

Tabu Search for the Max-Mean Dispersion Problem

RUBÉN CARRASCO
Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Spain.
rubensegovia@gmail.com

ANTHANH PHAM TRINH
Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Spain.
antai.pt@gmail.com

MICAEL GALLEGO
Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Spain.
micael.gallego@urjc.es

FRANCISCO GORTÁZAR
Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Spain.
francisco.gortazar@urjc.es

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain.
rafael.marti@uv.es

ABRAHAM DUARTE
Departamento de Informática y Estadística, Universidad Rey Juan Carlos, Spain.
abraham.duarte@urjc.es

ABSTRACT

In this paper, we address a variant of a classical optimization problem in the context of selecting
elements in a set, while maximizing their diversity. In particular, we maximize their mean
dispersion. This NP-hard problem was recently introduced as the maximum mean dispersion
problem (MaxMeanDP), and it models several real problems, from pollution control to capital
investment or web page ranking. In this paper, we first review the previous methods for the
MaxMeanDP and then explore different tabu search approaches and their influence on the
quality of the solutions obtained. As a result, we propose a dynamic tabu algorithm based on
three different neighborhoods, which is able to attain high quality solutions. Experimentation
on previously reported instances shows that the proposed procedure outperforms existing
methods in terms of solution quality. Additionally, we believe that our findings on the use of
different memory structures invites further consideration of the interplay between short and
long term memory to enhance simple forms of tabu search.

Keywords: Metaheuristics, Tabu Search, Diversity Problems.
Original version: September, 2014

mailto:rubensegovia@gmail.com
mailto:antai.pt@gmail.com
mailto:micael.gallego@urjc.es
mailto:francisco.gortazar@urjc.es
mailto:rafael.marti@uv.es
mailto:abraham.duarte@urjc.es

2

1. Introduction

Diversity problems have been the subject of wide investigation in recent years. In general terms,

they consist of maximizing a diversity or dispersion function, which is computed from a subset

of selected elements (Glover et al., 1995). Several models (functions) have been proposed in the

literature. The most popular is the sum of distances among the selected elements, and results

in the well-known Max-Sum Diversity Problem, simply known as the Maximum Diversity

Problem (Duarte and Martí, 2007; Gallego et al., 2009). In the Max-Min Diversity Problem, the

diversity is computed as the minimum of the distances between each pair of selected elements

(Resende et al., 2010). Other models and problems, such as the Maximally Diverse Grouping

Problem (Gallego et al., 2013; Rodriguez et al., 2013) deal with the diversity in different subsets.

Prokopyev et al. (2009) proposed four functions and their associated optimization problems to

either maximize or balance the diversity among the selected elements: the mean-dispersion

function, which maximizes the average dispersion of the selected elements; the generalized

mean-dispersion function, which considers vertex-weighted graphs; and the min-sum and the

min-diff dispersion functions that consider the extreme equity values of the selected elements.

In this paper we focus on Max-Mean Dispersion Problem (MaxMeanDP), which seeks for

maximizing the average diversity among selected elements. This strongly NP-hard problem

(Prokopyev et al., 2009) has the singularity that the subset of selected elements does not have

a fixed pre-established size as in the well-known Max-Sum or Max-Min variants, which makes it

especially challenging for heuristic search.

Martí and Sandoya (2013) introduced affinity measures in the MaxMeanDP to generalize the

distances among elements by using positive and negative values. These instances are

remarkably useful in the context of social networks, where there has been a growing interest in

studying social relationships. In particular, these relationships usually model the affinity among

elements, where its value can be represented as either an attraction (positive value) or a

rejection (negative value) between the elements. The Max-Mean Dispersion Problem has been

used to model several real problems, including sentiment analysis, pollution control, capital

investment, genetic engineering, web pages ranks, trusting networks, among others (Glover et

al., 1998; Wilson et al., 2005; Kerchove and Doore, 2008; Yang et al., 2007).

Given a complete graph 𝐺(𝑉, 𝐸), where 𝑉 (|𝑉| = 𝑛) is the set of elements, and 𝐸 is the set of

edges (|𝐸| =
𝑛(𝑛−1)

2
), the MaxMeanDP is formally described as follows. Consider that each

edge (𝑖, 𝑗) has associated a distance or affinity 𝑑𝑖𝑗. A solution 𝑆 ⊆ 𝑉 is a subset of any

cardinality. Its value, or mean dispersion 𝑚𝑑(𝑆), is computed as:

𝑚𝑑(𝑆) =
∑ 𝑑𝑖𝑗𝑖<𝑗;𝑖,𝑗∈𝑆

|𝑆|

Therefore, the Max-Mean problem consists of identifying the set 𝑆∗ ⊆ 𝑉 with the maximum

mean dispersion value.

Figure 1a shows an example of a graph with 5 vertices and 10 edges and its associated distances.

Figures 1b and 1c depict two MaxMeanDP solutions, 𝑆1 and 𝑆2. The selected vertices in each

3

solution are shown in grey while solid lines highlight their associated edges. The vertices not

selected in the solution are shown in white while the edges not in the solution are represented

with dashed lines. Notice that the number of selected vertices is different in each solution

(|𝑆1| = 4 and |𝑆2| = 3) and the affinities are positive and negative values. To evaluate each

solution, we compute its mean dispersion. In particular, Figure 1.b shows a solution where 𝑆1 =

 {1,3,4,5} and 𝑚𝑑(𝑆1) = 4.00, and Figure 1.c shows the solution 𝑆2 = {1,3,4} with 𝑚𝑑(𝑆2) =

 4.67. This example illustrates that the quality of the solutions is not related with their

cardinality. Note that in this case, solution 𝑆2 is better than solution 𝑆1, and |𝑆2| < |𝑆1|.

Figure 1. (a) Graph example (b) Solution 𝑆1 (c) Solution 𝑆2.

This problem has recently received some attention. Prokopyev et al. (2009) proposed a

linearization of several diversity models, and used Mixed Integer Programming (MIP) to solve

instances of moderate size (up to 100 elements) with CPLEX. They also introduced a GRASP

method and compared MIP solutions with those obtained with the GRASP procedure in terms

of time and optimum gap. The computational experience showed that GRASP obtained high

quality solutions in a fraction of time of CPLEX. Martí and Sandoya (2013) introduced a more

specialized GRASP with Path Relinking method for the Max-Mean Dispersion Problem. They

compared the proposed algorithm with the algorithms described in the related literature. The

experimental results showed that the GRASP with Path Relinking method considerable

outperformed previous approaches. Therefore, this algorithm can be considered the current

state of the art in the context of the Max-Mean Dispersion Problem. The objective of this paper

is to propose a specialized Tabu Search procedure to obtain high-quality solutions for the

MaxMeanDP.

