

The Capacitated Dispersion Problem:
An optimization model and a memetic algorithm

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa,
Universidad de Valencia, Spain
Rafael.Marti@uv.es

ANNA MARTÍNEZ-GAVARA
Departamento de Estadística e Investigación Operativa,
Universidad de Valencia, Spain
gavara@uv.es

JESÚS SÁNCHEZ-ORO
Dept. Computer Sciences,
Universidad Rey Juan Carlos, Spain.
jesus.sanchezoro@urjc.es

ABSTRACT

The challenge of maximizing the diversity of a collection of points arises in a variety of settings, and
the growing interest of dealing with diversity resulted in an effort to study these problems in the last
few years. Generally speaking, maximizing diversity consists in selecting a subset of points from a
given set in such a way that a measure of their diversity is maximized. Different objective functions
have been proposed to capture the notion of diversity, being the sum and the minimum of the
distances between the selected points the most widely used. However, in all these models, the
number of points to be selected is established beforehand, which in some settings can be unrealistic.
In this paper, we target a variant recently introduced in which the model includes capacity values,
which reflects the real situation in many location problems. We propose a mathematical model and a
heuristic based on the Scatter Search methodology to maximize the diversity while satisfying the
capacity constraint. Scatter search is a memetic algorithm hybridizing evolutionary global search with
a problem-specific local search. Our empirical analysis with previously reported instances shows that
the mathematical model implemented in Gurobi solves to optimality many more instances than the
previous published model, and the heuristic outperforms a very recent development based on GRASP.
We present a statistical analysis that permits us to draw significant conclusions.

Keywords: Maximum diversity, Metaheuristics, Mathematical formulations, Empirical comparison.

Original Version: June 2020
First revision: October 2020
Second revision: November 2020

mailto:Rafael.Marti@uv.es
mailto:gavara@uv.es
mailto:jesus.sanchezoro@urjc.es

M a r t í , e t a l . | 2

1. Introduction

The problem of maximizing diversity deals with selecting a subset of elements from a given set, in such
a way that the diversity among the selected elements is maximized. The most studied model is the
Maximum Diversity Problem, MDP, in which the diversity is computed as the sum of the distances
between the pairs of selected points. First papers on this topic can be traced back to the nineties,
when Ghosh (1996) proved the NP-completeness of the MDP, proposed a multi-start algorithm, and
tested it on small instances. In line with these developments, we can find some seminal papers by
Glover et al. (1995, 1998) with simple heuristics for the MDP, where the authors pointed out that
different versions of this problem may include additional constraints, and their objective is to design
heuristics with simple moves for transitioning from one solution to another to allow them to be
adapted to multiple settings. In particular, the authors applied this model to the conservation of the
crane family under resource constraints in the context of preserving biological diversity. More
recently, complex metaheuristics have been proposed to them (Martí et al, 2013; Duarte et al., 2015).

As stated in Kuo et al. (1993), there are basically two approaches to model diversity maximization: the
MDP, also known as the Max-Sum problem, and the Max-Min problem (MMDP), although other
variants have also been studied (Martínez-Gavara et al., 2017). In the Max-Sum, we maximize the sum
of the distances, while in the Max-Min, we maximize the minimum distance between the pairs of
selected points. Parreño et al. (2020) recently showed that both models produce solutions of a very
different structure, as it is illustrated in Figure 1 that depicts the optimal solutions obtained with these
two models (on a MDP public domain instance with 100 elements where 20 of them are selected). We
can see that while the Max-Sum tends to allocate the points in the outer part of the region (solutions
space), the Max-Min distribute them in a uniform way over the entire region. Both models have
received a lot of attention in the last ten years, and the recent work by Parreño et al. (2020) discloses
the properties of the solutions obtained with each one. In general, the authors recommend the use of
the Max-Min model.

(a) Max-Sum optimal solution

(b) Max-Min optimal solutions

Figure 1. Optimal solutions of a GKD-d instance with 𝑛𝑛 = 100,𝑚𝑚 = 20.

Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of 𝑛𝑛 nodes and 𝐸𝐸 is the set of edges, let 𝑑𝑑𝑖𝑖𝑖𝑖 be the inter-
elements distance between any two elements 𝑖𝑖, 𝑗𝑗 ∈ 𝑉𝑉. The MMDP consists in selecting a subset 𝑀𝑀 ⊆
𝑉𝑉 of 𝑚𝑚 elements (|𝑀𝑀| = 𝑚𝑚) in such a way that the minimum distance between the chosen elements

M a r t í , e t a l . | 3

is maximized. The Max-Min diversity problem, also known as 𝑚𝑚-dispersion problem, can be trivially
formulated (Resende et al., 2010) by simply considering its objective function over the set 𝑀𝑀:

Maximize 𝑓𝑓(𝑀𝑀) = min
 𝑖𝑖,𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖 (1)

subject to 𝑀𝑀 ⊆ 𝑉𝑉

 |𝑀𝑀| = 𝑚𝑚

In spite of the early interest in constrained models, the extensive literature on diversity problems is
mostly based on selecting a fixed number of points, 𝑚𝑚, avoiding the use of additional constraints. In
this paper, we consider a model recently introduced (Rosenkrantz et al., 2000), where the standard
size constraint shown above is replaced with a capacity constraint. This new model has applications in
location problems, to establish the minimum level required to provide a service. It is known as
Capacitated Dispersion Problem (CDP), and can be easily formulated in mathematical terms in a similar
way than the MMDP. Given a graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), let 𝑐𝑐𝑖𝑖 be the capacity of node 𝑖𝑖 ∈ 𝑉𝑉, and 𝐵𝐵 the total
capacity required. The CDP is formulated with binary variables 𝑥𝑥𝑖𝑖 that take value 1 if node (element) 𝑖𝑖
is selected, and 0 otherwise. The set of selected elements is computed as 𝑀𝑀 = {𝑖𝑖 ∈ 𝑉𝑉: 𝑥𝑥𝑖𝑖 = 1}.

Maximize 𝑓𝑓(𝑀𝑀) = min
𝑖𝑖,𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖 (2)

subject to ∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵𝑛𝑛
𝑖𝑖=1

𝑥𝑥𝑖𝑖 ∈ {0,1} 𝑖𝑖 = 1, … ,𝑛𝑛

Very recently, Peiró et al. (2020) proposed a solving method based on the GRASP methodology (Feo
and Resende, 1995; Resende et al., 2010) to solve the CDP. This heuristic method implements a
strategic oscillation (Glover and Laguna, 1997) for an efficient search of the solution space. It is able
to outperform the previous heuristic proposed by Rosenkrantz et al. (2000), as empirically shown on
their experimentation over 100 instances. Additionally, these authors proposed a mathematical model
to optimality solve small and medium size instances.

When analyzed both the model and the heuristic in Peiró et al (2020), we identified some limitations
which motivated our current development. On one hand, the model is a straightforward adaptation
of the integer linear model introduced many years ago for the Max-Min unconstrained problem (Kuo
et al., 1993), which was recently outperformed by the model proposed by Sayyady and Fathi (2016).
We therefore propose here to adapt this new model to the constrained variant. Our analysis will reveal
that it is able to solve medium size CDP instances on a small fraction of the time employed by the
previous model, and it can even solve some large size instances (with up to 500 elements). Regarding
the previous GRASP heuristic, it mainly relies on an improvement method (VND) limited to two
neighborhoods. The flat landscape (plateau) of this problem that maximizes a minimum value is a
challenge for local search methods guided by changes in the objective function. In line with Neri and
Cotta (2012b), we considered that the characteristics of memetic algorithms and their diversification
power make them suitable to deal with this type of problem. In particular, we propose a new local
search method based on a number of neighborhoods that are dynamically adjusted and we coupled
it with a combination method, thus creating a memetic algorithm. Our empirical analysis will show
that it obtains better solutions than the GRASP heuristic. It is worth mentioning that our new designs
can be applied to other combinatorial optimization problems. In particular, the dynamic nested

M a r t í , e t a l . | 4

neighborhood exploration in local search, and the combination method based on the Path Relinking
in memetic algorithms, can be easily adapted to other settings.

2. Memetic Algorithms and the Scatter Search Methodology

In this section we describe the elements and strategies of the Scatter Search methodology in
connection with Memetic Algorithms. In general terms, we may say that Memetic Algorithms (MAs)
constitute a class of solving methods with a particular structure given by population, generational
evolution, and local search. In this context, Memetic Computing (MC) can be seen as the subject of
study related to the algorithmic structures composed of multiple operators. In short, MAs are a subset
or instance of MC. According to Neri and Cotta (2012), “Memetic computing is a broad subject which
studies complex and dynamic computing structures composed of interacting modules (memes) whose
evolution dynamics is inspired by the diffusion of ideas”. We limit our description here to the particular
case of Scatter Search, a metaheuristic methodology belonging to the family of MAs.

