

Heuristic Solution Approaches for the Maximum MinSum
Dispersion Problem

ANNA MARTÍNEZ-GAVARA
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
gavara@uv.es

VICENTE CAMPOS
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Vicente.Campos@uv.es

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

ABSTRACT

The Maximum Minsum Dispersion Problem (Max-Minsum DP) is a strongly NP-Hard problem that belongs

to the family of equitable dispersion problems. When dealing with dispersion, the operations research

literature has focused on optimizing efficiency-based objectives while neglecting, for the most part,

measures of equity. The most common efficiency-based functions are the sum of the inter-element

distances or the minimum inter-element distance. Equitable dispersion problems, on the other hand,

attempt to address the balance between efficiency and equity when selecting a subset of elements from

a larger set. The objective of the Max-Minsum DP is to maximize the minimum aggregate dispersion

among the chosen elements. We develop tabu search and GRASP solution procedures for this problem

and compare them against the best in the literature. We also apply LocalSolver, a commercially available

black-box optimizer, to compare our results. Our computational experiments show that we are able to

establish new benchmarks in the solution of the Max-Minsum DP.

Keywords: Equitable dispersion problems, tabu search, GRASP, metaheuristics.

Version: October 10, 2014

M a r t í n e z - G a v a r a , e t a l . | 2

1. Introduction

The problem of maximizing diversity deals with selecting a subset of elements from a given set in such a

way that the diversity among the elements is maximized (Glover et al., 1995). Several models have been

proposed to deal with this combinatorial optimization problem. All of them require a diversity measure,

typically a distance function in the space where the objects belong. The definition of this distance between

elements is customized to specific applications. As described in (Glover, 1998), these models have

applications in plant breeding, social problems, ecological preservation, pollution control, product design,

capital investment, workforce management, curriculum design, and genetic engineering.

Given a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of 𝑛 nodes and 𝐸 is the set of edges, let 𝑑𝑖𝑗 be the inter-

element distance between any two elements 𝑖 and 𝑗, let 𝑀 ⊆ 𝑉 be the set of 𝑚 selected elements, and

define 𝑈 = 𝑉\𝑀 as the set of unselected elements. Then, the Maximum Minsum Dispersion Problem

(Max-Minsum DP) consists of selecting a set 𝑀 ⊆ 𝑉 of 𝑚 elements such that the smallest total dispersion

associated with each selected element 𝑖 is maximized. The problem is formulated in Prokopyev et al.

(2009) as follows:

Maximize { min
𝑖:𝑥𝑖=1

∑ 𝑑𝑖𝑗𝑥𝑗𝑗:𝑗≠𝑖 } (1)

subject to ∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑚 (2)

𝑥𝑖 ∈ {0,1} 𝑖 = 1, … , 𝑛

The set of the 𝑚 selected elements is 𝑀 = {𝑖: 𝑥𝑖 = 1} and the objective function 𝑓(𝑀) is based on

measuring the total dispersion associated with each 𝑖 ∈ 𝑀, denoted by 𝑐(𝑀, 𝑖). In other words, 𝑐(𝑀, 𝑖) =

∑ 𝑑𝑖𝑗𝑗∈𝑀,𝑗≠𝑖 and the objective is to maximize its minimum value by a judicious selection of 𝑀.

The contributions of our work can be summarized as follows:

 Implementation of GRASP variants for the Max-Minsum DP

 Development and implementation of a tabu search approach for the Max-Minsum DP

 Exploration of hybrid approaches that combine GRASP and TS

 Comparison of new and existing methods on general instances for the Max-MinSum DP

We start by exploring the existing Max-Minsum DP literature.

2. Existing Solution Approaches

The two most popular dispersion problems in the literature consist of maximizing the sum of the diversity

(Maxsum) and maximizing the minimum diversity (Maxmin) in 𝑀. The Maxsum is characterized by the

maximization of ∑ 𝑑𝑖𝑗𝑖,𝑗∈𝑀,𝑖<𝑗 while the Maxmin is characterized by the maximization of min
𝑖,𝑗∈𝑀

𝑑𝑖𝑗. Clearly,

both of these objectives are based on measures of efficiency. As pointed out by Prokopyev et al. (2009):

M a r t í n e z - G a v a r a , e t a l . | 3

“The maximum dispersion problem primarily focuses on operational efficiency of locating

facilities according to distance, accessibility, impacts, etc. It also arises in various other

contexts including maximally diverse/similar group selection (e.g., biological diversity,

admissions policy formulation, committee formation, curriculum design, market

planning, etc.), and densest subgraph identification.”

The Maxsum and Maxmin literature includes extensive surveys (Ağca, Eksioglu, Ghosh, 2000; Erkut,

Neuman, 1989; Kuo, Glover, Dhir, 1993), exact methods (Ağca, Eksioglu, Ghosh, 2000; Ghosh, 1996;

Pisinger, 2006), and heuristics (Ghosh, 1996; Hassin, Rubinstein, Tamir, 1997; Kincard, 1992; Ravi,

Rosenkrantz, Tayi, 1994; Resende et al., 2010).

Measures of equity in dispersion problems are the counterpart of measures of efficiency. Prokopyev et al.