Tabu search (Glover and Laguna, 1997) is a metaheuristic that guides a local search procedure

to explore the solution space beyond local optimality. One of the main components of TS is the

use of adaptive memory, which creates a flexible search behavior. Memory-based strategies are

therefore the key components of tabu search, by which alternative forms of memory are

appropriately combined with effective strategies for exploiting them. Memory structures in

tabu search are mainly based on four elements: recency, frequency, quality and influence. The

first and second elements are related to the short-term and long-term memories respectively,

4

where each one has its own strategies. Both types of memory have the effect of modifying the

neighborhood of a given solution. On the one hand, short-term considerations usually serve to

identify characteristics of the neighbor solutions to be excluded. On the other hand, longer-

term considerations expand the neighborhood by including promising solutions not ordinarily

found on it. In this paper we propose effective mechanism based on the tabu search

methodology to find high-quality solutions to the Max-Mean problem.

The rest of the paper is organized as follows: Section 2 describes two new constructive

procedures, which are coupled with a local search method based on three neighborhood

structures. Short-term and long-term TS variants based on the local search are described in

Section 3. In Section 4, we present our exhaustive computational experience. We first analyze

and tune the proposed algorithms and then compare our best proposal with the best procedure

identified in the literature. Concluding remarks are finally outlined in Section 5.

2. Constructive and local search methods

In this section we propose two greedy algorithms for generating good initial solutions to the

Tabu Search procedure. Algorithm 1 shows the pseudo-code of the first greedy procedure called

𝐶𝑜𝑛𝑠𝑡. It starts by initializing the partial solution to the empty set (step 1) and the Boolean

variable which determines the stopping criterion (step 2). 𝐶𝑜𝑛𝑠𝑡 then iteratively adds vertices

to the solution under construction (steps 3 to 11). In order to determine the best candidate to

be incorporated in the current partial solution, 𝐶𝑜𝑛𝑠𝑡 uses the greedy function 𝑔 (see step 5),

which estimates the increment/decrement of the objective function when an element 𝑖 ∈ 𝑉 \𝑆

is added to S. The best element is then selected to be added to the partial solution (step 7) or,

alternatively, the method detects that it is not possible to further improve S (step 10), returning

it in step 12.

PROCEDURE 𝐶𝑜𝑛𝑠𝑡
1. 𝑆 = ∅
2. 𝑛𝑜𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← 𝑡𝑟𝑢𝑒
3. WHILE 𝑛𝑜𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 = 𝑡𝑟𝑢𝑒 DO

4. 𝑔(𝑖) ← ∑ 𝑑𝑖𝑗 , for all 𝑖 ∈ 𝑉\𝑆𝑗∈𝑆′

5. 𝑖∗ ← arg max
𝑗∈𝑉\𝑆

𝑔(𝑗)

6. IF 𝑔(𝑖∗) ≥ 0 THEN
7. 𝑆 ← 𝑆 ∪ {𝑖∗}
8. ELSE
9. 𝑛𝑜𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
10. END
11. END
12. RETURN 𝑆

END

Algorithm 1. Pseudo-code of the greedy constructive method 𝐶𝑜𝑛𝑠𝑡.

The second greedy procedure, 𝐷𝑒𝑠𝑡, proceeds in a similar way (see Algorithm 2) but, instead of

adding elements, it removes elements. In particular, it starts by considering all the elements in

the solution under construction (step 2). At each iteration, 𝐷𝑒𝑠𝑡 orders the elements in the

solution under construction according to 𝑔 (step 4). Then, instead of selecting the element with

5

the larger 𝑔-vaule, 𝐷𝑒𝑠𝑡 selects the element with the smallest 𝑔-value (step 5), removing it from

the current solution (step 7). This logic is maintained until no further improvement is possible

(step 10).

PROCEDURE 𝐷𝑒𝑠𝑡
1. 𝑆 ← 𝑉
2. 𝑛𝑜𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← 𝑡𝑟𝑢𝑒
3. WHILE 𝑛𝑜𝑡𝐹𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ← 𝑡𝑟𝑢𝑒 DO

4. 𝑔(𝑖) = ∑ 𝑑𝑖𝑗 , for all 𝑖 ∈ 𝑆′𝑗∈𝑆′

5. 𝑖∗ = arg min
𝑗∈𝑆

𝑔(𝑗)

6. IF 𝑔(𝑖∗) ≤ 0 THEN
7. 𝑆′ = 𝑆′\ {𝑖∗}
8. ELSE
9. 𝑛𝑜𝑡𝐹𝑖𝑛𝑠ℎ𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
10. END
11. END
12. RETURN 𝑆′

END

Algorithm 2. Pseudo-code of the greedy constructive method 𝐷𝑒𝑠𝑡.

We additionally propose three different neighborhood structures based respectively on three

different types of moves: 𝑎𝑑𝑑, 𝑑𝑟𝑜𝑝, and 𝑠𝑤𝑎𝑝. Given a solution 𝑆, the 𝑎𝑑𝑑-move consists of

selecting an element 𝑗 ∈ 𝑉\𝑆 and inserting it in 𝑆, producing a new solution 𝑆’. For the sake of

simplicity we denote 𝑆’ = 𝑎𝑑𝑑(𝑆, 𝑗) . Thus, given the solution 𝑆, its neighborhood 𝑁1(𝑆) is

defined as follows:

𝑁1(𝑆) = {𝑆′ ⊆ 𝑉 ∶ 𝑆′ = 𝑎𝑑𝑑(𝑆, 𝑗) , 𝑗 ∈ 𝑉\𝑆 }

The second neighborhood is defined with the 𝑑𝑟𝑜𝑝-move. It consists of removing an element

𝑖 ∈ 𝑆, producing a new solution 𝑆′ (i.e., 𝑆’ = 𝑑𝑟𝑜𝑝(𝑆, 𝑖)). Then, the second neighborhood of

solution 𝑆 is:

𝑁2(𝑆) = {𝑆′ ⊆ 𝑉 ∶ 𝑆′ = 𝑑𝑟𝑜𝑝(𝑆, 𝑖) , 𝑖 ∈ 𝑆}

We finally propose a composed move, simply called 𝑠𝑤𝑎𝑝, which simultaneously removes one

element 𝑖 ∈ 𝑆, and adds an element 𝑗 ∈ 𝑉\𝑆, producing a new solution 𝑆’ = 𝑠𝑤𝑎𝑝(𝑆, 𝑖, 𝑗).

