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ABSTRACT 
In this paper, we investigate the adaptation of the Greedy Randomized Adaptive Search 
Procedure (GRASP) and Variable Neighborhood Descent (VND) methodologies to the 
Capacitated Dispersion Problem (CDP). Dispersion and diversity problems arise in the placement 
of undesirable facilities, workforce management and social media, among others. Maximizing 
diversity deals with selecting a subset of elements from a given set in such a way that the 
distance among the selected elements is maximized. We target here a realistic variant with 
capacity constraints for which a heuristic with a performance guarantee was previously 
introduced. In particular, we propose a hybridization of GRASP and VND implementing within 
the Strategic Oscillation framework. To evaluate the performance of our heuristic, we perform 
extensive experimentation to first set key search parameters, and then compare the final 
method with the previous heuristic. Additionally, we propose a mathematical model to obtain 
optimal solutions for small size instances, and compare our solutions with the well-known Local-
Solver software. 
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1. INTRODUCTION 

The Capacitated Dispersion Problem (CDP) is an NP-Hard problem that belongs to the family of 
dispersion or diversity problems (Sandoya et al. 2018). When dealing with dispersion, the 
operations research literature has focused on maximizing diversity while neglecting, for the 
most part, the introduction of constraints. Several models have been proposed to deal with 
dispersion problems (Prokopyev et al. 2009). All of them require a diversity measure, typically 
based on a distance function. The most studied model is known as the maximum diversity 
problem (MDP, Silva et al. 2004, Silva et al. 2007, Duarte and Martí 2007), in which the sum of 
the distances between the selected elements is maximized. A very popular alternative is the 
max-min diversity problem (MMDP, Resende et al. 2010), in which the minimum distance 
between the selected elements is maximized. There are many variants of diversity models, see 
for example Martínez-Gavara et al. (2017a, 2017b). 

The literature on diversity and dispersion problems is vast, starting with Glover et al. (1998). We 
refer the reader to a recent book chapter by Sandoya et al. (2018), which summarizes the 
previous heuristics and formulations for this problem. Assuming that the term dispersion may 
have different interpretations, not always properly defined, different mathematical models 
regarding dispersion may result in different types of solutions. Martí and Sandoya (2013) 
reviewed five diversity models and pointed out that the MMDP reflects in a better way the idea 
of dispersion. To illustrate this point, Figure 1 shows the optimal solutions of the MDP (left) and 
MMDP (right) respectively of an instance with 30 elements from which we select 10.  It is clear 
that both solutions have a very different structure, being the 10 points in the MMDP solution 
(the one in the right part of Figure 1) better distributed considering that in the Max-Sum solution 
(shown in the left part of the figure) we can find two points that are very close from each other. 

  

Figure 1. Example to illustrate MDP and MMDP solutions. 

In this paper, we consider the dispersion variant known as CDP that was introduced in 
Rosenkrantz et al. (2000), in which a capacity constraint is added to the MMDP model. The 
motivation for this constrained model comes from its practical applications in facility location. 
For example, the location of undesirable or hazardous facilities, such as waste sites or nuclear 
plants, requires their dispersion while satisfying a certain total demand. Another example can 
be found in the context of retail franchises, where shops should not be located close to each 
other. These facilities/shops have a capacity to provide a service in systems that require an 
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overall demand. As stated by the authors in Rosenkrantz et al. (2000), “these practical aspects 
add a new dimension to the conventional dispersion problem”. Classical models, such as the 
MDP or MMDP, indirectly address the problem requirements by considering a pre-fixed number 
of facilities (i.e., the number of points to be selected is an input to the problem). However, more 
realistic approaches should be considered, as in the case of CDP, in which the capacity of each 
facility depends on its location. 

Rosenkrantz et al. (2000) proposed a heuristic with performance guarantee to solve this NP-hard 
problem. The authors proved that on instances with inter-objects distances satisfying the 
triangle inequality, their heuristic has a performance guarantee of 2.  Although no empirical 
results or experiments are reported, the theoretical study also concludes that their heuristic 
running time is 𝑂𝑂(𝑛𝑛2 log𝑛𝑛).  In this paper we approach this problem from a practical 
perspective, aiming at complementing their analysis. In particular, we propose heuristic 
algorithms based on state-of-the-art metaheuristic methodologies such as GRASP and VND in 
which we do not have a performance guarantee, but experimental results show that they 
statistically perform very well when solving a large set of instances. 

Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of 𝑛𝑛 nodes and 𝐸𝐸 is the set of edges, let 𝑑𝑑𝑖𝑖𝑖𝑖  be the 
inter-elements distance between any two elements 𝑖𝑖 and 𝑗𝑗 ∈ 𝑉𝑉. Let 𝑐𝑐𝑖𝑖 be the capacity of node 
𝑖𝑖 ∈ 𝑉𝑉, and 𝐵𝐵 the total capacity required. The CDP can be easily formulated with the set 𝑀𝑀 of 
selected elements, and with binary variables 𝑥𝑥𝑖𝑖  that take value 1 if element 𝑖𝑖 is selected, and 0 
otherwise, as: 

(F1) Maximize 𝑓𝑓(𝑀𝑀) = min
𝑖𝑖,𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖  (1) 

subject to: ∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵𝑛𝑛
𝑖𝑖=1  (2) 

𝑥𝑥𝑖𝑖 ∈ {0,1}                              𝑖𝑖 = 1, … ,𝑛𝑛             (3) 

Where 𝑀𝑀 = {𝑖𝑖 ∈ 𝑉𝑉: 𝑥𝑥𝑖𝑖 = 1} is the set of selected elements. Symmetrically, let 𝑈𝑈 = 𝑉𝑉\𝑀𝑀 be the 
set of unselected elements. Then, the Capacitated Dispersion Problem (CDP) consists of 
selecting a set 𝑀𝑀 ⊆ 𝑉𝑉 of elements such that the smallest distance between each pair of them is 
maximized, while the sum of their capacities is at least 𝐵𝐵. The objective is to maximize its 
minimum inter-distance value, 𝑓𝑓(𝑀𝑀), by a judicious selection of 𝑀𝑀. 

The contributions of our work can be summarized as follows: 

 Implementation of the previous heuristic for CDP (Rosenkrantz et al. 2000) 
 Development and implementation of GRASP and VND heuristics for the CDP 
 Creation of a hybrid approach combining GRASP and VND within Strategic Oscillation. 
 Development of an efficient mathematical formulation 
 Implementations of CDP models for Cplex and LocalSolver  
 Comparison of new and existing methods on general instances for the CDP 

As mentioned above, one of the objectives of this paper is to investigate a Strategic Oscillation 
(SO) proposal. It basically alternates between constructive and destructive phases as a basis for 
creating a competitive method. SO was proposed in the context of the tabu search methodology 
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(Glover and Laguna, 1997), and we propose to integrate it with GRASP and VND to create a 
hybrid efficient method to obtain high-quality solutions for the Capacitated Dispersion Problem. 