(2009) introduced several models to describe various aspects of the equitable dispersion problem. In

particular, they introduced mathematical programming formulations for the following dispersion

problems:

Max-Mean — the maximization of the average dispersion (i.e.,
∑ 𝑑𝑖𝑗𝑥𝑖𝑥𝑗𝑖>𝑗

∑ 𝑥𝑖𝑖
)

Max-Minsum — the maximization of the minimum 𝑐(𝑀, 𝑖)

Min-Diff — the minimization of the differential dispersion (i.e., max
𝑖∈𝑀

∑ 𝑑𝑖𝑗𝑥𝑗𝑗:𝑗≠𝑖 − min
𝑖∈𝑀

∑ 𝑑𝑖𝑗𝑥𝑗𝑗:𝑗≠𝑖)

The computational experiments conducted by Prokopyev et al. (2009) include the exact solution (via

CPLEX) of small instances of the Maxsum, Maxmin, Max-Minsum, and Min-Diff dispersion problems. They

also include results of applying GRASP to the Max-Minsum DP.

In their GRASP implementation, Prokopyev et al. (2009) define 𝑀𝑘 as a partial solution with 𝑘 selected

elements (1 ≤ 𝑘 < 𝑚). Each construction phase of GRASP starts by randomly selecting an element in

order to initialize 𝑀1. Then, in each iteration, the method builds a candidate list 𝐶𝐿 that consists of all the

unassigned elements, i.e., 𝐶𝐿 = 𝑉\𝑀𝑘. For each element 𝑖 in 𝐶𝐿, the method computes a marginal

contribution of the element toward the objective function associated with 𝑀𝑘+1:

 Δ𝑓𝑘(𝑖) = min {min
𝑗∈𝑀𝑘

{ 𝑠𝑘(𝑗) + 𝑑𝑖𝑗} , 𝑠𝑘(𝑖)} − 𝑓(𝑀𝑘) (3)

where 𝑓(𝑀𝑘) is the value of the objective function corresponding to the partial solution 𝑀𝑘 and

 𝑠𝑘(𝑖) = ∑ 𝑑𝑖𝑗𝑗∈𝑀𝑘
. (4)

Elements in 𝐶𝐿 are ordered according to the marginal contributions, that is from largest to smallest Δ𝑓𝑘

values. Then, a reduced candidate list 𝑅𝐶𝐿 is constructed with the top 𝛼 elements in 𝐶𝐿. The value of 𝛼 is

selected at random, in each construction step, from a uniform distribution with parameters 1 and |𝐶𝐿|.

The element to be included in the partial solution 𝑀𝑘+1 is randomly chosen from 𝑅𝐶𝐿. The construction

procedure stops after 𝑚 − 1 steps.

M a r t í n e z - G a v a r a , e t a l . | 4

An improvement phase is executed after a solution 𝑀 has been constructed. The improvement phase

consists of an exchange mechanism in which an element 𝑖 in 𝑀 is replaced with an element 𝑗 in 𝑉\𝑀. The

method randomly selects both elements and exchanges them if and only if the objective function value

of the resulting solution improves; otherwise, the (𝑖, 𝑗) selection is discarded. The improvement phase

finishes after 100 iterations without any improvement. We will refer to this procedure as Prokopyev.

3. Proposed Solution Methods for the Max-MinSum DP

Our main goal is the development and implementation of a procedure to obtain high quality solutions for

the Max-MinSum DP. In particular, we explore a new application of GRASP and the first adaptation of tabu

search to this diversity problem.

3.1 Basic GRASP

Typically in GRASP, a construction consists of evaluating each candidate element with a greedy function

in order to identify the best elements and add them in the so-called Restricted Candidate List (𝑅𝐶𝐿). Then

the next element to be included in the partial solution is chosen from 𝑅𝐶𝐿 (see e.g., Resende et al., 2001).

However, Resende et al. (2004) describe an alternative design in which the 𝑅𝐶𝐿 is constructed totally at

random from elements in the candidate list (𝐶𝐿). Therefore, 𝑅𝐶𝐿 can be thought of as a random sample

of 𝐶𝐿 of a pre-established size. Then, the greedy function is applied to evaluate all the elements in 𝑅𝐶𝐿 in

order to choose the best. In this alternative design, the sequence of applying randomness followed by

greediness is inverted. Martí and Sandoya (2013) employed this design in a GRASP for the Max-Mean DP.

We too use this design in the construction phase of our basic GRASP implementation, which we formalize

as follows. Given a partial solution 𝑀𝑘 and a corresponding 𝐶𝐿 = {𝑖: 𝑖 ∈ 𝑉\𝑀𝑘}, 𝑅𝐶𝐿 consists of 𝛼% of

the elements of 𝐶𝐿 chosen at random. The element in 𝑅𝐶𝐿 to be included in 𝑀𝑘+1 is the one that

maximizes Δ𝑓𝑘. The value of 𝛼 is fixed throughout the entire construction process. We refer to this

construction method as CM1.

