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Abstract

The problem of maximizing diversity or dispersion deals with selecting a subset of elements
from a given set in such a way that the distance among the selected elements is maximized.
The definition of distance between elements is customized to specific applications, and the way
that the overall diversity of the selected elements is computed results in different mathematical
models. Maximizing diversity by means of combinatorial optimization models has gained
prominance in Operations Research (OR) over the last two decades, and constitutes nowadays
an important area. In this paper, we review the milestones in the development of this area,
starting in the late eighties when the first models were proposed, and identify three periods of
time. The critical analysis from an OR perspective of the previous developments, permits us
to establish the most appropriate models, their connection with practical problems in terms
of dispersion and representativeness, and the open problems that are still a challenge. We also
revise and extend the library of benchmark instances that has been widely used in heuristic
comparisons. Finally, we perform an empirical review and comparison of the best and more
recently proposed procedures, to clearly identify the state-of-the art methods for the main
diversity models.

Keywords: Combinatorial optimization, Diversity, Dispersion, Mathematical models,
Metaheuristics.

1. Introduction

Maximum diversity problems arise in many practical settings from facility location to so-
cial network analysis, and constitute an important class of NP-hard problems in combinatorial
optimization. They were first approached from an Operations Research perspective in 1988
by Kuby (1988), and presented in 1993 in the annual meeting of the Decision Science Insti-5

tute, where Kuo, Glover, and Dhir, proposed integer programming models (Kuo et al., 1993;
Dhir et al., 1993). There has been a growing interest in these problems in the last 30 years,
and different mathematical programming models, and their corresponding solving methods,
have been proposed to capture the notion of diversity. They basically consist in selecting a
subset of elements of a given set, in such a way that a distance measure is maximized, and10

differ among them in the way that the overall diversity of the selected elements is computed.
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In its graph version, the most popular dispersion model, the Maximum Diversity Problem
(MDP), is defined as follows. Given the complete graph G = (V,E) with edge distances dij
for every pair i, j ∈ V , and an integer m, compute a subset M of V , such that |M | = m and∑

i,j∈M dij is as large as possible.15

The study of diversity models, also called dispersion, has achieved a level of maturity,
and still has a huge potential, which makes it especially adequate for a review paper like this
one. In our opinion, we are witnessing the typical scenario in science, in which a sub-field
of research detaches from the main field and creates its own body of knowledge. Diversity
problems may be considered, in a certain way, a sub-class of location problems (specially20

when we refer to location problems with distance constraints (Moon & Chaudhry, 1984)),
and we can find nowadays many researchers specifically devoted to them. In this sense, we
may say that maximizing diversity can be considered now as a field in itself.

As recently pointed out by Parreño et al. (2021), the term diversity is somehow ambiguous
in the context of combinatorial optimization, and it has been applied to problems looking25

for dispersion among the selected points, but also in problems looking for some kind of
representativeness, in which the selected points are class representatives of subsets of points
in the given set. This argument is not entirely new, since Glover et al. (1998) in the late
nineties already said that diversity is a rather nebulous term with overtones and a vaguely
statistical nature, and proposed simple heuristics that could easily be adapted to handle the30

particular characteristics of the diversity problem being solved.
We have identified three periods in the development of diversity and dispersion problems.

The early period, from 1977 to 2000, where we can find the first models (MaxMin and
MaxSum), and relatively simple algorithms to solve them, being the seminal papers by Kuby
(1988) and Erkut (1990) the origins of the area. We can only find a few papers in this period35

in the OR literature, although in other fields of science, such as sociology or biology, diversity
maximization received much more attention.

In the second period, that we may call the expansion period, the first metaheuristics
were proposed to target large instances effectively. Duarte & Mart́ı (2007) adapted both
the Tabu Search and GRASP methodologies to the MaxSum model, triggering the interest40

of the metaheuristic community in this family of problems. Special mention deserves the
work by Prokopyev et al. (2009), where three new dispersion models were introduced: the
MaxMinSum, the MaxMean, and the MinDiff. In this way, these authors clearly stated that
there are different ways to model diversity maximization, opening many possibilities for future
developments. This period last over a decade, ending with very efficient methods for some45

of the models, as shown in the empirical comparison of 30 methods by Mart́ı et al. (2013)
performed in 2010, and with several solid research groups working on them. The boundaries
defining the area of maximizing diversity were expanded with the inclusion of more realistic
models built with capacity and cost constraints.

The third period, that we call the development period, started in 2011 and is still50

in progress. From the heuristic side, the competition is now very high, due to the efficient
methods published in the previous period, so only complex metaheuristics are proposed now.
In the exact domain, Sayyady & Fathi (2016) and Sayah & Irnich (2017) recently proposed
integer programming approaches for the MaxMin model, which are able to solve large size
problems, and somehow changed the game in terms of the need of heuristics for real instances.55

These new efficient methods, exact and metaheuristics, made Mart́ı’s comparison (Mart́ı et al.,
2013) out of date, so one of the objectives of this paper is to update it by including them.

Mart́ınez-Gavara et al. (2021) elaborated on the seminal work by Rosenkrantz et al. (2000)
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that included capacity and cost constraints in the classic diversity models. The authors
approach these theoretical models from an Operations Research perspective, opening new60

research opportunities and modeling a wide range of real problems. In this paper, we complete
their proposals by introducing other variants that may be the subject of future developments
as well.

Most of the studies on diversity problems have been computational, and the different
methods have been tested on a well-established benchmark set of instances. The Maximum65

Diversity Problem Library, MDPLIB, was originally collected for the MaxSum model, and
contained 315 instances proposed and used in the development period. This library has been
used to evaluate heuristics for all dispersion models. However, some type of instances are not
well suited for some of the models, and additionally, some of them are trivial for nowadays
complex methods. We therefore revise it, removing some small instances, and adding some70

new ones, specifying the models for which they are meant. We call MDPLIB 2.0 1 to the
updated library that contains 770 instances.

There is no doubt that maximizing diversity is nowadays a trending area in many fields
of science. Terms like biodiversity, heterogeneous workforce, or simply gender diversity have
a positive connotation and are studied in many disciplines. We obviously do not cover them75

directly in this paper, but our aim is to show that advances in mathematical models related to
diversity have a huge impact in many other disciplines. Researchers in Operations Research
perfectly know the power and wide scope of models, but we want to emphasize it here because
diversity is a cross cutting concept, which makes these models applicable to many areas. This
point is clearly stated in a management science paper (Hong & Page, 2004) directly entitled as80

Groups of diverse problem-solvers can outperform groups of high-ability problem solvers, thus
reinforcing the idea that maximizing diversity has benefits even in problem solving. In the
following sections, we review the contributions to discrete diversity optimization classifying
them into the three periods introduced above. We basically consider models, solving methods,
and benchmark instances. We finish our revision with an empirical comparison of the two85

most studied models, the MaxSum and the MaxMin, and a recently considered combination
of them.

2. The early period (1980 - 2000)

Early papers on diversity and dispersion problems can be traced back to the late seventies.
It seems that Shier (1977) was the first to recognize the p-dispersion as an optimization90

problem. He considered the continuous problem of locating a facility at a node or any point in
the arcs of a tree. Chandrasekaran & Daughety (1981) studied the p-center and p-dispersion2

discrete problems on a tree. The p-center minimizes the maximum distance between the
selected nodes in a tree, while the p-dispersion maximizes their minimum distance. The p-
center problem had been studied in the previous decade and it was relatively well-known in95

location theory; however, as the authors mentioned, the p-dispersion had received very little
attention in spite of its practical significance to model the location of undesirable facilities.
The authors studied the duality between both problems.

1Mart́ı, R., A. Duarte, and A. Mart́ınez-Gavara. MDPLIB 2.0 - Maximum Diversity Problem Library.
https://www.uv.es/ rmarti/paper/mdp.html.

2Note that some authors use p and others m to denote the number of elements to be selected. In this paper
we will use both indistinguishably.
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As far as we know, the first publication on discrete versions of dispersion problems in
general graphs is due to Kuby (1988). The author considered the p-dispersion as locating100

p facilities on the nodes of a network, so that the minimum distance between any pair of
facilities is maximized. Kuby proposed a linear integer formulation for this problem and
applied it to a small example with 25 nodes. The author also extended the model to the
max-sum case, in which the objective is to maximize the sum of distances between all the
pairs of selected facilities (nodes). These problems were later coined as the MaxMin Diversity105

Problem (MMDP), and MaxSum Diversity Problem (MDP) respectively.
The MDP can be trivially formulated in mathematical terms as a quadratic binary prob-

lem, where variable xi takes the value 1 if element i is selected and 0 otherwise, i = 1, . . . , n.

Maximize
∑

i<j dijxixj

subject to:
n∑

i=1
xi = m

xi ∈ {0, 1} i = 1, . . . , n.

(1)

To avoid the non-linearity due to the product of two variables, Kuby formulated the MDP
as:

Maximize
∑

i<j zijdij

subject to:
n∑

i=1
xi = m

zij ≤ xi i, j = 1, . . . , n : j > i.
zij ≤ xj i, j = 1, . . . , n : j > i.
zij , xi ∈ {0, 1} i, j = 1, . . . , n.