Unlike other well-known metaheuristic methodologies, Memetic Algorithms are not a specific
algorithm, but a more general methodology. Neri and Cotta (2012b) characterize them as a flexible
class of algorithms, containing the previous evolutionary algorithms, and combining global and local
search. In a basic MA, the initial population is generated following a systematic procedure. Then, the
method iterates over a main loop that basically consists of three elements: cooperate, improve, and
compete. Cooperate and Improve constitute the core of the MA, and as described in Neri and Cotta
(2012), diversity management is one of the key points in the interaction of these elements.

A key point in the design of any evolutionary method is the diversity management in the population.
Laguna and Martí (2003) proposed to solve the maximum diversity problem to create an initial
population with a set of very different (diverse) solutions. Tirronen and Neri (2009) proposed diversity
self-adaptation techniques within the parameter settings of Differential Evolution (DE). In particular,
scale factor, crossover rate, and population size are adaptively controlled with a mechanism based on
the fitness diversity. An empirical comparison shows the merit of the new approach with respect to
the standard DE.

It must be noted that this is not the first time that MAs have been applied to diversity problems. As a
matter of fact, Wang et al. (2014) proposed a hybrid method combining MAs and tabu search for the
classic, unconstrained, maximum diversity problem. An interesting feature of that method is the
combination operator applied to generate good offspring solutions. In particular, the authors applied
the tabu search strategies known as “strongly determined” and “consistent variables”, which basically
specify those elements that contribute most to good solutions explored in the search process, in order
to favor their selection in future solutions. The good results obtained with this method on the
unconstrained version of the diversity problem triggered our interest to create a new MA for the
constrained diversity problem. Specifically, we consider the Scatter Search methodology (Martí et al.,
2006), which implements a relatively simple and effective MA.

Scatter search (SS) is a heuristic methodology (Glover, 1998) that explores solution spaces by evolving
a set of solutions. SS follows the principle in Cotta et al. (2018) that memetic algorithms integrate
evolutionary methods with local search, performing and effective search of the solution space. SS is
based on this framework, providing an interplay between global search (population based) and local

M a r t í , e t a l . | 5

search (individual based) that is able to obtain high-quality solutions to difficult optimization
problems.

It has been well-documented that efficient MAs generate the initial population with a problem specific
method, instead of a completely random generation typical of Genetic Algorithms (GAs). In line with
that, SS starts with the application of a constructive method, called diversification generation method.
Then, it selects a subset of solutions called reference set (RefSet), which is basically a collection of
both high quality solutions and diverse solutions selected from the population, called P.

The reference set evolves by applying four additional methods: reference set update method, subset
generation method, combination method, and Improvement method. We briefly describe now their
role in the entire SS method. Reference set update consists in the updating mechanisms to keep the
RefSet with the best solutions found so far. Note that the term best here refers to both quality and
diversity. Figure 2 shows a graphical representation of the SS flow that illustrates how it works, and
the interaction of its methods.

Figure 2. Scatter Search diagram.

The subset generation method specifies the subsets of solutions that are combined. It usually consists
of pairs of solutions but other designs are also considered. Instead of a sampling mechanism, like the
so-called roulette wheel implemented in many GAs, all pairs of solutions in the Reference Set are
considered for combination in SS. This is why the RefSet has to be kept small (around 10 solutions).

A combination method is applied to generate new solutions from each pair in the RefSet. As
mentioned with the generation method, the combination usually exploits problem characteristics and
solution representation to obtain high quality outputs. The strategy known as path relinking (PR),
originally proposed within the tabu search methodology (Glover and Laguna, 1997), has been
extensively used as a combination method. This is the case here, since we also propose a PR for the
capacitated dispersion problem.

M a r t í , e t a l . | 6

The SS method operates in short as follows. It first generates PSize solutions to populate P, as shown
in Figure 2. Then, the main loop of method performs iterations as long as at least one solution is new
in the RefSet. A solution is new when it has not been previously combined. If the RefSet contains new
solutions, SS considers all pairs of solutions involving the new ones to apply the combination method;
otherwise it stops. This avoids duplications of solutions from the application of the combination
method to the same subset more than once. The method finishes when no new solution qualifies to
enter in the RefSet, which is only updated if the new solution improves the worst one in the RefSet.
The best solution in the RefSet is the output of the method. See Laguna and Martí (2003) for a
complete description of the method.

3. Mathematical Model

Peiró et al. (2020) proposed the linear integer formulation for the CDP (3) based on an upper bound
𝐷𝐷 on the distances values, which is equivalent to the simpler (nonlinear) model shown above (2). It is
based on binary variables 𝑦𝑦𝑖𝑖𝑖𝑖 that take the value 1 if and only if 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 = 1. In this way, it avoids the
product of the 𝑥𝑥-variables.

Maximize 𝑧𝑧 (3)

subject to

∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵𝑛𝑛
𝑖𝑖=1

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛

𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖 ≤ 𝑦𝑦𝑖𝑖𝑖𝑖 + 1 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛

𝑧𝑧 ≤ 𝑑𝑑𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 + 𝐷𝐷�1 − 𝑦𝑦𝑖𝑖𝑖𝑖� 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛

𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1} ,𝑥𝑥𝑖𝑖 ∈ {0,1} 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛

As will be shown in our empirical experience, this formulation is able to solve the small and some
medium size CDP instances to optimality. We propose now an alternative formulation that is able to
solve large instances.

Sayyady and Fathi (2016) solved the MMDP with the node packing problem, in which given a threshold
value 𝑙𝑙, a graph 𝐺𝐺(𝑙𝑙) is defined with the set 𝑉𝑉 of 𝑛𝑛 nodes of original graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), and the set of
edges 𝐸𝐸(𝑙𝑙) = {(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸: 𝑑𝑑𝑖𝑖𝑖𝑖 < 𝑙𝑙}. The node packing problem consists of finding a maximum
cardinality subset of nodes so that no two nodes in this subset are adjacent to each other. It can be
formulated in mathematical terms (4) with binary variables, 𝑥𝑥𝑖𝑖, indicating if node 𝑖𝑖 is selected as:

Maximize ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 (4)

subject to 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖 ≤ 1 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸(𝑙𝑙)

𝑥𝑥𝑖𝑖 ∈ {0,1} 𝑖𝑖 = 1, … ,𝑛𝑛

M a r t í , e t a l . | 7

An optimal solution of the node packing problem in 𝐺𝐺(𝑙𝑙) provides a set of points with minimum
distance larger than or equal to 𝑙𝑙. The authors solve a sequence of node packing problems for different
values of 𝑙𝑙 until they obtain a set of 𝑚𝑚 points, which turns out to be the optimal solution of the Max-
Min model. Specifically, they implement a systematic search in the interval 𝑙𝑙 ∈ [𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥], where
𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥 are the minimum and maximum values respectively among all the distances in the
graph. The method performs a binary search over the ordered set of different distances in the graph,
based on the minimum distance between consecutive values.

We adapt the node packing model to the CDP, and propose to solve model (5) for different values of
the parameter 𝑙𝑙, which is completely different than the previous model for the CDP shown in (4), and
only shares with it the capacity constraint:

Maximize ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 (5)

subject to 𝑥𝑥𝑖𝑖 + 𝑥𝑥𝑖𝑖 ≤ 1 ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸(𝑙𝑙)

�𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖 ≥ 𝐵𝐵 𝑖𝑖 = 1, … ,𝑛𝑛
𝑛𝑛

𝑖𝑖=1

𝑥𝑥𝑖𝑖 ∈ {0,1} 𝑖𝑖 = 1, … ,𝑛𝑛

Note that the number of selected elements is not important in the CDP, so when solving (5), we do
not need to consider the objective function, and we simply check its feasibility, which is significantly
faster than obtain the optimal solution.

We implement a binary search (Parreño et al. 2020) over the threshold value 𝑙𝑙 that defines our model.
We start by making 𝑙𝑙 to the mean value in [𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛,𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥], and solve the decision problem (5) described
above. If we obtain a feasible solution, we have a feasible solution 𝑀𝑀 of the original CDP with a value
𝑓𝑓(𝑀𝑀) ≥ 𝑙𝑙, and then we resort to the interval [𝑓𝑓(𝑀𝑀),𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥]; otherwise we consider [𝑑𝑑𝑚𝑚𝑖𝑖𝑛𝑛, 𝑙𝑙]. We set
now 𝑙𝑙 as the mean value of the new interval and proceed in this way. We will compare in Section 5
both models, the original one (3) introduced in Peiró et al. (2020), and (5), our adaptation of the
Sayyady and Fathi (2016), when solving the CDP on the 100 previously reported instances.

4. Previous Heuristic Methods

Rosenkrantz et al. (2000) proposed the first heuristic for this problem, based on a binary search over
the distances in the problem data. Their method, called T1, has a performance guarantee of 2, which
means that for an instance with distances satisfying the triangle inequality, its optimal value divided
by the value of the solution obtained with T1 is lower than 2. This property makes the method
appealing from a theoretical perspective.