For the improvement phase, we consider two different designs. Both designs are pure local searches in

the sense that they terminate when the exploration of the entire neighborhood of the current solution

does not yield a move that improves the objective function value. Given a solution 𝑀, the IM1

improvement method consists of the exhaustive exploration of the neighborhood defined by all (𝑖, 𝑗)

exchanges, where 𝑖 ∈ 𝑀 and 𝑗 ∈ 𝑈. An exchange results in a neighbor solution 𝑀′ = 𝑀\{𝑖} ∪ {𝑗}. Let 𝑀∗

be the neighbor solution 𝑀′ with the best objective function value. Then if 𝑓(𝑀∗) > 𝑓(𝑀) then the search

moves to 𝑀∗ and the new neighborhood is explored. Otherwise, the improvement method ends.

Instead of exploring all possible exchanges, our second design (IM2) considers the contribution of the

selected elements as well as the potential contribution of the unselected elements to create a priority list.

For this purpose, we define:

 𝑠𝑚(𝑖) = ∑ 𝑑𝑖𝑗𝑗∈𝑀 (5)

M a r t í n e z - G a v a r a , e t a l . | 5

The elements 𝑗 in 𝑈 are ordered in descending 𝑠𝑚 values while the elements 𝑖 in 𝑀 are ordered in

ascending 𝑠𝑚 values. That is, the first unselected element in the ordered list has the largest potential

contribution while the first selected element in the ordered list has the smallest current contribution. The

priority list of (𝑖, 𝑗) exchanges is built by scanning both ordered lists and paring each unselected element

with a selected element. The order of exchanges in the priority list is important because IM2 employs the

first-improving strategy in which the search makes an immediate transition from the current solution 𝑀

to the neighbor solution 𝑀′ when 𝑓(𝑀′) > 𝑓(𝑀). In other words, the search does not explore all possible

exchanges in order to determine the best one (according to the change in the objective function value).

In contrast, under the best improving strategy (as done in IM1), the order in which the exchanges are

considered is not important since all of the exchanges will be evaluated before selecting the best one. In

our implementation, we do not update the priority list every time an exchange is made. Instead, we finish

exploring the list and update it if an exchange has been made. The IM2 search ends when no improving

exchange is identified, that is, when the entire priority list has been scanned and no improving exchange

has been found.

3.2 Additional Construction Strategies

The 𝑅𝐶𝐿 in CM1 is built by randomly selecting 𝛼% of 𝐶𝐿. We refine this process by narrowing down the

choices with a threshold value 𝜏, which is calculated as follows:

 𝜏 = min
𝑖∈𝑀𝑘

𝑠𝑘(𝑖) + 𝛼 (max
𝑖∈𝑀𝑘

𝑠𝑘(𝑖) − min
𝑖∈𝑀𝑘

𝑠𝑘(𝑖)) (6)

As before, 𝛼 is a search parameter that has a fixed value throughout the search. The 𝑅𝐶𝐿 consists of all

the elements in 𝐶𝐿 with 𝑠𝑘 values that meet or exceed the established threshold:

 𝑅𝐶𝐿 = {𝑖 ∈ 𝐶𝐿: 𝑠𝑘(𝑖) ≥ 𝜏} (7)

As indicated by (7), 𝑅𝐶𝐿 is not chosen at random like in CM1. In this case, 𝑅𝐶𝐿 consists of elements that

according to the greedy function achieve some minimum potential contribution to the objective function

value, as established by (6). In order to start the construction process and choose an element for 𝑀1, we

define:

 𝑠0(𝑖) = ∑ 𝑑𝑖𝑗𝑗∈𝑉 (8)

After applying a greedy criterion to select the elements in 𝑅𝐶𝐿, the selection of the next element to be

included in 𝑀 is random from those elements in 𝑅𝐶𝐿. In other words, we are back to the more classical

GRASP design in which greediness is followed by randomness. The process continues until |𝑀| = 𝑚. We

refer to this construction method as CM2.

Instead of constructing solutions by adding elements to a partial solution too few elements, a feasible

solution can be found by deleting elements from an infeasible solution with too many elements. This is

the basis of our next construction method (CM3). The procedure starts with 𝑀𝑘 = 𝑉, that is, it starts with

all the elements being selected. Then, at each step of the process, one element is chosen to be removed

M a r t í n e z - G a v a r a , e t a l . | 6

from 𝑀𝑘. This is done until |𝑀𝑘| = 𝑚. Making 𝐶𝐿 = 𝑀𝑘, the 𝑅𝐶𝐿 for this construction method is given

by:

 𝑅𝐶𝐿 = {𝑖 ∈ 𝐶𝐿: 𝑠𝑘(𝑖) ≤ 𝜏} (9)

An element is selected at random from 𝑅𝐶𝐿 and it is eliminated from 𝑀𝑘. In the context of dispersion

problems, the idea of constructing a feasible solution by eliminating elements from a solution that has

too many elements was first proposed by Erkut (1990). A summary of our adaptation of this idea in the

framework of a GRASP construction is shown in Algorithm 1.