(2)

This author also formulated the m-dispersion problem (MMDP) in the following terms,
where C is a very large constant number that makes the second constraint active only when110

facilities i and j have been selected (xi = xj = 1):

Maximize D

subject to:
n∑

i=1
xi = m

D ≤ dij(1 + C(1− xi) + C(1− xj)) i, j = 1, . . . , n : j > i.
xi ∈ {0, 1} i = 1, . . . , n.

(3)

Erkut and Neuman published in 1989 an invited review in the European Journal of Oper-
ational Research on location models for obnoxious facilities (Erkut & Neuman, 1989), where
a function distance is maximized. The authors mainly focused on continuous and network
based models, and pointed out that the only previous work on discrete models is the one by115

Kuby described above. The authors classified these models according to the following criteria:

• number of facilities (single / multiple)

• solution space (Rk / network)

• feasible region (discrete / continuous)

• distance measure (Euclidean / rectilinear / network)120

• weights (different weights / unweighted)
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• distance function (sum / min)

• objective (single / multiple)

Erkut (1990) proposed the first algorithms for the MaxMin. In particular, this author
introduced a simple heuristic and a branch and bound exact method to solve small problems125

(with up to 40 elements) to optimality. Erkut’s heuristic is intentionally näıve, and breaks ties
in the constructive phase at random. As document by Hart & Shogan (1987), semi-greedy
heuristics, which deviate from rigid selection rules by including random choices, generate
many solutions, thus leading to better outcomes than simple greedy heuristics. This is very
interesting since this type of reasoning led to the design of powerful metaheuristics, such as130

the well-known GRASP methodology (Feo & Resende, 1995; Festa & Resende, 2016). The
construction is coupled with a local search method that scans the set of selected elements
in search of the best exchange to replace a selected element with an unselected one. The
method performs moves as long as the objective value increases, and stops when no improving
exchange can be found. This local search has been applied to most of the algorithms proposed135

for both the MaxSum (MDP) and the MaxMin (MMDP), introducing successive refinements
that resulted in improved outcomes.

Kincaid (1992) proposed two heuristics for the MaxMin, also known as the discrete p-
dispersion problem, based on exchanges: a simulated annealing (SA) heuristic (Kirkpatrick
et al., 1983) and a tabu search (TS) heuristic (Glover, 1989, 1990; Glover & Laguna, 1998).140

In a given iteration, these heuristics generate a random move (an exchange between a selected
and an unselected element) and apply the standard acceptance rules of the methodology, the
so-called temperature and cooling schedule in the SA, and the tabu status and aspiration
criteria in tabu search. These methods are also adapted to the MaxSum problem, called the
p-defense-sum problem in that paper. The author examined the performance of both methods145

on these two models on a reduced benchmark of 30 instances of size n = 25 (in three groups
of ten with different characteristics) and p ranging from 5 to 15.

Kuo et al. (1993) proposed several models to maximize diversity based on their seminal
working papers elaborated in 1977. Independently to Kuby and Erkut, the authors presented
some efficient binary programming models for the MaxSum and MaxMin. In particular, for150

the MaxSum, called there the Maximum Diversity Problem, they proposed the following
zero-one formulation that has been considered the most efficient one until now:

Maximize
∑

i<nwi

subject to:
n∑

i=1
xi = m

−Uixi + wi ≤ 0 i = 1, . . . , n− 1.

−
n∑

j=i+1
dijxj + Li(1− xi) + wi ≤ 0 i = 1, . . . , n− 1.

xi ∈ {0, 1} i = 1, . . . , n.

(4)

where Ui =
n∑

j=i+1
max(0, dij) and Li =

n∑
j=i+1

min(0, dij). The authors proved that the MDP

is NP-hard both with and without restricting distances to non-negative values. Kuo, Glover,
and Dhir also proposed a binary model for the MaxMin, and illustrated its performance on a155

small example of size 10. The same authors applied these models to solve a practical case in
biological diversity (Glover et al., 1995).
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Ghosh (1996) proved that the MaxMin problem is NP-hard using a reduction from the
vertex cover problem. The author proposed a greedy randomized heuristic, that can be
considered the first step of extending simple heuristics to complex metaheuristic, and present160

a limited computational experience on small instances (up to n = 40) to show its merit.
Glover et al. (1998) proposed four different heuristics for the MaxSum problem. The

authors highlighted that different versions of this problem include additional constraints, so
the objective is to design heuristics whose basic moves for transitioning from one solution to
another are both simple and flexible, allowing these moves to be adapted to multiple settings.165

In this line, they consider moves that are especially attractive in this context: constructive
and destructive, that drive the search to approach and cross feasibility boundaries. These
type of moves are natural in the maximum diversity problem, where the goal is to determine
an optimal composition for a set of selected elements. The authors compare the solutions
obtained with their heuristics with the optimal solutions in small instances (up to n = 30),170

and conclude that the constructive method C2, and the destructive method D2 perform very
well considering their simplicity.

At the end of this period, Ağca et al. (2000) proposed a Lagrangian approach and provided
both lower and upper bounds for the MaxSum problem. The authors also proposed a variation
of their method to target the MaxMin problem. Extensive experimentation with small size175

instances (up to n = 100) showed the good quality of the results in comparison with previous
heuristics; however, as the authors admit, this comes with a cost of significant longer running
times.

Figure 1 shows a timeline diagram, in which the main contributions in this early period
are depicted.180
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Figure 1: Timeline of early OR diversity contributions (1988-2000).

3. The expansion period (2000 - 2010)

This second period witnessed a huge growth in the area. Most of the efforts were devoted
to the MaxSum model, with a total of 30 methods, as documented in Mart́ı et al. (2013).
The MaxMin model on the other hand, also received attention, although moderate, probably
because it poses a challenge to heuristic methods due to the flat landscape in the search space185

created by the combination of the maximum and minimum in the objective function. Finally,
new models were also proposed, introducing new ways to compute diversity and including
constraints to target more realistic variants. We call it the extension period since the limits
defining the area were substantially expanded in this decade.
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From the theoretical side, we may highlight the work by Chandra & Halldórsson (2001)190

in which many dispersion problems are classified in terms of graph theory. In particular,
given a graph G with set of vertices V , and an integer value p, a dispersion problem can be
defined as obtaining a set of p vertices P ⊆ V in a way that the sum of the weights of certain
edges in the subgraph induced by P is maximized. The edge set definition characterizes
the dispersion problem. It includes cliques, trees, k-trees, stars, pseudo-forests, cycles or195

matchings. The authors proved the NP-hardness of these problems and proposed simple
heuristic with performance approximation ratios.

From the practical side, most of the papers published consider the complete subgraph
induced by the selected points. This is specially true in the metaheuristic field, as shown
below.200

3.1. The MaxSum model

Many metaheuristic methodologies were implemented in this period to the MaxSum prob-
lem. They were relatively simple at the beginning, but as the competition among methods
became harder, more sophisticated search strategies were proposed, ending up with very
complex algorithms. GRASP, Tabu Search, and VNS played an important role in this period.205

As mentioned, Kincaid (1992) was the first to apply metaheuristics, namely SA and K-TS,
to the MaxSum problem, although they were straightforward implementations. Macambira
(2002) proposed a similar implementation of the tabu search methodology, called M-TS, to
solve the MDP. Note that K-TS starts with a random solution while M-TS starts with a greedy
constructed solution.210

Silva et al. (2004) proposed several heuristics based on the GRASP methodology (Feo &
Resende, 1995). They combined different constructions with local searches and tested them on
a wide set of instances, which includes the largest reported so far. They called KLD to the basic
construction algorithm, and KLDv2 and MDI to the improved versions of KLD. It must be noted
that in these largest instances with n = 500 elements, the methods require many hours of215

running time. Santos et al. (2005) presented a hybrid method, GRASP-DM, combining GRASP
with data mining techniques, which basically consists of two phases. First, the GRASP phase
is executed a certain number of iterations. Then, the data-mining process extracts patterns
from an elite set of solutions that guide the following GRASP iterations. Silva et al. (2007)
revisited the problem to propose a hybrid method, GRASP-PR, combining GRASP with Path220

Relinking (Laguna & Mart́ı, 1999). As in the hybrid method above, an elite set is populated
with the solutions obtained with the application of a GRASP algorithm. Then, path relinking
is applied from each solution in the elite set (initial solution) to the local optimum obtained
in each new GRASP iteration (guiding solution). In this way, the method creates a path
by adding elements in the guiding solutions to the initial solution (and dropping those not225

present in the guiding solution).
As far as we know, the work of Katayama & Narihisa (2006) is the only one where a

standard Memetic Algorithm (MA) is applied in this period. The algorithm combines a
randomized greedy construction method with an evolutionary algorithm, a repair mechanism
to guarantee the feasibility of the solutions, and a local search. Aringhieri & Cordone (2006)230

presented a Scatter Search procedure, A-SS, which can be considered a special case of a
memetic algorithm. In particular, this method iterates over a small set of elite solutions,
instead of the traditional population of a relatively large size, called the reference set, RefSet.
In this particular implementation of scatter search, the RefSet is divided into two subsets,
one with the best solutions found during the search, and the other one with solutions that235
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largely differ from each other and from the best ones. Gallego et al. (2009) proposed an
alternative scatter search algorithm, G-SS, for the MaxSum problem. In their approach, the
distance between solutions is used to measure how diverse one solution is with respect to a set
of solutions. The method applies a tabu search algorithm to improve the combined solutions,
thus creating a hybrid of a memetic algorithm with a tabu search. It is very interesting that240

in the following decade, that we call the development period, most of the proposed algorithms
for the MaxSum follow this scheme of combining these two methodologies, which will emerge
as the best choice for this problem.