The T1 method can be summarized in a few steps as follows. It first sorts the elements in non-
increasing capacity order, and create a list called Site_List. Then, in a second step, it sorts the inter-
site distances in non-increasing order, eliminating duplicates. Let the resulting sorted list of distances
be sorted in the array 𝐷𝐷 such that 𝐷𝐷[1] > 𝐷𝐷[2] > … > 𝐷𝐷[𝑡𝑡]. Finally, the method carries out a binary
search over 𝐷𝐷 to find the index 𝑖𝑖 such that for 𝛼𝛼 = 𝐷𝐷[𝑖𝑖], the procedure 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑦𝑦_𝑇𝑇𝐺𝐺𝑦𝑦(𝛼𝛼,𝐵𝐵) returns
“success” and for 𝛼𝛼’ = 𝐷𝐷[𝑖𝑖 – 1] it returns “failure”. 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑑𝑑𝑦𝑦_𝑇𝑇𝐺𝐺𝑦𝑦, as its name indicates, is a greedy

M a r t í , e t a l . | 8

function that tries to create a solution of capacity larger than or equal to 𝐵𝐵, adding elements one by
one. It is worth mentioning that this greedy procedure is based on removing from the input graph all
the edges with a distance lower than 𝛼𝛼, thus obtaining a solution with a value larger than or equal to
this threshold. Note that the exact method that we proposed in Section 2 to solve this problem, is
based on the same principle.

Peiró et al. (2020) proposed a complex metaheuristic to obtain high quality solutions for the CDP. In
contrast to T1, their method, called SO, does not have a worst-case analysis, and theoretically speaking
it could perform arbitrarily bad. However, their statistical study on a collection of 100 public domain
instances proved that in practice it works remarkably well, obtaining much better results than T1. SO
is basically a GRASP (Resende et al., 2010) with a Strategic Oscillation post-processing (Glover and
Laguna, 1997).

Given the set 𝑉𝑉 with 𝑛𝑛 nodes, the constructive procedure of SO performs consecutive steps, adding
one node at a time, to produce a set (solution). As it is customary in the GRASP methodology, the
constructive method computes an evaluation, 𝐺𝐺𝑒𝑒𝑒𝑒𝑙𝑙(𝑖𝑖), for each candidate element 𝑖𝑖 to be added to
the partial solution under construction 𝑀𝑀. Restricted candidate list RCL contains the elements 𝑖𝑖 ∈ 𝑉𝑉 ∖
𝑀𝑀 with a relative good evaluation. At each step, the method randomly selects an element in RCL and
adds it to 𝑀𝑀 until the capacity constraint is satisfied.

To compute the evaluation function, the method first calculates, 𝑑𝑑𝑖𝑖 = ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀 for any element 𝑖𝑖 ∈
𝑉𝑉 ∖ 𝑀𝑀, and 𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥 = max

𝑖𝑖
𝑑𝑑𝑖𝑖. Similarly, from the capacity values 𝑐𝑐𝑖𝑖, it computes 𝑐𝑐𝑚𝑚𝑚𝑚𝑥𝑥 = max

𝑖𝑖
𝑐𝑐𝑖𝑖. To put

together distance and capacity values in a single expression, it uses the maximum values computed to
adjust them to the range [0,1] as follows:

𝐺𝐺𝑒𝑒𝑒𝑒𝑙𝑙(𝑖𝑖) = 𝑤𝑤
𝑑𝑑𝑖𝑖

𝑑𝑑𝑚𝑚𝑚𝑚𝑥𝑥
+ (1 −𝑤𝑤)

𝑐𝑐𝑖𝑖
𝑐𝑐𝑚𝑚𝑚𝑚𝑥𝑥

where the relative weight of distance and capacity, is empirically adjusted making 𝑤𝑤 = 0.6.

Once a feasible solution is constructed with the method above, the SO procedure improves it with a
VND method. As the authors stated, their VND method is limited since it only applies two
neighborhoods, 𝑁𝑁1(𝑀𝑀) and 𝑁𝑁2(𝑀𝑀). The first one exchanges one element in the solution with one
element out of it, while the second one performs a similar operation but exchanging two elements.
The method only performs feasible moves, which means that the capacity constraint is always
accomplished.

The VND implemented in SO performs a local search to improve the solution in 𝑁𝑁1(𝑀𝑀) and only resorts
to 𝑁𝑁2(𝑀𝑀) when the search is trapped in a local optimum. When an improving move is performed, the
method returns to the first neighborhood. When both neighborhoods have been explored and no
improvement is found, VND stops.

The SO method takes its name from the final strategic oscillation component that tries to improve the
solution obtained with GRASP and VND. In particular, SO adds extra elements to the solution, which
are actually unnecessary to fulfill the capacity constraint, and then removes other elements from the
resulting extended solution. The addition and removal of elements creates an oscillation pattern that
has a final objective to alter the solution structure in a beneficial way. The number of elements to be
added and removed depend on the capacity level, which is artificially increase on a 60% of 𝐵𝐵 according
to the computational testing presented.

M a r t í , e t a l . | 9

In the next section we propose a new heuristic method for this problem. The motivation of our current
development is to improve the results of SO, and to design advanced search mechanism to perform a
more efficient search of the solution space that can be applied to other optimization problems.

5. Scatter Search for the Capacitated Dispersion Problem

From the five SS methods described above, two of them are generic, and do not need to be customized
for the specific problem solved. In particular, the reference set update and the subset generation
method perform as described above. In this section, we describe our proposals to implement the other
three methods to the capacitated dispersion problem.

5.1 Diversification Generation Method

Consider an input graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), where 𝑉𝑉 is the set of 𝑛𝑛 nodes and 𝑐𝑐𝑖𝑖 the capacity of each node 𝑖𝑖,
𝐸𝐸 is the set of edges, and 𝑑𝑑𝑖𝑖𝑖𝑖 is the distance associated to edge (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸 (i.e., the distance between
elements 𝑖𝑖 and 𝑗𝑗 ∈ 𝑉𝑉).

The diversification generation method DGM is a construction procedure that performs steps to
produce a solution applying a semi-greedy algorithm. The set 𝑀𝑀 represents the partial solution under
construction. At each step, DGM selects a candidate element 𝑢𝑢∗ ∈ 𝑉𝑉 ∖ 𝑀𝑀 with a large capacity value
and a large distance to the elements in the partial solution 𝑀𝑀. Specifically, for each element 𝑖𝑖 ∈ 𝑉𝑉 ∖
𝑀𝑀, the algorithm first computes the minimum distance 𝑑𝑑𝑖𝑖 between element 𝑖𝑖 and the elements in 𝑀𝑀.

𝑑𝑑𝑖𝑖 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑑𝑑𝑖𝑖𝑖𝑖: 𝑗𝑗 ∈ 𝑀𝑀�

Then, it constructs a candidate list CL with the unselected elements 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 with a distance value
𝑑𝑑𝑖𝑖 within a fraction 𝛼𝛼 (0 ≤ 𝛼𝛼 ≤ 1) of the maximum distance 𝑑𝑑∗ = 𝑚𝑚𝑒𝑒𝑥𝑥{𝑑𝑑𝑖𝑖: 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀}.

𝐶𝐶𝐶𝐶 = {𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 ∶ 𝑑𝑑𝑖𝑖 ≥ 𝛼𝛼𝑑𝑑∗}

The method selects the element 𝑢𝑢∗ ∈ 𝐶𝐶𝐶𝐶 with the largest capacity value: 𝑐𝑐𝑢𝑢∗ = 𝑚𝑚𝑒𝑒𝑥𝑥𝑖𝑖∈𝐶𝐶𝐶𝐶 𝑐𝑐𝑖𝑖 and adds
it to 𝑀𝑀. DGM performs iterations in this fashion, updating the 𝑑𝑑𝑖𝑖-values and 𝐶𝐶𝐶𝐶 in each step, until the
sum of the capacities of the elements in 𝑀𝑀 is larger than or equal to 𝐵𝐵. At this stage, 𝑀𝑀 represents a
complete solution of the problem.

It is clear that a relatively large value of 𝛼𝛼 (close to 1) will make the candidate list 𝐶𝐶𝐶𝐶 relatively small,
and thus the selection of 𝑢𝑢∗ will be mainly guided by the objective function (i.e., selecting an element
far from the already selected). However, lower values of 𝛼𝛼 will create a larger 𝐶𝐶𝐶𝐶, and the selection of
the element in 𝐶𝐶𝐶𝐶 with the largest capacity will have the opportunity of selecting an element with a
relatively large capacity, thus being guided by both distance and capacity. The value of 𝛼𝛼 will be
empirically adjusted in our computational experience.

DGM starts by simultaneously selecting two elements to become part of 𝑀𝑀. In particular, the method
computes the largest distance in the graph

𝑑𝑑∗ = 𝑚𝑚𝑒𝑒𝑥𝑥�𝑑𝑑𝑖𝑖𝑖𝑖: (𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸�

and initializes the set 𝑀𝑀 by adding the two nodes at distance 𝑑𝑑∗. Then, it applies the steps described
above until the minimum capacity 𝐵𝐵 is satisfied, and a solution is completed. We now apply DGM to
create a second solution with same procedure but this time considering the second largest distance
in the graph and its associated endpoints (instead of the largest one considered in the first

M a r t í , e t a l . | 10

construction). Specifically, we initialize 𝑀𝑀 in the second construction with the two elements at a
distance equal to the second largest distance in the graph, and then apply several steps, computing
the 𝑑𝑑𝑖𝑖-values and 𝐶𝐶𝐶𝐶 in each one, until the solution is completed. DGM proceeds in this way,
initializing 𝑀𝑀 with different pairs of points and applying the steps above, until 𝑃𝑃𝑃𝑃𝑖𝑖𝑧𝑧𝐺𝐺 solutions have
been created to populate the set 𝑃𝑃.

