

Heuristics for the Capacitated Dispersion Problem

JUANJO PEIRÓ
Departament d’Estadística i Investigació Operativa,
Universitat de València, Spain
Juanjo.Peiro@uv.es

IRIS JIMÉNEZ
Departamento de Matemática,
Facultad de Ciencias Naturales, Exactas y Tecnología
Universidad de Panamá, Panama
irismarina71@gmail.com

JOSÉ LAGUARDIA
Departamento de Ciencias Exactas,
Facultad de Ciencias y Tecnología
Universidad Tecnológica de Panamá, Panama
Jose.Laguardia@utp.ac.pa

RAFAEL MARTÍ
Departament d’Estadística i Investigació Operativa,
Universitat de València, Spain
Rafael.Marti@uv.es

ABSTRACT
In this paper, we investigate the adaptation of the Greedy Randomized Adaptive Search
Procedure (GRASP) and Variable Neighborhood Descent (VND) methodologies to the
Capacitated Dispersion Problem (CDP). Dispersion and diversity problems arise in the placement
of undesirable facilities, workforce management and social media, among others. Maximizing
diversity deals with selecting a subset of elements from a given set in such a way that the
distance among the selected elements is maximized. We target here a realistic variant with
capacity constraints for which a heuristic with a performance guarantee was previously
introduced. In particular, we propose a hybridization of GRASP and VND implementing within
the Strategic Oscillation framework. To evaluate the performance of our heuristic, we perform
extensive experimentation to first set key search parameters, and then compare the final
method with the previous heuristic. Additionally, we propose a mathematical model to obtain
optimal solutions for small size instances, and compare our solutions with the well-known Local-
Solver software.

KeyWords: Diversity maximization, dispersion, Metaheuristics, Combinatorial Optimization.
Version: March, 2020

mailto:Juanjo.Peiro@uv.es
mailto:irismarina71@gmail.com
mailto:Jose.Laguardia@utp.ac.pa
mailto:Rafael.Marti@uv.es

Peiró et al. (2020) 2

1. INTRODUCTION

The Capacitated Dispersion Problem (CDP) is an NP-Hard problem that belongs to the family of
dispersion or diversity problems (Sandoya et al. 2018). When dealing with dispersion, the
operations research literature has focused on maximizing diversity while neglecting, for the
most part, the introduction of constraints. Several models have been proposed to deal with
dispersion problems (Prokopyev et al. 2009). All of them require a diversity measure, typically
based on a distance function. The most studied model is known as the maximum diversity
problem (MDP, Silva et al. 2004, Silva et al. 2007, Duarte and Martí 2007), in which the sum of
the distances between the selected elements is maximized. A very popular alternative is the
max-min diversity problem (MMDP, Resende et al. 2010), in which the minimum distance
between the selected elements is maximized. There are many variants of diversity models, see
for example Martínez-Gavara et al. (2017a, 2017b).

The literature on diversity and dispersion problems is vast, starting with Glover et al. (1998). We
refer the reader to a recent book chapter by Sandoya et al. (2018), which summarizes the
previous heuristics and formulations for this problem. Assuming that the term dispersion may
have different interpretations, not always properly defined, different mathematical models
regarding dispersion may result in different types of solutions. Martí and Sandoya (2013)
reviewed five diversity models and pointed out that the MMDP reflects in a better way the idea
of dispersion. To illustrate this point, Figure 1 shows the optimal solutions of the MDP (left) and
MMDP (right) respectively of an instance with 30 elements from which we select 10. It is clear
that both solutions have a very different structure, being the 10 points in the MMDP solution
(the one in the right part of Figure 1) better distributed considering that in the Max-Sum solution
(shown in the left part of the figure) we can find two points that are very close from each other.

Figure 1. Example to illustrate MDP and MMDP solutions.

In this paper, we consider the dispersion variant known as CDP that was introduced in
Rosenkrantz et al. (2000), in which a capacity constraint is added to the MMDP model. The
motivation for this constrained model comes from its practical applications in facility location.
For example, the location of undesirable or hazardous facilities, such as waste sites or nuclear
plants, requires their dispersion while satisfying a certain total demand. Another example can
be found in the context of retail franchises, where shops should not be located close to each
other. These facilities/shops have a capacity to provide a service in systems that require an

Heuristics for the Capacitated Dispersion Problem

3

overall demand. As stated by the authors in Rosenkrantz et al. (2000), “these practical aspects
add a new dimension to the conventional dispersion problem”. Classical models, such as the
MDP or MMDP, indirectly address the problem requirements by considering a pre-fixed number
of facilities (i.e., the number of points to be selected is an input to the problem). However, more
realistic approaches should be considered, as in the case of CDP, in which the capacity of each
facility depends on its location.

Rosenkrantz et al. (2000) proposed a heuristic with performance guarantee to solve this NP-hard
problem. The authors proved that on instances with inter-objects distances satisfying the
triangle inequality, their heuristic has a performance guarantee of 2. Although no empirical
results or experiments are reported, the theoretical study also concludes that their heuristic
running time is 𝑂𝑂(𝑛𝑛2 log𝑛𝑛). In this paper we approach this problem from a practical
perspective, aiming at complementing their analysis. In particular, we propose heuristic
algorithms based on state-of-the-art metaheuristic methodologies such as GRASP and VND in
which we do not have a performance guarantee, but experimental results show that they
statistically perform very well when solving a large set of instances.

Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of 𝑛𝑛 nodes and 𝐸𝐸 is the set of edges, let 𝑑𝑑𝑖𝑖𝑖𝑖 be the
inter-elements distance between any two elements 𝑖𝑖 and 𝑗𝑗 ∈ 𝑉𝑉. Let 𝑐𝑐𝑖𝑖 be the capacity of node
𝑖𝑖 ∈ 𝑉𝑉, and 𝐵𝐵 the total capacity required. The CDP can be easily formulated with the set 𝑀𝑀 of
selected elements, and with binary variables 𝑥𝑥𝑖𝑖 that take value 1 if element 𝑖𝑖 is selected, and 0
otherwise, as:

(F1) Maximize 𝑓𝑓(𝑀𝑀) = min
𝑖𝑖,𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖 (1)

subject to: ∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵𝑛𝑛
𝑖𝑖=1 (2)

𝑥𝑥𝑖𝑖 ∈ {0,1} 𝑖𝑖 = 1, … ,𝑛𝑛 (3)

Where 𝑀𝑀 = {𝑖𝑖 ∈ 𝑉𝑉: 𝑥𝑥𝑖𝑖 = 1} is the set of selected elements. Symmetrically, let 𝑈𝑈 = 𝑉𝑉\𝑀𝑀 be the
set of unselected elements. Then, the Capacitated Dispersion Problem (CDP) consists of
selecting a set 𝑀𝑀 ⊆ 𝑉𝑉 of elements such that the smallest distance between each pair of them is
maximized, while the sum of their capacities is at least 𝐵𝐵. The objective is to maximize its
minimum inter-distance value, 𝑓𝑓(𝑀𝑀), by a judicious selection of 𝑀𝑀.

The contributions of our work can be summarized as follows:

 Implementation of the previous heuristic for CDP (Rosenkrantz et al. 2000)
 Development and implementation of GRASP and VND heuristics for the CDP
 Creation of a hybrid approach combining GRASP and VND within Strategic Oscillation.
 Development of an efficient mathematical formulation
 Implementations of CDP models for Cplex and LocalSolver
 Comparison of new and existing methods on general instances for the CDP

As mentioned above, one of the objectives of this paper is to investigate a Strategic Oscillation
(SO) proposal. It basically alternates between constructive and destructive phases as a basis for
creating a competitive method. SO was proposed in the context of the tabu search methodology

Peiró et al. (2020) 4

(Glover and Laguna, 1997), and we propose to integrate it with GRASP and VND to create a
hybrid efficient method to obtain high-quality solutions for the Capacitated Dispersion Problem.