In the domain of exact methods, the first important approach was due to Pisinger (2006),
who proposed upper bounds for both MaxSum and MaxMin problems. Based on that bounds,245

Branch and Bound methods were respectively derived. The experiments showed that in
the MaxSum problem, the method is able to solve the medium size Euclidean instances with
n = 80 in about 500 seconds, but it encounter difficulties to find the optimum in the random
instances, in which requires more than 3 hours in those with n = 60. A similar situation is
described for the MaxMin solver, in which both types of instances are solved when n < 80.250

This branch and bound clearly outperforms the first one proposed by Erkut (1990).
Duarte & Mart́ı (2007) applied two metaheuristics for the MaxSum problem. Specifically,

the authors introduced a Tabu Search, LS-TS, and two GRASP algorithms, called GRASP-C2

and GRASP-D2, and proposed several strategies to explore the typical neighborhood based on
exchanges in an efficient way, to avoid the long running times of previous tabu search and255

GRASP implementations. In particular, instead of searching for the best exchange at each
iteration, their neighborhood exploration performs two stages. In the first one, it selects
the element with the lowest contribution to the value of the current solution. Then, in the
second stage, the method performs the first improving move to replace it (i.e., instead of
scanning the whole set of unselected elements searching for the best exchange, it performs260

the first improving exchange without examining the remaining unselected elements). Their
experimentation confirms the effectiveness of the proposed strategies.

Palubeckis (2007) proposed an Iterated Tabu Search, ITS, that alternates tabu search with
perturbation procedures. Aringhieri et al. (2008) presented XTS, a tabu search with short and
long term memory functions such as LS-TS. A novelty of this method is that the tabu tenure265

parameter is dynamically set during the execution of the algorithm (i.e., it is increased if
the solution value has steadily improved, and it is reduced if the solution value has steadily
worsened). Aringhieri & Cordone (2011) proposed a random re-start method, RR, which
constructs an initial solution with a greedy procedure similar to the simple method proposed
by Erkut (1990). Then, the constructed solution is improved by means of a simplified version270

of XTS.
Variable Neighborhood Search (Hansen & Mladenović, 2005) (VNS) was applied to

the MaxSum problem too. As it is well-known, this methodology is based on a simple and
effective idea, a systematic change of the neighborhood within a local search algorithm, and
proved to be the best option to solve the MaxSum problem at that time.275

Silva et al. (2004) proposed a simple VNS, SOMA, based on two neighborhoods. It first
applies the classic local search (Ghosh, 1996) until no further improvement is possible. Then,
a second local search based on swapping two elements in the solution by another two not
present in the solution is performed. Brimberg et al. (2009) proposed several VNS procedures
originally devoted to the heaviest k-subgraph problem, which generalizes the MDP. The au-280

thors presented a skewed VNS, basic VNS, called B-VNS, and a combination of a constructive
heuristic followed by VNS. The best variant is B-VNS and consists of three main elements.
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The first one, called Data Structure, allows the algorithm to efficiently update the value of
the objective function; the second one, Shaking, generates solutions in the neighborhood of
the current solution by performing random vertex swaps; and the third one is a local search285

procedure based on exchanges.
Aringhieri & Cordone (2011) presented four VNS implementations: Basic VNS, Guided

VNS, Accelerated VNS, and Random VNS. An important characteristic is their hybridization
with Tabu Search to locally improve the generated solutions. Accelerated VNS, A-VNS, seems
to be the best variant, and it makes re-starts much less frequent because the number of290

neighborhoods is considerably larger than the values used in the Basic and Guided variants.
Mart́ı et al. (2010) proposed a branch and bound algorithm for the MaxSum problem.

The authors considered an implicit enumeration of the solutions (selections of m elements),
and compute upper bounds for partial solutions. Their method is embedded in the standard
search tree to fathom the nodes (subsets of solutions defined by a partial selection), thus295

discarding for examination many nodes in the search tree. This combinatorial branch and
bound solves small instances easily (n = 50), most of the medium instances with n = 100,
and cannot solve the large ones considered (n = 150) in 1 hour of CPU time.

We close this period on the MaxSum problem with an empirical comparison of all the
methods published so far, performed in 2010 (although published a few years later). Mart́ı300

et al. (2013) presented an extensive computational experimentation to compare 10 heuristics
and 20 metaheuristics for the MaxSum problem, most of them summarized in Table 1.

Methodology Algorithms References

Simulated Annealing SA Kincaid (1992)

GRASP KLD, KLDv2, MDI,
GRASP-DM, GRASP-C2,
GRASP-D2, GRASP-PR

Silva et al. (2004), Santos et al.
(2005), Duarte & Mart́ı (2007),
Silva et al. (2007)

Tabu Search K-TS, M-TS, LS-TS, ITS,
XTS, RR

Kincaid (1992), Macambira
(2002), Duarte & Mart́ı (2007),
Palubeckis (2007), Aringhieri
et al. (2008), Aringhieri &
Cordone (2011)

VNS SOMA, B-VNS, A-VNS Silva et al. (2004), Brimberg
et al. (2009), Aringhieri & Cor-
done (2011)

Scatter Search A-SS, G-SS Aringhieri & Cordone (2006),
Gallego et al. (2009)

Memetic Algorithms MA Katayama & Narihisa (2006)

Table 1: Metaheuristics for MaxSum in 2010.

Mart́ı et al. (2013) proposed the first version of the so-called MDPLIB in which they
collected 315 instances introduced by different authors in previous papers. Their empirical
comparison with 30 methods was exhaustive, and concluded with the final comparison of the305

five methods identified as the best ones overall over two time horizons, 10 and 600 seconds
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of CPU time. We reproduce here their final table in Table 2 with the results, average per-
cent deviation (% dev) and number of best solutions (# best), of the best GRASP method,
GRASP-D2, the best local search based methods, which includes a tabu search, ITS, and two
variable neighborhood search, A-VNS and B-VNS, and the best population based method, G-SS.310

CPU GRASP-D2 A-VNS B-VNS ITS G-SS

10 sec. % dev 1.57 0.16 0.08 0.17 0.24
# best 10 60 51 51 51

600 sec. % dev 0.63 0.03 0.02 0.02 0.13
# best 32 75 83 62 59

Table 2: Best MaxSum methods on MDPLIB instances in 2010.

As expected, the average percentage deviations of the methods are lower when the CPU
time increases from 10 seconds to 600 seconds. In this way, after 600 seconds of CPU time,
the five methods under comparison present deviations lower than 1%. In line with this, the
number of best solutions found increases as the running time increases. The Friedman test
confirms the superiority of the VNS based methods, from which B-VNS emerges as the best315

method overall, followed by the tabu search ITS as the second best.

3.2. The MaxMin model

As described in the previous section, after Kuby’s seminal paper (Kuby, 1988), Erkut
(1990) proposed a simple heuristic, Kincaid (1992) a simulated annealing and a tabu search,
and Ghosh (1996) a multi-start heuristic. Although Kincaid’s heuristics are based on complex320

methodologies, his algorithms are straightforward implementations, in which the neighbor-
hood is scanned by random sampling. On the other hand, the multi-start by Ghosh examines
the entire neighborhood in the local search, implementing the so-called best strategy. In con-
trast, Resende et al. (2010) applied the GRASP methodology to the MaxMin problem, but
with an efficient implementation that is able to obtain high-quality solutions in short running325

times, outperforming all previous developments. We describe now this method in detail since
it was the best for the MaxMin in this period.

Given a set N with n elements, the construction procedure in Resende et al. (2010) per-
forms m steps to produce a solution with m elements. The set Sel represents the partial
solution under construction. At each step, the constructive method selects a candidate ele-330

ment i∗ ∈ CL = N \ Sel with a large distance to the elements in the partial solution Sel .
Specifically, it first computes dj as the minimum distance between element j and the selected
elements. Then, it constructs the restricted candidate list RCL with all the candidate (unse-
lected) elements j with a distance value dj within a fraction α (0 ≤ α ≤ 1) of the maximum
distance d∗ = max{dj | j ∈ CL}. Finally, the method randomly selects an element in RCL.335

Given a set N with n elements, and a solution Sel with m selected elements, we can
compute the following values:

di = min
j∈Sel

dij , d∗ = min
i∈Sel

di,
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where di is the minimum distance of element i to the selected elements (those in Sel), and
d∗ is the objective function of the current solution. It is clear that to improve a solution we
need to remove (and thus replace) the elements i in the solution for which di = d∗.

The local search method in Resende et al. (2010) scans, at each iteration, the list of
elements in the solution (i ∈ Sel) with minimum di value, i.e. for which di = d∗, starting340

with a randomly selected element. Then, for each element i with a minimum di-value, the
local search examines the list of unselected elements (j ∈ N \ Sel) in search for the first
improving exchange. The unselected elements are also examined in lexicographical order,
starting with a randomly selected element. The method performs the first improving move
(Sel ← Sel \ {i} ∪ {j}) and updates di for all elements i ∈ Sel as well as the objective345

function value d∗, concluding the current iteration. The algorithm repeats iterations as long
as improving moves can be performed and stops when no further improvement is possible.