Then, the third neighborhood is formally defined as follows:

𝑁3(𝑆) = {𝑆′ ⊆ 𝑉 ∶ 𝑆′ = 𝑠𝑤𝑎𝑝(𝑆, 𝑖, 𝑗) , 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝑉\𝑆}

Traditionally, a local search method explores a neighborhood in search for either the first

improving or the best improving move. The best solution found at the end of the process is a

local optimum (with respect to the neighborhood considered). In this paper, we propose three

local search strategies (LS1(𝑆), LS2(𝑆), and LS3(𝑆)) based on a nested exploration strategy of

the three neighborhoods defined above. Algorithm 3 shows the pseudo-code of the first local

search LS1, which for a given solution 𝑆, starts by considering the three neighborhoods (step 1).

The main loop of LS1 stars by selecting one neighborhood at random from the three (step 3),

and explores it with a first improvement strategy (step 4). 𝐹𝑖𝑟𝑠𝑡𝐼𝑚𝑝𝑀𝑜𝑣𝑒 always returns a

6

solution S’ better than S (if there exists an improving move) or equal to 𝑆 (no move is finally

performed). Then, if 𝑆’ is better than 𝑆, the method updates both the incumbent solution and

the composed neighborhood (steps 6 and 7); otherwise, the selected neighborhood is discarder

until LS1 finds an improvement move (step 9). LS1 performs iterations until no further

improvement is found in the composed neighborhood (steps 2 to 11), returning the best solution

found (step 12), which is a local optimum with respect to all neighborhoods.

PROCEDURE LS1(𝑆)
1. 𝑁𝑐𝑜𝑚𝑏(𝑆) ← {𝑁1(𝑆), 𝑁2(𝑆), 𝑁3(𝑆)}
2. WHILE 𝑁𝑐𝑜𝑚𝑏(𝑆) ≠ ∅ DO
3. 𝑁𝑥(𝑆) ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑅𝑎𝑛𝑑𝑜𝑚{𝑁𝑐𝑜𝑚𝑏(𝑆)}
4. 𝑆′ ← 𝐹𝑖𝑟𝑠𝑡𝐼𝑚𝑝𝑀𝑜𝑣𝑒(𝑁𝑥(𝑆))
5. IF 𝑚𝑑(𝑆′) > 𝑚𝑑(𝑆) THEN
6. 𝑆 ← 𝑆’
7. 𝑁𝑐𝑜𝑚𝑏(𝑆) ← {𝑁1(𝑆), 𝑁2(𝑆), 𝑁3(𝑆)}
8. ELSE
9. 𝑁𝑐𝑜𝑚𝑏(𝑆) ← 𝑁𝑐𝑜𝑚𝑏(𝑆) ∖ 𝑁𝑥(𝑆)
10. END
11. END
12. RETURN 𝑆

END

Algorithm 3. Pseudo-code of the LS1 method.

Algorithm 4 shows the pseudo-code of the second local search LS2. The algorithm starts again

by constructing the composed neighborhood (step 1). However, in this procedure, instead of

selecting a neighborhood at random, it selects one move at random from the set of moves

available with the three neighborhoods together (step 3). Then, the procedure tests whether

the new solution improves upon the current best solution or not (steps 5 to 10).

PROCEDURE LS2(𝑆)
1. 𝑁𝑐𝑜𝑚𝑏(𝑆) ← {𝑁1(𝑆), 𝑁2(𝑆), 𝑁3(𝑆)}
2. WHILE 𝑁𝑐𝑜𝑚𝑏(𝑆) ≠ ∅ DO
3. 𝑆′ ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑀𝑜𝑣𝑒𝑅𝑎𝑛𝑑𝑜𝑚{𝑁𝑐𝑜𝑚𝑏(𝑆)}
5. IF 𝑚𝑑(𝑆′) > 𝑚𝑑(𝑆) THEN
6. 𝑆 ← 𝑆’
7. 𝑁𝑐𝑜𝑚𝑏(𝑆) ← {𝑁1(𝑆), 𝑁2(𝑆), 𝑁3(𝑆)}
8. ELSE
9. 𝑁𝑐𝑜𝑚𝑏(𝑆) ← 𝑁𝑐𝑜𝑚𝑏(𝑆) ∖ 𝑆′
10. END
11. END
12. RETURN 𝑆

END

Algorithm 4. Pseudo-code of the LS2 method.

If so, the current best solution is updated as well as the combined neighborhood (steps 6 and

7). Otherwise, the method resorts in the next iteration to another random move selection (in

which the discarded move is not considered). This logic is kept until no further improvement is

found in the composed neighborhood, returning the local optimum with respect to all

neighborhoods (step 12).

7

PROCEDURE LS3(𝑆)
1. 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒
2. WHILE 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑡𝑟𝑢𝑒 DO
3. WHILE 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑡𝑟𝑢𝑒 DO
4. 𝑆′ ← 𝐵𝑒𝑠𝑡𝐼𝑚𝑝𝑀𝑜𝑣𝑒(𝑁1(𝑆), 𝑁2(𝑠))
5. IF 𝑚𝑑(𝑆′) > 𝑚𝑑(𝑆) THEN
6. 𝑆 ← 𝑆’
7. ELSE
8. 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
9. END
10. END
11. 𝑆′′ ← 𝐹𝑖𝑟𝑠𝑡𝐼𝑚𝑝𝑀𝑜𝑣𝑒(𝑁3(𝑆))
12. IF 𝑚𝑑(𝑆′′) > 𝑚𝑑(𝑆) THEN
13 𝑆 ← 𝑆’′
14. 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒
15. END
16. END
17. RETURN 𝑆

END

Algorithm 5. Pseudo-code of the LS3 method.