2. MATHEMATICAL FORMULATION 

The Capacitated Dispersion Problem can be easily formulated, as shown in the Introduction, in 
mathematical terms as a quadratic binary problem. Note however that the objective function 
(1) is nonlinear, which makes it difficult to solve. As a matter of fact, it can be modeled as the 
product of two variables and the computation of a minimum value, and each of this two 
characteristics makes the model nonlinear.  To linearize it, we employ a standard artifact. For 
each (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸, we introduce binary variables 𝑦𝑦𝑖𝑖𝑖𝑖  that take the value 1 if and only if 𝑥𝑥𝑖𝑖  and 𝑥𝑥𝑖𝑖  
simultaneously take the value 1. In other words, 𝑦𝑦𝑖𝑖𝑖𝑖  takes the value of the product of both 
variables (but we avoid the use of this product to obtain a linear formulation). We accomplish it 
with constraints (5) - (7) below. With these three families of constraints we overcome the 
problem of multiplying variables. 

To deal with the computation of a minimum value, we introduce constraints (8) where an upper 
bound 𝐷𝐷 on the distances values permits to model it. In particular, when 𝑦𝑦𝑖𝑖𝑖𝑖 = 1 the expression 
𝑚𝑚 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐷𝐷�1 − 𝑦𝑦𝑖𝑖𝑖𝑖� results in 𝑚𝑚 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖, and considering that we compute it for each pair 
of selected elements (𝑖𝑖, 𝑗𝑗 ∈ 𝑀𝑀), 𝑚𝑚 takes the minimum value of their distances. On the other 
hand, when 𝑦𝑦𝑖𝑖𝑖𝑖 = 0, expression (8) results in 𝑚𝑚 ≤ 𝐷𝐷�1 − 𝑦𝑦𝑖𝑖𝑖𝑖�, which can be simplified as 𝑚𝑚 ≤
𝐷𝐷. Since 𝐷𝐷 is an upper bound on the distances values (i.e., it is an arbitrary value larger than all 
the distances in G), then these constraints are not active when 𝑦𝑦𝑖𝑖𝑖𝑖 = 0. The complete 
formulation follows: 

(F2) Max    𝑚𝑚           (4) 

subject to: 

∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵𝑛𝑛
𝑖𝑖=1      (2) 

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖                           1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛  (5) 

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖                           1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛  (6) 

𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 + 1          1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛  (7) 

𝑚𝑚 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐷𝐷�1 − 𝑦𝑦𝑖𝑖𝑖𝑖�        1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛  (8) 

𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1}                       1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛  (9) 

𝑥𝑥𝑖𝑖 ∈ {0,1}                         1 ≤ 𝑖𝑖 ≤ 𝑛𝑛   (3) 

Formulation F2 is equivalent to F1, showed in the previous section, but it only contains linear 
expressions. In our computational experiments in Section 5, we implement this formulation in 
Cplex to obtain the optimal solution for small and medium size instances.  
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To illustrate how are the optimal solutions obtained with this formulation, we consider the small 
example with 50 points shown in Figure 2 with capacity values ranging from 1 to 1000 for each 
point. 

 

Figure 2. Example to illustrate CDP solutions 

We solve the CDP problem of the example in Figure 2 with Cplex, running with the integer linear 
formulation F2. In particular, we consider a capacity limit 𝐵𝐵 = 6275. In less than 2 seconds, we 
obtain the optimal solution 𝑀𝑀 = {1, 4, 23, 24, 27, 36, 46, 49} with an objective function value of 
𝑚𝑚 = 331.29 and a capacity value of 6411. Figure 3 shows the selected points in 𝑀𝑀. 

 
Figure 3. Cplex optimal CDP solution. 

Unfortunately, Cplex cannot solve large instances with this formulation. As it is well-known, the 
branch and bound code implemented in Cplex to deal with integer variables explores a huge 
number of solutions when the problem size is large, leading to impractical running times. We 
therefore resort to heuristic methods to target large instances. 

In the next section, we describe the previous heuristic method, and apply it to solve this problem 
to illustrate its performance in a small example with optimal solution known. 
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3. THE PREVIOUS HEURISTIC METHOD 

As mentioned in the Introduction, Rosenkrantz et al. (2000) proposed the only previous heuristic 
known for this problem.  This heuristic, called T1, has a performance guarantee of 2. This means 
that the solution of the method is within a distance of the optimal solution. In particular, for any 
instance, the optimal value divided by the value of the solution obtained with the heuristic is 
lower than 2. 

Figure 4 shows a pseudo-code of this previous method. It basically calls the routine Greedy_Try 
with two parameters, 𝛼𝛼 and 𝐵𝐵, which tries to select a set of nodes, called sites, in a greedy 
fashion to satisfy the distance constraint 𝛼𝛼 and capacity constrain 𝐵𝐵. In this code, 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑉𝑉’)  
denotes the sum of the capacities of the nodes in 𝑉𝑉’. 

Heuristic T1 

1. Sort the sites in non-increasing capacity order, and create a list Site_List. 
2. Sort the inter-site distances in non-increasing order. Eliminate 

duplicates distances. Let the resulting sorted list of distances be 
sorted in the array 𝐷𝐷 such that 𝐷𝐷[1] > 𝐷𝐷[2] >  …  >  𝐷𝐷[𝑡𝑡]. 

3. Carry out a binary search over the array 𝐷𝐷 to find the index 𝑖𝑖 such 
that for 𝛼𝛼 =  𝐷𝐷[𝑖𝑖], the call Greedy_Try(α, B) returns “success” and 
for 𝛼𝛼’ =  𝐷𝐷[ 𝑖𝑖 –  1 ], the call Greedy_Try(α’, B) returns “failure”. 

4. Output the intersite distance α found in Step 3 and stop. 

Procedure Greedy_Try(α, B) 

1. Let L := Site_List and 𝑉𝑉’ =  Ø. 
2. While L is not empty do 

a. Add the first node 𝑣𝑣 from 𝐿𝐿 to 𝑉𝑉’. 
b. Remove from 𝐿𝐿 all sites (including v) whose intersite distance to v is 

strictly less than α. 
3. If 𝐶𝐶𝐶𝐶𝐶𝐶 (𝑉𝑉’)  ≥  𝐵𝐵 then return “success” else return “failure”. 

Figure 4. Previous heuristic T1. 

We implement the algorithm T1 shown above to perform an empirical comparison with our 
heuristics proposed in the next section. The results of our experimentation are shown in Section 
5. We illustrate now how the method works, as the authors did in Rosenkrantz et al. (2000) with 
some examples. 