An important characteristic of this GRASP for the MMDP is the definition of improving
move. To efficiently search the flat landscape of the MaxMin problem, the authors introduced
in the local search an extended meaning of the term improving. In particular, a move is350

considered to improve the current solution if it increases the value of d∗, or keeps d∗ fixed
and reduces the number of elements i with di = d∗. The method stops when no further
improvement is possible according to this definition.

The GRASP method above is coupled with a Path Relinking (PR) post-processing for
improved outcomes. The PR algorithm operates on a set of solutions, called elite set (ES ),355

constructed with the best solutions obtained with GRASP. It basically creates paths of solu-
tions between elite solutions. Let x and y be two solutions, PR starts with the first solution
x, and gradually transforms it into the second one y, by swapping out elements selected in x
with elements selected in y. The elements selected in both solutions x and y remain selected
in the intermediate solutions generated in the path between them. The output of each PR360

iteration is the best solution, different from x and y, found in the path.
Resende et al. (2010) compiled a benchmark library of instances reported in the previous

papers on the MaxMin problem to perform an empirical comparison among the heuristics.
In particular, they considered three sets of instances named Glover, Geo, and Ran. The first
one includes small Euclidean instances (n ≤ 30) from randomly generated points in a multi-365

dimensional space. The second one, Geo, extends the first one by including larger instances
(100 ≤ n ≤ 500). The third one, Ran, consists of large matrices with integer random numbers.
These sets are include in the MDP Library of Benchmark Instances described in Section 5.

We do not reproduce here the entire analysis in Resende et al. (2010), but we show in
Table 3 their comparison of their GRASP, and GRASP with Path Relinking (GPR), with the370

Multi-Start method by Ghosh (1996), Simulated Annealing (SA) and Tabu Search (TS) by
Kincaid (1992). This table shows, for each method, the average relative percentage deviation
(% dev) between the best solution value obtained with that method and the best known
value for that instance. It also reports, for each method, the number of instances (# best)
in which the value of the best solution obtained with this method matches the best known375

value. Finally, it reports the associated running times in seconds on a Pentium 4 computer
running at 3 GHz.

Results from Table 3 has to be interpreted with caution because we are comparing, at
the same time, methodologies and implementations. This is probably the weakness in the
computational comparison of heuristic papers. It is very difficult to evaluate how much of380

the solution’s quality is due to the methodology, and how much to the specific way in which
it is implemented to solve a problem. Note that implementation not only includes search

11



Multi-Start SA TS GRASP GPR

n = 100 % dev 0.75 0.00 0.00 0.76 0.09
# best 10 19 20 10 17
time (s) 2.45 20.96 33.64 0.68 3.76

n = 250 % dev 1.00 0.68 1.75 1.11 0.16
# best 0 6 2 1 14
time (s) 30.50 220.57 439.68 5.58 65.57

n = 500 % dev 2.36 3.48 9.27 2.39 0.04
# best 0 0 0 0 16
time (s) 282.37 1449.85 3633.36 34.99 1465.44

0.00 means less than 0.001

Table 3: Best MaxMin methods on Geo instances in 2010

strategies in the solution space, but also data structures management, and even computer
language. For example, GRASP obtains better results than TS in the large instances in this
table (n = 500), with 2.39% and 9.27% average deviations respectively. However, in the385

small instances (n = 100) we observe the opposite situation, since GRASP has an average
deviation value of 0.76% and TS has a value lower than 0.001%. This seems to indicate
that the implementation strategies, that usually play an important role in large instances, are
responsible for this difference. In our opinion, we cannot conclude from this type of experiment
that one methodology is better than the other one, and we can only state that this GRASP390

implementation performs better in large instances than this Tabu Search implementation.

3.3. Other diversity models

Rosenkrantz et al. (2000) introduced several diversity models constrained in terms of cost
and capacity, motivated by their practical applications in facility location. For example, the
location of undesirable or hazardous facilities, such as waste sites or nuclear plants, requires395

their dispersion while satisfying a certain total demand. Another example can be found in the
context of retail franchises, where stores should not be located close to each other. Facilities
and stores have a capacity to provide a service in systems that require an overall demand,
and it is clear in practical terms that they have an associated setup or operational cost, which
makes appropriate to consider a certain limit in the total expenses generated. As stated by400

the authors, “these practical aspects add a new dimension to the conventional dispersion
problem”. Classical models, such as the MaxSum or MaxMin, indirectly address the problem
requirements by considering a pre-fixed number of facilities (i.e., the number of points to be
selected is an input to the problem). However, this simplification is not realistic in many
settings.405

The work by Rosenkrantz et al. (2000) was mainly theoretical. The authors proposed
different models to tackle diversity, capacity and cost, where one of them is optimized (plays
the role of the objective function), and the other two are included as constraints. Specifically,
the three variants proposed were:
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(i) maximize capacity under distance and cost constraints (Max-Cap/Dist/Cost),410

(ii) minimize cost under capacity and distance constraints (Min-Cost/Cap/Dist),

(iii) maximize distance under capacity and cost constraints (Max-Dist/Cap/Cost).

When the capacity is a constraint, the authors introduced a minimum capacity B reflecting
the required level of service. Similarly, when the cost is a constraint, a maximum budget K
is considered. The authors also introduced two model only with distance and capacity (Max-415

Cap/Dist and Max-Dist/Cap). Rosenkrantz et al. (2000) established the NP-hard complexity
of these variants, proved the existence of an approximate algorithm within a factor 2 in the
Max-Dist/Cap with distances satisfying the triangle inequality, and the non-approximability
results for the other variants. In particular, they provided proof of the non-existence of a
polynomial-time approximation scheme for the Max-Dist/Cap/Cost variant, and proposed a420

greedy heuristic based on binary search for the Max-Dist/Cap problem. Although no empir-
ical results or experiments are reported, the theoretical study concludes that their heuristic
running time is O(n2 log(n)).

Surprisingly, in spite of its potential impact, this paper was ignored by the metaheuristic
community at that time, and we have to wait until the next decade to see the first complex425

heuristics for these new problems.
Prokopyev et al. (2009) introduced four additional dispersion models, combining and gen-

eralizing the well-known MaxSum and MaxMin models. The MaxMean Dispersion Problem
(Max-Mean) that maximizes the average instead of the sum, can be formulated as the follow-
ing 0-1 integer linear programming problem:

Maximize

n−1∑
i=1

n∑
j=i+1

di jxixj

n∑
i=1

xi

subject to
n∑

i=1
xi ≥ 2

xi ∈ {0, 1} i = 1, . . . , n.

(5)

An interesting characteristic in the MaxMean model (5), is that the cardinality restriction is
not imposed, and a solution may be formed by an arbitrary number of elements. In this sense
we can say that this model generalizes the MaxSum model, since the number of elements to
be selected is not set beforehand, and the model selects it when maximizing the objective. A
further generalized version of this problem introduces weights associated to the nodes. It is
called Generalized MaxMean Dispersion Problem and is formulated as follows:

Maximize

n−1∑
i=1

n∑
j=i+1

di jxixj

n∑
i=1

wixi

subject to
n∑

i=1
xi ≥ 2

xi ∈ {0, 1} i = 1, . . . , n.

(6)

where wi is the weight assigned to element i ∈ V .

13



Prokopyev et al. (2009) introduced two other models in the context of diversity called
equity models, which incorporate the concept of fairness among candidates. These mod-
els appear in different settings, such as urban public facility location, diverse/similar group430

selection, and sub-graph identification, in which one may address fair diversification or as-
similation among members of a network. The MaxMinSum diversity problem maximizes the
minimum aggregate dispersion among the chosen elements, while the Minimum Differential
Dispersion model, MinDiff, minimizes extreme equity values of the selected elements.

The Maximum MinSum Dispersion Problem, MaxMinSum, consists of selecting a set M ⊆435

V of m elements such that the smallest total dispersion associated with each selected element
i is maximized. The problem is formulated in Prokopyev et al. (2009) as follows:

Maximize

 min
i:xi=1

∑
j:j 6=i

di jxj


subject to

n∑
i=1

xi = m

xi ∈ {0, 1} i = 1, . . . , n.

(7)

The Minimum Differential Dispersion model, MinDiff, is probably the most elaborated one
in terms of its objective function definition. It basically consists of computing the maximum
and minimum total dispersion associated to the m selected elements, minimizing their differ-440

ence. In this way, we obtain a balance selection of elements in the sense that their associated
dispersion values are very similar, and this is why it is introduced as an equity model. This
problem can be formulated in simple terms as follows, although more efficient formulations
are proposed in Prokopyev et al. (2009).

Minimize

max
i:xi=1

∑
j:j 6=i

di jxj − min
i:xi=1

∑
j:j 6=i

di jxj


subject to

n∑
i=1

xi = m

xi ∈ {0, 1} i = 1, . . . , n.

(8)

Table 4 collects the diversity models introduced so far. For the sake of simplicity we do445

not reproduce the weighted MaxMean proposed by Prokopyev et al. (2009), and the variations
of capacity and cost in Rosenkrantz et al. (2000).