1. Let 𝑀𝑘 = 𝑉 be the initial solution, and 𝑘 = 𝑛, the size of 𝑉

2. Let 𝑚 be the number of elements to select from 𝑉

while (𝑘 > 𝑚) {

a. Make 𝐶𝐿 = 𝑀𝑘

b. Compute 𝑠𝑘(𝑖) for all 𝑖 ∈ 𝐶𝐿

c. Compute 𝜏 = min
𝑖∈𝑀𝑘

𝑠𝑘(𝑖) + 𝛼 (max
𝑖∈𝑀𝑘

𝑠𝑘(𝑖) − min
𝑖∈𝑀𝑘

𝑠𝑘(𝑖))

d. Construct 𝑅𝐶𝐿 = {𝑖 ∈ 𝐶𝐿: 𝑠𝑘(𝑖) ≤ 𝜏}

e. Randomly select an element 𝑖∗ ∈ 𝑅𝐶𝐿

f. 𝑀𝑘+1 = 𝑀𝑘\{𝑖∗}

g. 𝑘 = 𝑘 − 1.

}

Algorithm 1. GRASP construction phase for CM3.

We create variants of CM2 and CM3 with a modified greedy function based on a minimum distance

instead of the sum of the distances. Specifically, we redefine (4) as follows:

 𝑠𝑘(𝑖) = min
𝑗∈𝑀𝑘

𝑑𝑖𝑗 (10)

We refer to CM4 as the construction method that uses (10) instead of (4) within the framework of CM2.

Likewise, we refer to CM5 as the construction method that uses (10) instead of (4) within the framework

of CM3.

3.3 GRASP with Strategic Oscillation

Glover (1977) introduced the notion of strategic oscillation (SO), which consists of orienting moves (or

exchanges) in relation to a critical boundary, as identified by a stage of construction or a chosen interval

of functional values. As summarized in Glover et al. (1997), this critical boundary identifies regions of the

search space that are expected to contain solutions of particular interest. Our main research inquiry is to

apply SO in the context of a GRASP framework customized for the Max-MinSum DP. We focus on the

construction phase of GRASP and oscillate around the feasibility boundary defined by constraint (2). The

constraint indicates that a feasible solution must have 𝑚 elements. Therefore, the boundary around which

we define our SO separates infeasible 𝑀𝑘 solutions into those with 𝑘 < 𝑚 and those with 𝑘 > 𝑚.

M a r t í n e z - G a v a r a , e t a l . | 7

As described in Glover and Laguna (1997), the following decisions must be made in order to implement

strategic oscillation:

Macro level decisions

1. Select an oscillation guidance function

2. Choose a target level for the function

3. Choose a pattern of oscillation

Micro level decisions

4. Choose a target rate of change (for moving toward or away from the target level)

5. Choose an oscillation amplitude

6. Identify aspiration criteria to override target restrictions

In our case, the guiding function is simply 𝑘, the number of elements in the current solution, and its target

level is 𝑚. We will test three oscillation patterns: single-sided for 𝑘 > 𝑚, single-sided for 𝑘 < 𝑚, and

double-sided. That is, given a feasible solution 𝑀, we create an infeasible solution 𝑀𝑘 by either adding

𝑘 − 𝑚 elements to 𝑀 or removing 𝑚 − 𝑘 elements from 𝑀. In both cases, we will use a constant

amplitude of oscillation. In terms of the micro level decisions, we choose a rate of change of 1 unit. That

is, at each step the oscillation moves one element closer to the target level. The amplitude (given in terms

of number of elements) is controlled by the search parameter 𝛽. This parameter is a fraction between 0

and 1 and it is multiplied by 𝑚 to determine the number of elements to be removed from or added to a

feasible solution. For small 𝛽 values, in both cases, the strategic oscillation amplitude is set to at least 1

element. In other words, the oscillation amplitude is given by max (1, 𝛽𝑚). We use no aspiration criteria

to override any of these choices. Figure 1 shows a graphical representation of the three oscillation

patterns that we tested.

The strategic oscillation pattern in Figure 1.a starts from a feasible solution 𝑀 to which 𝛽𝑚 elements have

been randomly added. Then, CM3 or CM5 can be applied until the target level is reached. Process is

repeated by once again randomly adding 𝛽𝑚 elements to the current feasible solution. The mirror image

of this pattern is shown in Figure 1.b. In this case, 𝛽𝑚 elements are removed from a feasible solution with

𝑚 elements and either CM2 or CM4 can be applied to restore feasibility (i.e., to reach the target level).

The third graph, Figure 3.c, shows the double-sided oscillation pattern. This pattern starts from a feasible

solution M to which 𝛽𝑚 elements are added, one at a time, following the criteria in CM2 or CM4. Once

the peak amplitude above the target level is reached, CM3 or CM5 is applied to delete 2𝛽𝑚 elements and

reach the peak amplitude below the target level. Note that the double-sided oscillation pattern visit a

feasible solution (i.e., crosses the target level) every 2𝛽𝑚 steps while the single-sided oscillation patterns

reach the target level every 𝛽𝑚. Hence, the single-sided oscillation patterns may be seen as intensification

mechanisms while the two-sided oscillation pattern favors search diversification.

M a r t í n e z - G a v a r a , e t a l . | 8

(a) (b)

(c)

Figure 1. Strategic oscillation patterns.