We first consider the example in Figure 5 based on Euclidean distances. It has four nodes, namely 
1, 2, 3, and 4, with capacity 2 in the corner of a square of two units, and node 5 in the center 
with capacity 1. We apply algorithm T1 to solve the CDP with a capacity limit 𝐵𝐵 = 5. In step 1 of 
T1 we create Site_list = ( 1,2,3,4,5 ), and in step 2, we obtain  D=( 2.82, 2 , 1.41 ). Then, we call 
Greedy_Try(α =2.82, B = 5), and perform the following steps: 

1. v  =  1 ; L = ( 4 ) ; V’ = (1) 
2. v  =  4 ; L = Ø; V’ = (1, 4) 
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3. Failure 

Then, we call Greedy_Try(α =2, B = 5) again an perform these steps: 

1. v  =  1 ; L = ( 2,3,4 ) ; V’ = (1) 
2. v  =  2 ; L = ( 3,4 ); V’ = (1, 2) 
3. v  =  3 ; L = (4 ); V’ = (1, 2,3) 
4. Success 

Obtaining the solution V’ = (1,2,3) with α =2 

 

Figure 5. Small instance 

We now solve the CDP problem of the example in Figure 2 with T1. As we did with Cplex in the 
previous section, we consider a capacity limit 𝐵𝐵 = 6275. We obtain the solution 𝑀𝑀 =
{1, 4, 8, 15, 23, 24, 36, 46} with an objective function value of 𝑚𝑚 = 302.9 and a capacity value 
of 6514. Figure 6 shows the selected points in 𝑀𝑀. 

 

Figure 6. Heuristic solution of example in Figure 2. 

If we compare the optimal solution obtained with Cplex in the previous section, with a value of 
𝑚𝑚 = 331.29, with the heuristic solution above, with a value of 𝑚𝑚 = 302.9, we can conclude 
that there is room for improvement in the design of a heuristic method. This is basically the 
motivation of our work: the design of a heuristic algorithm to obtain high-quality solution in 
short computational times.  
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4. NEW HEURISTIC METHODS 

In this section we propose three new methods to obtain good solutions for the CDP. The first 
one is based on the GRASP methodology. It is complemented with a VND method as a local 
search optimizer, described in the second subsection. Finally, both methods are integrated on a 
strategic oscillation scheme for improved outcomes. The following subsections describe in detail 
the three methods. 

4.1 GRASP - Greedy Randomized Adaptive Search Procedure 

The GRASP methodology was proposed by Feo and Resende (1995).  Each GRASP iteration 
consists of constructing a trial solution and then applying an improvement method to find a local 
optimum.  The construction phase is iterative, greedy, randomized and adaptive.  It is iterative 
because the initial solution is built considering one element at a time.  It is greedy because the 
addition of each element is guided by a greedy function.  It is randomized because a random 
selection takes place and the information provided by the greedy function is used in 
combination with this random element. 

Given the set 𝑉𝑉 with 𝑛𝑛 vertices or nodes, the construction procedure C1 performs consecutive 
steps to produce a solution. The set 𝑀𝑀, initially empty, represents the partial solution under 
construction. At each step, C1 selects a candidate element 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 with a good evaluation, 
𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖). A straightforward evaluation for candidate elements in this problem is the distance to 
the elements already in the partial solution. Specifically, we can compute 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) as the sum of 
the distances between element 𝑖𝑖 and the selected elements. In mathematical terms: 

𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) = �𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑀𝑀

 

Then, C1 constructs the restricted candidate list, RCL, with all the candidate (unselected 
elements) with an evaluation within a fraction of the maximum evaluation. In mathematical 
terms: 

𝑅𝑅𝐶𝐶𝐿𝐿 = {𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 ∶  𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) ≥ 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛼𝛼 (𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛)}   (10) 

where 𝛼𝛼 ∈ [0,1] is a search parameter that will be empirically adjusted. Then, the method 
randomly selects an element in RCL (see equation (10)), and adds it to the partial solution 𝑀𝑀.  C1 
performs steps as long as the capacity constraint (2) is not met. In other words, the method 
stops when the sum of the capacities of the elements in 𝑀𝑀 is larger than or equal to 𝐵𝐵. 

One could argue that C1 is blind in its selection process with respect to the capacity values of 
the nodes. To overcome this limitation, we propose C2 with a more elaborated evaluation 
function. In particular, it first computes for any element 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀, 𝑑𝑑𝑖𝑖 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀  and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 =
max
𝑖𝑖
𝑑𝑑𝑖𝑖 to adjust the contribution of the distance value to the range [0,1]. Similarly, it computes 

𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑖𝑖
𝑐𝑐𝑖𝑖 and then: 

𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) = 𝛽𝛽 𝑑𝑑𝑖𝑖
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

+ (1 − 𝛽𝛽) 𝑐𝑐𝑖𝑖
𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚

     (11) 
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and the relative weight of these two factors, distance and capacity, is adjusted with the 𝛽𝛽 ∈
[0,1] parameter. C2 performs steps in the same manner than C1, with the only difference of the 
evaluation function (11). 

Glover et al. (1998) is probably the first study on diversity problems from a heuristic optimization 
perspective. The authors anticipate that since different versions of this problem may include 
additional constraints, as it is our case here, the objective is to design heuristics whose basic 
moves for transitioning from one solution to another are both simple and flexible, allowing these 
moves to be adapted to multiple settings. Especially attractive moves in this context are 
constructive and destructive processes that drive the search to approach and cross-feasibility 
boundaries from different directions. Such moves are also highly natural in the maximum 
diversity problem, where the goal is to determine an optimal composition for a set of selected 
elements. In line with these observations, we propose two “destructive” methods, called D1 and 
D2. 

D1 is the counterpart of C1, in which in each iteration, instead of adding an element to the partial 
solution, we remove one element from this partial solution. In destructive methods we consider 
that initially all the elements are selected and we remove elements, one-by-one as long as the 
capacity constraint is satisfied. In particular, in each iteration we remove, or deselect, the 
element with a relative bad evaluation, as indicated by the following RCL: 

𝑅𝑅𝐶𝐶𝐿𝐿 = {𝑖𝑖 ∈ 𝑀𝑀 ∶  𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒(𝑖𝑖) ≤ 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛾𝛾 (𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑒𝑒𝑣𝑣𝑒𝑒𝑒𝑒𝑚𝑚𝑖𝑖𝑛𝑛)}, (12) 

where 𝛾𝛾 ∈ [0,1]. Similarly, we propose D2 as the counterpart of C2. It employs the same 
evaluation function than C2, although in D2 it is meant to identify the elements with a bad 
evaluation. Then, the method removes from the solution one of them randomly selected. The 
selection is performed from a restricted candidate list (RCL) as it is customary in GRASP. 

4.2 VND – Variable Neighborhood Descent 

The Variable Neighborhood Search (VNS) methodology is based on a simple and effective idea: 
a systematic change of neighborhood within a local search algorithm (Mjirda et al. 2017; Hansen 
et al., 2017).  Variable Neighborhood Descent (VND) is a variant of VNS that explores 
neighborhoods in a deterministic way. In particular, VND explores small neighborhoods until a 
local optimum is encountered. At that point, the search process switches to a different (typically 
larger) neighborhood that might allow further progress towards the global optimum. In this 
section we adapt the VND to the Capacitated Dispersion Problem.  We follow the description 
given in Duarte et al. (2018). 