4. The development period (2010 - 2021)

Considering that in the previous decade many methods were proposed for both MaxSum
and MaxMin, it is expected that the scientific production in these problems is now moderate450

in terms of the number of papers but contains very complex methods to compete with the
vast existing literature. On the other hand, the other diversity models proposed received very
little attention and we will see that researchers are proposing now efficient methods for them.
This is especially true in the case of constrained models, which in spite of being proposed at
the beginning of the previous period, they had to wait until this one to trigger the interest of455

researchers.
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Problem Obj. function Context First reference

MaxSum
∑

i<j,i,j∈M

dij Diversity Kuby (1988)

MaxMin min
i<j,i,j∈M

dij Dispersion/Equity Kuby (1988)

MaxMin/Cap/Cost min
i<j,i,j∈M

dij Dispersion/Equity with
cost and capacity con-
straints

Rosenkrantz et al.
(2000)

Max-Mean

∑
i<j,i,j∈M dij

|M |
Diversity Prokopyev et al. (2009)

Max-MinSum min
i∈M

∑
j∈M,j 6=i

dij Diversity Prokopyev et al. (2009)

Min-Diff max
i∈M

∑
j∈M,j 6=i

dij−

min
i∈M

∑
j∈M,j 6=i

dij

Equity Prokopyev et al. (2009)

Table 4: Diversity models.

4.1. The MaxSum model

At the end of the expansion period, Mart́ı et al. (2013) reviewed 30 methods for the
MaxSum, compared them on the MDPLIB, and concluded that a tabu search, ITS, and
a variable neighborhood search, B-VNS, were the best overall. We have identified in the460

current period five papers proposing advanced methods that try to improve these two previous
methods.

An open question in the heuristic community is if it is better to perform independent
constructions, as GRASP typically does, or improved outcomes can be obtained if we use in-
formation about past constructions when performing new ones. Lozano et al. (2011) proposed465

an iterated greedy, IG, for the MaxSum problem, based on this multi-start framework. This
method alternates constructive and destructive phases linked by an improvement process.
Specifically, after an initial construction, a destruction mechanism removes selected elements,
and then reconstructs the partial solution with a greedy method. The resulting solution is
improved with a typical local search. An empirical comparison shows that this method is able470

to obtain solutions of similar quality than the ITS by Palubeckis (2007).
Wang et al. (2012) proposed an interesting combination of a Tabu Search with an Esti-

mation of Distribution Algorithm (EDA). The rationale behind this hybrid method, called
LTS-EDA, is that the EDA is a knowledge model that implements the information repository
in which the experience of the history is stored, to extract the required information by the475

learnable tabu search for an efficient search exploration of the solution space. Their empirical
comparison with previous methods shows that this hybrid method is able to improve previous
approaches, especially on large instances. It must be noted that the authors considered very
long running times, of 5 hours of CPU time, for the largest instances with n = 5000 elements.

Wang et al. (2014) integrate Tabu Search and Scatter Search in a memetic algorithm.480
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The design of this algorithm is clearly in line with our comments above, that methods in
this period are very complex in order to obtain high-quality solutions. In particular, their
tabu memetic algorithm, called TS-MA populates an initial reference set with local optima
obtained with the application of tabu search to random initial solutions. This tabu search is
based on the same neighborhood of previous tabu search implementations for the MaxSum485

problem, consisting on swapping a selected with an unselected element. However, to reduce
the computational effort associated with exploring the neighborhood, they apply a successive
filter candidate list strategy, and subdivide the move into its two natural components: first
remove an element, and then add another element. The authors explain that one of the key
elements in their memetic algorithm is the solution combination operator based on solution490

properties by reference to the analysis of strongly determined and consistent variables. The
method performs iterations combining the solutions in the reference set as long as the resulting
solutions qualify to enter to this set. This method is an improved version of the hybrid
metaheuristic published in Wu & Hao (2013). The authors perform an empirical analysis
to compare TS-MA with IG (Lozano et al., 2011), ITS (Palubeckis, 2007), B-VNS (Brimberg495

et al., 2009), and LTS-EDA (Wang et al., 2012). The comparison shows the superiority of
the proposed TS-MA; however, it is performed on a limited set of instances, ignoring many
instances in the MDPLIB.

De Freitas et al. (2014) proposed a Memetic Self-adaptive Evolution Strategy, MSES. It
is basically a population based algorithm that iterates over generations in which parents are500

mutated to produce children. A strength variable associated with each individual manages
the mutation, and it is self-adjusted favoring that best configurations survive over time. As it
is customary in memetic algorithms, the method includes a local search and a crossover, and
as in previous implementations of the classic exchange-based local search, the authors propose
an efficient implementation based on splitting the move evaluation between the removed and505

the added contribution of its elements. The method is coupled with a tabu search that is
selectively applied to the best children in the generation. The algorithm is implemented in
Matlab, and it is compared with previous heuristics reimplemented in Matlab as well. The
comparison on the MDPLIB instances favors the proposed method.

The last paper published so far on the MaxSum model at the time of writing this review510

is due to Zhou et al. (2017), and it describes a memetic algorithm, called OBMA, improved
with three search strategies:

• A opposition-based learning to reinforce population initialization as well as the evolu-
tionary search process.

• A tabu search to intensify the search in promising regions.515

• A rank-based quality-and-distance pool updating maintains a good level of diversity in
the population.

The opposition-based learning basically considers a candidate solution and its correspond-
ing opposite solution. In the case of the MaxSum problem, the opposite solution is simply
obtained by selecting some of the elements not selected in a given solution. The tabu search520

on the other hand, is based on a constrained swap strategy that manages the size of the
explored neighborhood to speed up the method. As all the local search based methods for
this problem, it is built upon a swap move that exchanges a selected with an unselected el-
ement in the solution. Finally, a rank-pool updating strategy decides whether an improved
solution qualifies or not to enter into the population pool in which the memetic algorithm525
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iterates. In particular, this strategy computes a score based on both quality and diversity to
rank solutions in the updating process of the pool. The authors compare their OBMA method
with five previous methods described above: ITS (Palubeckis, 2007), G-SS (Gallego et al.,
2009), B-VNS (Brimberg et al., 2009), IG (Lozano et al., 2011), and LTS-EDA (Wang et al.,
2012). The comparison clearly shows that the proposed method consistently obtains the best530

results in the instances considered. The authors argue that MSES (De Freitas et al., 2014) is
not included in this comparison because it is very similar to the TS-MA method. On the other
hand, as other empirical comparisons performed in this last decade, it does not consider the
entire benchmark of instances published. In Section 6, we perform an exhaustive comparison
of the methods identified as the best on the entire MDPLIB benchmark instances.535

4.2. The MaxMin model

In this period we have only found two exact methods and one heuristic algorithm for the
MaxMin model. These procedures introduce important changes in the way the problem is
approached, and therefore they deserve to be described in detail.

Sayyady & Fathi (2016) solve an alternative model consecutively to obtain the optimal540

solution of the MaxMin model. In particular, they consider the node packing problem, in
which given a threshold value l, a graph G(l) is defined with the set V of n nodes of graph
G = (V,E), and the set of edges E(l) = {(i, j) ∈ E : dij < l}. The node packing problem
consists in finding a maximum cardinality subset of nodes so that no two nodes in this subset
are adjacent to each other. It can be formulated in mathematical terms with binary variables,545

xi, indicating if node i is selected as:

Maximize
∑n

i=1 xi
subject to: xi + xj ≤ 1 i < j, dij < l

xi ∈ {0, 1} i = 1, . . . , n.
(9)

The authors solve the node packing model above for different values of l. In this way, an
optimal solution of the node packing problem in G provides a set of points with minimum
distance larger than or equal to l. Note however than in the MaxMin problem, we specifically
seek for a set of m points, and the set obtained with the node packing has an arbitrary550

number of points, called v(l). Sayyady and Fathi proposed to solve a sequence of node
packing problems for different values of l according to a binary search, until they obtain a set
of v(l) = m points, which turns out to be the optimal solution of the MaxMin model. This
method is able to solve large problems to optimality. Specifically, they solve the Euclidean
instances with n = 250 in less than 200 seconds, and the random instances with n = 100 in555

less than 50 seconds (although they cannot solve the random instances with n = 250).
Sayah & Irnich (2017) propose a compact formulation that is able to solve large problems.

Let D0 < D1 < . . . < Dkmax be the different non-zero distance sorted values in (dij), and let
E(Dk) = {(i, j) ∈ E : dij < Dk}. The location binary variable xi indicates whether location
i is opened, and binary variable zk indicate whether the location decisions satisfy a minimum560
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distance of at least Dk. Their first formulation follows:

Maximize D0 +
∑kmax

k=1 (Dk −Dk−1)zk

subject to
n∑

i=1
xi = m

zk ≤ zk−1 k = 1, . . . , kmax

xi + xj + zk ≤ 2 (i, j) ∈ E(Dk) \ E(Dk−1)
xi, zk ∈ {0, 1} i, z = 1, . . . , n.