The third local search, LS3, performs a more elaborated search strategy. Algorithm 5 shows the

pseudo-code of this procedure. It combines a best improvement (steps 3 to 10) with first

improvement strategy (steps 11 to 15). In particular, given a solution 𝑆, the best improvement

part intensively explores the neighborhoods 𝑁1(𝑆) and 𝑁2(𝑆), performing the best available

move in both of them together (step 4), with either an 𝑎𝑑𝑑 or a 𝑑𝑟𝑜𝑝 move. This two

neighborhoods are relatively small since |𝑁1(𝑆)|+|𝑁2(𝑆)| = 𝑛. Therefore, this best

improvement strategy does not have a large impact on the run time of the method. The final

solution of this part is a local optimum with respect to 𝑁1(𝑆) and 𝑁2(𝑆). Then, the local search

method explores 𝑁3(𝑆), which is considerably larger than the other two (it has a size of 𝑛2 in

the worst case). Therefore, LS3 searches for the first improving move (step 11). If it successes,

the incumbent solution is updated (step 13) and the Boolean variable is again set to true (step

14), starting again with the best improvement strategy. Otherwise, the method ends returning

the best solution found.

3 Tabu Search

The complete algorithm that we propose for the Max Mean Dispersion Problem consists of a

constructive procedure (see Section 2) and a two-phase tabu search method. The first stage

(short-term TS) is mainly devoted to the intensification of the search (Section 3.1), and it is based

on the local searches described in the previous section. We investigate the effect of a dynamic

tabu tenure parameter to manage the short term memory (Section 3.2). The second stage (long-

term TS) is focused on a diversification strategy (Section 3.3) to explore new regions of the

solution space. Each phase is respectively executed for 𝑚𝑎𝑥𝐼𝑛𝑡 and 𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟 iterations.

Additionally, both begin from the current solution and after termination they return the overall

best solution and their current solution. Note that the current and the best overall are not

usually the same solution since these phases usually deteriorate the current solution in order to

8

escape from its basin of attraction. The search terminates after 𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙 iterations have

elapsed without improving the overall best solution.

3.1. Short-term tabu search

Most of the tabu search designs mainly focus on the short-term memory, where the procedure

keeps track of solutions that have changed during the recent past. In order to use this memory,

we must select certain attributes that appear in recently visited solutions. These attributes are

labeled as tabu-active, which means that solutions that contain them (or combinations of them)

become tabu and are excluded from the corresponding neighborhood. In this context, the basic

principle of TS is to pursue the local search whenever it encounters a local optimum by allowing

non-improving moves. Cycling back to previously visited solutions is prevented by the use of the

short-term memory.

Short-term memories are usually implemented as circular lists of fixed length, where the length

(referred to as tabu tenure) determines the number of iterations that an attribute is tabu. Note

that most of TS designs consider the aspiration criterion, which allows performing a forbidden

move if it results in a solution with objective function better than the current best-known

solution. The termination criterion is met when the TS performs a determined number of moves

without improving the best-known solution. As shown below, in this paper we investigate the

use of more complex short-term tabu search approaches, based on several neighborhoods and

their associated memory structures.

We propose three short-term tabu search methods based on the three local search algorithms

presented in Section 2. We called them TS1 (from LS1), TS2 (from LS2), and TS3 (from LS3)

respectively. They consider simultaneously the three neighborhoods (𝑁1(𝑆), 𝑁2(𝑆), 𝑁3(𝑆)), and

we define now the associated memory structures. Specifically, given a solution 𝑆 and its

associated neighborhood 𝑁1(𝑆), the reduced neighborhood 𝑁1
∗(𝑆) is defined as:

𝑁1
∗(𝑆) = {𝑆′ ⊆ 𝑉 ∶ 𝑆′ = 𝑎𝑑𝑑(𝑆, 𝑗) , 𝑗 ∈ 𝑉\{𝑆 ∪ 𝑇1} }

where 𝑇1 is a data structure that stores the vertices involved in the corresponding move for

tenure iterations. Then, as it is customary in tabu search, after a move 𝑎𝑑𝑑(𝑆, 𝑗) is done, it is

updated by doing 𝑇1 ← 𝑇1 ∪ {𝑗}, meaning that it is not allowed to perform an 𝑎𝑑𝑑-move

involving vertex 𝑗 during a certain number of iterations. The other two reduced neighborhoods

are respectively:

𝑁2
∗(𝑆) = {𝑆′ ⊆ 𝑉 ∶ 𝑆′ = 𝑑𝑟𝑜𝑝(𝑆, 𝑖) , 𝑖 ∈ 𝑆\𝑇2}

𝑁3
∗(𝑆) = {𝑆′ ⊆ 𝑉 ∶ 𝑆′ = 𝑠𝑤𝑎𝑝(𝑆, 𝑖, 𝑗) , 𝑖 ∈ 𝑆\𝑇3 and 𝑗 ∈ 𝑉\{𝑆 ∪ 𝑇3}}

where 𝑇2 and 𝑇3 are the associated memory sets. We only describe the adaptation of the short-

term TS1 derived from 𝐿𝑆1 to illustrate how this modification is carried out. Similar adaptations

are performed for TS2 and TS3. Basically, we have to change in Algorithm 3 the following

elements: (i) the stopping criterion (step 3) is determined by the number of iterations without

improvement; (ii) the neighborhoods considered in the step 4 must be the reduced

neighborhoods described above; (iii) the move is always performed (step 5) even deteriorating

9

the value of the objective function; (iv) if the move produces an improvement (steps 6 to 11)

the iterations without improvement is set to 0, otherwise, it is incremented; and (v) before

executing a new iteration, memories are updated by including the vertex (vertices) involved in

the move, and removing those vertices that have been in the memory more than tenure

iterations.

3.2. Dynamic tabu tenure

The tenure parameter within tabu search determines the number of iterations for which an

attribute of a solution (or a set of solutions) is considered tabu. It is nowadays well known that

the dynamic modification of this parameter allows the search to react to the recent events, thus

making the method more efficient. For example, if the search is currently in a deep and narrow

basin of attraction, it is recommended decreasing the tabu tenure to go faster to the local

optimum. On the contrary, if the search is in a wide and flat basin of attraction, it is usually better

to increase the tabu tenure in order to give more opportunities to escape from that basin of

attraction. These strategies have been successfully used in Lü and Hao (2010), Galinier and Hao

(1999), and Battitiand and Tecchiolli (1994) to cite a few.