Algorithm 2 shows the procedural steps associated with implementing the one-sided oscillation pattern

depicted in Figure 1.a

1. Let 𝑀 be an initial solution and 𝑀∗ = 𝑀 the best solution

2. Set 𝑙 = 0 and 𝑈 = 𝑉\𝑀

while (𝑙 < 𝛾𝑛) {

a. Let 𝑅 be 𝛽𝑚 randomly selected elements in 𝑈

b. Obtain 𝑀′ by applying CM3 or CM5 to 𝑀 ∪ 𝑅 for 𝛽𝑚 steps

c. Make 𝑀 = 𝑀′ and 𝑈 = 𝑉 ∖ 𝑀

d. If 𝑓(𝑀) > 𝑓(𝑀∗) then 𝑀∗ = 𝑀 and 𝑙 = 0, else 𝑙 = 𝑙 + 1.

}

Algorithm 2. Single-sided oscillation strategy with CM3 or CM5

Unlike pure local search, strategic oscillation does not have a natural termination. Therefore, as shown in

Algorithm 2, we stop the SO process after a number of cycles without improvement (controlled by the

M a r t í n e z - G a v a r a , e t a l . | 9

search 𝛾 parameter). We define an SO cycle, in a single-sided oscillation pattern, as the pair consisting of

the infeasibility step (i.e., adding to or removing elements from 𝑀) and the restoration step (i.e., applying

an appropriate construction method to restore feasibility). The stopping limit is an additional search

parameter.

3.4 Tabu Search

To complement the GRASP variants described above, we developed a specialized tabu search for the Max-

MinSum DP. The starting point of the search is an initial solution constructed in the same way as suggested

by Prokopyev et al. (2009). The neighborhood search around the current solution is the same one used in

the improvement methods IM1 and IM2. That is, the search attempts to identify an exchange of (𝑖, 𝑗) for

which 𝑖 ∈ 𝑀 and 𝑗 ∈ 𝑉\𝑀. In the same way as IM1 and IM2, we create two TS variants, one for which the

best exchange is identified by exploring the entire neighborhood (TS1) and a second one in which a priority

list is used to evaluate the exchanges and select one as soon as an improvement of the current objective

function value is identified (TS2). The tabu memory structure after executing an (𝑖, 𝑗) exchange consists

of recording the index 𝑗, that is, the index of the unselected element that became part of the solution.

The element becomes tabu-active and remains in such a status for a specified number of iterations

controlled by the search parameter 𝜃. Exchanges that include tabu-active elements are declared tabu and

therefore are not allowed. As customary, the tabu status of an exchange is overridden if the exchange

leads to a solution that is better than the incumbent. The search stops after a number of iterations without

improvement (controlled by the search parameter 𝛾).

In our computational experiment, we test this simple TS implementation as a standalone procedure as

well as an improvement method within GRASP.

4. Computational Experiments

The computational experiments described in this section were performed to test the effectiveness and

efficiency of the procedures discussed above. All procedures were implemented in C and the experiments

were conducted on a computer equipment with a 2.8 Ghz Intel Core i7 processor.

We employed 255 instances in our experimentation. The group of instances, referred to as MDPLIB, is

available at http://www.optsicom.es/mdp and contains three sets. The SOM set consists of 70 matrices

with random numbers between 0 and 9 generated from an integer uniform distribution. The GKD set

consists of 145 matrices for which the values were calculated as the Euclidean distances from randomly

generated points with coordinates in the 0 to 10 range. Finally, the MDG set consists of 100 matrices with

real numbers randomly selected between 0 and 10 from a uniform distribution. Our experiments do not

include instances with 𝑛 ≥ 2000, which result in excessively long runs. Details of these sets are provided

in Table 1.

http://www.optsicom.es/mdp

M a r t í n e z - G a v a r a , e t a l . | 10

Set Reference Number of
instances

Size

SOM-a Generated by Martí et al.
(2010) with a generator
developed by Silva et al.
(2004).

50 𝑛 = 25, 𝑚 = 2,7
𝑛 = 50, 𝑚 = 5,15
𝑛 = 100, 𝑚 = 10,30
𝑛 = 125, 𝑚 = 12,37
𝑛 = 150, 𝑚 = 15,45

SOM-b Generated by Silva et al.
(2004) and used by many,
including Aringhieri et al.
(2008).

20 𝑛 = 100, 𝑚 = 10,20,30,40
𝑛 = 200, 𝑚 = 20,40,60,80
𝑛 = 300, 𝑚 = 30,60,90,120
𝑛 = 400, 𝑚 = 40,80,120,160
𝑛 = 500, 𝑚 = 50,100,150,200

GKD-a Glover et al. (1998) 75 𝑛 = 10, 𝑚 = 2,3,4,6,8
𝑛 = 15, 𝑚 = 3,4,6,9,12
𝑛 = 30, 𝑚 = 6,9,12,18,24

GKD-b Martí et al. (2010) 50 𝑛 = 25, 𝑚 = 2,7
𝑛 = 50, 𝑚 = 5,15
𝑛 = 100, 𝑚 = 10,30
𝑛 = 125, 𝑚 = 12,37
𝑛 = 150, 𝑚 = 15,45

GKD-c Duarte and Martí (2007) 20 𝑛 = 500, 𝑚 = 50

MDG-a Developed by Duarte and
Martí (2007) and used by
Palubeckis (2007)

20 𝑛 = 500, 𝑚 = 50

MDG-b Developed by Duarte and
Martí (2007) and used by
Palubeckis (2007) and
Gallego et al. (2009)

20 𝑛 = 500, 𝑚 = 50

Table 1. Characteristics of the data sets.