2. MATHEMATICAL FORMULATION

The Capacitated Dispersion Problem can be easily formulated, as shown in the Introduction, in
mathematical terms as a quadratic binary problem. Note however that the objective function
(1) is nonlinear, which makes it difficult to solve. As a matter of fact, it can be modeled as the
product of two variables and the computation of a minimum value, and each of this two
characteristics makes the model nonlinear. To linearize it, we employ a standard artifact. For
each (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, we introduce binary variables 𝑦𝑦𝑖𝑖𝑖𝑖 that take the value 1 if and only if 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖
simultaneously take the value 1. In other words, 𝑦𝑦𝑖𝑖𝑖𝑖 takes the value of the product of both
variables (but we avoid the use of this product to obtain a linear formulation). We accomplish it
with constraints (5) - (7) below. With these three families of constraints we overcome the
problem of multiplying variables.

To deal with the computation of a minimum value, we introduce constraints (8) where an upper
bound 𝐷𝐷 on the distances values permits to model it. In particular, when 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 the expression
𝑚𝑚 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐷𝐷�1 − 𝑦𝑦𝑖𝑖𝑖𝑖� results in 𝑚𝑚 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖, and considering that we compute it for each pair
of selected elements (𝑖𝑖, 𝑗𝑗 ∈ 𝑀𝑀), 𝑚𝑚 takes the minimum value of their distances. On the other
hand, when 𝑦𝑦𝑖𝑖𝑖𝑖 = 0, expression (8) results in 𝑚𝑚 ≤ 𝐷𝐷�1 − 𝑦𝑦𝑖𝑖𝑖𝑖�, which can be simplified as 𝑚𝑚 ≤
𝐷𝐷. Since 𝐷𝐷 is an upper bound on the distances values (i.e., it is an arbitrary value larger than all
the distances in G), then these constraints are not active when 𝑦𝑦𝑖𝑖𝑖𝑖 = 0. The complete
formulation follows:

(F2) Max 𝑚𝑚 (4)

subject to:

∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵𝑛𝑛
𝑖𝑖=1 (2)

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛 (5)

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛 (6)

𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 + 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛 (7)

𝑚𝑚 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐷𝐷�1 − 𝑦𝑦𝑖𝑖𝑖𝑖� 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛 (8)

𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1} 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛 (9)

𝑥𝑥𝑖𝑖 ∈ {0,1} 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 (3)

Formulation F2 is equivalent to F1, showed in the previous section, but it only contains linear
expressions. In our computational experiments in Section 5, we implement this formulation in
Cplex to obtain the optimal solution for small and medium size instances.

Heuristics for the Capacitated Dispersion Problem

5

To illustrate how are the optimal solutions obtained with this formulation, we consider the small
example with 50 points shown in Figure 2 with capacity values ranging from 1 to 1000 for each
point.

Figure 2. Example to illustrate CDP solutions

We solve the CDP problem of the example in Figure 2 with Cplex, running with the integer linear
formulation F2. In particular, we consider a capacity limit 𝐵𝐵 = 6275. In less than 2 seconds, we
obtain the optimal solution 𝑀𝑀 = {1, 4, 23, 24, 27, 36, 46, 49} with an objective function value of
𝑚𝑚 = 331.29 and a capacity value of 6411. Figure 3 shows the selected points in 𝑀𝑀.

Figure 3. Cplex optimal CDP solution.

Unfortunately, Cplex cannot solve large instances with this formulation. As it is well-known, the
branch and bound code implemented in Cplex to deal with integer variables explores a huge
number of solutions when the problem size is large, leading to impractical running times. We
therefore resort to heuristic methods to target large instances.

In the next section, we describe the previous heuristic method, and apply it to solve this problem
to illustrate its performance in a small example with optimal solution known.

Peiró et al. (2020) 6

3. THE PREVIOUS HEURISTIC METHOD

As mentioned in the Introduction, Rosenkrantz et al. (2000) proposed the only previous heuristic
known for this problem. This heuristic, called T1, has a performance guarantee of 2. This means
that the solution of the method is within a distance of the optimal solution. In particular, for any
instance, the optimal value divided by the value of the solution obtained with the heuristic is
lower than 2.

Figure 4 shows a pseudo-code of this previous method. It basically calls the routine Greedy_Try
with two parameters, 𝛼𝛼 and 𝐵𝐵, which tries to select a set of nodes, called sites, in a greedy
fashion to satisfy the distance constraint 𝛼𝛼 and capacity constrain 𝐵𝐵. In this code, 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑉𝑉’)
denotes the sum of the capacities of the nodes in 𝑉𝑉’.

Heuristic T1

1. Sort the sites in non-increasing capacity order, and create a list Site_List.
2. Sort the inter-site distances in non-increasing order. Eliminate

duplicates distances. Let the resulting sorted list of distances be
sorted in the array 𝐷𝐷 such that 𝐷𝐷[1] > 𝐷𝐷[2] > … > 𝐷𝐷[𝑡𝑡].

3. Carry out a binary search over the array 𝐷𝐷 to find the index 𝑖𝑖 such
that for 𝛼𝛼 = 𝐷𝐷[𝑖𝑖], the call Greedy_Try(α, B) returns “success” and
for 𝛼𝛼’ = 𝐷𝐷[𝑖𝑖 – 1], the call Greedy_Try(α’, B) returns “failure”.

4. Output the intersite distance α found in Step 3 and stop.

Procedure Greedy_Try(α, B)

1. Let L := Site_List and 𝑉𝑉’ = Ø.
2. While L is not empty do

a. Add the first node 𝑣𝑣 from 𝐿𝐿 to 𝑉𝑉’.
b. Remove from 𝐿𝐿 all sites (including v) whose intersite distance to v is

strictly less than α.
3. If 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑉𝑉’) ≥ 𝐵𝐵 then return “success” else return “failure”.

Figure 4. Previous heuristic T1.

We implement the algorithm T1 shown above to perform an empirical comparison with our
heuristics proposed in the next section. The results of our experimentation are shown in Section
5. We illustrate now how the method works, as the authors did in Rosenkrantz et al. (2000) with
some examples.

We first consider the example in Figure 5 based on Euclidean distances. It has four nodes, namely
1, 2, 3, and 4, with capacity 2 in the corner of a square of two units, and node 5 in the center
with capacity 1. We apply algorithm T1 to solve the CDP with a capacity limit 𝐵𝐵 = 5. In step 1 of
T1 we create Site_list = (1,2,3,4,5), and in step 2, we obtain D=(2.82, 2 , 1.41). Then, we call
Greedy_Try(α =2.82, B = 5), and perform the following steps:

1. v = 1 ; L = (4) ; V’ = (1)
2. v = 4 ; L = Ø; V’ = (1, 4)

Heuristics for the Capacitated Dispersion Problem

7

3. Failure

Then, we call Greedy_Try(α =2, B = 5) again an perform these steps:

1. v = 1 ; L = (2,3,4) ; V’ = (1)
2. v = 2 ; L = (3,4); V’ = (1, 2)
3. v = 3 ; L = (4); V’ = (1, 2,3)
4. Success

Obtaining the solution V’ = (1,2,3) with α =2

Figure 5. Small instance

We now solve the CDP problem of the example in Figure 2 with T1. As we did with Cplex in the
previous section, we consider a capacity limit 𝐵𝐵 = 6275. We obtain the solution 𝑀𝑀 =
{1, 4, 8, 15, 23, 24, 36, 46} with an objective function value of 𝑚𝑚 = 302.9 and a capacity value
of 6514. Figure 6 shows the selected points in 𝑀𝑀.