We define 𝑁𝑁𝑘𝑘(𝑀𝑀) for 𝑘𝑘 = 1, 2, … , 𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚  as the set of solutions that are obtained when we 
exchange 𝑘𝑘 elements in solution 𝑀𝑀 with 𝑘𝑘 elements in 𝑉𝑉 ∖ 𝑀𝑀. Exchanges in this context consist 
of replacing selected elements with unselected ones.  VND is based on the fact that a local 
optimum is defined with respect to a neighborhood relation, such that if a candidate solution 𝑀𝑀 
is locally optimal in a neighborhood 𝑁𝑁𝑖𝑖(𝑀𝑀), it is not necessarily a local optimum for another 
neighborhood 𝑁𝑁𝑖𝑖(𝑀𝑀). Note that in our problem, we need to check that the solution is feasible 
after the exchange (i.e., that it verifies constraint (2) in Formulation F1). Specifically, when we 
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replace 𝑘𝑘 elements in the solution, the sum of the capacities of the selected elements after the 
replacement has to be larger than or equal to 𝐵𝐵. To simplify the description, we can just say that 
we only consider feasible exchanges. 

Given a set 𝑉𝑉 with 𝑛𝑛 elements, and a feasible solution 𝑀𝑀 with some of these elements selected, 
we compute for 𝑖𝑖 ∈ 𝑀𝑀, 

𝑑𝑑𝑚𝑚𝑖𝑖 = min
𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖. 

Note that the objective function value of this solution, 𝑓𝑓(𝑀𝑀), is computed as the minimum of 
the 𝑑𝑑𝑚𝑚𝑖𝑖-values. It is clear that to improve a solution we need to remove (and thus replace) the 
elements 𝑖𝑖 in the solution for which 𝑑𝑑𝑚𝑚𝑖𝑖  = 𝑓𝑓(𝑀𝑀). Our method initially scans, at each iteration, 
the list of elements in the solution (𝑖𝑖 ∈ 𝑀𝑀) with minimum 𝑑𝑑𝑚𝑚𝑖𝑖  value. In particular, it scans the 
list of elements in lexicographical order, and for each element 𝑖𝑖∗ with a minimum 𝑑𝑑𝑚𝑚𝑖𝑖  value, it 
considers the list of unselected elements (𝑗𝑗 ∈ 𝑉𝑉 ∖ 𝑀𝑀) in search for the first improving exchange 
in 𝑁𝑁1(𝑀𝑀). Considering that the set 𝑉𝑉 ∖ 𝑀𝑀 is relatively large (as compared with the set 𝑀𝑀), we 
implement a strategy to scan it in an efficient way to find a good exchange for 𝑖𝑖∗. In particular, 
we compute 𝑑𝑑𝑒𝑒𝑖𝑖(𝑖𝑖∗) for 𝑗𝑗 ∈ 𝑉𝑉 ∖ 𝑀𝑀 , where: 

𝑑𝑑𝑒𝑒𝑖𝑖(𝑖𝑖∗) = min
𝑖𝑖∈𝑀𝑀∖{𝑖𝑖∗}

𝑑𝑑𝑖𝑖𝑖𝑖  

and scan these vertices in the order induced by the 𝑑𝑑𝑒𝑒 −values, where the one with the largest 
value comes first. It must be noted that the 𝑑𝑑𝑒𝑒 −values are an indicator of the potential quality 
of an element to become part of the solution when we remove 𝑖𝑖∗. Since the objective function 
is to maximize the inter-distance values, the larger the 𝑑𝑑𝑒𝑒 the better the element. This is why 
we explore first the elements with larger 𝑑𝑑𝑒𝑒 −values in our search for a good exchange. It is 
indeed a steepest descent strategy (Glover and Laguna, 1997). 

The method performs the first improving move and updates 𝑑𝑑𝑚𝑚𝑖𝑖  for all elements in 𝑀𝑀. In this 
first phase, the algorithm repeats iterations as long as improving exchanges can be performed 
and when no further improvement is possible, it resorts to consider exchanges of two elements, 
implementing in this way a VND. We limit our method to two neighborhoods, 𝑁𝑁1(𝑀𝑀) and 
𝑁𝑁2(𝑀𝑀), to avoid the larger running times associated with large neighborhoods. 

An important point in Max-Min problems is the definition of improving moves. Previous papers 
on this type of problems consider an extended definition, which includes not only when the 
move increases the value of 𝑓𝑓(𝑀𝑀), but also when a certain indicator improves (see for example 
Resende et al. 2010). In our VND algorithm we apply this extended criterion in which when the 
number of elements 𝑖𝑖 ∈ 𝑀𝑀 for which 𝑑𝑑𝑚𝑚𝑖𝑖=𝑓𝑓(𝑀𝑀) is reduced, we consider that the solution 
improves. 

As in typical VND implementations, our method explores the neighborhood structures in a 
sequential way (i.e., from 1 to 2). In particular, 𝑘𝑘 is initially set to 1; then, in each step, an 
improving neighbor 𝑀𝑀′ of 𝑀𝑀, is determined in 𝑁𝑁𝑘𝑘(𝑀𝑀): if 𝑀𝑀′ is better than 𝑀𝑀 according to the 
extended definition above, then 𝑀𝑀 is replaced with 𝑀𝑀′; otherwise, 𝑘𝑘 is incremented by one unit 
(i.e., 𝑘𝑘 = 𝑘𝑘 + 1).  In other words, the algorithm performs a local search to improve the solution 
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in 𝑁𝑁1(𝑀𝑀) and only resorts to 𝑁𝑁2(𝑀𝑀) when the search is trapped in a local optimum found in 
𝑁𝑁1(𝑀𝑀). Following the strategy called Basic VND (Duarte et al. 2018), when an improving move 
is performed, and the incumbent solution is updated, the method returns to the first 
neighborhood (i.e., 𝑘𝑘 = 1). Finally, when both neighborhoods have been explored and no 
improvement is found (𝑘𝑘 = 2), the VND method stops. 

 

4.3 SO – Strategic Oscillation  

Strategic oscillation (Glover and Laguna, 1997) operates by orienting moves in relation to a 
critical level, which in our problem is defined as the capacity level 𝐵𝐵.  Such a critical level or 
oscillation boundary often represents a point where the method would normally stop.  Instead 
of stopping when this boundary is reached, the rules for selecting moves (in constructive method 
C1 and destructive method D1) are modified, to permit the region defined by the critical level 
to be crossed.  The approach then proceeds for a specified depth beyond the oscillation 
boundary, and turns around.  The oscillation boundary again is approached and crossed, this 
time from the opposite direction, and the method proceeds to a new turning point. The process 
of repeatedly approaching and crossing the critical level from different directions creates an 
oscillatory behavior, which gives the method its name. 

Constructive method C1 described in Section 4.1 adds elements, one-by-one, to the current 
solution under construction, until the sum of the capacities of the selected elements is larger 
than or equal to 𝐵𝐵. At this point it has a feasible solution, say 𝑀𝑀1 and the method stops. What 
we propose now is to “keep going” a few more steps. In particular, we consider the addition of 
extra elements to the solution 𝑀𝑀1, with the same method C1, obtaining solution 𝑀𝑀2. Then, we 
will apply a destructive method, such as D1, to remove from 𝑀𝑀2 some elements. In this way, we 
may obtain a new feasible solution, 𝑀𝑀3, that eventually could be better than the two previous 
ones.  