We have identified four different strategies to dynamically adapt the tenure parameter

(Devarenne et al., 2008). In the first one, called time-dependent tenure, the tenure is initialized

with a large value, 𝑇𝑖𝑛𝑖𝑡, and it is decremented during the search based on either time or on the

number of iterations. The process finishes when a minimum value 𝑇𝑚𝑖𝑛 is reached. This

configuration somehow imitates the behavior of the simulated annealing (Kirkpatrick et al.,

1983). Montemanniand and Smith (2001) proposed the expression 𝑇𝑛𝑒𝑤 =

max{𝛽𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝑇𝑚𝑖𝑛} to adjust the tenure, where 𝑇𝑛𝑒𝑤 is updated after a given number of

iterations. Different values of these parameters are studied in the computational experience

(see Section 4).

The second strategy, called random-bounded tenure, selects the value of the tenure parameter

at random. In general, each move has its own tenure, which means that, after performing it, a

random number is generated in the interval [𝑙𝑏, 𝑢𝑏], where 𝑙𝑏 and 𝑢𝑏 indicates, respectively,

the minimum and maximum allowed value for the tenure parameter. The bounds usually

depend on some attributes of the problem. The value and effect of these parameters will be

studied in the computational experience.

In the third strategy, called reactive-tabu tenure, the value of the tenure does not depend on

previous history. In particular, it is computed from some attributes of the current solution. We

follow the recommendation in Galinier and Hao (1999), who proposed to increase the tenure

according to the value of some cost function of the current solution 𝑆. They specifically proposed

to adjust the tenure at each iteration with the following equation 𝑇𝑛𝑒𝑤 = 𝐿 + 𝜆𝐹(𝑥), where 𝐿 ∈

[0, . . ,9] is chosen at random, and 𝜆 is empirically set to 0.6. 𝐹 is the cost function which is usually

related to the objective function.

Finally, the fourth strategy considered in our method is called adaptive-tabu tenure. In this

approach the tenure value is adjusted during the search, and the procedure can increase or

decrease the value depending on the history and the current solution. Typically the procedure

10

stats with tenure 𝑇 = 1 and it usually maintains a pool 𝑄 of the last of last 𝑞 = |𝑄| visited

solutions. At each iteration, if the current solution is in 𝑄, we have detected a cycle, and the

tenure is increased according to the equation 𝑇 = min{max{⌊1.1𝑇⌋, 𝑇 + 1} , |𝑉| − 2}.

Otherwise, the number of iterations without cycles is increased. After a fixed number of

iterations without detecting a cycle, we decrement the tenure using the expression 𝑇 =

max{⌊0.9𝑇⌋, 1}. See Devarenne et al. (2008) for a deeper and thorough discussion. The value

and effect of these parameters will be studied in the computational experience.

3.3. Long-term Tabu Search

In some applications, the short-term TS memory components are sufficient to produce very high

quality solutions. However, in general, TS becomes significantly stronger by including longer-

term memory and its associated strategies. In the longer-term TS strategies, the modified

neighborhood produced by tabu search may contain solutions not in the original one.

Frequency-based memory provides a type of information that complements the information

provided by the recency-based memory described in the previous section, broadening the

foundation for selecting preferred moves (Glover and Laguna, 1997). We propose two long-

term strategies to diversify the search for the MaxMeanDP. These mechanisms are designed to

allow the TS to escape from the current basin of attraction.

The diversification stage is executed when the short-term TS reaches the maximum number of

iterations without improving the best-found solution. This strategy mainly consists of modifying

the values of some attributes of the incumbent solution. We consider two different approaches.

The first one, 𝑅𝑎𝑛𝑑𝐷𝑖𝑣𝑒𝑟, consists of performing 𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟 iterations, where each one is a

random move (𝑎𝑑𝑑, 𝑑𝑟𝑜𝑝 or 𝑠𝑤𝑎𝑝), where the involved vertex (or vertices) is also selected at

random. The second strategy, 𝐹𝑟𝑒𝑞𝐷𝑖𝑣𝑒𝑟, uses the history of the search to guide the process.

Specifically, we record the number of times 𝑓𝑖 than an element 𝑖 has appeared in a solution

during the whole search. Then, a vertex is probabilistically selected according to frequency count

(i.e., 𝑓𝑖 for element 𝑖). The lower the frequency the larger the probability. The pseudo-code of

the diversification stage is shown in Algorithm 7. It stars by initializing the control variables

(steps 1 and 2). Then, the procedure modifies the current solution through moves (steps 3 to

23). The vertex involved in the move is determined in step 4. Notice that the selection depends

on the specific strategy (𝑅𝑎𝑛𝑑𝐷𝑖𝑣𝑒𝑟 is a random election, while 𝐹𝑟𝑒𝑞𝐷𝑖𝑣𝑒𝑟 is a probabilistic

election based on the frequency). Then, it is randomly decided in step 5 whether the move is

simple (𝑎𝑑𝑑/𝑑𝑟𝑜𝑝) or complex (𝑠𝑤𝑎𝑝). Then, if the selected vertex is in 𝑆 or in 𝑉\𝑆, the

diversification method performs one of the four possible moves (steps 6 to 17). The

diversification process is abandoned if we found an improvement (steps 18 to 21). Otherwise, it

performs iterations until the maximum number of iterations is reached.

As mentioned, our complete tabu search method for the Max Mean Dispersion Problem, from

now on simply called TS, consists of two phases, namely short and long term phase, which are

alternated. In our computational experimentation shown below, we test the three methods

TS1, TS2, and TS3 proposed in this section, to select the best one to constitute the short term

phase of TS. We also test, the best dynamic tabu tenure strategy, from the four proposed in this

section, to apply to the memory structure in the short term phase. TS terminates after

𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙 iterations without improving the best solution found.