Figure 6. Heuristic solution of example in Figure 2.

If we compare the optimal solution obtained with Cplex in the previous section, with a value of
𝑚𝑚 = 331.29, with the heuristic solution above, with a value of 𝑚𝑚 = 302.9, we can conclude
that there is room for improvement in the design of a heuristic method. This is basically the
motivation of our work: the design of a heuristic algorithm to obtain high-quality solution in
short computational times.

Peiró et al. (2020) 8

4. NEW HEURISTIC METHODS

In this section we propose three new methods to obtain good solutions for the CDP. The first
one is based on the GRASP methodology. It is complemented with a VND method as a local
search optimizer, described in the second subsection. Finally, both methods are integrated on a
strategic oscillation scheme for improved outcomes. The following subsections describe in detail
the three methods.

4.1 GRASP - Greedy Randomized Adaptive Search Procedure

The GRASP methodology was proposed by Feo and Resende (1995). Each GRASP iteration
consists of constructing a trial solution and then applying an improvement method to find a local
optimum. The construction phase is iterative, greedy, randomized and adaptive. It is iterative
because the initial solution is built considering one element at a time. It is greedy because the
addition of each element is guided by a greedy function. It is randomized because a random
selection takes place and the information provided by the greedy function is used in
combination with this random element.

Given the set 𝑉𝑉 with 𝑛𝑛 vertices or nodes, the construction procedure C1 performs consecutive
steps to produce a solution. The set 𝑀𝑀, initially empty, represents the partial solution under
construction. At each step, C1 selects a candidate element 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 with a good evaluation,
𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖). A straightforward evaluation for candidate elements in this problem is the distance to
the elements already in the partial solution. Specifically, we can compute 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) as the sum of
the distances between element 𝑖𝑖 and the selected elements. In mathematical terms:

𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) = �𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑀𝑀

Then, C1 constructs the restricted candidate list, RCL, with all the candidate (unselected
elements) with an evaluation within a fraction of the maximum evaluation. In mathematical
terms:

𝑅𝑅𝐶𝐶𝐿𝐿 = {𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 ∶ 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) ≥ 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛼𝛼 (𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛)} (10)

where 𝛼𝛼 ∈ [0,1] is a search parameter that will be empirically adjusted. Then, the method
randomly selects an element in RCL (see equation (10)), and adds it to the partial solution 𝑀𝑀. C1
performs steps as long as the capacity constraint (2) is not met. In other words, the method
stops when the sum of the capacities of the elements in 𝑀𝑀 is larger than or equal to 𝐵𝐵.

One could argue that C1 is blind in its selection process with respect to the capacity values of
the nodes. To overcome this limitation, we propose C2 with a more elaborated evaluation
function. In particular, it first computes for any element 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀, 𝑑𝑑𝑖𝑖 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀 and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =
max
𝑖𝑖
𝑑𝑑𝑖𝑖 to adjust the contribution of the distance value to the range [0,1]. Similarly, it computes

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖
𝑐𝑐𝑖𝑖 and then:

𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) = 𝛽𝛽 𝑑𝑑𝑖𝑖
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

+ (1 − 𝛽𝛽) 𝑐𝑐𝑖𝑖
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

 (11)

Heuristics for the Capacitated Dispersion Problem

9

and the relative weight of these two factors, distance and capacity, is adjusted with the 𝛽𝛽 ∈
[0,1] parameter. C2 performs steps in the same manner than C1, with the only difference of the
evaluation function (11).

Glover et al. (1998) is probably the first study on diversity problems from a heuristic optimization
perspective. The authors anticipate that since different versions of this problem may include
additional constraints, as it is our case here, the objective is to design heuristics whose basic
moves for transitioning from one solution to another are both simple and flexible, allowing these
moves to be adapted to multiple settings. Especially attractive moves in this context are
constructive and destructive processes that drive the search to approach and cross-feasibility
boundaries from different directions. Such moves are also highly natural in the maximum
diversity problem, where the goal is to determine an optimal composition for a set of selected
elements. In line with these observations, we propose two “destructive” methods, called D1 and
D2.

D1 is the counterpart of C1, in which in each iteration, instead of adding an element to the partial
solution, we remove one element from this partial solution. In destructive methods we consider
that initially all the elements are selected and we remove elements, one-by-one as long as the
capacity constraint is satisfied. In particular, in each iteration we remove, or deselect, the
element with a relative bad evaluation, as indicated by the following RCL:

𝑅𝑅𝐶𝐶𝐿𝐿 = {𝑖𝑖 ∈ 𝑀𝑀 ∶ 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) ≤ 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛾𝛾 (𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛)}, (12)

where 𝛾𝛾 ∈ [0,1]. Similarly, we propose D2 as the counterpart of C2. It employs the same
evaluation function than C2, although in D2 it is meant to identify the elements with a bad
evaluation. Then, the method removes from the solution one of them randomly selected. The
selection is performed from a restricted candidate list (RCL) as it is customary in GRASP.

4.2 VND – Variable Neighborhood Descent

The Variable Neighborhood Search (VNS) methodology is based on a simple and effective idea:
a systematic change of neighborhood within a local search algorithm (Mjirda et al. 2017; Hansen
et al., 2017). Variable Neighborhood Descent (VND) is a variant of VNS that explores
neighborhoods in a deterministic way. In particular, VND explores small neighborhoods until a
local optimum is encountered. At that point, the search process switches to a different (typically
larger) neighborhood that might allow further progress towards the global optimum. In this
section we adapt the VND to the Capacitated Dispersion Problem. We follow the description
given in Duarte et al. (2018).

We define 𝑁𝑁𝑘𝑘(𝑀𝑀) for 𝑘𝑘 = 1, 2, … , 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 as the set of solutions that are obtained when we
exchange 𝑘𝑘 elements in solution 𝑀𝑀 with 𝑘𝑘 elements in 𝑉𝑉 ∖ 𝑀𝑀. Exchanges in this context consist
of replacing selected elements with unselected ones. VND is based on the fact that a local
optimum is defined with respect to a neighborhood relation, such that if a candidate solution 𝑀𝑀
is locally optimal in a neighborhood 𝑁𝑁𝑖𝑖(𝑀𝑀), it is not necessarily a local optimum for another
neighborhood 𝑁𝑁𝑖𝑖(𝑀𝑀). Note that in our problem, we need to check that the solution is feasible
after the exchange (i.e., that it verifies constraint (2) in Formulation F1). Specifically, when we

Peiró et al. (2020) 10

replace 𝑘𝑘 elements in the solution, the sum of the capacities of the selected elements after the
replacement has to be larger than or equal to 𝐵𝐵. To simplify the description, we can just say that
we only consider feasible exchanges.

Given a set 𝑉𝑉 with 𝑛𝑛 elements, and a feasible solution 𝑀𝑀 with some of these elements selected,
we compute for 𝑖𝑖 ∈ 𝑀𝑀,

𝑑𝑑𝑚𝑚𝑖𝑖 = min
𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖.