 

Figure 7. Strategic Oscillation pattern 
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In line with the “keep-going” strategy described above when adding elements, we propose to 
remove a few additional elements from the feasible solution. In particular, we apply D1 to 
remove some extra elements from 𝑀𝑀3, thus obtaining a partial, unfeasible, solution 𝑀𝑀4. If we 
repeat this scheme, adding now elements to 𝑀𝑀4 with C1, obtaining a new feasible solution 𝑀𝑀5, 
we have an oscillation pattern, crossing the feasibility boundary of the solution space, as 
illustrated in Figure 7. 

In our oscillation strategy we add and remove vertices according to the capacity limit. 
Specifically, when applying C1 to add extra vertices to the solution, which corresponds to the 
steps from solution 𝑀𝑀1 to 𝑀𝑀2 in Figure 7, we multiply the sum of the capacities of the elements 
in the solution by a factor 𝜆𝜆 ∈ [0,1] and stop when this product is larger than 𝐵𝐵.  In mathematical 
terms, we apply C1 while 𝜆𝜆∑ 𝑐𝑐𝑖𝑖 ≥ 𝐵𝐵𝑖𝑖∈𝑀𝑀 . 

We propose a selective application of the VND method to improve some of the solutions, instead 
of applying it to all the solutions encountered in the process. In particular, if we consider the 
“path of solutions” when we apply C1 from the “unfeasible region” to the “feasible region”, we 
can identify the first feasible solution. That would correspond to solutions 𝑀𝑀1 and 𝑀𝑀5 in Figure 
7. We apply VND to these solutions, and we do not apply it to the rest of the solutions in the 
path obtained with C1 (i.e., we skip 𝑀𝑀2 and 𝑀𝑀4 to the application of VND). Symmetrically, when 
applying the destructive method D1 from the “feasible region” to the “unfeasible region” we 
identify the last solution visited before abandoning the feasible region. That would be 𝑀𝑀3 in 
Figure 7. We apply VND to these last solutions. In this way we save computational time and 
avoid to obtain the same local optima when applying VND from different initial solutions. 

 

5. COMPUTATIONAL EXPERIMENTS 

This section describes the computational experiments that we performed to first set the 
parameter values of our methods, and then compare them to the previous heuristic method, 
T1, and the Cplex optimal solutions, when solving the capacitated dispersion problem.  
Additionally, we compute the LocalSolver solutions for our test instances. In both solvers, Cplex 
and LocalSolver, we implement the model described in Section 2. 

LocalSolver is a commercial optimization system that provides extremely robust performance 
across multiple classes of optimization problems. The search starts from a solution generated 
by a basic greedy randomized procedure. The search is then performed in the feasible region 
and moves are performed to transform one solution to another. As its name indicates, 
LocalSolver attempts to find local optima by way of standard ascent (for maximization problems) 
techniques. The embedded heuristics allow the process to select non-improving moves in order 
to escape local optimality. These heuristics include probabilistic models such as those typical to 
the simulated annealing methodology. A large catalog of moves is available during the search 
and the selection of the moves to try is dynamically adjusted. LocalSolver is free for academic 
uses and can be downloaded from http://www.localsolver.com/. 

 

http://www.localsolver.com/
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5.1 Problem Instances 

For the experimentation, we use the public-domain MDPLIB (Martí et al., 2019) available at 
http://grafo.etsii.urjc.es/optsicom, which contains several data sets previously employed in 
different studies on diversity problems (Sandoya et al., 2018). We reviewed these instances and 
adapted them to the capacitated version of the diversity problem. In particular, for each original 
instance we randomly generate the capacity value of each node in the range [1, 1000]. Then, 
we compute the sum of all capacities and set 𝐵𝐵 as this sum multiplied by a factor of 0.2 and 0.3 
respectively, thus creating two instances for each original one. Our benchmark for the 
Capacitated Diversity Problem thus consists of the following 100 instances. 

GKD: This data set, originally proposed by Glover et al. (1998), contains matrices for which the 
values were calculated as the Euclidean distances from randomly generated points with 
coordinates in the 0 to 10 range. This set contains three subset of instances: 

GKD-a: Glover et al. (1998) introduced the small instances in this set with values 
of 𝑛𝑛 ≤ 30. We do not consider these instances because they are too small.  

GKD-b: Martí et al. (2010) generated these medium size instances with values of 
25 ≤ 𝑛𝑛 ≤ 150. We consider 10 instances of size 50, and 10 of size 150 in this set, 
and generate two instances for each of them as described above.  

GKD-c: Duarte and Martí (2007) generated these large instances with 𝑛𝑛 =  500. 
We consider 10 instances in this set, and generate two of them with different 
capacity values as in the other sets. 

SOM: This data set consists of 70 matrices with random numbers between 0 and 9 generated 
from an integer uniform distribution. Martí et al. (2010) created these instances to solve the 
maximum diversity problem, in which the objective function is the sum of the distances. Since 
we target here the version in which the objective is computed with the minimum distance, we 
found that most of these instances cannot be used, since many points are at a distance of 0, 
causing the objective function to be 0. We selected 10 instances in the SOM-a subset with 𝑛𝑛 =
 50 that can be used for our problem. As in the previous sets, we generated two instances for 
the capacity version with the factors 0.2 and 0.3. 

MDG: This data set was generated by Duarte, and Martí (2007), and used in Gallego et al. (2009) 
and Palubeckis (2007). It consists of 100 matrices with real numbers randomly selected from a 
uniform distribution. 

MDG-a: This set contains instances with real numbers in the range 0, 10. We do 
not consider them because they are not adequate for Max-Min problems since 
some points are at a distance of 0. 

MDG-b: This set contains instances with real numbers in the range 0, 1000. We 
consider 10 instances with 𝑛𝑛 =  500, for which we create two of them with the 
capacity factor set as 0.2 and 0.3 as described above. 

Table 1 summarizes the 100 instances in our benchmark. 
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Name 𝒏𝒏 Capacity 

parameter 
Number of 
instances 

GKD-b2 50, 150 0.2 20 
GKD-b3 50, 150 0.3 20 
GKD-c2 500 0.2 10 
GKD-c3 500 0.3 10 
SOM-a2 50 0.2 10 
SOM-a3 50 0.3 10 
MDG-b2 500 0.2 10 
MDG-b3 500 0.3 10 

Table 1. Sets of instances. 
 
5.2 Algorithm Configuration and Fine-Tuning 

The goal of our preliminary experimentation is to find effective configurations for our methods 
and to fine tune their algorithmic parameters. Specifically, we proposed in the previous sections 
the following heuristics, which require finding appropriate values for their parameters (in 
brackets): 

 C1(𝛼𝛼) 
 C2(𝛼𝛼,𝛽𝛽) 
 D1(𝛾𝛾) 
 D2(𝛽𝛽, 𝛾𝛾) 
 VND 
 SO(𝜆𝜆) 

We find the values of these parameters with a training set with 24 representative instances from 
the set of 100 described above (see Table 1). For each experiment, we report the following 
performance measures: Average number of minimum inter-distance value (𝑓𝑓(𝑀𝑀)), computing 
time in seconds (Time), average relative percentage deviation with respect to the best solution 
found in the experiment (Dev), and number of best solutions found in the experiment (Best). 
Note that both Dev and Best refer to the solutions found within the experiment and not the best 
solutions known for these problems. The relative deviation is computed for each instance as the 
difference of the best value obtained in this experiment minus the value obtained with each 
particular algorithm, divided by the best value. We multiply the result by 100 to represent it as 
a percentage. 