11

PROCEDURE 𝐷𝑖𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑆)
1. 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑓𝑎𝑙𝑠𝑒
2. 𝐼𝑡𝑒𝑟𝑠 ← 0
3. WHILE 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒 AND 𝑖𝑡𝑒𝑟𝑠 < 𝑀𝑎𝑥𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑓𝑦 DO
4. 𝑖 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑉𝑒𝑟𝑡𝑒𝑥(𝑉)
5. 𝑆𝑖𝑚𝑝𝑙𝑒𝑀𝑜𝑣𝑒 ← {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒}
6. IF 𝑖 ∈ 𝑆 AND 𝑆𝑖𝑚𝑝𝑙𝑒𝑀𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒 THEN
7. 𝑆′ ← 𝑑𝑟𝑜𝑝(𝑆, 𝑖)
8. ELSE
9. 𝑗 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑉𝑒𝑟𝑡𝑒𝑥(𝑉\𝑆)
10. 𝑆′ ← 𝑠𝑤𝑎𝑝(𝑆, 𝑖, 𝑗)
11. END
12. IF 𝑖 ∈ 𝑉\𝑆 AND 𝑆𝑖𝑚𝑝𝑙𝑒𝑀𝑜𝑣𝑒 = 𝑡𝑟𝑢𝑒 THEN
13. 𝑆′ ← 𝑎𝑑𝑑(𝑆, 𝑖)
14. ELSE
15. 𝑗 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑉𝑒𝑟𝑡𝑒𝑥(𝑆)
16. 𝑆′ ← 𝑆𝑤𝑎𝑝(𝑆, 𝑖, 𝑗)
17. END
18. IF 𝑚𝑑(𝑆′) > 𝑚𝑑(𝑆) THEN
19. 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑 ← 𝑡𝑟𝑢𝑒
20. END
21. 𝑆 ← 𝑆′
22. 𝑖𝑡𝑒𝑟𝑠 ← 𝑖𝑡𝑒𝑟𝑠 + 1
23. END
24. RETURN 𝑆

END

Algorithm 7. Pseudo-code of the diversification method.

4. Experimental results

This section describes the computational experiments that we performed to test the efficiency

of our Tabu Search procedure as well as to compare it to state-of-the-art methods for solving

the MaxMeanDP. We have implemented the TS procedure in Java SE 6 and all the experiments

were conducted on an Intel Core 2 Quad CPU and 6 GB RAM.

In our experimentation we consider 40 instances from Martí and Sandoya (2013) divided into

two groups: Type I and Type II. Type I instances are symmetric matrices with random numbers

generated from the interval [−10, 10]. We take 10 instances of size 150 and 10 instances of size

500. Type II instances are symmetric matrices with random numbers from the intervals

[−10, −5] ∪ [5,10]. Again, we take 10 instances of size 150 and 10 instances of size 500.

Additionally, using the same random distribution, we generated 20 instances of size 750, 10

from each type, and 20 instances of size 1,000 (10 instances of Type I and 10 instances of Type

II). All these 80 instances are available at http://www.optsicom.es/maxmean/.

We have divided our experimentation into two parts: preliminary experimentation and final

experimentation. The preliminary experiments were performed to set the values of the key

search parameters of our tabu search method as well as to show the merit of its search

strategies. We consider a representative subset of instances (10 Type I, 10 Type II, with sizes

ranging from 150 to 500).

12

In our first preliminary experiment we compare the two greedy constructive methods proposed

in Section 2. To do that, we generate a solution for each instance, and report for each method,

the average percentage deviation (Dev.) with respect to the best known values, the Score

statistic (Resende et al., 2010), where the lower the Score, the better the method, and the

average CPU time in seconds. Table 1 shows that 𝐷𝑒𝑠𝑡 obtains lower avg. deviation in similar

computing times. Additionally, it ranks in the first position (i.e., score equal to 1). We therefore

select the former as the constructive method for the rest of our experiments.

 Dev. Score Time

𝐶𝑜𝑛𝑠𝑡 11.72% 19 0.03

𝐷𝑒𝑠𝑡 4.75% 1 0.01

Table 1. Comparison of constructive methods.

In the second preliminary experiment, we assess the quality of the local search methods

proposed in Section 2. Each local search is executed after the construction of a single solution.

Table 2 shows the associated results over the 20 training instances. In this table, we consider

the statistics reported in he previous table and additionally, we consider #Best, which indicates

the number of times that a method matches the best-known solution.

 Dev. #Best Score Time

𝐿𝑆1 2.49% 2 35 0.13

𝐿𝑆2 2.20% 4 31 13.11

𝐿𝑆3 2.33% 0 37 0.31

Table 2. Comparison of different Local search methods.

Results reported in Table 2 show that 𝐿𝑆2 obtains the best results in terms of average deviation,

Score and number of best solutions found. However, its CPU time is considerably larger than the

other two local search methods. We therefore select 𝐿𝑆3 for the remaining experiments, since

it represents a trade-off between quality and computing time.

In our third preliminary experiment we study the contribution of the short-term memory

structure (Section 3.2) in a tabu search method. Initially, we set the parameter tenure to 10 in

our 3 tabu search variants (we will study the influence of this parameter in the next experiment).

The number of iterations without improvement is set to 0.1𝑛, being 𝑛 the size of the instance.

 Dev. #Best Score Time

𝑇𝑆1 0.52% 13 7 16.47

𝑇𝑆2 1.38% 4 27 24.98

𝑇𝑆3 0.72% 7 14 15.89

Table 3. Comparison of different tabu search strategies.

Comparing the results reported on Table 3 with those shown in Table 2, we can see that the

tabu search methods systematically produce better outcomes than their memory-less

counterpart. Specifically, comparing the best method in Table 2 (𝐿𝑆2) and the ones reported in

Table 3 (𝑇𝑆1, 𝑇𝑆2, 𝑇𝑆3), we observe that the average deviation is decreased in almost two

percentage points. Additionally, the number of times that the method matches de best-known

solution is considerable improved (from 2 to 13 in the best method). However, as expected, the

13

computing time is considerable larger. Attending to these results and considering that 𝑇𝑆1 also

presents the lowest score, we select it for the rest of the experimentation.