5.2 Improvement Method

Given a solution 𝑀𝑀 obtained with the diversification generation method described in Section 5.1, its
objective function value is given by the expression

𝑓𝑓(𝑀𝑀) = min
𝑖𝑖,𝑖𝑖∈𝑀𝑀

𝑑𝑑𝑖𝑖𝑖𝑖.

This means that there are, at least two elements directly involved in the objective function
computation. Let 𝑑𝑑∗ be this objective function value (𝑑𝑑∗ = 𝑓𝑓(𝑀𝑀)) and 𝑖𝑖∗ and 𝑗𝑗∗ be the two elements
in 𝑀𝑀 at distance 𝑑𝑑∗ = 𝑑𝑑𝑖𝑖∗𝑖𝑖∗ that we call critical. To improve this solution, it is clear that we have to
replace the critical elements in 𝑀𝑀 for other elements at a larger distance. Note that in some cases we
may have more than two critical elements in a solution.

Our improvement method first selects one of the critical elements, 𝑗𝑗∗, and then the method computes
the candidate elements that can replace 𝑗𝑗∗. To do that, we first compute, for each element not in the
solution, 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀, its minimum distance 𝑑𝑑𝑖𝑖(𝑗𝑗∗) to the elements in the solution without considering
𝑗𝑗∗. We exclude 𝑗𝑗∗ from this calculation because it will not be part of the solution after the replacement.

𝑑𝑑𝑖𝑖(𝑗𝑗∗) = 𝑚𝑚𝑖𝑖𝑛𝑛 �𝑑𝑑𝑖𝑖𝑖𝑖: 𝑗𝑗 ∈ 𝑀𝑀 ∖ {𝑗𝑗∗}�

We consider a swap move in which 𝑗𝑗∗ is replaced in the solution with an element 𝑖𝑖 at a distance
𝑑𝑑𝑖𝑖(𝑗𝑗∗) > 𝑑𝑑∗. In this way, if 𝑀𝑀 only has two critical elements, we directly improve the objective
function value when applying this swap move. Otherwise, we would need to replace another critical
node (or even several nodes) to increase the minimum distance value in the solution. In any case, we
consider that we improve our strategic situation since we are somehow closer to a better solution, we
therefore perform the move.

To select the specific element 𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 that will replace 𝑗𝑗∗ in 𝑀𝑀, we first compute a set 𝐶𝐶 of good
candidates. Instead of considering the elements satisfying 𝑑𝑑𝑖𝑖(𝑗𝑗∗) > 𝑑𝑑∗, we are more selective, and
try to find an element even at larger distance than 𝑑𝑑∗ to 𝑀𝑀. We consider that if a move is able to
eliminate a critical element and increase the objective function value, then it is likely that a near-
critical element will become critical in subsequent iterations. This is why we try to replace 𝑗𝑗∗ with an
element at a significant larger distance to 𝑀𝑀 ∖ {𝑗𝑗∗} to avoid a marginal improvement and make a “big
change” in the solution value. We therefore create the candidate set as:

𝐶𝐶 = {𝑖𝑖 ∈ 𝑉𝑉 ∖ 𝑀𝑀 ∶ 𝑑𝑑𝑖𝑖(𝑗𝑗∗) > 𝛽𝛽𝑑𝑑∗}

where 𝛽𝛽 > 1 will be empirically adjusted. We select in 𝐶𝐶 the element 𝚤𝚤 ̅with the largest capacity value
and perform the move, thus obtaining a solution 𝑀𝑀′ = 𝑀𝑀 ∖ {𝑗𝑗∗} ∪ {𝚤𝚤}̅. If the capacity limit 𝐵𝐵 is not
satisfied, we select the second largest element in 𝐶𝐶 according to its capacity value 𝚤𝚤 ̿and also add it to
the solution, thus resulting in 𝑀𝑀′ = 𝑀𝑀 ∖ {𝑗𝑗∗} ∪ {𝚤𝚤,̅ 𝚤𝚤}̿. We keep in this fashion until the capacity limit is
satisfied. If the set 𝐶𝐶 is empty, or it does not have enough elements to satisfy the capacity limit after
the move, we reduce the value of the parameter 𝛽𝛽 by 0.1 (𝛽𝛽 = 𝛽𝛽 − 0.1) iteratively until 𝛽𝛽 equals 1. If

M a r t í , e t a l . | 11

at this stage, we were not able to replace 𝑗𝑗∗ with a sequence of elements 𝚤𝚤,̅ 𝚤𝚤,̿ … taken from 𝐶𝐶 with a
sum of capacities satisfying the capacity limit, then we have to resort to the other critical element 𝑖𝑖∗
and check if we can replace it. If we cannot replace any of the two critical elements, then the
improvement method stops; otherwise, it re-computes the critical elements of the new solution and
computes again the associated swap moves.

It must be noted that we do not consider here a standard swap move, as Peiró et al. (2020) did,
because we are replacing one element in the solution with an arbitrary number of elements. This
number is not set beforehand as in a standard neighborhood, but it is determined in each particular
swap depending on the capacity limit. It can be seen as a nested swap neighborhood dynamically
adjusted, which makes our method, called DynLS, especially efficient.

A typical way to nest neighborhoods in the metaheuristic literature is the Variable Neighborhood
Descent method (VND), which is the case of Peiró et al. (2020). However, DynLS implements a variant
with an important difference in the way moves are examined. The standard VND is based on exploring
a set of neighborhoods, say 𝑁𝑁𝑘𝑘(𝑀𝑀) for 𝑘𝑘 = 1, 2, … ,𝑘𝑘𝑚𝑚𝑚𝑚𝑥𝑥, that in our case would be the set of solutions
that are obtained when we exchange one element in solution 𝑀𝑀 with 𝑘𝑘 elements in 𝑉𝑉 ∖ 𝑀𝑀. Exchanges
in this context consist of replacing a selected element with unselected ones verifying the capacity
constraint. In a similar way than DynLS, in a VND method, we first identify the critical elements in the
solution 𝑀𝑀 and then perform a scan of 𝑁𝑁1(𝑀𝑀) in search for a swap of a critical node with an element
in 𝑉𝑉 ∖ 𝑀𝑀. If this swap results in a feasible move, satisfying the capacity limit B, then it performs the
move. If there is no feasible move in 𝑁𝑁1(𝑀𝑀), then the method resorts to 𝑁𝑁2(𝑀𝑀) to find a feasible
exchange of the critical element with two elements in 𝑉𝑉 ∖ 𝑀𝑀, and so on. In DynLS we do not scan the
entire 𝑁𝑁1(𝑀𝑀) before exploring 𝑁𝑁2(𝑀𝑀) as VND does, but on the contrary, we only explore the most
promising move in 𝑁𝑁1(𝑀𝑀), and if it does not result in a feasible solution, the method directly tries with
a move in 𝑁𝑁2(𝑀𝑀) linked with it. This can also be considered a compound move (Glover and Laguna,
1997), often called variable depth methods, constructed from a series of simpler components.

5.3 Combination Method

We apply a generalized combination method called Path Relinking (Laguna and Martí, 2003). This
approach generates new solutions by exploring trajectories or paths that connect high-quality
solutions, by starting from one of these solutions, called an initiating solution, and generating a path
towards the other solution, called guiding solution. This is accomplished by selecting moves that
introduce attributes contained in the guiding solutions. Examples of such attributes include edges and
nodes of a graph, sequence positions in a schedule, and values of variables and functions of variables.

Path Relinking (PR) can be considered an extension of the Combination Method of scatter search.
Instead of directly producing a new solution when combining two or more original solutions, PR
generates paths between and beyond the selected solutions in the neighborhood space. The
character of such paths is easily specified by reference to solution attributes that are added, dropped
or otherwise modified by the moves executed.

As shown in Figure 3 (taken from Laguna and Martí, 2003), two solutions A and B may be already
connected with a path, depicted with a solid line, representing that the exploration that originated
them performed a sort of local exploration that went from A to B through some intermediate solutions
(i.e, A and B are linked with that path). The PR method consists in creating a new path, represented in
the figure with a dotted line, to relink these solutions in search for a better one (depicted with a dark

M a r t í , e t a l . | 12

circle in Figure 3 for a minimization problem). It may also be that A and B were not previously joined
by a search path, as it is our case here where we generate solutions with the method described in
Sections 5.1 and 5.2, but in any case PR generates a path of solutions joining them.

Figure 3. Path Relinking diagram.