Note that the objective function value of this solution, 𝑓𝑓(𝑀𝑀), is computed as the minimum of
the 𝑑𝑑𝑚𝑚𝑖𝑖-values. It is clear that to improve a solution we need to remove (and thus replace) the
elements 𝑖𝑖 in the solution for which 𝑑𝑑𝑚𝑚𝑖𝑖 = 𝑓𝑓(𝑀𝑀). Our method initially scans, at each iteration,
the list of elements in the solution (𝑖𝑖 ∈ 𝑀𝑀) with minimum 𝑑𝑑𝑚𝑚𝑖𝑖 value. In particular, it scans the
list of elements in lexicographical order, and for each element 𝑖𝑖∗ with a minimum 𝑑𝑑𝑚𝑚𝑖𝑖 value, it
considers the list of unselected elements (𝑗𝑗 ∈ 𝑉𝑉 ∖ 𝑀𝑀) in search for the first improving exchange
in 𝑁𝑁1(𝑀𝑀). Considering that the set 𝑉𝑉 ∖ 𝑀𝑀 is relatively large (as compared with the set 𝑀𝑀), we
implement a strategy to scan it in an efficient way to find a good exchange for 𝑖𝑖∗. In particular,
we compute 𝑑𝑑𝑒𝑒𝑖𝑖(𝑖𝑖∗) for 𝑗𝑗 ∈ 𝑉𝑉 ∖ 𝑀𝑀 , where:

𝑑𝑑𝑒𝑒𝑖𝑖(𝑖𝑖∗) = min
𝑖𝑖∈𝑀𝑀∖{𝑖𝑖∗}

𝑑𝑑𝑖𝑖𝑖𝑖

and scan these vertices in the order induced by the 𝑑𝑑𝑒𝑒 −values, where the one with the largest
value comes first. It must be noted that the 𝑑𝑑𝑒𝑒 −values are an indicator of the potential quality
of an element to become part of the solution when we remove 𝑖𝑖∗. Since the objective function
is to maximize the inter-distance values, the larger the 𝑑𝑑𝑒𝑒 the better the element. This is why
we explore first the elements with larger 𝑑𝑑𝑒𝑒 −values in our search for a good exchange. It is
indeed a steepest descent strategy (Glover and Laguna, 1997).

The method performs the first improving move and updates 𝑑𝑑𝑚𝑚𝑖𝑖 for all elements in 𝑀𝑀. In this
first phase, the algorithm repeats iterations as long as improving exchanges can be performed
and when no further improvement is possible, it resorts to consider exchanges of two elements,
implementing in this way a VND. We limit our method to two neighborhoods, 𝑁𝑁1(𝑀𝑀) and
𝑁𝑁2(𝑀𝑀), to avoid the larger running times associated with large neighborhoods.

An important point in Max-Min problems is the definition of improving moves. Previous papers
on this type of problems consider an extended definition, which includes not only when the
move increases the value of 𝑓𝑓(𝑀𝑀), but also when a certain indicator improves (see for example
Resende et al. 2010). In our VND algorithm we apply this extended criterion in which when the
number of elements 𝑖𝑖 ∈ 𝑀𝑀 for which 𝑑𝑑𝑚𝑚𝑖𝑖=𝑓𝑓(𝑀𝑀) is reduced, we consider that the solution
improves.

As in typical VND implementations, our method explores the neighborhood structures in a
sequential way (i.e., from 1 to 2). In particular, 𝑘𝑘 is initially set to 1; then, in each step, an
improving neighbor 𝑀𝑀′ of 𝑀𝑀, is determined in 𝑁𝑁𝑘𝑘(𝑀𝑀): if 𝑀𝑀′ is better than 𝑀𝑀 according to the
extended definition above, then 𝑀𝑀 is replaced with 𝑀𝑀′; otherwise, 𝑘𝑘 is incremented by one unit
(i.e., 𝑘𝑘 = 𝑘𝑘 + 1). In other words, the algorithm performs a local search to improve the solution

Heuristics for the Capacitated Dispersion Problem

11

in 𝑁𝑁1(𝑀𝑀) and only resorts to 𝑁𝑁2(𝑀𝑀) when the search is trapped in a local optimum found in
𝑁𝑁1(𝑀𝑀). Following the strategy called Basic VND (Duarte et al. 2018), when an improving move
is performed, and the incumbent solution is updated, the method returns to the first
neighborhood (i.e., 𝑘𝑘 = 1). Finally, when both neighborhoods have been explored and no
improvement is found (𝑘𝑘 = 2), the VND method stops.

4.3 SO – Strategic Oscillation

Strategic oscillation (Glover and Laguna, 1997) operates by orienting moves in relation to a
critical level, which in our problem is defined as the capacity level 𝐵𝐵. Such a critical level or
oscillation boundary often represents a point where the method would normally stop. Instead
of stopping when this boundary is reached, the rules for selecting moves (in constructive method
C1 and destructive method D1) are modified, to permit the region defined by the critical level
to be crossed. The approach then proceeds for a specified depth beyond the oscillation
boundary, and turns around. The oscillation boundary again is approached and crossed, this
time from the opposite direction, and the method proceeds to a new turning point. The process
of repeatedly approaching and crossing the critical level from different directions creates an
oscillatory behavior, which gives the method its name.

Constructive method C1 described in Section 4.1 adds elements, one-by-one, to the current
solution under construction, until the sum of the capacities of the selected elements is larger
than or equal to 𝐵𝐵. At this point it has a feasible solution, say 𝑀𝑀1 and the method stops. What
we propose now is to “keep going” a few more steps. In particular, we consider the addition of
extra elements to the solution 𝑀𝑀1, with the same method C1, obtaining solution 𝑀𝑀2. Then, we
will apply a destructive method, such as D1, to remove from 𝑀𝑀2 some elements. In this way, we
may obtain a new feasible solution, 𝑀𝑀3, that eventually could be better than the two previous
ones.

Figure 7. Strategic Oscillation pattern

Peiró et al. (2020) 12

In line with the “keep-going” strategy described above when adding elements, we propose to
remove a few additional elements from the feasible solution. In particular, we apply D1 to
remove some extra elements from 𝑀𝑀3, thus obtaining a partial, unfeasible, solution 𝑀𝑀4. If we
repeat this scheme, adding now elements to 𝑀𝑀4 with C1, obtaining a new feasible solution 𝑀𝑀5,
we have an oscillation pattern, crossing the feasibility boundary of the solution space, as
illustrated in Figure 7.

In our oscillation strategy we add and remove vertices according to the capacity limit.
Specifically, when applying C1 to add extra vertices to the solution, which corresponds to the
steps from solution 𝑀𝑀1 to 𝑀𝑀2 in Figure 7, we multiply the sum of the capacities of the elements
in the solution by a factor 𝜆𝜆 ∈ [0,1] and stop when this product is larger than 𝐵𝐵. In mathematical
terms, we apply C1 while 𝜆𝜆∑ 𝑐𝑐𝑖𝑖 ≥ 𝐵𝐵𝑖𝑖∈𝑀𝑀 .

We propose a selective application of the VND method to improve some of the solutions, instead
of applying it to all the solutions encountered in the process. In particular, if we consider the
“path of solutions” when we apply C1 from the “unfeasible region” to the “feasible region”, we
can identify the first feasible solution. That would correspond to solutions 𝑀𝑀1 and 𝑀𝑀5 in Figure
7. We apply VND to these solutions, and we do not apply it to the rest of the solutions in the
path obtained with C1 (i.e., we skip 𝑀𝑀2 and 𝑀𝑀4 to the application of VND). Symmetrically, when
applying the destructive method D1 from the “feasible region” to the “unfeasible region” we
identify the last solution visited before abandoning the feasible region. That would be 𝑀𝑀3 in
Figure 7. We apply VND to these last solutions. In this way we save computational time and
avoid to obtain the same local optima when applying VND from different initial solutions.