(10)

Sayah & Irnich (2017) propose bounds and valid inequalities to strength formulation (10).
Their empirical analysis ignores the instances used in previous diversity paper, and considers
the pmed instances in the OR library. Results are, on the other hand, impressive, since they
are able to solve to optimality instances with up to n = 900 elements.565

Porumbel et al. (2011) proposed a fast local search for a model that combines the MaxMin
and the MaxSum problems. In particular, the authors minimize the MaxMin objective func-
tion and consider the MaxSum as a secondary objective. The inclusion of this secondary
objective is motivated by the fact that there may be a relative large number of solutions that
qualify as optimal for the MaxMin, and it makes sense to choose the best one among them in570

terms of the MaxSum objective. Although not mentioned by these authors, we can find this
proposal in the very first paper published for these problems. Kuby (1988) introduced the
MaxSum, the MaxMin, and what this author called a multi-criteria approach, arguing that
the MaxSum model is an appropriate way to choose among the many alternate optima of the
MaxMin problem.575

Parreño et al. (2021) perform a numerical and geometrical analysis of four diversity models:
MaxMin, MaxSum, MaxMinSum, and MinDiff. Their analysis reveals that the MaxMin avoids
very close elements but may select points either at a medium or at a large distance. On the
other hand, the MaxSum favors the selection of points at a large distance but permits very
close elements. Therefore, one of the conclusions of their study is that the combination of
these two first models, in the way described above, would lead to a more robust model. The
authors formulate this combined model, called the bi-level MaxSum problem, by introducing
d∗ as the optimal value of the MaxMin model (solved first), as follows:

Maximize
∑

i<j dijxixj

subject to:
n∑

i=1
xi = m

dij ≥ d∗xixj i, j = 1, . . . , n.
xi ∈ {0, 1} i = 1, . . . , n.

(11)

Figure 2 shows the MaxMin optimal solution (left), the MaxSum optimal solution (center),
and the Bi-level optimal solution (right), of an instance with n = 50 elements from which we
select m = 5.

The MaxMin optimal solution depicted in the left diagram of Figure 2 shows the typical
disposition of the solutions of this model identified by Parreño et al. (2021), in which the580

elements are scattered in the plane providing a disperse selection that may include the central
region. A criticism of that selection however, would be the point in the left part of the diagram,
around coordinates (5,40), instead of which we could easily select a better one in terms of
global dispersion. As a matter of fact, the MaxSum value of that solution is 829.8, which
is relatively low compared with the MaxSum optimal value of 942.8. The optimal MaxSum585
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Figure 2: MaxMin, MaxSum, and Bi-level optimal solutions.

solution corresponding to that value is shown in the center diagram of the figure, and also
has the typical disposition of that model, avoiding the central part and with the issue of
selecting two points very close (see the upper left corner of the square). The diagram on the
right clearly shows that the bi-level model provides an “in-between” solution, considering the
optimal solutions of the two original models. Instead of the point around coordinates (5,40),590

it selects the point around coordinates (15,5). This “exchange” does not change the MaxMin
objective function, which is 51.4 in both models, but is able to increase the MaxSum value
from 829.8 to 885.2 in the bi-level model.

A natural extension of the bi-level model is the bi-objective model, in which both ob-
jectives, MaxSum and MaxMin, are considered as equally important, and treated with the595

standard multi-objective methodology. Colmenar et al. (2018) first adapt the standard solvers
NSGA-II and SPEA, and then propose several metaheuristics to the bi-objective problem. In
particular, the authors consider two construction-based methods, namely GRASP and Iter-
ated Greedy, and two trajectory-based, namely tabu search and VNS. The comparison of the
methods include the hypervolume, coverage, and epsilon indicator of the approximation of600

the Pareto front obtained with each method. The comparison shows that tabu search is able
to obtain the best solutions.

4.3. The MaxMean model

Mart́ı & Sandoya (2013) propose an advanced GRASP for the MaxMean problem intro-
duced by Prokopyev et al. (2009) that they called the Equitable Dispersion problem, in which605

the number of selected elements is not set beforehand. In particular, the authors target general
instances in which the distances can take positive and negative values and do not necessarily
satisfy the usual distance properties, such as the triangular inequality, reflecting for example
the polarization that occurs when people get together in groups, in which we can identify
clusters of individuals, with a high attraction within clusters and a high repulsion between610

clusters, and with no room for indifference. Note that the Max-Mean Dispersion Problem
is polynomially solvable if all the distances are non-negative, but it is strongly NP-hard if
they can take positive and negative values. The authors propose a GRASP constructive algo-
rithm based on a non-standard combination of greediness and randomization, a local search
strategy based on the variable neighborhood descent methodology, and a path relinking post-615

processing. This later method is based on a measure to control the diversity in the search
process. The empirical comparison with a previous standard GRASP (Prokopyev et al., 2009)
favors the proposed method.
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The paper by Mart́ı & Sandoya (2013) drew the attention of researchers working on
diversity problems to the MaxMean model. A few years later, Carrasco et al. (2015) propose620

a tabu search based on constructive and destructive moves, and three local search methods
with nested neighborhoods. Their tabu search algorithm, built upon short-term and long-
term strategies, outperforms the previous GRASP methods. Della Croce et al. (2016) propose
a very interesting combination of methods in a 3-stage algorithm: a quadratic integer solver
to find promising values for the number of selected elements to generate initial solutions, a625

local branching scheme, and a path relinking post-processing. Lai & Hao (2016) hybridize
the tabu search methodology with an evolutionary method thus creating a memetic algorithm
that improves upon previous methods according to their extensive computational comparison.
As shown in the subsection on the MaxSum problem, this type of memetic algorithm has been
already applied to other diversity models, and we can therefore conclude that it is a robust630

method that performs well across different models.
Brimberg et al. (2019) propose a simple VNS for the MaxMean problem. The authors

identify the minimum number of ingredients that makes a VNS based heuristic as simple and
user friendly as possible, while at the same time achieving high-quality results. To clearly state
this goal, the paper title starts with the expression Less is more, and the proposed algorithm635

follows the general variable neighborhood search methodology. The experimental comparison
shows that, in spite of its simplicity, this VNS competes very well with the complex tabu
search by Carrasco et al. (2015).

We end the revision on the MaxMean model with an exact algorithm. Garraffa et al. (2017)
consider the non-convex quadratic fractional formulation (see (5)) from which a semidefinite640

programming (SDP) relaxation can be derived. This relaxation is tightened by means of a
cutting plane algorithm which iteratively adds the most violated inequalities. The proposed
approach embeds the SDP relaxation and the cutting plane algorithm into a branch and
bound framework. Computational experiments show that the proposed method is able to
solve to optimality instances with up to 100 elements in less than 5 hours of CPU time.645

Lai et al. (2019) adapted their memetic algorithm proposed for the MaxMean (Lai &
Hao, 2016) to the Generalized MaxMean (see formulation (6) above), in which some weights
multiply the objective function. This is the first heuristic for this extended model introduced
in Prokopyev et al. (2009).

4.4. Other unconstrained diversity models650

As mentioned in Section 3.3, Prokopyev et al. (2009) introduced in the previous period
several diversity models that did not receive attention at that time. We have just reviewed
above several contributions on the MaxMean model, and we are going to see now a few more
on the MaxMinSum and MinDiff as well.

Building on the main ideas applied to different metaheuristics for the MaxSum and655

MaxMin models, Aringhieri et al. (2015) propose some constructive procedures and a Tabu
Search algorithm for the MaxMinSum and MinDiff models. In particular, the authors inves-
tigate the extension to this new context to key features such as initialization, tenure manage-
ment and diversification mechanisms. The computational experiments show that the proposed
algorithms perform effectively on the publicly available benchmarks. Mart́ınez-Gavara et al.660

(2017) integrate GRASP and Tabu Search in a scheme in which elements are selected and des-
selected thus oscillating around the feasibility boundary defined by the problem constraint.
The authors tested six different variants of GRASP, and three variants of the strategic oscil-
lation. The final method is compared with a commercially available optimization software for
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combinatorial problems (localsolver.com). Amirgaliyeva et al. (2017) apply different variants665

of the variable neighborhood search methodology to the MaxMinSum, including the variable
formulation search that iterates over different formulations to escape from local optima. The
authors compare their method with the tabu search by Aringhieri et al. (2015), obtaining
better results.

The most recent approach for the MaxMinSum is due to Lai et al. (2018), in which670

a solution-based tabu search is proposed. It is worth mentioning that the standard tabu
search implementation is based on attributive memory, in which only key properties (called
attributes) of moves or solutions are stored to avoid cycling. In this implementation however,
the authors consider an interesting variant in which instead of an attribute, they record
the entire solution by means of hash functions to speed up its management. An exhaustive675

empirical comparison with previous methods identifies this tabu search as the best method
published so far for the MaxMinSum.

We consider now the MinDiff model, for which Duarte et al. (2015) proposed a GRASP
with Exterior Path Relinking. Given two solutions, S and S′, the standard implementation
of the path relinking starts from the initiating solution S and gradually transforms it into the680

guiding solution S′. This transformation is accomplished by swapping out elements selected in
S with elements in S′, generating a set of intermediate solutions. The exterior Path Relinking
introduces in the initiating solution characteristics not present in the guiding solution with
diversification purposes. Specifically, it removes from the initiating solution those elements
which also belong to the guiding solution, obtaining intermediate solutions which are further685

away from both the initiating and the guiding solutions. The authors show that this method
is able to obtain high quality solutions by comparing them with the optimal values obtained
with CPLEX.