Given two solutions of the CDP, 𝑀𝑀 and 𝑁𝑁, the path relinking procedure starts with the first solution
𝑀𝑀, and gradually transforms it into the second one 𝑁𝑁. To do that, the method basically swaps out
elements selected in 𝑀𝑀 with elements selected in 𝑁𝑁. Note that we are facing the same situation
regarding the capacity that we describe above with the local search. In particular, when we replace
one element in 𝑀𝑀 we may obtain an unfeasible solution, and we have to consider the addition of
further elements until the capacity constraint is satisfied. Elements can be replaced based either on
their distance or their capacity, we therefore propose to create two paths from 𝑀𝑀 to 𝑁𝑁, the first one,
𝑃𝑃𝑅𝑅𝑑𝑑(𝑀𝑀,𝑁𝑁), based on distance values, and the second one 𝑃𝑃𝑅𝑅𝑐𝑐(𝑀𝑀,𝑁𝑁), based on the capacities, thus
implementing a Multiple Path Relinking strategy.

In line with what we do in the improvement method, in 𝑃𝑃𝑅𝑅𝑑𝑑(𝑀𝑀,𝑁𝑁) we first compute the critical
elements at a distance 𝑑𝑑∗ = 𝑓𝑓(𝑀𝑀), and we consider to remove one of them 𝑗𝑗∗ selected at random
(from those critical elements). Then, for each element in 𝑁𝑁 not in 𝑀𝑀, 𝑖𝑖 ∈ 𝑁𝑁 ∖ 𝑀𝑀, we compute its
minimum distance 𝑑𝑑𝑖𝑖(𝑗𝑗∗) to the elements in the solution without considering 𝑗𝑗∗. Applying a greedy
strategy based on the distance, we select the element 𝑖𝑖∗ with the maximum distance. In mathematical
terms:

𝑑𝑑𝑖𝑖∗(𝑗𝑗∗) = max
𝑖𝑖∈𝑁𝑁∖𝑀𝑀

𝑑𝑑𝑖𝑖(𝑗𝑗∗)

We replace now 𝑗𝑗∗ with 𝑖𝑖∗ in 𝑀𝑀. If the resulting solution satisfies the minimum required capacity B,
then we have an intermediate feasible solution. Otherwise, we add to 𝑀𝑀 more elements from 𝑁𝑁 ∖𝑀𝑀
until it is satisfied. Following the distance criterion, we would select the second largest distance
element, and proceed in this fashion. Let 𝑝𝑝𝐺𝐺𝑑𝑑1(𝑀𝑀,𝑁𝑁) be the feasible solution obtained.

We perform now a second step of 𝑃𝑃𝑅𝑅𝑑𝑑(𝑀𝑀,𝑁𝑁) by swapping elements in 𝑝𝑝𝐺𝐺𝑑𝑑1(𝑀𝑀,𝑁𝑁). Specifically, we
apply the same mechanism described above to replace a critical element in this first intermediate
solution, with one or more elements in 𝑁𝑁 ∖ 𝑝𝑝𝐺𝐺𝑑𝑑1(𝑀𝑀,𝑁𝑁), thus obtaining a feasible intermediate second
solution 𝑝𝑝𝐺𝐺𝑑𝑑2(𝑀𝑀,𝑁𝑁). We proceed in this way until we reach the guiding solution 𝑁𝑁.

It is clear that the neighborhood employed here is very similar to the one in the improvement method.
Note however, that we are restricting the exploration to add only elements present in the guiding
solution. As described in Glover and Laguna (1997), in PR the objective function is subordinate to the
inclusion of attributes of the guiding solution.

A

B

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Moves

M a r t í , e t a l . | 13

We consider a second path to join solutions , 𝑀𝑀 and 𝑁𝑁. In particular, we remove and add now elements
based on their capacity. In 𝑃𝑃𝑅𝑅𝑐𝑐(𝑀𝑀,𝑁𝑁) we first compute the element 𝑗𝑗∗ with the lowest capacity, and
replace it with the element 𝑖𝑖∗ ∈ 𝑁𝑁 ∖𝑀𝑀 with the largest capacity in that set. If the resulting solution is
not feasible, we keep adding elements from 𝑁𝑁 ∖𝑀𝑀 to this partial solution until it satisfies the capacity
limit. These elements are now selected according to their capacity, where the one with the largest
capacity comes first, and so on. Let 𝑝𝑝𝐺𝐺𝑐𝑐1(𝑀𝑀,𝑁𝑁) this first intermediate feasible solution. We perform
now the second step, swapping out the lowest capacity element in 𝑝𝑝𝐺𝐺𝑐𝑐1(𝑀𝑀,𝑁𝑁) with one or more
elements with the largest capacity in 𝑁𝑁 ∖ 𝑝𝑝𝐺𝐺𝑐𝑐1(𝑀𝑀,𝑁𝑁), thus obtaining the second intermediate solution
𝑝𝑝𝐺𝐺𝑐𝑐2(𝑀𝑀,𝑁𝑁) and so on until the path reaches 𝑁𝑁.

The two paths generated above applied a greedy strategy. The first one the distance, and the second
one the capacity. We can therefore say that we are implementing a Multiple Greedy Path Relinking.
Resende et al. (2010) described other strategies to create such paths. For example, in Greedy
Randomized Path Relinking, the authors applied the restricted randomization selection, typical in
GRASP, to the selection process to generate the intermediate solutions. We do not explore that variant
here, but it may be worth to investigate it as well other extensions of PR as exterior, backward,
truncated or evolutionary PR. All these alternatives involve trade-offs between computation time and
solution quality.

5.4 Overall Scatter Search Method

We consider two versions of Scatter Search, SS1 and SS2. SS1 is designed to be competitive in running
time and it only applies one complete iteration (i.e., the MaxIter parameter shown in Figure 2 is set to
1). In short, SS1 consists of four steps. In the first step it applies the constructive method DGM
described in Section 5.1 and generates 𝑃𝑃𝑃𝑃𝑖𝑖𝑧𝑧𝐺𝐺 solutions. Since this method relies on the parameter 𝛼𝛼,
we denote it as 𝐷𝐷𝐺𝐺𝑀𝑀(𝛼𝛼). In the second step, the improvement method DynLS is applied to each
constructed solution. Since this method depends on the parameter 𝛽𝛽, we call it 𝐷𝐷𝑦𝑦𝑛𝑛𝐶𝐶𝑃𝑃(𝛽𝛽). In the
third step, SS1 populates the reference set, RefSet, with 𝑏𝑏 solutions selected from the set of 𝑃𝑃𝑃𝑃𝑖𝑖𝑧𝑧𝐺𝐺
improved solutions (we refer as 𝑃𝑃 to this set). To do that, it first selects the best 𝑏𝑏/2 of them in terms
of the objective function. The Reference Set Update method specifies that the remaining 𝑏𝑏/2 solutions
are selected according to their diversity, and it is therefore necessary to define a distance measure
between two solutions of the problem. Given two solutions of the CDP, 𝑀𝑀 and 𝑁𝑁, we define its
distance, 𝛿𝛿(𝑀𝑀,𝑁𝑁), as the number of elements that they do not share. In mathematical terms,
𝛿𝛿(𝑀𝑀,𝑁𝑁) = |𝑀𝑀| + |𝑁𝑁| − 2|𝑀𝑀 ∩𝑁𝑁|. We then use this distance measure to select 𝑏𝑏/2 solutions to
complete the reference set.

We look for a solution in 𝑃𝑃 that is not currently in the reference set and that maximizes the minimum
distance 𝛿𝛿 to all the solutions currently in the reference set. If two or more solutions have the same
distance value 𝛿𝛿, we break the tie by selecting the one with the best objective function value. After
including in the RefSet the solution at maximum distance, we update the distance values and repeat
this selection 𝑏𝑏/2 times. Finally, in the fourth step, SS1 applies Path Relinking to all the pairs in the
RefSet (i.e., it is applied to the (𝑏𝑏2 − 𝑏𝑏)/2 pairs). Each application of Path Relinking returns the best
solution found in the path as the output of the method. In our implementation of Multiple Path
Relinking, we actually generate two paths for each pair of solutions, so we consider the best solution
of the two paths as this output. We call MPR to the set of (𝑏𝑏2 − 𝑏𝑏)/2 solutions obtained at the end

M a r t í , e t a l . | 14

of the process, where the best solution in this set is the final output of SS1. Figure 4 summarizes the
entire method.

1. Generate 𝑃𝑃𝑃𝑃𝑖𝑖𝑧𝑧𝐺𝐺 solutions with 𝐷𝐷𝐺𝐺𝑀𝑀(𝛼𝛼)
2. Create 𝑃𝑃 with the 𝑃𝑃𝑃𝑃𝑖𝑖𝑧𝑧𝐺𝐺 solutions improved with 𝐷𝐷𝑦𝑦𝑛𝑛𝐶𝐶𝑃𝑃(𝛽𝛽)
3. Create the RefSet with the best 𝑏𝑏/2 solutions in 𝑃𝑃

a. Select the best 𝑏𝑏/2 solutions in 𝑃𝑃 in terms of quality
b. Select the best 𝑏𝑏/2 solutions in 𝑃𝑃 in terms of diversity

4. Apply Path Relinking to each pair of solutions in the RefSet

Figure 4. SS1 outline.