5. COMPUTATIONAL EXPERIMENTS

This section describes the computational experiments that we performed to first set the
parameter values of our methods, and then compare them to the previous heuristic method,
T1, and the Cplex optimal solutions, when solving the capacitated dispersion problem.
Additionally, we compute the LocalSolver solutions for our test instances. In both solvers, Cplex
and LocalSolver, we implement the model described in Section 2.

LocalSolver is a commercial optimization system that provides extremely robust performance
across multiple classes of optimization problems. The search starts from a solution generated
by a basic greedy randomized procedure. The search is then performed in the feasible region
and moves are performed to transform one solution to another. As its name indicates,
LocalSolver attempts to find local optima by way of standard ascent (for maximization problems)
techniques. The embedded heuristics allow the process to select non-improving moves in order
to escape local optimality. These heuristics include probabilistic models such as those typical to
the simulated annealing methodology. A large catalog of moves is available during the search
and the selection of the moves to try is dynamically adjusted. LocalSolver is free for academic
uses and can be downloaded from http://www.localsolver.com/.

http://www.localsolver.com/

Heuristics for the Capacitated Dispersion Problem

13

5.1 Problem Instances

For the experimentation, we use the public-domain MDPLIB (Martí et al., 2019) available at
http://grafo.etsii.urjc.es/optsicom, which contains several data sets previously employed in
different studies on diversity problems (Sandoya et al., 2018). We reviewed these instances and
adapted them to the capacitated version of the diversity problem. In particular, for each original
instance we randomly generate the capacity value of each node in the range [1, 1000]. Then,
we compute the sum of all capacities and set 𝐵𝐵 as this sum multiplied by a factor of 0.2 and 0.3
respectively, thus creating two instances for each original one. Our benchmark for the
Capacitated Diversity Problem thus consists of the following 100 instances.

GKD: This data set, originally proposed by Glover et al. (1998), contains matrices for which the
values were calculated as the Euclidean distances from randomly generated points with
coordinates in the 0 to 10 range. This set contains three subset of instances:

GKD-a: Glover et al. (1998) introduced the small instances in this set with values
of 𝑛𝑛 ≤ 30. We do not consider these instances because they are too small.

GKD-b: Martí et al. (2010) generated these medium size instances with values of
25 ≤ 𝑛𝑛 ≤ 150. We consider 10 instances of size 50, and 10 of size 150 in this set,
and generate two instances for each of them as described above.

GKD-c: Duarte and Martí (2007) generated these large instances with 𝑛𝑛 = 500.
We consider 10 instances in this set, and generate two of them with different
capacity values as in the other sets.

SOM: This data set consists of 70 matrices with random numbers between 0 and 9 generated
from an integer uniform distribution. Martí et al. (2010) created these instances to solve the
maximum diversity problem, in which the objective function is the sum of the distances. Since
we target here the version in which the objective is computed with the minimum distance, we
found that most of these instances cannot be used, since many points are at a distance of 0,
causing the objective function to be 0. We selected 10 instances in the SOM-a subset with 𝑛𝑛 =
 50 that can be used for our problem. As in the previous sets, we generated two instances for
the capacity version with the factors 0.2 and 0.3.

MDG: This data set was generated by Duarte, and Martí (2007), and used in Gallego et al. (2009)
and Palubeckis (2007). It consists of 100 matrices with real numbers randomly selected from a
uniform distribution.

MDG-a: This set contains instances with real numbers in the range 0, 10. We do
not consider them because they are not adequate for Max-Min problems since
some points are at a distance of 0.

MDG-b: This set contains instances with real numbers in the range 0, 1000. We
consider 10 instances with 𝑛𝑛 = 500, for which we create two of them with the
capacity factor set as 0.2 and 0.3 as described above.

Table 1 summarizes the 100 instances in our benchmark.

Peiró et al. (2020) 14

Name 𝒏𝒏 Capacity

parameter
Number of
instances

GKD-b2 50, 150 0.2 20
GKD-b3 50, 150 0.3 20
GKD-c2 500 0.2 10
GKD-c3 500 0.3 10
SOM-a2 50 0.2 10
SOM-a3 50 0.3 10
MDG-b2 500 0.2 10
MDG-b3 500 0.3 10

Table 1. Sets of instances.

5.2 Algorithm Configuration and Fine-Tuning

The goal of our preliminary experimentation is to find effective configurations for our methods
and to fine tune their algorithmic parameters. Specifically, we proposed in the previous sections
the following heuristics, which require finding appropriate values for their parameters (in
brackets):

 C1(𝛼𝛼)
 C2(𝛼𝛼,𝛽𝛽)
 D1(𝛾𝛾)
 D2(𝛽𝛽, 𝛾𝛾)
 VND
 SO(𝜆𝜆)

We find the values of these parameters with a training set with 24 representative instances from
the set of 100 described above (see Table 1). For each experiment, we report the following
performance measures: Average number of minimum inter-distance value (𝑓𝑓(𝑀𝑀)), computing
time in seconds (Time), average relative percentage deviation with respect to the best solution
found in the experiment (Dev), and number of best solutions found in the experiment (Best).
Note that both Dev and Best refer to the solutions found within the experiment and not the best
solutions known for these problems. The relative deviation is computed for each instance as the
difference of the best value obtained in this experiment minus the value obtained with each
particular algorithm, divided by the best value. We multiply the result by 100 to represent it as
a percentage.

In our first preliminary experiment, we test the constructive method C1 described in Section 4.1.
The performance of C1 depends on the parameter 𝛼𝛼, which balances greediness and
randomness. We tested four values of 𝛼𝛼 on each procedure (0.2, 0.4, 0.6, and 0.8). Table 2 shows
the results of this experiment.

Procedure 𝒇𝒇(𝑴𝑴) Dev (%) Best Time (s)
C1(0.2) 32 5.8 4 <1
C1(0.4) 32 3.4 6 <1
C1(0.6) 33 2.1 9 <1
C1(0.8) 33 6.3 9 <1

Table 2. Comparison of different 𝛼𝛼 values in constructive method C1.

Heuristics for the Capacitated Dispersion Problem

15

The minimum deviation value is obtained with 𝛼𝛼 = 0.6, which is also able to obtain the largest
number of best solutions (9). We therefore select this value to set 𝛼𝛼 in C1.

In our second experiment we explore the different values of the two parameters in constructive
method C2. As in C1, parameter 𝛼𝛼 manages the restricted candidate list (RCL) composition. In
line with the findings in our previous experiment, we test here relatively large values for this
parameter, favoring the greediness in the RCL composition. In particular, we consider two
values: 0.6, 0.8. On the other hand, parameter 𝛽𝛽 is the relative weight between distance and
capacity in the selection process. It takes values in [0,1] where the closer the value to 1, the
more important the distance is with respect to the capacity. We also test the values 0.6, 0.8
since we consider that the distance plays a more important role in the problem. Table 3 shows
the results of this experiment.

Procedure 𝒇𝒇(𝑴𝑴) Dev (%) Best Time (s)
C2(0.6, 0.6) 58.5 6.8 5 <1
C2(0.6, 0.8) 54.0 17.2 3 <1
C2(0.8, 0.6) 57.7 7.7 6 <1
C2(0.8, 0.8) 54.8 17.5 4 <1

Table 3. Comparison of different 𝛼𝛼 and 𝛽𝛽 values in constructive method C2.

The minimum deviation in Table 3 is obtained with 𝛼𝛼 = 𝛽𝛽 = 0.6, which exhibits a 6.8 percent
deviation. We select this value for these two parameters.