A series of preliminary experiments were conducted to determine effective values of the key search

parameters shown in Table 2. All of the parameters operate in the range]0, 1].

Parameter Description

𝜶
Used by all GRASP constructions methods (i.e., CM1 to CM5) to trade off

randomization and greediness.

𝜷

Percentage of the elements in a feasible solution (i.e., 𝑚) that are added to or

removed from a solution in SO. This parameter defines the amplitude of the

oscillation, given by max(1, 𝛽𝑚).

𝜸
Controls the termination criterion for either SO or TS. The number of cycles or

iterations without improvement is given by max(1, 𝛾𝑛).

𝜽
Controls the number of iterations that a selected element remains tabu-active in TS.

The number of iterations is given by max(1, 𝜃𝑚)

Table 2. Description of the key search parameters.

M a r t í n e z - G a v a r a , e t a l . | 11

For these preliminary experiments, we employ a training set of 20 representative instances from MDPLIB.

Our test set consists of all 255 problems in MDPLIB. The GRASP that we tested along with the best

parameter values are shown in Table 3. The SSO search strategy refers to the single-sided strategic

oscillation. The SSO for GRASP3 and GRASP5 corresponds to the oscillation pattern in Figure 1.a, while the

SSO for GRASP2 and GRASP4 corresponds to the oscillation pattern in Figure 1.b. The table shows the best

parameter values identified in the set {0.1,0.3,0.5,0.7}. We utilized a sequential design in which we set

the value of each a parameter one at a time, while the others are kept constant. Each run consisted of

100 GRASP iterations, where an iteration includes both phases; construction and improvement.

Procedure Search strategies Best parameter values

GRASP0 CM1, IM1 𝛼 = 0.5

GRASP1 CM1, IM2 𝛼 = 0.3

GRASP2 CM2, IM2, SSO 𝛼 = 0.7, 𝛽 = 0.5, 𝛾 = 0.5

GRASP3 CM3, IM2, SSO 𝛼 = 0.1, 𝛽 = 0.1, 𝛾 = 0.3

GRASP4 CM4, IM2, SSO 𝛼 = 0.7, 𝛽 = 0.5, 𝛾 = 0.5

GRASP5 CM5, IM2, SSO 𝛼 = 0.3, 𝛽 = 0.1, 𝛾 = 0.3

Table 3. GRASP variants and best parameter values.

We use the following metrics to measure the merit of each procedure:

𝐷𝑒𝑣 Average percent deviation from the best-known objective function values. These deviations are

calculated against the best solution that is known for each problem in the data set and therefore

can be compared across different experiments.

𝐵𝑒𝑠𝑡 Fraction of instances in a set for which a procedure is able to match the best-known solution.

Since this fraction is calculated against the best-known solutions, the performance metric is

absolute and can be compared across tables.

𝑆𝑐𝑜𝑟𝑒 Fraction of the instances for which the competing procedures “win” (i.e., they produce better

solutions than the procedure being scored). It is calculated as (𝑞(𝑝 − 1) − 𝑟)/(𝑞(𝑝 − 1)), where

𝑝 is the number of procedures being compared, 𝑞 is the number of instances, and 𝑟 is the number

of instances in which the 𝑝 − 1 competing procedures find a better result. Hence, the best score

is 1 (when 𝑟 = 0) and the worst is 0 (𝑟 = 𝑞(𝑝 − 1)). This is a relative measure of performance

that is only meaningful within a table of results and not across tables.

Table 4 shows a comparison of the GRASP configurations when applied to the training set. The termination

criterion was set to 5 seconds for the small instances, and 15 seconds for the large instances. The results

in Table 4 indicate that GRASP3 seems to be the best configuration to tackle instances of the Max-MinSum

DP. In the training set, this procedure obtains the smallest average deviation value and the highest score.

It also yields the highest fraction of best solutions (i.e., 0.25), although none of the methods in this

experiment performs particularly well on this metric.

M a r t í n e z - G a v a r a , e t a l . | 12

Procedure 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆

GRASP0 1.83% 0.20 0.50 11.05

GRASP1 1.56% 0.20 0.74 11.05

GRASP2 1.14% 0.30 0.78 11.00

GRASP3 0.18% 0.40 0.95 11.00

GRASP4 1.56% 0.20 0.74 11.05

GRASP5 1.84% 0.20 0.46 11.00

Table 4. Performance comparison of GRASP variants.

In the experiment reported in Table 4, we limited the application of the improvement methods to the

solution that results after the SSO stops. A variant of this results when the improvement method is applied

every time the target level is reached during SSO. We focus on GRASP3 in order to test this idea and refer

to the resulting method as GRASP3.1. Table 5 shows the results of comparing GRASP3 with its GRASP3.1

variant.

Procedure 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆

GRASP3 0.18% 0.40 0.90 11.00

GRASP3.1 0.23% 0.45 0.75 15.20

Table 5. GRASP3 vs. GRASP3.1 (multiple applications of the improvement method).

The 𝐷𝑒𝑣 and 𝑆𝑐𝑜𝑟𝑒 values in Table 5 do not favor the idea of multiple application of the improvement

method. These multiple applications of the improvement method within a single GRASP iteration increase

the time that the procedure spends intensifying the search within some particular regions of the solution

space (i.e., those established by the constructed solutions). This extra time precludes the method from

exploring other regions because the number of constructions decreases, resulting in a tradeoff that seems

somewhat detrimental to the performance of the entire procedure. We note however that the method is

able to find a higher fraction of best-known solutions.