The fourth preliminary experiment is devoted to compare the four dynamic tenure update

strategies described in Section 3.2: time-dependent, random-bounded, reactive-tabu, and

adaptive-tabu. We first study the best configuration for each strategy. For the sake of brevity,

we do not report here the results of this parameter tuning, and only mention the best

configuration found. In particular, for the time-dependent tenure, 𝑡 = 0.2𝑛, 𝛽 = 0.96, 𝑖𝑡𝑠 =

100, and 𝑡𝑚𝑖𝑛 = 10; for the random-bounded tenure,
1

4
𝑛 ≤ 𝑡 ≤

1

2
𝑛; for the reactive tenure, 𝑡 =

𝑙 + 𝜆𝑓(𝑆), where 𝑙 is a random number between 0 and 9, 𝜆 = 0.3, and 𝑓(𝑆) is the objective

function value of the current solution; and finally, for the adaptive tenure, 𝑡 = 1, with increasing

policy 𝑡 = 1.1𝑡 and decreasing policy 𝑡 = 0.9𝑡 (each 20 iterations without a cycle). Once all the

parameters are tuned, we compare in Table 4 these 4 variants applied in TS1.

Table 4. Performance of different dynamic tenure approaches.

Table 4 shows that the adaptive tenure obtains the best results among the four tested, closely

followed by the reactive-tabu strategy. Notice that these strategies increase the computing

time, but also increase the quality of the solutions obtained (lower deviation and larger number

of best solutions when comparing with the previous experiment). Attending the values of Dev.,

#Best, and Score reported in Table 5, we conclude that 𝑇𝑆1 with adaptive-tabu is the best

strategy. We complement this experiment by studying the size of the tenure during the time. In

particular Figure 2 shows, for a representative instance, the tenure value (Y-axis) and the

computing time in seconds (X-axis) for the four strategies. As expected, the random-bounded

tenure takes values randomly within the predefined bounds, without any information of the

search history. The time-dependent tenure decreases slowly during the search. The reactive-

tabu tenure sets the tenure based on the quality of the current solution, thus it increases and

decreases with the value of the objective function. Finally, the adaptive-tabu remains almost

flat, increasing its value only when no improvement is found after a number of iterations. Then,

when the best solution found so far is improved, the value is decreased.

 Dev. #Best Score Time

𝑇𝑆1 with time-dependent tenure 0.41% 10 22 54.61

𝑇𝑆1 with random-bounded tenure 0.81% 7 50 52.64

𝑇𝑆1 with reactive-tabu tenure 0.19% 11 15 54.97

𝑇𝑆1 with adaptive-tabu tenure 0.18% 13 15 55.63

14

Figure 5. Tenure evolution over time for one instance.

The last preliminary experiment evaluates the contribution of the long-term memories

(diversification strategies). In particular, we evaluate the performance of 𝑅𝑎𝑛𝑑𝐷𝑖𝑣𝑒𝑟 and

𝐹𝑟𝑒𝑞𝐷𝑖𝑣𝑒𝑟 described in Section 3.2. Each strategy is tested with two different values of

𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟 (0.2𝑛 and 0.5𝑛, being 𝑛 the size of the instance). In order to evaluate the interactions

among all the proposed strategies, we execute the complete tabu search method, i.e., 𝑚𝑎𝑥𝐼𝑛𝑡

iterations of the short-term tabu search (TS1 with adaptive-tabu tenure) followed by 𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟

iterations of the long-term TS. These two phases are repeated for 𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙 iterations. Table

5 reports the results for the 4 tested variants. For the sake of simplicity, we denote these variants

as TS_MaxMeanDP_1 (𝑅𝑎𝑛𝑑𝐷𝑖𝑣𝑒𝑟 = 𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟 = 0.2𝑛), TS_MaxMeanDP_2 (𝑅𝑎𝑛𝑑𝐷𝑖𝑣𝑒𝑟 =

𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟 = 0.5𝑛), TS_MaxMeanDP_3 (𝐹𝑟𝑒𝑞𝐷𝑖𝑣𝑒𝑟 = 𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟 = 0.2𝑛), and

TS_MaxMeanDP_4 (𝐹𝑟𝑒𝑞𝐷𝑖𝑣𝑒𝑟 = 𝑚𝑎𝑥𝐷𝑖𝑣𝑒𝑟 = 0.5𝑛). In order to have a fair comparison,

𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙 is set to 90 seconds for all variants.

 Dev. #Best Score Time

TS_MaxMeanDP_1 0.45% 7 39 90,16

TS_MaxMeanDP_2 0.25% 14 16 90,14

TS_MaxMeanDP_3 0.07% 14 6 90,13

TS_MaxMeanDP_4 0.26% 14 17 90,22

Table 5. Testing contribution of different diversification strategies.

Table 5 shows relevant information since not all variants are able to outperform the short-term

tabu search variants. As a matter of fact, only TS_MaxMeanDP_3 clearly outperforms the results

presented in Table 4. Therefore, long-term memories must be carefully designed since

straightforward implementations could deteriorate the quality of a short-term tabu search.

In the final experiment, we compare the best-identified tabu search method

(TS_MaxMeanDP_3) with state-of-the-art algorithm, i.e., the GRASP with Path Relinking

(GRASP_PR) introduced in Martí and Sandoya (2013). We test both methods by using the whole

set of 80 instances, divided into 4 subsets of 20 instances with size 150, 500, 750, and 1,000,

respectively. The computing time of our method is controlled with the parameter 𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙.

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000 60000

Random bounded tenure Time dependent tenure Adaptive tenure Reactive tenure

15

Considering that the size of the instances varies considerably (from 150 to 1000), we set

𝑚𝑎𝑥𝐺𝑙𝑜𝑏𝑎𝑙 to 30, 90, 600, and 1800 seconds to instances with size 150, 500, 750, and 1000,

respectively. The GRASP_PR method is executed with the parameters recommended in Martí

and Sandoya (2013).

Size Method Dev. #Best Score Time

150 GRASP_PR 0.25% 3 17 63.07
 TS_MaxMeanDP_3 0.00% 17 3 19.35

500 GRASP_PR 1.45% 2 18 684.11
 TS_MaxMeanDP_3 0.02% 18 2 90.43

750 GRASP_PR 0.90% 3 17 3158.29
 TS_MaxMeanDP_3 0.02% 17 3 601.16

1000 GRASP_PR 1.03% 0 20 10630.90
 TS_MaxMeanDP_3 0.00% 20 0 1803.99

Table 6. Final experiment results.