In our first preliminary experiment, we test the constructive method C1 described in Section 4.1. 
The performance of C1 depends on the parameter 𝛼𝛼, which balances greediness and 
randomness. We tested four values of 𝛼𝛼 on each procedure (0.2, 0.4, 0.6, and 0.8). Table 2 shows 
the results of this experiment. 

Procedure 𝒇𝒇(𝑴𝑴) Dev (%) Best Time (s) 
C1(0.2) 32 5.8 4 <1 
C1(0.4) 32 3.4 6 <1 
C1(0.6) 33 2.1 9 <1 
C1(0.8) 33 6.3 9 <1 

Table 2. Comparison of different 𝛼𝛼 values in constructive method C1. 
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The minimum deviation value is obtained with 𝛼𝛼 = 0.6, which is also able to obtain the largest 
number of best solutions (9). We therefore select this value to set 𝛼𝛼 in C1.  

In our second experiment we explore the different values of the two parameters in constructive 
method C2. As in C1, parameter 𝛼𝛼 manages the restricted candidate list (RCL) composition. In 
line with the findings in our previous experiment, we test here relatively large values for this 
parameter, favoring the greediness in the RCL composition. In particular, we consider two 
values: 0.6, 0.8. On the other hand, parameter 𝛽𝛽 is the relative weight between distance and 
capacity in the selection process. It takes values in [0,1] where the closer the value to 1, the 
more important the distance is with respect to the capacity. We also test the values 0.6, 0.8 
since we consider that the distance plays a more important role in the problem. Table 3 shows 
the results of this experiment. 

Procedure 𝒇𝒇(𝑴𝑴) Dev (%) Best Time (s) 
C2(0.6, 0.6) 58.5 6.8 5 <1 
C2(0.6, 0.8) 54.0 17.2 3 <1 
C2(0.8, 0.6) 57.7 7.7 6 <1 
C2(0.8, 0.8) 54.8 17.5 4 <1 

Table 3. Comparison of different 𝛼𝛼 and 𝛽𝛽 values in constructive method C2. 
 
The minimum deviation in Table 3 is obtained with 𝛼𝛼 = 𝛽𝛽 = 0.6, which exhibits a 6.8 percent 
deviation. We select this value for these two parameters.  

In our next two experiments we explore the performance of destructive methods D1 and D2 as 
we just did with C1 and C2. For the sake of brevity, we do not reproduce here the tables for 
these experiments (they are similar to those reported above). The conclusion is that the best 
performance is achieved in D1 when 𝛾𝛾 = 0.4 and in D2 with 𝛽𝛽 = 0.6, 𝛾𝛾 = 0.5.  We will use these 
values in the following experiments. 

We now compare the four methods proposed to generate solutions when coupled with the VND 
improvement method. We consider these methods with their key-search parameters set as 
adjusted in our previous experiments. Table 4 shows the results of our sixth preliminary 
experiment to disclose the best generation method. As in the previous experiment we consider 
the following four statistics to compare them: 𝑓𝑓(𝑀𝑀), Dev., Best, and Time (in seconds). 

 

Procedure 𝒇𝒇(𝑴𝑴) Dev (%) Best Time (s) 
C1(0.6)+VND 97.4 3.7 8 8.1 
C2(0.6,0.6)+VND 99.4 2.8 7 11.4 
D1(0.4)+VND 98.7 3.8 2 10.1 
D2(0.6,0.5)+VND 97.7 4.3 2 8.7 

Table 4. Comparison of different GRASP methods. 
 
The best constructive method in Table 4 is C2(0.6,0.6) + VND with a 2.8 percentage deviation 
and 7 best solutions, while the best destructive method is D1(0.4)+VND with a 3.8 percentage 
deviation and 2 best solutions. We therefore use them in the complete Strategic Oscillation (SO) 
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heuristic, in which constructive and improvement methods are embedded. As described in 
Section 4.3, SO operates by first applying a constructive method in which additional iterations 
are performed beyond the feasible boundary as indicated by parameter 𝜆𝜆.  Then, a destructive 
method is applied to “come back” to that boundary and cross it again. The alternation of both 
methods establish the oscillation pattern that gives the name to the methodology.  For the sake 
of simplicity we denote to this hybrid method as SO(𝜆𝜆). Table 4 shows the results when 
comparing different values of 𝜆𝜆. To simplify it, we only report the average percentage deviation 
(Dev) and the running time in seconds (Time). We also include in this table different values for 
the number of oscillations.  

 Number of Oscillations 

 1 2 3 4 5 

𝝀𝝀 Dev Time Dev Time Dev Time Dev Time Dev Time 
0.6 5.4% 37 1.3% 69 0.2% 131 0.5% 139 0.7% 168 
0.7 5.3% 35 2.1% 71 3.5% 106 2.5% 148 2.3% 141 
0.8 5.2% 36 3.9% 55 4.6% 89 4.0% 131 3.9% 137 
0.9 5.4% 43 4.5% 68 4.6% 72 4.0% 145 4.1% 167 

Table 5. Strategic Oscillation method. 
 
Table 5 shows the evolution of the deviation of the best solution find with the SO method. For 
example, if we pay attention to the first row, which corresponds to 𝜆𝜆 = 0.6, we can see that 
after the first oscillation, the method obtains a solution with 5.4% of deviation on 37 seconds 
(this would be solution 𝑀𝑀4 in Figure 7). Then, in the second oscillation, the method is able to 
improve this solution, obtaining a new solution with 1.3% of deviation, achieved on 69 seconds. 
If we continue with the oscillation process, after 5 oscillations, we can see that the method 
obtains a solution with a 0.7% of deviation achieved on 168 seconds.  Comparing the different 
rows in this table, we conclude that 𝜆𝜆 = 0.6 obtains the best results, and therefore set this 
parameter to this value for the following experiments. Note that deviations can eventually 
increase in a row of this table since they represent the best solution in each oscillation, not the 
best solution overall. 

We perform a final experiment to test the robustness of our SO method. In particular, we run it 
30 times on each instance and collect the best value of the 30 runs, then we compute the 
average, minimum (Min.), maximum (Max.), standard deviation (St. Dev.) and variation 
coefficient (V.C.) for each instance in the training set. Table 6 reports the average results of these 
five statistics over the 24 instances in the set. We consider two versions of SO, a short run of 
about 1 second of computer, and a long one, of about 15 seconds. 

Procedure Average    Min. Max. St. Dev.    V.C. 
SO (1 sec. each run) 99.09 96.21 102.18 1.72 0.02 
SO (15 sec. each run) 101.55 99.91 103.48 0.94 0.01 

Table 6. Average statistics on 30 runs (replications). 
 