After Duarte’s GRASP with Exterior Path Relinking, three heuristics have been proposed.
They are basically adaptations of methods proposed for other diversity models to target the690

specific characteristics of the MinDiff model. In particular, Mladenović et al. (2016) propose
a VNS, Zhou & Hao (2017) an iterated local search, and Lai et al. (2019) a solution-based
tabu search, which according to their computational testing, is currently the state-of-the-art
method for this problem.

A major criticism of the two models reviewed in this subsection is its lack of practical695

justification. Parreño et al. (2021) analyze these two models, in connection with the rest of
diversity models. The first conclusion of their study is that the MaxSum and MaxMinSum
provide similar solutions, and considering the relatively large amount of research already done
in the MaxSum model, it is not well justified the need of the recently introduced MaxMin-
Sum one (especially because it is more complicated). In particular, their empirical analysis700

reveals that the optimal solution obtained with one model scores very well in the other model,
presenting a small deviation with respect to its optimum (0.8% on average on the MDPLIB).
Additionally, both models present an average correlation of 0.74, and in many cases it is
larger than 0.9. Regarding the geometrical disposition of its solutions, they select points
close to the borders of the space, and with no points in the central region. Figure 3 shows the705

MaxMinSum optimal solution (left), and the MaxSum optimal solution (right), of a Euclidean
instance with n = 100 elements from which we select m = 20. It is clear that both solutions
are very similar (they only differ in one point).

Regarding the MinDiff, Parreño et al. (2021) also recommend to avoid the use of this
model in its current formulation. Their analysis reveals that it seeks for inter-distance equality710

among the selected points, but ignores how large or small these distances are. This model
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Figure 3: MaxMinSum (left) and MaxSum (right) optimal solutions.

balances the selection of points, achieving equity in this way; however, it seems difficult to
justify the selection of balanced points at a very small distance, as shown in the example of
Figure 4 with n = 25 elements from which we select m = 3.

Figure 4: MinDiff optimal solution.

To sum it up, it seems that researchers have focused their attention on these two problems715

as a way to evaluate complex metaheuristics, but without considering their true practical
significance. More research is needed to conclude if they are artificial problems or require a
better formulation to capture diversity and equity in a more realistic way.

4.5. Constrained dispersion models

As mentioned above, in the previous decade Rosenkrantz et al. (2000) introduced several720

diversity models constrained in terms of cost and capacity, motivated by their practical appli-
cations in facility location. In these last few years, several models have been developed from
this seminal paper.

Peiró et al. (2021) considered the model of maximizing the diversity subject to capacity
constraints. This model, as stated in Rosenkrantz et al. (2000), is built upon the MaxMin, by725

replacing the typical cardinality constraint with capacity constraints. The authors called it the
Capacitated Dispersion Problem (CDP), and proposed a hybridization of GRASP and
VND implemented within the Strategic Oscillation framework. A straightforward formulation,
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based on the standard binary variables xi, a capacity value ci for each node i, and a capacity
threshold B indicating the desired level of service, follows:730

Maximize Mini,j∈M dij

subject to:
n∑

i=1
cixi ≥ B

M = {i ∈ V : xi = 1}
xi ∈ {0, 1} i = 1, . . . , n.

(12)

Mart́ı et al. (2021) propose a mathematical model and a heuristic based on the Scatter
Search methodology to maximize the diversity while satisfying the capacity constraint in
the CDP. Their heuristic algorithm outperforms the previous heuristic on the 100 instances
tested, and the model is able to solve the medium size instances in this set to optimality. In
particular, the authors adapt the exact method by Sayyady & Fathi (2016) for the MaxMin735

to the CDP. It basically solves iteratively the node packing problem, which finds a maximum
cardinality subset of nodes in an auxiliary graph, so that no two nodes in this subset are
adjacent to each other. With a time limit of 3600 seconds, Gurobi is able to solve all the
instances with n = 50, and n = 150, and some of the instances with n = 500.

This same year in which we are writing this paper, 2021, a new constrained model has740

been published. Mart́ınez-Gavara et al. (2021) consider the model in which capacity and cost
constraints are included. This model was labeled as Max-Dist/Cap/Cost by Rosenkrantz
et al. (2000), and it is coined now as the Generalized Dispersion Problem (GDP). It
basically adds a cost constraint to the CDP. For each element i, it considers an associated
cost, ai, and there is a maximum budget K that cannot be exceeded. Mart́ınez-Gavara et al.745

(2021) also propose another model that includes both fixed and variable costs, to model in a
more realistic way some location problems.

Maximize m

subject to:
n∑

i=1
cixi ≥ B

n∑
i=1

aixi ≤ K

m ≤ dij +D(1− xi) +D(1− xj) i, j = 1, . . . , n : j > i.
xi ∈ {0, 1} i = 1, . . . , n.

(13)

It is noteworthy the relative relationship between these constrained models and the well-
known discrete p-median problem. In both models we want to select some locations to estab-
lish some facilities; however, the p-median solution assigns each client to a facility, which is750

not the case of dispersion problems. In general terms, we may say that the p-median models
emphasize the distance between facility and clients, while the dispersion models emphasize
the distance among facilities.

Mart́ınez-Gavara et al. (2021) illustrate the practical use of this model with the location
problem of a medical corporation that wants to set several facilities, such as clinics or hospitals,755

in a certain territory. In this context, the set of nodes would represent the potential locations
for the facilities (such as hospitals or clinics), the capacity value B the minimum number of
patients that they want to attend, and the cost limit K their budget. Maximizing the inter-
distance between facilities translates the objective of scatter the clinics over the territory to
cover it, in a similar way that the p-median minimizes the distance between the facility and760

the assigned patients. Note however, that in this model, we are not assigning the clients
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(patients) to clinics, and we are giving them the freedom to select the one that they prefer,
which is precisely what many medical corporations do.

5. The MDPLIB Library of Benchmark Instances

The benchmark instances for the diversity problem come from different sources that have765

been added over the years. The most used library is the MDPLIB; however, other instances
have also been considered, such as the OR-Lib. On the other hand, the library for the
constrained dispersion problems is quite recent, and since it is derived from the MDPLIB, we
propose to include all of them in an extended version of the MDPLIB, called MDPLIB 2.0.
A detailed description of the different sets of instances follows.770

The original MDPLIB collects a total of 315 instances available at www.uv.es/rmarti/

paper/mdp.html with a mirror server in www.optsicom.es/mdp. Mart́ı et al. (2010) compiled
ten years ago this comprehensive set of benchmark instances representative of the collections
used for computational experiments in the MDP. The library contains three sets of instances
collected from different papers and named after their authors: GKD (Glover, Kuo, and Dhir),775

MDG (Mart́ı, Duarte, and Gallego), and SOM (Silva, Ochi, and Martins). All the instances
were randomly generated. The generators were not built according to any specific application,
but they were designed with the purpose of being a challenge for heuristic methods, mainly
on the MaxSum problem. However, these instances have been extensively used in all the
diversity models proposed, and some studies point out that not all of them are appropriate780

for some models.
In this section, we first describe in detail each set of instances, which contains different

subsets according to their source. We consider three sets of instances depending on the type
of values in their distance matrices: Euclidean, Real, and Integer. In our descriptions below,
we analyze these sets, and propose some changes to update the library. We will refer to the785

new library as MDPLIB 2.0.

1. Euclidean instances set. This data set consists of 215 matrices for which the values
were calculated as the Euclidean distances from randomly generated points with coor-
dinates in the 0 to 10 range. It collects four subsets, namely GKD-a, GKD-b, GKD-c,
and GKD-d:790

- GKD-a: Glover et al. (1998) introduced these 75 instances in which the number of
coordinates for each point is generated randomly in the 2 to 21 range. The instance
sizes are such that for n = 10, m = 2, 3, 4, 6 and 8; for n = 15, m = 3, 4, 6, 9 and 12;
and for n = 30, m = 6, 9, 12, 18 and 24.

- GKD-b: Mart́ı et al. (2010) generated these 50 matrices for which the number of795

coordinates for each point is generated randomly in the 2 to 21 range and the instance
sizes are such that for n = 25, m = 2 and 7; for n = 50, m = 5 and 15; for n = 100,
m = 10 and 30; for n = 125, m = 12 and 37; and for n = 150, m = 15 and 45.

- GKD-c: Duarte & Mart́ı (2007) generated these 20 matrices with 10 coordinates for
each point and n = 500 and m = 50.800

- GKD-d: Parreño et al. (2021) generated 70 matrices for which the values were calcu-
lated as the Euclidean distances from randomly generated points with two coordinates
in the 0 to 100 range. For each value of n = 25, 50, 100, 250, 500, 1000, and 2000, they
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considered 10 instances with m = dn/10e and 10 instances with m = 2dn/10e, totalizing
140 instances. The main motivation of this new set is to include the original coordi-805

nates in the instances files that unfortunately are not publicly available nowadays for
the other subsets. In this way, researchers may represent the solutions in line with the
work in Parreño et al. (2021).

We replace the original sets GKD-a and GKD-b in the benchmark library with the new
set GKD-d, in which the instances are generated in the same way but their corresponding810

files contain the coordinates. Note that the new set contains very large instances not
considered in the original sets.