It is clear in Figure 4 that the SS1 method has three parameters: 𝛼𝛼,𝛽𝛽, and 𝑏𝑏. We will empirically adjust
them in the next section. Although, not explicit in this figure, SS1 returns as the output the best
solution obtained after the application of the Path Relinking (i.e., the best solution in MPR).

SS2 starts in the same way than SS1, applying the same four steps, but after them, it performs further
iterations as shown in Figure 5. Note that SS2 is designed to be competitive in quality, running for
longer CPU time than SS1. Solutions in RefSet are now ordered according to quality, where the best
solution is the first one in the list. After the four steps outlined in Figure 4, the Reference Set Update
Method is applied again in SS2. In step 5, the method builds a new RefSet with the best solutions,
according to the objective function value, from the current RefSet and the set MPR. This set contains
the solutions obtained with the application of the Path Relinking (one for each pair of solutions). If
RefSet changes, the NewSolutions flag is kept with the TRUE value, indicating that at least one new
solution has been inserted in the reference set. Otherwise, it is switched to FALSE in Step 6. SS2
performs more steps as long as new solutions become part of the RefSet. Note however that Path
Relinking is only applied to pairs of solutions not combined in previous iterations. SS2 terminates after
all pairs of solutions have been subjected to the path relinking method and none of the new solutions
are admitted to RefSet.

1. Generate 𝑃𝑃𝑃𝑃𝑖𝑖𝑧𝑧𝐺𝐺 solutions with 𝐷𝐷𝐺𝐺𝑀𝑀(𝛼𝛼)
2. Create 𝑃𝑃 with the 𝑃𝑃𝑃𝑃𝑖𝑖𝑧𝑧𝐺𝐺 solutions improved with 𝐷𝐷𝑦𝑦𝑛𝑛𝐶𝐶𝑃𝑃(𝛽𝛽)
3. Create the RefSet with the best 𝑏𝑏/2 solutions in 𝑃𝑃

a. Select the best 𝑏𝑏/2 solutions in 𝑃𝑃 in terms of quality
b. Select the best 𝑏𝑏/2 solutions in 𝑃𝑃 in terms of diversity
c. NewSolutions = True

While (NewSolutions)

4. Apply Path Relinking to each pair of new solutions in RefSet
5. Update RefSet with the best solutions obtained
If RefSet has not changed

6. NewSolutions = False

Figure 5. SS2 outline.

M a r t í , e t a l . | 15

6. Computational Experiments

This section describes the computational experiments that we performed to test the effectiveness and
efficiency of the procedures discussed above. The Scatter Search algorithm (described in Section 5)
was implemented in Java, the previous methods, T1 and SO (described in Section 4), were
implemented in C, and the mathematical programming model (Section 2) was solved with Gurobi. All
experiments were conducted on a 2.8 Ghz Intel Core i7 processor with 8 GB RAM. We first describe in
Section 6.1 the benchmark employed to test the methods, then the preliminary experimentation
(Section 6.2) to set the values of key search parameters. In the last two subsections we describe the
competitive testing, first in Section 6.3 the mathematical models (our proposal versus the previous
integer model), and the comparison of heuristics in Section 6.4.

6.1 Problem instances

For the experimentation, we use the public-domain MDPLIB (Martí and Duarte, 2010) available at
http://grafo.etsii.urjc.es/optsicom, which contains several data sets previously employed in different
studies on diversity problems, and adapted to the CDP by Peiró et al. (2020).

Name 𝒏𝒏 Capacity
parameter

Number of
instances

GKD-b2 50, 150 0.2 20
GKD-b3 50, 150 0.3 20
GKD-c2 500 0.2 10
GKD-c3 500 0.3 10
SOM-a2 50 0.2 10
SOM-a3 50 0.3 10
MDG-b2 500 0.2 10
MDG-b3 500 0.3 10

Table 1. Sets of instances.

In particular, for each original instance these authors randomly generate the capacity value of each
node in the range [1, 1000]. Then, they compute the sum of all capacities and set 𝐵𝐵 as this sum
multiplied by a factor of 0.2 and 0.3 respectively, thus creating two instances for each original one.
The benchmark for the Capacitated Diversity Problem thus consists of the following 100 instances
summarized in Table 1. The benchmark collects the following three sets

GKD: This data set, originally proposed by Glover et al. (1998), contains matrices for which the
values were calculated as the Euclidean distances from randomly generated points with coordinates
in the 0 to 10 range.: Martí et al. (2010) generated the GKD-b medium size instances with values of
25 ≤ 𝑛𝑛 ≤ 150. Duarte and Martí (2007) generated the GKD-c large instances with 𝑛𝑛 = 500.

SOM: This data set consists of 70 matrices with random numbers between 0 and 9 generated from
an integer uniform distribution. Martí et al. (2010) created these instances to solve the maximum
diversity problem.

MDG: This data set was generated by Duarte and Martí (2007), and used in Gallego et al. (2009) and
Palubeckis (2007). The MDG-b set contains instances with real numbers in the range [0, 1000]. We

M a r t í , e t a l . | 16

consider 10 instances with 𝑛𝑛 = 500, for which we create two of them with the capacity factor set as
0.2 and 0.3 as described above.

6.2 Analysis of heuristic strategies

In this section, we set appropriate values for the parameters in the search strategies of our heuristics.
To avoid the overtraining of the methods, we consider a subset of 30 representative instances in this
preliminary experimentation. For each experiment, we report the following performance measures:
Average objective function (Value), average deviation with respect to the best solution found in the
experiment (DevB), number of best solutions found in the experiment (#Best), and computing time in
seconds (Time). Note that both DevB and #Best refer to the solutions found within the experiment
and not the best solutions known for these problems.

In our first preliminary experiment we study the parameter 𝛼𝛼 in the constructive method DGM
described in Section 5.1. In particular, we test three values of this parameter: 0.25, 0.5, and 0.75, and
we generate 100 solutions with each value on each instance, and report average values. Additionally,
we consider a version (Rnd) in which the value is randomly generated in each construction in the range
[0, 1]. The results, shown in Table 2, indicate that this random version performs better than the others
(see for example the number of best solutions). We therefore set our constructive method with this
strategy in the rest of the experimentation.

 𝜶𝜶 Value DevB #Best Time
 Rnd 48.76 0.24% 25 0.83
 0.25 48.28 0.70% 21 0.89
 0.5 45.51 2.55% 17 0.79
 0.75 42.61 5.48% 13 0.73

Table 2. Parameter in constructive method 𝛼𝛼.

In our second preliminary experiment, we study the parameter 𝛽𝛽 in the improvement method DynLS
(Section 5.2), testing three values of this parameter: 1, 1.25, and 1.5, and a random version (Rnd) in
which the value is randomly selected in [1, 1.5] at each iteration.

 𝜷𝜷 Value DevB #Best Time
 Rnd 49.86 0.61% 20 1.40
 1 50.07 0.57% 24 1.43
 1.25 49.98 0.55% 19 1.30
 1.5 49.58 1.20% 12 1.45

Table 3. Parameter in improvement method 𝛽𝛽.

The statistics collected to analyze the outcomes of this experiment, shown in Table 3, are not
conclusive. As a matter of fact, the non-parametric Friedman test indicates that the differences are
not significant. We represent in a box-and-whisker plot (Figure 6) the deviation values of each variant
on each instance to further analyze them.

M a r t í , e t a l . | 17

Figure 6. Box-and-whisker plot of DynLS with different 𝛽𝛽 values.

Figure 6 indicates that DynLS with 𝛽𝛽 = 1 seems to perform slightly better than the other variants,
since the box of the diagram is located in the 0% deviation. Considering that this variant is able to
obtain the largest number of best solutions (24 as shown in Table 3), we set 𝛽𝛽 = 1 for the rest of our
experimentation.

In our third preliminary experiment, we analyze the size of the reference set, 𝑏𝑏. This is a critical search
parameter since the scatter search method heavily relies on this set (it performs all the combinations
applying path relinking in our case). Table 4 reports the results obtained of applying SS1 with three
values of 𝑏𝑏: 5, 10, and 15.

 𝒃𝒃 Value DevB #Best Time
 5 50.84 2.92% 22 1.32
 10 51.38 1.04% 24 1.60
 15 51.78 0.12% 29 2.28

Table 4. Size of the RefSet 𝑏𝑏.

We can see in Table 4 that as expected, the larger the 𝑏𝑏 value the better the result. However, running
times also increase with the size of 𝑏𝑏, and therefore we have to achieve a balance between quality
and CPU time. We then set 𝑏𝑏 = 5 in SS1, since this variant is meant to be competitive in time, and 𝑏𝑏 =
15 in SS2, since this variant is designed to be competitive in quality.