In our next experiment, we once again focus on GRASP3 and replace SSO with the double-sided strategic

oscillation pattern shown in Figure 1.c. We refer to this method as GRASP 3.2 and compare it with the

original GRASP3 using the training set. The results are shown in Table 6.

Procedure 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆

GRASP3 0.18% 0.40 0.55 11.00

GRASP3.2 0.05% 0.75 1.00 11.00

Table 6. GRASP3 vs. GRASP3.2 (double-sided strategic oscillation).

The double-sided strategic oscillation pattern seems like an effective search strategy within the GRASP

framework for the Max-MinSum DP. Given these results, we declare GRASP3.2 our best GRASP variant to

be tested against other competing procedures. Before comparing it to methods in the literature, we

perform two additional tests. The first one consists of comparing GRASP3.2 and the simple TS procedure

described in section 3.4. We do not show results of this comparison because GRASP3.2 turns out to be

M a r t í n e z - G a v a r a , e t a l . | 13

widely superior to the simple TS implementation. We then tried a final variant in which TS replaces IM2

within GRASP3.2. That is, we have CM3 with a double-sided strategic oscillation for the construction phase

and TS for the improvement phase. This configuration turns out to be also inferior (by a wide margin) to

GRASP 3.2.

These results and those obtained when testing GRASP3.1 point to the conjecture that the better strategy

to search the solution space of Max-MinSum DP instances is to favor increasing the number of

constructions with limited improvement over fewer constructions with additional intensification around

those solutions.

We now compare the performance of GRASP3.2 with Prokopyev, Cplex, and LocalSolver. The Cplex runs

correspond to the MIP formulation of the Max-MinSum DP suggested by Prokopyev et al. (2009), which is

derived from (1) and (2). The formulation consists of a single continuous variable (that is also the objective

function to be maximized), 𝑛 binary variables, 𝑛 “Big-M” constraints, and constraint (2). Cplex 12.6 was

configured to stop after 3600 seconds.

LocalSolver is a commercially available optimization software for combinatorial problems

(localsolver.com). In order to apply LocalSolver to the Max-MinSum DP, we define x[i] variables within

the LocalSolver model and use them to calculate dsum[i] for each element. We then identify the

minimum dsum value for those elements that are selected (i.e., for i such that x[i] equals 1). The

minimum value is then maximized. The LocalSolver model is shown in Algorithm 3.

function model()

{

// x[i] is 1 if element i is chosen

x[0..n] <- bool();

// choose m elements

constraint sum[i in 0..nodes] (x[i]) == m;

//calculate the sum of distances for each chosen element

dsum[i in 0..n] <- 0;

for [i in 0..n]

dsum[i] <- sum[j in 0..n : j != i] (d[i][j] * x[i] * x[j]);

// find the minimum sum

minsum <- 100000000;

for [i in 0..n]

minsum <- (x[i] == 1 && dsum[i] < minsum) ? dsum[i] : minsum;

maximize minsum;

}

 Algorithm 3. LocalSolver model.

Since LocalSolver uses metaheuristic methodologies, the nonlinearities in the model do not represent a

problem for this optimization software. Table 7 compares the performance of the 5 approaches using the

metrics described above. It also shows the average computational effort (given in seconds of computing

time).

M a r t í n e z - G a v a r a , e t a l . | 14

Procedure 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆

GRASP3.2 0.05% 0.75 0.97 11.00

Prokopyev 11.08% 0.00 0.00 11.15

Cplex 2.64% 0.25 0.68 2888

LocalSolver 3.93% 0.10 0.45 600

Table 7. Performance comparison of current and previous approaches.

The results in Table 7 support the hypothesis that GRASP3.2 is significantly better than its competitors at

solving instances of the Max-MinSum DP. It is worth mentioning that LocalSolver’s performance is fairly

robust when considering that it is a generic solver, although it does require relative long running times to

produce high quality solutions. On the other hand, Prokopyev provides low quality solutions as compared

with the new proposal. We now perform our final experiment with all the 255 instances in the test set.

We compare GRASP3, GRASP3.2, and Prokopyev, and report the results in Table 8.

Procedure 𝑫𝒆𝒗 𝑩𝒆𝒔𝒕 𝑺𝒄𝒐𝒓𝒆 𝑻𝒊𝒎𝒆

Small instances (𝑛 ≤ 200)

GRASP3 0.01% 0.99 0.94 2.13

GRASP3.2 0.02% 0.99 0.91 2.13

Prokopyev 2.63% 0.60 0.47 2.13

Large instances (𝑛 > 200)

GRASP3 0.36% 0.21 0.64 10.00

GRASP3.2 0.13% 0.34 0.90 10.00

Prokopyev 14.71% 0.00 0.00 10.00

Table 8. GRASP variants vs. Prokopyev on test set.