In our next two experiments we explore the performance of destructive methods D1 and D2 as
we just did with C1 and C2. For the sake of brevity, we do not reproduce here the tables for
these experiments (they are similar to those reported above). The conclusion is that the best
performance is achieved in D1 when 𝛾𝛾 = 0.4 and in D2 with 𝛽𝛽 = 0.6, 𝛾𝛾 = 0.5. We will use these
values in the following experiments.

We now compare the four methods proposed to generate solutions when coupled with the VND
improvement method. We consider these methods with their key-search parameters set as
adjusted in our previous experiments. Table 4 shows the results of our sixth preliminary
experiment to disclose the best generation method. As in the previous experiment we consider
the following four statistics to compare them: 𝑓𝑓(𝑀𝑀), Dev., Best, and Time (in seconds).

Procedure 𝒇𝒇(𝑴𝑴) Dev (%) Best Time (s)
C1(0.6)+VND 97.4 3.7 8 8.1
C2(0.6,0.6)+VND 99.4 2.8 7 11.4
D1(0.4)+VND 98.7 3.8 2 10.1
D2(0.6,0.5)+VND 97.7 4.3 2 8.7

Table 4. Comparison of different GRASP methods.

The best constructive method in Table 4 is C2(0.6,0.6) + VND with a 2.8 percentage deviation
and 7 best solutions, while the best destructive method is D1(0.4)+VND with a 3.8 percentage
deviation and 2 best solutions. We therefore use them in the complete Strategic Oscillation (SO)

Peiró et al. (2020) 16

heuristic, in which constructive and improvement methods are embedded. As described in
Section 4.3, SO operates by first applying a constructive method in which additional iterations
are performed beyond the feasible boundary as indicated by parameter 𝜆𝜆. Then, a destructive
method is applied to “come back” to that boundary and cross it again. The alternation of both
methods establish the oscillation pattern that gives the name to the methodology. For the sake
of simplicity we denote to this hybrid method as SO(𝜆𝜆). Table 4 shows the results when
comparing different values of 𝜆𝜆. To simplify it, we only report the average percentage deviation
(Dev) and the running time in seconds (Time). We also include in this table different values for
the number of oscillations.

 Number of Oscillations

 1 2 3 4 5

𝝀𝝀 Dev Time Dev Time Dev Time Dev Time Dev Time
0.6 5.4% 37 1.3% 69 0.2% 131 0.5% 139 0.7% 168
0.7 5.3% 35 2.1% 71 3.5% 106 2.5% 148 2.3% 141
0.8 5.2% 36 3.9% 55 4.6% 89 4.0% 131 3.9% 137
0.9 5.4% 43 4.5% 68 4.6% 72 4.0% 145 4.1% 167

Table 5. Strategic Oscillation method.

Table 5 shows the evolution of the deviation of the best solution find with the SO method. For
example, if we pay attention to the first row, which corresponds to 𝜆𝜆 = 0.6, we can see that
after the first oscillation, the method obtains a solution with 5.4% of deviation on 37 seconds
(this would be solution 𝑀𝑀4 in Figure 7). Then, in the second oscillation, the method is able to
improve this solution, obtaining a new solution with 1.3% of deviation, achieved on 69 seconds.
If we continue with the oscillation process, after 5 oscillations, we can see that the method
obtains a solution with a 0.7% of deviation achieved on 168 seconds. Comparing the different
rows in this table, we conclude that 𝜆𝜆 = 0.6 obtains the best results, and therefore set this
parameter to this value for the following experiments. Note that deviations can eventually
increase in a row of this table since they represent the best solution in each oscillation, not the
best solution overall.

We perform a final experiment to test the robustness of our SO method. In particular, we run it
30 times on each instance and collect the best value of the 30 runs, then we compute the
average, minimum (Min.), maximum (Max.), standard deviation (St. Dev.) and variation
coefficient (V.C.) for each instance in the training set. Table 6 reports the average results of these
five statistics over the 24 instances in the set. We consider two versions of SO, a short run of
about 1 second of computer, and a long one, of about 15 seconds.

Procedure Average Min. Max. St. Dev. V.C.
SO (1 sec. each run) 99.09 96.21 102.18 1.72 0.02
SO (15 sec. each run) 101.55 99.91 103.48 0.94 0.01

Table 6. Average statistics on 30 runs (replications).

Table 6 shows that our SO method is quite robust. Even in short runs, it obtains similar solutions
when replicated. In particular, the average standard deviation over 30 runs on the training set
is 1.72, which implies a variation coefficient of 0.02. As expected, if we consider longer runs (of

Heuristics for the Capacitated Dispersion Problem

17

about 15 seconds), the method is even more stable, obtaining very similar solutions in different
replications (with a standard deviation of 0.94).

5.3 Competitive Testing

For the competitive testing, we compare the procedure that we developed, SO, with different
methods to test its relative performance both in terms of running time and quality. In particular,
we compare SO, set with C2(0.6,0.6) + VND as constructive process, D1(0.4)+VND as destructive
process, and 𝜆𝜆 = 0.6 as oscillation value, with the following methods:

 The previous heuristic for this problem, T1, by Rosenkrantz et al. (2000)
 The Cplex solver, which provides the optimal solutions for small instances
 The LocalSolver general purpose heuristic

This experiment consists of executing the three procedures above on the entire set of 100
instances in our benchmark, and compare their results with those obtained with SO. We report
the results in 3 tables, one for each method respectively. Table 7 shows the results obtained
with SO and T1. As in the preliminary experiments, we report the objective function value, 𝑓𝑓(𝑀𝑀),
the relative percentage deviation with respect to the best solution in this experiment, Dev, the
number of instances in each set in which the method is able to match the best known solution,
Best, and the running time in seconds, Time. Each row in Table 7 summarizes the results on the
10 instances in each set. The first five rows correspond to the instances generated with the
capacity parameters 0.2, and the last five rows with 0.3.

 T1 previous heuristic SO
Set 𝒏𝒏 𝒇𝒇(𝑴𝑴) Dev Best Time 𝒇𝒇(𝑴𝑴) Dev Best Time
GKD-b2 50 1057 6.4 0 0 1123 0.0 10 0
GKD-b2 150 1132 1.8 2 0 1152 0.0 9 0
GKD-c2 500 60 20.1 0 47 75 0.0 10 19
SOM-a2 50 36 12.0 6 0 41 0.0 10 0
MDG-b2 500 354 13.8 1 49 412 0.5 9 65
GKD-b3 50 925 4.9 2 0 970 0.0 9 0
GKD-b3 150 1046 0.2 7 0 1034 1.2 3 1
GKD-c3 500 51 21.9 0 47 65 0.0 10 41
SOM-a3 50 15 5.0 9 0 15 5.0 9 0
MDG-b3 500 86 21.6 2 49 111 1.9 8 45

Table 7. Comparison with previous heuristic.

Table 7 clearly shows the superiority of our method with respect to the previous heuristic T1
(see for example the Dev column in both methods). This is to be expected since T1 is a relatively
simple approximation method, with a guarantee performance, and SO is a complex
metaheuristic. Note however that SO not only outperforms T1 in solution quality, but it is also
competitive in running time. On the other hand, T1 presents a very good performance
considering its simplicity, with remarkable results on GKD-b3 and SOM-a3 sets of instances (7
and 9 best solutions out of 10 in each set respectively). Note that we set both methods, SO and
T1, in a way that they run on average for a similar CPU time for a fair comparison. In this way, in
many of the sets their times are equal or very similar (this is the case of GKD-b2, SOM-a2 or
MDG-b3). However, there is one set, GKD-c2, with significantly different times (47 and 19

Peiró et al. (2020) 18

seconds respectively). We prefer to keep it this way because both methods are run with the
same configuration across all instances.