In our final experiment we evaluate the contribution of each element to the quality of the final solution
of our scatter search algorithm. We record the objective function value of the best solution obtained
with the diversification generation method (DGM), which is the best value in P. Then, we apply the
improvement method to these solutions, and record the best value obtained (DynLS), which is the
best value in RefSet. Finally, we apply the Path Relinking combination method, to the solutions in
RefSet and record in PR the best value resulting from all these combinations. This value is the output
of the scatter search algorithm SS1 that only performs one global iteration. When we update the
solutions in the RefSet and apply Path Relinking again to its solutions repeatedly, we obtain the
solution of the SS2 method, recorded here in Final output. Figure 7 reports the average values of the
four variables, DGM, DynLS, PR, and Final output, over our set of instances.

M a r t í , e t a l . | 18

Figure 7. Contribution of search elements.

Figure 7 shows that the diversification generation method, DGM, obtains an average value of 6.0%
deviation with respect to the best known solution, which corresponds to an objective function value
of 48.8 over the 30 instances in our set. Then, the improvement method is able to raise this value up
to 50.1 (represented as a deviation of 3.5% in the figure), which is further improved by the path
relinking, obtaining an average of 51.4 (1.0%). Further iterations of the path relinking method
marginally improve solutions, achieving a final average result of 51.9, which matches the best known
solutions.

6.3 Mathematical models

In this section we compare the previous mathematical model by Peiró et al. (2020), called
CDP_standard, with our adaptation of the model by Sayyady and Fathi (2016) from the Node Packing
problem to the CDP, called CDP_NodePacking. Table 5 summarizes the results obtained with Gurobi
with each model on each instance for a maximum of 3,600 seconds. This table reports the average
lower bound (LB) the average upper bound (UB), and the average running time in seconds (CPU) on
each data set of 10 instances.

 CDP_Node Packing CDP_standard
B factor Set n LB UB CPU LB UB CPU
 GKD 50 112.3 112.3 0.1 112.3 112.3 2.0
 GKD 150 118.7 118.7 0.6 118.7 118.7 669.9
0.2 GKD 500 9.4 9.4 5.7 6.8 20.5 3600.2
 SOM 50 4.1 4.1 0.0 4.1 4.1 1.3
 MDG 500 0.0 125.0 3643.5 11.5 973.8 3600.2
 GKD 50 97.8 97.8 0.0 97.8 97.8 2.5
 GKD 150 108.1 108.1 0.3 108.1 108.2 1519.5
0.3 GKD 500 8.4 8.4 1.4 4.9 22.8 3600.1
 SOM 50 2.1 2.1 0.0 2.1 2.1 1.0
 MDG 500 3.1 60.2 3650.9 0.9 992.0 3600.1

Table 5. Mathematical models.

Results in Table 5 clearly indicate the superiority of the new model based on the node packing, in
terms of the number of instances that it is able to solve and the CPU time. Gurobi with the new

M a r t í , e t a l . | 19

formulation is able to solve all the small instances (𝑛𝑛 = 50) and medium instances (𝑛𝑛 = 150) in our
testbed in less than 1 second. Additionally, it is able to solve some of the large instances (those in the
GKD set with 𝑛𝑛 = 500) in a few seconds. The only instances in which it encounters difficulties are the
10 large instances (𝑛𝑛 = 500) in the MDG set, for which it has a relatively large gap (difference between
the upper and lower bounds). In all the sets, the previous formulation, CDP_standard, exhibits
significant longer running times (in several orders of magnitude). The most important difference in
the performance of both models can be found in the large GKD sets, for which the previous
formulation cannot solve any of its instances to optimality in 3,600 seconds and the new formulations
is able to solve all of them in few seconds.

The conclusion of this first experiment is that the GKD instances are easy to solve while the MDG are
the most challenging for the CDP. This is very interesting since the recent study by Parreño et al. (2020)
concludes that the MDG are the most representative set of instances in diversity problems, and they
recommend to use this set when comparing algorithms. We will use the entire benchmark to compare
heuristics for the sake of completeness, although from a practical point of view, heuristics are needed
to target MDG instances.

6.4 Competitive testing of heuristics

In this final experiment we employ the entire set of 100 instances to compare the four heuristics for
this problem. Specifically, we compare T1 (Rosenkrantz et al., 2000), SO (Peiró et al., 2020), and our
two methods, SS1(𝑏𝑏 = 5) and SS2 (𝑏𝑏 = 15). Since we obtained the optimal solutions in most of the
instances (with the exception of the MDG set with n=500), we report now the average percentage
deviation with respect to the best known solution, DevB, and with respect to the optimal solution,
DevO, when it is available. Note that DevB and DevO are not directly comparable because they are
computed over different sets. Table 6 summarizes the results of this experiment over the entire
benchmark of instances, and Table 7 reports the results on each set of 10 instances.

 Method Value DevB DevO Time
 T1 47.62 21.5% 16.7% 19.16
 SO 49.964 13.4% 9.6% 17.07
 SS1 52.25 1.6% 1.8% 1.55
 SS2 52.76 0.1% 1.4% 2.30

Table 6. Comparison of heuristics methods.

Table 6 shows that our two new methods, SS1 and SS2, outperform the previous methods, T1 and SO.
Even our fast version SS1, is able to improve upon both previous methods, and just using a small
fraction of their times. In particular, SS1 employs 1.55 seconds on average, while the two previous
heuristics employ close to 20 seconds. In that time, SS1 is able to obtain solutions on a 1.6% deviation
from the best known, while T1 and SO obtain solutions on a 21.5% and 13.4% deviation respectively.
On the other hand, our longer version SS2, as compared with SS1, exhibits remarkable results, with a
0.1% deviation with respect to the best known results. As a matter of fact, this method obtains the
best known solution in 96 out of the 100 instances in our study, and still employs on average significant
lower times than the previous heuristics. Regarding the optimal solutions known, SS2 also obtains a
small deviation (1.4% on average).

 T1 SO SS1 SS2
 Value DevB DevO Cpu Value DevB DevO Cpu Value DevB DevO Cpu Value DevB DevO Cpu

 GKD 50 105.69 6.4% 6.4% 0.01 112.33 0.0% 0.0% 0.01 111.72 1.1% 1.1% 0.02 111.72 1.1% 1.1% 0.01
 150 113.24 4.0% 4.9% 0.10 115.15 2.2% 3.2% 0.40 117.46 0.1% 1.1% 0.11 117.62 0.0% 1.0% 0.13

0.2 500 6.0 35.0% 36.6% 47.00 7.5 18.6% 20.6% 18.50 9.2 0.0% 2.4% 2.87 9.2 0.0% 2.4% 3.60
 SOM 50 3.6 12.0% 12.0% 0.00 4.1 0.0% 0.0% 0.00 4.1 0.0% 0.0% 0.00 4.1 0.0% 0.0% 0.00

 MDG 500 35.4 26.4% - 48.60 41.2 14.5% - 64.70 43.5 9.6% - 2.37 48.1 0.0% - 5.21
 GKD 50 92.5 5.6% 5.6% 0.00 96.9 0.7% 0.8% 0.10 97.6 0.2% 0.3% 0.02 97.6 0.1% 0.2% 0.01
 150 104.6 2.5% 3.5% 0.20 103.4 3.5% 4.4% 0.80 107.0 0.0% 1.0% 0.15 106.9 0.2% 1.2% 0.19

0.3 500 5.1 38.2% 39.4% 47.10 6.5 20.8% 22.5% 40.90 8.2 0.0% 2.0% 5.10 8.2 0.0% 2.0% 5.80
 SOM 50 1.5 23.3% 25.0% 0.00 1.5 23.3% 25.0% 0.00 1.9 3.3% 6.7% 0.00 2.0 0.0% 3.3% 0.01

 MDG 500 8.63 61.1% - 48.60 11.09 50.2% - 45.30 21.8 1.8% - 4.89 22.21 0.0% - 8.03
 47.62 21.5% 16.7% 19.16 49.964 13.4% 9.6% 17.07 52.247 1.6% 1.8% 1.55 52.761 0.1% 1.4% 2.30

• Running times in Table 7 represented as 0.00 mean lower than 0.001.

Table 7. Comparison of heuristic methods over each set of instances.

Table 7 reports the same results than Table 6, but here disaggregated by type and size of instance. The first three columns specify it: capacity factor, name,
and size, respectively. The first two rows in Table 7 depict the name of the heuristic and the statistics reflected. This table has 10 rows of results, each one
reporting the statistics of the four heuristics on each set with 10 instances. Additionally, the bottom row collects the overall average results depicted in Table
6. In bold font we highlight the best average values obtained. They clearly show the poor performance of T1 and, on the other hand, the remarkable results
obtained with SS2. It must be mentioned however, that T1 has a bounded performance guarantee of 2 (i.e, it is an approximate heuristic), which theoretically
gives this method an added value; although in practice it does not perform very well.

If we compare the performance of the heuristics on the different sets of instances, we can find important differences. As expected, small instances (with 50
elements) are relatively easy to solve with all the heuristic methods (with the exception of T1). On the contrary, large instances (with 500 elements) are
difficult to solve by heuristics, and it is there where our proposals, SS1 and SS2, emerge as the clear winners. Specifically, if we consider the set 0.3-GKD-500,
we can see an average deviation (DevB) of 38.2%, 20.8%, 0.00%, and 0.0% for T1, SO, SS1, and SS2 respectively. Similarly, in the set 0.3-MDG-500 these
respective deviations are 61.1% (T1), 50.2% (SO), 1.8% (SS1), and 0.0% (SS2). Note that these are the instances in which we need to apply a heuristic, because
in the small and medium ones our mathematical model is able to obtain the optimal solutions in moderate running times.