Results in Table 8 are in line with those reported in Table 7 and confirm the superiority of the new method

proposed in this paper. An interesting result is that our variant with the single-sided strategic oscillation

(GRASP3) shows a slightly better performance than the one with the double-sided strategic oscillation

(GRASP3.2) in the small instances. Statistical tests, however, did not detect any significant differences in

performance on the small instances between GRASP3 and GRASP3.2. We applied the non-parametric

statistical test of Friedman to the data associated with the large instances in Table 7 and obtained a 𝑝 <

0.01, which indicates the existence of significant performance differences among the three methods.

Additionally, we applied the Wilcoxon test between GRASP3 and GRASP3.2 also to large-instance data and

obtained a 𝑝 = 0.001, indicating that there are significant performance differences between these two

methods.

5. Conclusions

The Max-MinSum DP is a difficult combinatorial optimization problem and a perfect platform to study the

effectiveness of search mechanisms. We studied how to integrate the strategic oscillation paradigm within

the construction phase of the GRASP framework. We tested six different GRASP variants in which we

considered different ways to generate and improve a solution. We performed several experiments with

M a r t í n e z - G a v a r a , e t a l . | 15

instances previously used in the literature. Our experiments show that the double-sided strategic

oscillation with the CM3 constructive method and IM2 improvement method provides the best outcomes

overall. Moreover, the results indicate that the proposed hybrid heuristic compares favorably to an

existing specialized procedure and a general-purpose optimizer (LocalSolver).

The Max-MinSum DP gave us the opportunity to test search strategies in a way that has not been

described or reported in the literature. In particular, while strategic oscillation has its origins in tabu

search, we were able to apply it in the context of GRASP. And although the most logical place to embed

SO was either within the simple TS implementation or the neighborhood-search-driven improvement

methods within GRASP, we decided to integrate it as part of GRASP’s construction phase. Our SO design

was such that we could test three variants of the oscillation pattern and we were able to discover how

the double-sided pattern has some clear advantage over the one-sided counterpart when tackling large

instance of the Max-MinSum DP. We believe that our findings can be translated to other settings and will

help in the development of robust searches of combinatorial spaces.

Acknowledgments

This research has been partially supported by the Ministerio de Economía y Competitividad of Spain (Grant

Ref. TIN2012-35632-C02), the Generalitat Valenciana (ACOMP/2014/A/241 and Prometeo 2013/049), and

the University of Valencia (UV-INV-PRECOMP13-115334).

References

Ağca, S., B. Eksioglu, J. B. Ghosh; “Lagrangian solution of maximum dispersion problems”. Naval Research

Logistics, 47: 97–114, 2000.

Erkut, E., S. Neuman; “Analytical models for locating undesirable facilities”. European Journal of

Operational Research, 40: 275–291, 1989.

Erkut, E; “The discrete p-dispersion problem”. European Journal of Operational Research, 46:48–60, 1990.

Ghosh, J. B; “Computational aspects of the maximum diversity problem”. Operations Research Letters, 19:

175–181, 1996.

Glover, F; “Heuristics for Integer Programming using Surrogate Constraints”. Decision Sciences, 8(1): 156-

166, 1977.

Glover, F., C. C. Kuo, K.S. Dhir; “A discrete optimization model for preserving biological diversity”. Applied

Mathematical Modeling, 19: 696-701, 1995.

Glover, F., M. Laguna; “Tabu Search”. Kluwer Academic Publishers, 1997.

Glover, F., C. C. Kuo, K. S. Dhir; “Heuristic algorithms for the maximum diversity problem”. Journal of

Information and Optimization Sciences, 19(1): 109-132, 1998.

Hassin, R., S. Rubinstein, A. Tamir; “Approximation algorithms for maximum dispersion”. Operations

Research Letters, 21: 133–137, 1997.

M a r t í n e z - G a v a r a , e t a l . | 16

Kincard, R. K; “Good solutions to discrete noxious location problems via metaheuristics”. Annals of

Operations Research, 40: 265-281, 1992.

Kuo, C. C., F. Glover, K. S. Dhir; “Analyzing and modeling the maximum diversity problem by zero-one

programming”. Decision Sciences, 24:1171–1185, 1993.

Martí, R., F. Sandoya; “GRASP and path relinking for the equitable dispersion problem”. Computers and

Operations Research, 40: 3091-3099, 2013.

Pisinger, D; “Upper bounds and exact algorithms for p-dispersion problems”. Computers and Operations

Research, 33: 1380–1398, 2006.

Prokopyev, O. A., N. Kong, D. L. Martinez-Torres; “The equitable dispersion problem”. European Journal

of Operation Research, 197: 59-67, 2009.

Ravi, S. S., D. J. Rosenkrantz, G.K. Tayi; “Heuristic and special case algorithms for dispersion problems”.

Operations Research, 42: 299-310, 1994.

Resende, M. G. C., Martí, M. Gallego, A. Duarte: “GRASP and path relinking for the max–min diversity

problem”. Computers and Operations Research, 37(3): 498-508, 2010.

Resende, M. G. C., C. C. Ribeiro; “Greedy randomized adaptive search procedures”. Metaheuristics, F.

Glover, G. Kochenberger, editors. Boston: Kluwer Academic Publishers, 219-250, 2001.

Resende, M. G. C., R. Werneck; “A hybrid heuristic for the p-median problem”. Journal of Heuristics, 10(1):

59-88, 2004.

