability and Computing, 9: 489-

511, 2000.

Petit, J., M. Serna and J. Díaz, “A survey of graph layout problems,” ACM Computing Surveys, 34: 313-

356, 2002.

Poole, W., P. Stockmeyer and N. Gibbs “An algorithm for reducing the bandwidth and profile of a sparse

matrix,”SIAM Journal on Numerical Analysis, 13:236-250, 1976.

Resende, M. G. C., R. Martí, M. Gallego and A. Duarte, “GRASP and path relinking for the max-min

diversity problem," Computers and Operations Research, 37:498-508, 2010.

Resende,M. G. C.,S. H. Smith and T. A. Feo, “A greedy randomized adaptive search procedure for

maximum independent set," Operations Research, 42: 860-878, 1994.

Saad, Y., Iterative methods for sparse linear systems, SIAM, ISBN-13: 978-0-898715-34-7, 2003.

Tewarson, R., Sparse matrices, Academic Press: New York, 1973.

http://math.nist.gov/MatrixMarket/collections/hb.html

S á n c h e z - O r o , e t a l . | 19

Appendix

Table 7 shows the objective function value (profile) of the Harwell-Boeing instances and the associated

running time of the SS method.

Instance Value CPU Time Instance Value CPU Time

 494 BUS 3499 237.5 DWT 59 223 0.4

 662 BUS 8962 318.5 DWT 66 127 0.2

 685 BUS 8528 799.8 DWT 72 151 0.7

ASH292 2784 61.8 DWT 87 434 1.2

ASH85 490 1.4 DWT 162 1286 5.8

BCSPWR01 82 0.1 DWT 193 4388 15.3

BCSPWR02 113 0.3 DWT 198 1092 7.6

BCSPWR03 434 3.2 DWT 209 2621 25.1

BCSPWR04 1992 40.6 DWT 221 1646 20.1

BCSPWR05 3354 90.3 DWT 234 803 10.6

BCSSTK01 466 0.4 DWT 245 2053 29.7

BCSSTK02 2145 0.4 DWT 307 6676 46.4

BCSSTK03 272 0.3 DWT 310 2630 25.0

BCSSTK04 3159 4.9 DWT 346 6051 54.1

BCSSTK05 2192 4.3 DWT 361 4635 64.8

BCSSTK06 13437 123.9 DWT 419 6679 107.3

BCSSTK07 13437 123.9 DWT 492 3361 151.0

BCSSTK19 7638 855.7 DWT 503 13152 192.3

BCSSTK20 3006 195.8 DWT 512 3975 144.6

BCSSTK22 641 2.2 DWT 592 9498 220.5

CAN 24 95 0.1 DWT 607 13278 419.3

CAN 61 338 0.4 DWT 758 6392 371.3

CAN 62 172 0.5 DWT 869 13107 1526.5

CAN 73 520 0.9 DWT 878 17259 1104.6

CAN 96 1080 2.1 DWT 918 16502 1277.3

CAN 144 969 2.3 GR 30 30 24311 1190.4

CAN 161 2482 6.6 LSHP 265 3162 25.7

CAN 187 2195 9.7 LSHP 406 5964 83.2

CAN 229 4141 27.9 LSHP 577 10045 222.1

CAN 256 5049 40.8 LSHP 778 15719 586.2

CAN 268 5215 25.0 NOS1 467 2.1

CAN 292 4718 41.7 NOS2 1907 36.0

CAN 445 15494 150.4 NOS3 45631 2222.8

CAN 634 28493 499.9 NOS4 651 1.1

CAN 715 24414 984.3 NOS5 20446 209.0

 NOS6 9095 184.2

 NOS7 34675 338.7

 PLAT362 10620 105.8

Table 7. Best individual values on HB instances obtained with SS