Table 6 reports the associated results to this experiment. Our method consistently produces

better outcomes in all the metrics. In particular, it improves the best-known solution in 72

instances (out of 80). The average deviation across the whole set of instances is 0.01% for

TS_MaxMeanDP_3 and 1.00% for GRASP_PR. Additionally, our method is on average more than

5 times faster than the current state-of-the-art algorithm (628 vs. 3634 seconds). We conduct a

Wilcoxon test for pairwise comparisons to complement this experiment. This statistical test

answers the question: do the two samples (GRASP_PR and TS_MaxMeanDP_3 in our case)

represent two different populations? The resulting 𝑝-value of 2. 61 × 10−4, 1.9 × 10−5, 2.67 ×

10−5, and 1.9 × 10−6 on each subset of instances, clearly indicate that the values compared

come from different methods (using a typical significance level of 𝛼 = 0.05 as the threshold for

reject or not the null hypothesis). Therefore, this statistical test establishes that there are

significant differences between both algorithms, confirming the superiority of

TS_MaxMeanDP_3 over GRASP_PR.

5. Conclusions

Tabu search has nowadays become the method of choice in numerous metaheuristic

implementations and practical applications. In this paper, we have used the context of the Max-

Mean Diversity problem to explore some new ideas in this methodology. This problem is of

practical significance and, given its complexity, the application of a metaheuristic technology is

well justified. The performance of the proposed procedure has been assessed using 80 problem

instances of several types and sizes. The procedure has been shown robust in terms of solution

quality within a reasonable computational effort. The proposed method is compared with a

recently metaheuristic procedure. The comparison favors the proposed tabu search

implementation.

An additional important goal of this research has been to investigate the influence of some

advance strategies in the context of the tabu search methodology. In particular, we propose a

nested exploration of three different neighborhoods, a dynamic modification of memory

16

structures, and the use of long-term memories for diversification purposes. Our experiments

show that a balance between search intensification (exhaustive exploration of local

neighborhoods) and diversification (exploration of different regions of the search space),

together with flexibility in the search (dynamic variation of the tenure parameter) results in an

improved tabu search implementation. However, we have also learnt here an interesting lesson:

some advanced tabu search strategies, can lead to poor designs if they are not properly

customized. To highlight one of them, we have seen how a long term strategy deteriorates the

short term tabu search when coupled with it; while other, better suited for our problem, is able

to enrich the method, giving the best design overall.

Acknowledgments

The authors thank Prof. Sandoya for sharing instances and results with them. This research has

been partially supported by the Ministerio de Economía y Competitividad of Spain (Grant Ref.

TIN2012-35632-C02) and the Generalitat Valenciana (ACOMP/2014/A/241 and Prometeo

2013/049).

References

Battiti, R., G. Tecchiolli (1994) “The reactive Tabu search”. ORSA Journal on Computing, 6(2):
126–140.

Battiti, R., I. O. Rayward-Smith, G. Smith (1996) “Reactive Search: Toward Self-Tuning
Heuristics”, 61–83. John Wiley and Sons Ltd.

Devarenne, I., H. Mabed, A. Caminada (2008) “Adaptive Tabu Tenure Computation in Local
Search”. Evolutionary Computation in Combinatorial Optimization, Lecture Notes in Computer
Science, 4972:1-12.

Duarte, A., R. Martí (2007) “Tabu Search and GRASP for the maximum diversity problem”.
European Journal of Operational Research, 178: 71–84.

Duarte, A., R. Martí, F. Glover, F. Gortázar (2011) “Hybrid scatter tabu search for unconstrained
global optimization”. Annals of Operations Research; 183(1): 95-123.

Galinier, P., J. K. Hao (1999) “Hybrid Evolutionary Algorithms for Graph Coloring”. Journal of
Combinatorial Optimization, 3: 379–397.

Gallego, M., M. Laguna, R. Martí, A. Duarte (2013) “Tabu search with strategic oscillation for the
maximally diverse grouping problem”. Journal of the Operational Research Society, 64: 724–734.

Gallego, M., A. Duarte, M. Laguna, R. Martí (2009) “Hybrid heuristics for the maximum diversity
problem”. Computational Optimization and Applications, 44(3): 411-426.

Glover, F., M. Laguna (1997). Tabu search. Kluwer Academic Publishers.

Glover F, Kuo CC, Dhir KS (1995) “A discrete optimization model for preserving biological
diversity”. Applied Mathematical Modeling, 19: 696–701.

Glover, F., CC. Kuo, KS. Dhir (1998) “Heuristic algorithms for the maximum diversity problem”.
Journal of Information and Optimization Sciences, 19(1): 109–132.

Kerchove, C.,P. V. Dooren (2008) “The Page Trust algorithm: how to rank web pages when
negative linksare allowed?”. In Proceedings SIAM International Conference on Data Mining, 346–
352.

17

Kirkpatrick, S., C.D. Gelatt, M.P. Vecchi (1983). "Optimization by Simulated Annealing". Science
220 (4598): 671–680.

Lozano, M., A. Duarte, F. Gortázar, R. Martí (2013) “A hybrid metaheuristic for the cyclic
antibandwidth problem”. Knowledge Based Systems, 50: 103-113.

Lü, Z. P., J. K. Hao (2010), “Adaptive tabu search for course timetabling”. European Journal of
Operational Research; 200 (1): 235-244.

Martí, R., F. Sandoya (2013) “GRASP and Path Relinking for the Equitable Dispersion Problem”.
Computers and Operations Research; 40(12): 3091-3099.

Montemanni, R., D.H., Smith (2001) “A Tabu search Algorithm with a dynamic Tabu list for the
Frequency Assignment Problem”. Technical Report, University of Glamorgan.

Prokopyev, O.A., N. Kong, DL. Martinez-Torres (2009) “The equitable dispersion problem”.
European Journal of Operational Research, 197:59–67.

Resende, M., R. Martí, M. Gallego, A. Duarte (2010) “GRASP and path relinking for the max-min
diversity problem“. Computers and Operations Research, 37:498–508.

Rodríguez, F. J., M. Lozano, C. García-Martínez, J. D. González-Barrera (2013) “An artificial bee
colony algorithm for the maximally diverse grouping problem”. Information Sciences; 230:183-
196.

Wilson, T., J. Wiebe, P. Hoffmann (2005) “Recognizing contextual polarity in phrase-level
sentiment analysis”. In Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, 347-354.

Yang, B., W. Cheung, J. Liu (2007) “Community mining from signed social networks”. IEEE
Transactions on Knowledge and Data Engineering, 19(10):1333–1348.