Table 6 shows that our SO method is quite robust. Even in short runs, it obtains similar solutions 
when replicated. In particular, the average standard deviation over 30 runs on the training set 
is 1.72, which implies a variation coefficient of 0.02.  As expected, if we consider longer runs (of 
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about 15 seconds), the method is even more stable, obtaining very similar solutions in different 
replications (with a standard deviation of 0.94). 

5.3 Competitive Testing 

For the competitive testing, we compare the procedure that we developed, SO, with different 
methods to test its relative performance both in terms of running time and quality. In particular, 
we compare SO, set with C2(0.6,0.6) + VND as constructive process, D1(0.4)+VND as destructive 
process, and 𝜆𝜆 = 0.6 as oscillation value, with the following methods: 

 The previous heuristic for this problem, T1, by Rosenkrantz et al. (2000) 
 The Cplex solver, which provides the optimal solutions for small instances 
 The LocalSolver general purpose heuristic 

 
This experiment consists of executing the three procedures above on the entire set of 100 
instances in our benchmark, and compare their results with those obtained with SO. We report 
the results in 3 tables, one for each method respectively. Table 7 shows the results obtained 
with SO and T1. As in the preliminary experiments, we report the objective function value, 𝑓𝑓(𝑀𝑀), 
the relative percentage deviation with respect to the best solution in this experiment, Dev, the 
number of instances in each set in which the method is able to match the best known solution, 
Best, and the running time in seconds, Time.  Each row in Table 7 summarizes the results on the 
10 instances in each set. The first five rows correspond to the instances generated with the 
capacity parameters 0.2, and the last five rows with 0.3. 

 
  T1 previous heuristic   SO  
Set 𝒏𝒏   𝒇𝒇(𝑴𝑴) Dev Best Time   𝒇𝒇(𝑴𝑴) Dev Best Time 
GKD-b2 50 1057 6.4 0 0  1123 0.0 10 0 
GKD-b2 150 1132 1.8 2 0  1152 0.0 9 0 
GKD-c2 500 60 20.1 0 47  75 0.0 10 19 
SOM-a2 50 36 12.0 6 0  41 0.0 10 0 
MDG-b2 500 354 13.8 1 49  412 0.5 9 65 
GKD-b3 50 925 4.9 2 0  970 0.0 9 0 
GKD-b3 150 1046 0.2 7 0  1034 1.2 3 1 
GKD-c3 500 51 21.9 0 47  65 0.0 10 41 
SOM-a3 50 15 5.0 9 0  15 5.0 9 0 
MDG-b3 500 86 21.6 2 49  111 1.9 8 45 

Table 7. Comparison with previous heuristic. 
 
Table 7 clearly shows the superiority of our method with respect to the previous heuristic T1 
(see for example the Dev column in both methods). This is to be expected since T1 is a relatively 
simple approximation method, with a guarantee performance, and SO is a complex 
metaheuristic. Note however that SO not only outperforms T1 in solution quality, but it is also 
competitive in running time. On the other hand, T1 presents a very good performance 
considering its simplicity, with remarkable results on GKD-b3 and SOM-a3 sets of instances (7 
and 9 best solutions out of 10 in each set respectively). Note that we set both methods, SO and 
T1, in a way that they run on average for a similar CPU time for a fair comparison. In this way, in 
many of the sets their times are equal or very similar (this is the case of GKD-b2, SOM-a2 or 
MDG-b3). However, there is one set, GKD-c2, with significantly different times (47 and 19 
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seconds respectively). We prefer to keep it this way because both methods are run with the 
same configuration across all instances. 

To complement the analysis above we compare both methods with two well-known 
nonparametric tests for pairwise comparisons: the Wilcoxon test and the Sign test. The former 
one answers the question: Do the two samples (solutions obtained with T1 and SO in our case) 
represent two different populations? We obtain a 𝑧𝑧-value of -5.434 (with sum of pos. ranks of 
23, and sum of neg. ranks of 923), and an associated 𝑝𝑝-value lower than 0.00001 in the Wilcoxon 
test, which indicates that the values compared do not come from the same method. On the 
other hand, the Sign test computes the number of instances on which an algorithm supersedes 
another one. The resulting 𝑧𝑧-value of 6.328 (with pos. sign count of 13, and neg. sign counts of 
71), and an associated 𝑝𝑝-value lower than 0.00001 indicates again that there is a clear winner 
between both methods (SO) when we consider all the instances in the benchmark set.  

  Cplex   SO  
Set 𝒏𝒏   𝒇𝒇(𝑴𝑴) Dev Best Time   𝒇𝒇(𝑴𝑴) Dev Best Time 
GKD-b2 50 112.3 0.0 10 2.8  112.3 0.0 10 0.1 
GKD-b2 150 118.6 4.1 10 2926.0  118.4 4.3 6 37.5 
SOM-a2 50 4.1 0.0 10 1.8  4.1 0.0 10 0.0 
GKD-b3 50 97.8 0.0 10 4.3  97.8 0.0 10 1.6 
GKD-b3 150 107.4 31.4 8 3600.0  107.2 31.6 5 56.3 
SOM-a3 50 2.1 0.0 10 6.0  1.8 13.3 7 0.1 

Table 8. Comparison with exact method. 

 
In the following experiment, we compare SO with the solutions obtained with Cplex. We do not 
include in this experiment the large size instances (𝑛𝑛 = 500), since Cplex is not able to solve 
them in the time limit of 6,000 seconds considered. Table 8 reports the solutions of this 
experiment, where the deviation value, Dev, is computed with respect to the upper bound 
obtained with Cplex. On the other hand, the number of best solutions, Best, considers the lower 
bound obtained with Cplex, and the best solution obtained with SO. Note that when Cplex is 
able to terminate the branch and bound exploration, both values, lower and upper bound, are 
the same.  

Results in Table 8 indicate that Cplex is able to solve the small instances, with 𝑛𝑛 = 50, to 
optimality in moderate running times (lower than 10 seconds). However, when we move to the 
medium size instances, with 𝑛𝑛 = 150, it only solves a fraction of them within the time limit of 
3,600 seconds (note the deviations of 4.1 and 31.4 in the GKD-b2 and GKD-b3 sets respectively). 
As mentioned above, Cplex is not able to solve the large size instances 𝑛𝑛 = 500 in any of the 
cases tested within the 3,600 seconds considered.  

Considering now our SO method, we can see in Table 8 that in the small GKD instances (sets 
GKD-b2 and GKD-b3 with 𝑛𝑛 = 50), it is able to match the 20 optimal solutions in a very small 
running time (less than 2 seconds). In the larger instances in these sets, with 𝑛𝑛 = 150, our SO 
heuristic obtains good solutions but not optimal in all the cases. In particular, in GKD-b2 it 
obtains 6 out of 10, and in GKD-b3, 5 out of 10. Note however, that we only run it for a moderate 
running time (less than 1 minute). 
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Table 8 reveals that the instances in the SOM-a3 set constitute a challenge for heuristic methods. 
These are small instances with 𝑛𝑛 = 50 in which Cplex is able to compute the optimal solutions. 
However, our method only obtains 7 out of the 10 optimal solutions. Considering that in Table 
6, T1 exhibits a similar performance than SO in this set, we can conclude that these instances 
are difficult to solve for these two heuristics. Note however, that in all the small instances, 
included this set, we run our method for a very short CPU time (0.1 seconds), in line with 
previous works. 