To complement the analysis above we compare both methods with two well-known
nonparametric tests for pairwise comparisons: the Wilcoxon test and the Sign test. The former
one answers the question: Do the two samples (solutions obtained with T1 and SO in our case)
represent two different populations? We obtain a 𝑧𝑧-value of -5.434 (with sum of pos. ranks of
23, and sum of neg. ranks of 923), and an associated 𝑝𝑝-value lower than 0.00001 in the Wilcoxon
test, which indicates that the values compared do not come from the same method. On the
other hand, the Sign test computes the number of instances on which an algorithm supersedes
another one. The resulting 𝑧𝑧-value of 6.328 (with pos. sign count of 13, and neg. sign counts of
71), and an associated 𝑝𝑝-value lower than 0.00001 indicates again that there is a clear winner
between both methods (SO) when we consider all the instances in the benchmark set.

 Cplex SO
Set 𝒏𝒏 𝒇𝒇(𝑴𝑴) Dev Best Time 𝒇𝒇(𝑴𝑴) Dev Best Time
GKD-b2 50 112.3 0.0 10 2.8 112.3 0.0 10 0.1
GKD-b2 150 118.6 4.1 10 2926.0 118.4 4.3 6 37.5
SOM-a2 50 4.1 0.0 10 1.8 4.1 0.0 10 0.0
GKD-b3 50 97.8 0.0 10 4.3 97.8 0.0 10 1.6
GKD-b3 150 107.4 31.4 8 3600.0 107.2 31.6 5 56.3
SOM-a3 50 2.1 0.0 10 6.0 1.8 13.3 7 0.1

Table 8. Comparison with exact method.

In the following experiment, we compare SO with the solutions obtained with Cplex. We do not
include in this experiment the large size instances (𝑛𝑛 = 500), since Cplex is not able to solve
them in the time limit of 6,000 seconds considered. Table 8 reports the solutions of this
experiment, where the deviation value, Dev, is computed with respect to the upper bound
obtained with Cplex. On the other hand, the number of best solutions, Best, considers the lower
bound obtained with Cplex, and the best solution obtained with SO. Note that when Cplex is
able to terminate the branch and bound exploration, both values, lower and upper bound, are
the same.

Results in Table 8 indicate that Cplex is able to solve the small instances, with 𝑛𝑛 = 50, to
optimality in moderate running times (lower than 10 seconds). However, when we move to the
medium size instances, with 𝑛𝑛 = 150, it only solves a fraction of them within the time limit of
3,600 seconds (note the deviations of 4.1 and 31.4 in the GKD-b2 and GKD-b3 sets respectively).
As mentioned above, Cplex is not able to solve the large size instances 𝑛𝑛 = 500 in any of the
cases tested within the 3,600 seconds considered.

Considering now our SO method, we can see in Table 8 that in the small GKD instances (sets
GKD-b2 and GKD-b3 with 𝑛𝑛 = 50), it is able to match the 20 optimal solutions in a very small
running time (less than 2 seconds). In the larger instances in these sets, with 𝑛𝑛 = 150, our SO
heuristic obtains good solutions but not optimal in all the cases. In particular, in GKD-b2 it
obtains 6 out of 10, and in GKD-b3, 5 out of 10. Note however, that we only run it for a moderate
running time (less than 1 minute).

Heuristics for the Capacitated Dispersion Problem

19

Table 8 reveals that the instances in the SOM-a3 set constitute a challenge for heuristic methods.
These are small instances with 𝑛𝑛 = 50 in which Cplex is able to compute the optimal solutions.
However, our method only obtains 7 out of the 10 optimal solutions. Considering that in Table
6, T1 exhibits a similar performance than SO in this set, we can conclude that these instances
are difficult to solve for these two heuristics. Note however, that in all the small instances,
included this set, we run our method for a very short CPU time (0.1 seconds), in line with
previous works.

In the following experiment we undertake to compare SO with the well-known LocalSolver. We
run this method with formulation F2 shown in Section 2. We run both methods with a time limit
of 60 seconds. Table 9 shows the results.

 LocalSolver SO
Set 𝒏𝒏 𝒇𝒇(𝑴𝑴) Dev Best Time 𝒇𝒇(𝑴𝑴) Dev Best Time
GKD-b2 50 1123.3 0.0 10 4 1123.3 0.0 10 0
GKD-b2 150 1181.0 0.3 7 34 1181.5 0.3 6 15
GKD-c2 500 58.2 21.9 0 47 74.6 0.0 10 19
SOM-a2 50 4.0 90.0 1 3 41.0 0.0 10 0
MDG-b2 500 56.6 83.5 0 59 343.5 0.0 10 25
GKD-b3 50 977.9 0.0 10 12 969.9 0.7 7 0
GKD-b3 150 1072.5 0.1 8 26 1068.5 0.6 4 47
GKD-c3 500 57.4 11.5 0 45 64.9 0.0 10 41
SOM-a3 50 0.0 100.0 0 1 15.0 25.0 5 0
MDG-b3 500 35.1 65.3 0 57 104.7 0.0 10 45

Table 9. Comparison of SO with general purpose heuristic.

Table 9 shows that, in general terms, SO obtains better solutions than LocalSolver in shorter
running times. This is to be expected since SO is customized to the Capacitated Dispersion
Problem while LocalSolver is a general solver, although it is worth mentioning that it also
implements complex metaheuristics, and is nowadays a reference method, given its remarkable
performance in many combinatorial optimization problems. As a matter of fact, in the GKD-b2
sets (𝑛𝑛 = 50 and 𝑛𝑛 = 150), LocalSolver and SO perform very similar; in the GKD-b3 sets (𝑛𝑛 =
50 and 𝑛𝑛 = 150), LocalSolver performs better than SO; but in the rest of the sets, SO clearly
outperforms LocalSolver. To confirm the superiority of our method, we perform the two
statistical tests described above, the Wilcoxon and the Signs, and obtain in both cases a 𝑝𝑝 −value
of 0.00, thus indicating that there are significant differences between both methods. Table 10
in the Appendix shows the individual results of the SO method on the 100 instances in our study.

Results in Table 9 also confirm that the SOM sets of instances are a challenge for heuristic
methods, and therefore we can conclude that there is still room for improvement in heuristic
developments for this problem.

To complement the analysis above, we run the three heuristic methods under comparison for a
relatively long running time (500 seconds) on a representative MDG-b large instance. Figure 9
shows the search profiles in which the best solution obtained with each method is depicted to
see its evolution over the time.

Peiró et al. (2020) 20

Figure 8. Search profiles on MDG-b instance.

Figure 8 shows that SO is the leading method in the entire search period. LocalSolver requires a
bit longer setup time, and it starts to obtain high-quality solutions after 100 seconds of
exploration. Finally, since T1 is a simple method, once it obtains a solution, there is no further
improvement. All the methods stagnate after 300 seconds, and therefore there is no point on
running them longer. Figure 9 shows a similar search profile for a GKD-c instance.

Figure 9. Search profiles on GKD-b instance.

Conclusions
This paper proposed several new hybrid heuristics for the capacitated dispersion problem. The
heuristics used components of GRASP, variable neighborhood descent (VND), and strategic
oscillation (SO). To find a good configuration for our best heuristic, we considered four
constructive procedures (including constructive and destructive neighborhoods) with a
parameter to control the randomization in the selection process, and another parameter to set
the level of oscillation in the SO. Our extensive preliminary experimentation, reported in Tables
2, 3, 4, and 5, set appropriate values for these parameters, providing a good balance among the
three methodologies in terms of search intensification and diversification.