We applied the non-parametric Friedman test for multiple correlated samples to the solutions
obtained by each of the four methods. This test computes, for each instance, the rank value of each
method according to solution quality (where rank 4 is assigned to the best method and rank 1 to the
worst one). Then, it calculates the average rank values of each method across all the instances solved.
If the averages differ greatly, the associated 𝒑𝒑-value or significance will be small. The resulting 𝒑𝒑-
value< 0.00001 obtained in this experiment clearly indicates that there are statistically significant
differences among the four methods tested. Additionally, we apply the Sign test for a pairwise
comparison between the best previous heuristic, SO, and our fast method, SS1. This test computes
the number of instances on which an algorithm supersedes another one. The resulting 𝒑𝒑-value =
0.00004 confirms that SS1 outperforms SO (a similar result is obtained when comparing SO and SS2).

Figure 8. Deviation of heuristics in each instance set.

To easily visualize the comparative results in Table 7, we represent in Figure 8 the average percentage
deviation of each of the four heuristics, T1, SO, SS1, and SS2, in each of the 10 instance sets. These
sets are represented in the 𝒙𝒙-axis. For example, the first one 0.2.GKD.50 collects the 10 instances in
the GKD set with size 𝒏𝒏 = 𝟓𝟓𝟎𝟎 and capacity coefficient equal to 0.2. This diagram shows that SS1 and
SS2 consistently outperform the previous methods in all the sets, with the minor exception of the first
set, in which SO obtains the best results.

Conclusions
We had a twofold goal for this work, to experiment with the hybridization of PR and SS and, in

the process, to develop a state-of-the-art memetic algorithm for the capacitated dispersion problem
(CDP). We believe that we have achieved our goals. The design of our method is simple but effective,
as shown in the computational experience comparing it with the previous methods.

In this paper, we also propose an improved mathematical programming model for the CDP. The model
is based on a related problem and, although it has to be solved iteratively to obtain a solution of our
problem, it turns out to present a remarkable performance in practice, obtaining the optimal solutions
of both small and medium size instances.

M a r t í , e t a l . | 22

The comparison between the best heuristic solutions obtained so far and the optimal values reveals
that there is still a small room for improvement in the metaheuristic arena. We hope that our study
triggers the interest of other researchers to follow this line of work on this interesting and challenging
problem.

Acknowledgement
This research has been partially supported by the Spanish Ministry with grant ref. PGC2018-0953322-
B-C21/MCIU/AEI/FEDER-UE.

References

Cotta, C., Mathieson, L., Moscato, P., Memetic Algorithms, In: Handbook of Heuristics (Martí, Pardalos,
and Resende eds.), 607-638, Springer, Heidelberg, 2018.

Duarte A., Martí R., Tabu search and GRASP for the MDP. European Journal of Operational Research
178, 71-84, 2007.

Duarte, A., J. Sánchez-Oro, M. Resende, F. Glover, R. Martí. GRASP with Exterior Path Relinking for
Differential Dispersion Minimization, Information Sciences 296, 46-60, 2015.

Feo, T., Resende, M. G. C. Greedy randomized adaptive search procedures, Journal of Global
Optimization 6, 109-133, 1995.

Gallego, M., A. Duarte, M. Laguna, R. Martí. Hybrid heuristics for the maximum diversity problem,
Computational Optimization and Applications 44(3), 411-426, 2009.

Ghosh, J. B. Computational aspects of the maximum diversity problem, Operations Research Letters,
19, 175–181, 1996.

Glover, F. Heuristics for Integer Programming Using Surrogate Constraints, Decision Sciences 8, 156-
166, 1977.

Glover, F., Laguna, M. Tabu Search, Kluwer, Norwell, MA, 1997.

Glover, F. A Template for Scatter Search and Path Relinking, in Artificial Evolution, Lecture Notes in
Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald , M. Schoenauer and D. Snyers (Eds.),
Springer, pp. 13-54, 1998.

Glover, F., C. C. Kuo, K.S. Dhir. A discrete optimization model for preserving biological diversity, Applied
Mathematical Modeling 19, 696-701, 1995.

Glover, F., C. C. Kuo, K. S. Dhir. Heuristic algorithms for the maximum diversity problem, Journal of
Information and Optimization Sciences 19(1), 109-132, 1998.

Kuo, C. C., F. Glover, K. S. Dhir. Analyzing and modeling the maximum diversity problem by zero-one
programming, Decision Sciences 24, 1171–1185, 1993.

Laguna, M. and R. Martí. Scatter Search: Methodology and Implementations in C, Kluwer Academic
Publishers: Boston, 2003.

Martí, R., A. Duarte. The MDPLIB at Optsicom, http://grafo.etsii.urjc.es/optsicom/, 2010.

Martí, R., M. Gallego, A. Duarte, E. Pardo. Heuristics and Metaheuristics for the maximum diversity
problem, Journal of Heuristics 19 (4), 591-615, 2013.

M a r t í , e t a l . | 23

Martí, R., M. Gallego, A. Duarte. A Branch and Bound Algorithm for the Maximum Diversity Problem,
European Journal of Operational Research 200(1), 36-44, 2010.

Martí, R., M. Laguna and V. Campos. Scatter Search vs. Genetic Algorithms: An Experimental
Evaluation with Permutation Problems, Metaheuristic Optimization Via Adaptive Memory and
Evolution: Tabu Search and Scatter Search, C. Rego and B. Alidaee (eds.), Norwell, MA: Kluwer
Academic Publishers, pp. 263-282, 2005.

Martí, R., Laguna, M., Glover, F. Principles of Scatter Search. European Journal of Operational Research
169, 359-372, 2006.

Martínez-Gavara, A., V. Campos, M. Laguna, R. Martí. Heuristic Solution Approaches for the Maximum
MinSum Dispersion Problem, Journal of Global Optimization 67(3), 671-686, 2017.

Neri, F., C. Cotta, Memetic Algorithms and Memetic Computing Optimization: A Literature Review,
Swarm and Evolutionary Computation, Elsevier, Volume 2, pages 1-14, February 2012

Neri, F., C. Cotta, A Primer on Memetic Algorithms, Handbook of Memetic Algorithms, Chapter 4, Neri,
Cotta and Moscato (Eds.), Studies in Computational Intelligence, Vol. 379, 43-54, Springer, 2012b.

Neri, F., Diversity Management in Memetic Algorithms, F. Neri, C. Cotta, P. Moscato (Eds.), Handbook
of Memetic Algorithms, Studies in Computational Intelligence, Vol. 379, pages 153-165, Springer,
2012.

Palubeckis, G. Iterated tabu search for the maximum diversity problem, Applied Mathematics and
Computation 189, 371-383, 2007.

Parreño, F., R. Álvarez-Valdés, R. Martí. Measuring Diversity. A Review and an Empirical Analysis,
Technical report, Universitat de València, 2020.

Peiró, J, I. Jiménez, J. Laguardia, R. Martí; Heuristics for the Capacitated Dispersion Problem,
International Transactions in Operational Research, to appear, 2020.

Resende, M. G. C., Martí, M. Gallego, A. Duarte. GRASP and path relinking for the max–min diversity
problem, Computers and Operations Research 37(3), 498-508, 2010.

Rosenkrantz, D.J., Tayi, G.K., Ravi, S.S. Facility dispersion problems under capacity and cost constraints,
Journal of Combinatorial Optimization 4, 7-33, 2000.

Sayyady, F., Y. Fathi. An integer programming approach for solving the p-dispersion problem,
European Journal of Operational Research 253: 216-225, 2016.

Tirronen, V., F. Neri, “Differential Evolution with Fitness Diversity Self-Adaptation”, R. Chiong ed.,
Nature-Inspired Algorithms for Optimisation, Studies in Computational Intelligence, Vol. 193,
pages 199-234, Springer, 2009

Wang, Y., J.-K. Hao, F. Glover, Z. Lü, A tabu search based memetic algorithm for the maximum diversity
problem, Engineering Applications of Artificial Intelligence 27, 103-114, 2014

	1. Introduction
	2. Memetic Algorithms and the Scatter Search Methodology
	3. Mathematical Model
	4. Previous Heuristic Methods
	5. Scatter Search for the Capacitated Dispersion Problem
	We applied the non-parametric Friedman test for multiple correlated samples to the solutions obtained by each of the four methods. This test computes, for each instance, the rank value of each method according to solution quality (where rank 4 is assi...
	To easily visualize the comparative results in Table 7, we represent in Figure 8 the average percentage deviation of each of the four heuristics, T1, SO, SS1, and SS2, in each of the 10 instance sets. These sets are represented in the 𝒙-axis. For exa...
	Conclusions
	Acknowledgement