In the following experiment we undertake to compare SO with the well-known LocalSolver. We 
run this method with formulation F2 shown in Section 2. We run both methods with a time limit 
of 60 seconds. Table 9 shows the results.  

  LocalSolver   SO  
Set 𝒏𝒏   𝒇𝒇(𝑴𝑴) Dev Best Time   𝒇𝒇(𝑴𝑴) Dev Best Time 
GKD-b2 50 1123.3 0.0 10 4  1123.3 0.0 10 0 
GKD-b2 150 1181.0 0.3 7 34  1181.5 0.3 6 15 
GKD-c2 500 58.2 21.9 0 47  74.6 0.0 10 19 
SOM-a2 50 4.0 90.0 1 3  41.0 0.0 10 0 
MDG-b2 500 56.6 83.5 0 59  343.5 0.0 10 25 
GKD-b3 50 977.9 0.0 10 12  969.9 0.7 7 0 
GKD-b3 150 1072.5 0.1 8 26  1068.5 0.6 4 47 
GKD-c3 500 57.4 11.5 0 45  64.9 0.0 10 41 
SOM-a3 50 0.0 100.0 0 1  15.0 25.0 5 0 
MDG-b3 500 35.1 65.3 0 57  104.7 0.0 10 45 

Table 9. Comparison of SO with general purpose heuristic. 
 
Table 9 shows that, in general terms, SO obtains better solutions than LocalSolver in shorter 
running times. This is to be expected since SO is customized to the Capacitated Dispersion 
Problem while LocalSolver is a general solver, although it is worth mentioning that it also 
implements complex metaheuristics, and is nowadays a reference method, given its remarkable 
performance in many combinatorial optimization problems. As a matter of fact, in the GKD-b2 
sets (𝑛𝑛 = 50 and 𝑛𝑛 = 150), LocalSolver and SO perform very similar; in the GKD-b3 sets (𝑛𝑛 =
50 and 𝑛𝑛 = 150), LocalSolver performs better than SO; but in the rest of the sets, SO clearly 
outperforms LocalSolver. To confirm the superiority of our method, we perform the two 
statistical tests described above, the Wilcoxon and the Signs, and obtain in both cases a 𝑝𝑝 −value 
of 0.00, thus indicating that there are significant differences between both methods. Table 10 
in the Appendix shows the individual results of the SO method on the 100 instances in our study. 

Results in Table 9 also confirm that the SOM sets of instances are a challenge for heuristic 
methods, and therefore we can conclude that there is still room for improvement in heuristic 
developments for this problem. 

To complement the analysis above, we run the three heuristic methods under comparison for a 
relatively long running time (500 seconds) on a representative MDG-b large instance. Figure 9 
shows the search profiles in which the best solution obtained with each method is depicted to 
see its evolution over the time. 



Peiró et al. (2020)  20 

 
Figure 8.  Search profiles on MDG-b instance. 

Figure 8 shows that SO is the leading method in the entire search period. LocalSolver requires a 
bit longer setup time, and it starts to obtain high-quality solutions after 100 seconds of 
exploration. Finally, since T1 is a simple method, once it obtains a solution, there is no further 
improvement. All the methods stagnate after 300 seconds, and therefore there is no point on 
running them longer. Figure 9 shows a similar search profile for a GKD-c instance. 

 

 
Figure 9.  Search profiles on GKD-b instance. 

 

Conclusions 
This paper proposed several new hybrid heuristics for the capacitated dispersion problem. The 
heuristics used components of GRASP, variable neighborhood descent (VND), and strategic 
oscillation (SO). To find a good configuration for our best heuristic, we considered four 
constructive procedures (including constructive and destructive neighborhoods) with a 
parameter to control the randomization in the selection process, and another parameter to set 
the level of oscillation in the SO. Our extensive preliminary experimentation, reported in Tables 
2, 3, 4, and 5, set appropriate values for these parameters, providing a good balance among the 
three methodologies in terms of search intensification and diversification. 
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We had a twofold goal for this work, to experiment with the hybridization of GRASP, VNS, and 
SO and, in the process, to develop a state-of-the-art procedure for the capacitated dispersion 
problem. We believe that we have achieved the first goal with the proposed design, simply called 
SO. The merit of this hybrid method is that it preserves the main characteristics of each element 
while combining their capabilities. In terms of our second goal, the results reported in Tables 6, 
7, and 8 are very strong in favor of SO. In particular, the comparisons with Cplex, Localsolver, 
and a previous specific method, T1, clearly show that SO is able to obtain high-quality solutions 
in short computational times. 
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Appendix 
Table 10 shows the individual results obtained with SO on each instance. CPU times (Time) are 
reported in seconds. 
 

  Capacity 0.2 Capacity 0.3 

Instance set id SO value SO Time  SO value SO Time 

 11 147.2 0 132.8 0 

 12 178.1 0 154.7 0 

 13 96.1 0 77.5 0 

 14 84.6 0 71.2 1 

GKD-b 15 154.9 0 134.0 0 

𝑛𝑛 = 50 16 77.7 0 63.1 0 

 17 41.8 0 27.9 0 

 18 108.5 0 104.4 0 

 19 119.1 0 102.5 0 

 20 115.3 0 101.8 0 

 41 163.4 13 153.8 33 

 42 84.1 19 70.2 70 

 43 63.1 22 53.9 71 

 44 103.3 13 87.6 44 

GKD-b 45 106.4 14 94.5 34 

𝑛𝑛 = 150 46 124.5 15 109.7 27 

 47 162.2 14 154.8 61 

 48 98.1 12 85.7 32 

 49 166.3 18 158.3 50 

 50 110.1 12 100.0 52 

 1 7.2 18 6.8 45 

 2 7.6 15 6.3 41 

 3 7.2 22 6.5 37 

 4 7.5 15 6.5 35 

GKD-c 5 7.7 21 6.4 45 

𝑛𝑛 = 500 6 7.2 19 6.5 45 

 7 7.6 18 6.5 43 

 8 7.8 14 6.5 44 

 9 7.4 23 6.4 42 

 10 7.4 20 6.5 32 
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 11 4.0 0 2.0 0 

 12 4.0 0 1.0 0 

 13 5.0 0 1.0 0 

 14 4.0 0 2.0 0 

 15 4.0 0 2.0 0 

SOM-a 16 4.0 0 1.0 0 

𝑛𝑛 = 50 17 4.0 0 2.0 0 

 18 4.0 0 1.0 0 

 19 4.0 0 2.0 0 

 20 4.0 0 1.0 0 

 1 37.9 27 8.2 34 

 2 32.0 22 12.4 47 

 3 33.4 24 7.2 39 

 4 34.0 30 8.1 38 

 5 36.2 23 10.3 39 

MDG-b 6 31.8 26 9.9 57 

𝑛𝑛 = 500 7 28.5 19 13.3 56 

 8 36.1 32 11.6 55 

 9 38.3 21 13.2 61 

 10 35.3 30 10.5 27 

Table 10. Individual results of SO heuristic. 
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