0

10

20

30

40

50

60

0 1 25 50 75 100 200 300 400 500

SO LocalSolver T1

0

2

4

6

8

10

0 1 25 50 75 100 200 300 400 500

SO LocalSolver T1

Heuristics for the Capacitated Dispersion Problem

21

We had a twofold goal for this work, to experiment with the hybridization of GRASP, VNS, and
SO and, in the process, to develop a state-of-the-art procedure for the capacitated dispersion
problem. We believe that we have achieved the first goal with the proposed design, simply called
SO. The merit of this hybrid method is that it preserves the main characteristics of each element
while combining their capabilities. In terms of our second goal, the results reported in Tables 6,
7, and 8 are very strong in favor of SO. In particular, the comparisons with Cplex, Localsolver,
and a previous specific method, T1, clearly show that SO is able to obtain high-quality solutions
in short computational times.

Acknowledgement
This research has been partially supported by the National Science Secretary of Panama
(SENACYT) project ref. N-78-2016, and by the Spanish Ministry with grant ref. PGC2018-
0953322-B-C21/MCIU/AEI/FEDER-UE.

References
Duarte A., Martí R. (2007) Tabu search and GRASP for the MDP. European Journal of Operational

Research 178, 71-84.

Duarte, A., Sánchez-Oro, J., Mladenovic, N., Todosijevic, R. (2018) Variable Neighborhood
Descent, In: Martí, Resende, Pardalos (Eds) Handbook of Heuristics, Springer.

Feo, T., Resende, M. G. C. (1995). Greedy randomized adaptive search procedures. Journal of
Global Optimization 6, 109-133.

Gallego, M., Duarte, A., Laguna, M., Martí, R. (2009) Hybrid heuristics for the maximum diversity
problem. Computational Optimization and Applications, 44(3):411.

Glover F., Kuo C.C., Dhir K.S. (1998) Heuristic algorithms for the maximum diversity problem.
Journal of Information and Optimization Sciences 19; 109-132.

Glover, F., Laguna, M. (1997) Tabu search. Kluwer, Norwell, MA.

Hansen, P., Mladenović, N., Todosijević, R., Hanafi, S. (2017). Variable neighborhood search:
basics and variants. EURO Journal on Computational Optimization, 5(3), 423-454.

Martí, R., Duarte, A., Gallego, M. (2019) MBPLIB- Maximum Diversity Problem Library,
http://grafo.etsii.urjc.es/optsicom.

Martí, R., Gallego, M., Duarte. A. (2010) A branch and bound algorithm for the maximum
diversity problem. European Journal of Operational Research, 200(1):36-44.

Martí, R., Sandoya F. (2013) GRASP and Path Relinking for the equitable dispersion problem.
Computers and Operations Research 40, 3091-3099.

Martínez-Gavara, A., Landa-Silva, D., Campos, V., Martí, R. (2017a) Randomized Heuristics for
the Capacitated Clustering Problem. Information Sciences 417, 154-168.

Martínez-Gavara, A., Campos, V., Laguna, M., Martí, R. (2017b) Heuristic Approaches for the
Maximum MinSum Dispersion Problem. Journal of Global Optimization 67, 671-686.

Peiró et al. (2020) 22

Mjirda, A., Todosijević, R., Hanafi, S., Hansen, P., Mladenović, N. (2017). Sequential variable
neighborhood descent variants: an empirical study on the traveling salesman problem.
International Transactions in Operational Research, 24(3), 615-633.

Palubeckis, G. (2007) Iterated tabu search for the maximum diversity problem. Applied
Mathematics and Computation, 189:371-383.

Prokopyev O.A., Kong N., Martinez-Torres D.L. (2009) The equitable dispersion problem.
European Journal of Operational Research 197, 59-67.

Resende M.G.C., Martí R., Gallego M., Duarte A. (2010) GRASP with path relinking for the max-
min diversity problem, Computers and Operations Research 37, 498-508.

Rosenkrantz, D.J., Tayi, G.K., Ravi, S.S. (2000) Facility dispersion problems under capacity and
cost constraints, Journal of Combinatorial Optimization 4, 7-33.

Sandoya, F., Martínez-Gavara, A., Aceves, R., Duarte, A., Martí, R. (2018) Diversity and Equity
Models, In: Martí, Resende, Pardalos (Eds.) Handbook of Heuristics, 979-998 Springer.

Silva, G.C., Andrade, M.R.Q., Ochi, L.S., Martins, S.L., Plastino, A. (2007) New Heuristics for the
Maximum Diversity Problem, Journal of Heuristics 13(4), 315-336.

Silva G.C., Ochi L.S., Martins S.L. (2004) Experimental Comparison of Greedy Randomized
Adaptive Search Procedures for the Maximum Diversity Problem. In: Ribeiro C, Martins C
Simone L. (Eds.), Experimental and efficient algorithms, vol. 3059. Springer: Berlin. 498-512.

Heuristics for the Capacitated Dispersion Problem

23

Appendix
Table 10 shows the individual results obtained with SO on each instance. CPU times (Time) are
reported in seconds.

 Capacity 0.2 Capacity 0.3

Instance set id SO value SO Time SO value SO Time

 11 147.2 0 132.8 0

 12 178.1 0 154.7 0

 13 96.1 0 77.5 0

 14 84.6 0 71.2 1

GKD-b 15 154.9 0 134.0 0

𝑛𝑛 = 50 16 77.7 0 63.1 0

 17 41.8 0 27.9 0

 18 108.5 0 104.4 0

 19 119.1 0 102.5 0

 20 115.3 0 101.8 0

 41 163.4 13 153.8 33

 42 84.1 19 70.2 70

 43 63.1 22 53.9 71

 44 103.3 13 87.6 44

GKD-b 45 106.4 14 94.5 34

𝑛𝑛 = 150 46 124.5 15 109.7 27

 47 162.2 14 154.8 61

 48 98.1 12 85.7 32

 49 166.3 18 158.3 50

 50 110.1 12 100.0 52

 1 7.2 18 6.8 45

 2 7.6 15 6.3 41

 3 7.2 22 6.5 37

 4 7.5 15 6.5 35

GKD-c 5 7.7 21 6.4 45

𝑛𝑛 = 500 6 7.2 19 6.5 45

 7 7.6 18 6.5 43

 8 7.8 14 6.5 44

 9 7.4 23 6.4 42

 10 7.4 20 6.5 32

Peiró et al. (2020) 24

 11 4.0 0 2.0 0

 12 4.0 0 1.0 0

 13 5.0 0 1.0 0

 14 4.0 0 2.0 0

 15 4.0 0 2.0 0

SOM-a 16 4.0 0 1.0 0

𝑛𝑛 = 50 17 4.0 0 2.0 0

 18 4.0 0 1.0 0

 19 4.0 0 2.0 0

 20 4.0 0 1.0 0

 1 37.9 27 8.2 34

 2 32.0 22 12.4 47

 3 33.4 24 7.2 39

 4 34.0 30 8.1 38

 5 36.2 23 10.3 39

MDG-b 6 31.8 26 9.9 57

𝑛𝑛 = 500 7 28.5 19 13.3 56

 8 36.1 32 11.6 55

 9 38.3 21 13.2 61

 10 35.3 30 10.5 27

Table 10. Individual results of SO heuristic.

	Conclusions
	Acknowledgement
	References
	Appendix