2. Real instances set. This data set consists of 140 matrices with real numbers randomly
selected according to a uniform distribution.

- MDG-a. This data set contains 60 instances. Duarte & Mart́ı (2007) generated 40815

matrices with real numbers randomly selected in [0, 10] and called them Random Type
I instances, 20 of them with n = 500 and m = 50, and the other 20 with n = 2000 and
m = 200. Parreño et al. (2021) generated 20 additional matrices with n = 100 and real
numbers randomly selected in [0, 10] that can be solved to optimality.

- MDG-b. This data set contains 60 instances. Originally, Duarte & Mart́ı (2007)820

created this set with 40 matrices generated with real numbers randomly selected in [0,
1000] and called them Random Type II instances. 20 of them have n = 500 and m = 50,
and the other 20 have n = 2000 and m = 200. Parreño et al. (2021) generated 20
additional matrices with n = 100 and real numbers randomly selected in [0, 1000],

- MDG-c. Considering that many heuristics were able to match the best-known results825

in many of the instances previously introduced, Mart́ı et al. (2013) proposed this data
set with very large instances in 2013. It consists of 20 matrices with randomly generated
numbers according to a uniform distribution in the range [0, 1000], and with n = 3000
and m = 300, 400, 500 and 600.

3. Integer instances set. This data set consists of 170 instances where the distance830

matrices are integer random numbers generated from an integer uniform distribution.

- ORLIB: This is a set of 10 instances with n = 2500 and m = 1000 that were proposed
for binary problems (Beasley, 1990). The distances are integers generated at random in
[−100, 100] where the diagonal distances are ignored.

- PI: Palubeckis (2007) generated 10 instances where the distances are integers from a835

[0, 100] uniform distribution. 5 of them are generated with n = 3000 and m = 0.5n,
and 5 with n = 5000 and m = 0.5n. The density of the distance matrix is 10%, 30%,
50%, 80% and 100%.

- SOM-a. These 50 instances were generated by Mart́ı et al. (2010) with a generator
developed by Silva et al. (2004) with integer random numbers between 0 and 9 generated840

from an integer uniform distribution. The instance sizes are such that for n = 25, m = 2
and 7; for n = 50, m = 5 and 15; for n = 100, m = 10 and 30; for n = 125, m = 12 and
37; and for n = 150, m = 15 and 45.

- SOM-b. These 20 instances were generated by Silva et al. (2004) with the same random
generator from SOM-a. The instance sizes are such that for n = 100, m = 10, 20, 30845
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and 40; for n = 200, m = 20, 40, 60 and 80; for n = 300, m = 30, 60, 90 and 120; for
n = 400, m = 40, 80, 120, and 160; and for n = 500, m = 50, 100, 150 and 200.

- MGPO: To complement the sets above, we consider 80 large matrices with relatively
low m values. Specifically, we generate 40 instances with n = 1000 and integer numbers
randomly selected in [1, 100], 20 of them with m = 50 and 20 with m = 100. Similarly,850

we generate 40 matrices with n = 2000 and integer numbers randomly selected in
[1, 100], 20 of them with m = 50, and 20 with m = 100.

A final note on the use of instances is its applicability to the different models. It must be
noted that some of them were introduced for the MaxSum model, and could not be adequate
for other diversity models. This is especially true in the case of some instances in the SOM set855

that contain so many 0 values that all feasible solutions have a minimum distance value of 0.
Our empirical analysis in Section 6 shows that 23 instances in the SOM set have an optimal
MaxMin value of 0, and therefore if we apply a heuristic and obtain a solution with a value of
0 in the MaxMin objective, this is not a reliable measure of its assessment. Researchers have
to be very careful when using this set to test other models than the classic MaxSum. We are860

including a note in the MDPLIB 2.0 identifying these 23 instances.

Figure 5: Number of solutions of an instance with n = 25.

A simple but important argument when considering an instance to compare methods is
its difficulty based on the ratio between the total number of elements n, and the number of
them to be selected, m. Since any selection of m elements is a solution, the number of feasible
solutions is simply the Cn

m = n!
m!(n−m)! . Therefore, for a given number of n, the closer m is865

to n/2, the more difficult the instance is. For example, an instance with n = 25 and m = 2
only has 300 solutions, while an instance with n = 25 and m = 10 has more than 3 million
solutions. Figure 5 shows the number of solutions as a function of m for an instance with
n = 25.

5.1. Constrained benchmark instances870

The benchmark set of instances in the constrained dispersion problem is derived from the
MDPLIB described above. Specifically, Peiró et al. (2021) and Mart́ınez-Gavara et al. (2021)
select a subset of 50 instances to generate the new benchmark set. It consists of 30 instances
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from GKD set, 10 of each size (n = 50, n = 150, and n = 500), 10 instances of size 500 from
the MDG set, and finally, 10 more instances of size 50 are selected from the SOM set.875

The capacity of each node i, ci in (12), is randomly generated with a uniform distribution
between [1, 1000] for each of these original instances. Then, the minimum capacity B is
computed as the total capacity multiplied by 0.2 or 0.3, thus two instances are created for each
of these 50 instances. So, the Const.-(CDP) benchmark contains 100 instances. Moreover, in
the GDP, for each of these 100 instances, the cost ai of a node i, see equation (13), is generated880

by a uniform distribution between the values ci/2 and 2 ci. As in the capacity constrained,
the maximum budget K is computed as the sum of all the costs values multiplied by a factor
between 0.2 and 0.3. Therefore, in the Const.-(GDP) benchmark, each original instance in
the MDPLIB produces 4 instances, thus obtaining a set of 200 instances.

We have generated an additional set of large instances. In particular, we consider 20885

new instances in each set: 20 Euclidean (GKD-d) with n = 2000, 20 Real (MDG-c) with
n = 3000, and 20 Integer (MGPO) with n = 2000. The capacity and cost values are generated
as described above.

We finish the description of the instances, summarizing the new library, MDPLIB 2.0, in
Table 5. This table shows the number of instances, type, and the range of n and m in each890

subset.

Set # Instances Type Range of n Range of m

GKD-c 20
Euclidean

500 50

GKD-d 140 [25, 2000] [3, 400]

MDG-a 60 [100, 2000] [50, 200]

MDG-b 60 Real numbers [100, 2000] [50, 200]

MDG-c 20 3000 [300, 600]

ORLIB 10

Integer numbers

2500 1000

PI 10 {3000, 5000} {1500, 2500}

SOM-a 50 [25, 150] [2, 45]

SOM-b 20 [100, 500] [10, 200]

MGPO 80 [1000, 2000] [50, 100]

Const - (CDP) 100 Constrained [50, 500] -

Const - (GDP) 200 Constrained [50, 500] -

Total 770 [25, 5000] [2, 2500]

Table 5: MDPLIB 2.0 benchmark library.

6. Computational experiments

In this section we address the two diversity problems that have been extensively studied,
the MaxSum and MaxMin. Considering that the number of methods proposed for them is
very large and, in many cases, the comparisons performed are partial, with just a few methods895

and a fraction of the instances described in Section 5, we perform a complete comparison to
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clearly established the state-of-the-art methods for these two problems. We would like to
thank the authors who kindly made their codes available to us. All the experiments are
conducted on a computer with a 2.8 GHz Intel 369 Core i7 processor with 16 GB of RAM.

6.1. The MaxSum model900

Mart́ı et al. (2013) presented an extensive computational experimentation to compare 10
heuristics and 20 metaheuristics for the MaxSum problem (see Table 1). This comparison
reveals that, the first heuristics proposed in the early period, C2 and D2, perform very well
considering their simplicity, and in the set of complex metaheuristics proposed in the expan-
sion period, B-VNS (Brimberg et al., 2009) and ITS (Palubeckis, 2007) exhibit the best results905

(see Table 2). Since then, several new efficient methods have been published (see Section
4), being the Memetic Evolution Strategy MSES (De Freitas et al., 2014), the Memetic Tabu
Search TS-MA (Wang et al., 2014) and the opposition-based memetic algorithm OBMA (Zhou &
Hao, 2017) the most recent ones. We consider these seven methods and the solutions obtained
with CPLEX in our comparison.910

In line with the previous comparisons previously published, we consider two time horizons
in our testing: 10 seconds and 600 seconds of CPU time. In our first experiment, we exclude
the MSES (De Freitas et al., 2014) because we are running its Matlab code provided by the
authors that requires much more than the 10 seconds considered in this experiment. Table
6 reports the results of the other six heuristics referenced above run for 10 seconds. It also915

reports the solutions of the CPLEX solver with mathematical model (4) described above run
for 1 hour. Note that in many cases CPLEX is not able to certify the optimality, and we
report its best feasible solution found (current lower bound when the time limit expires).
This table shows the average percentage deviation from the best solution known (% dev), and
the number of best solutions found (# best). Results are reported for each instance set. In920

the case of CPLEX, % dev is only reported in a set, when it obtains feasible solutions in all the
instances in that set.

Table 6 shows that, as expected, metaheuristics obtain better results than simple heuris-
tics. In particular, the most recent published method, OBMA, obtains the best results overall,
with an average percentage deviation of 0.16% and 327 best solutions found in the experi-925

ment. Note that TS-MA is able to slightly improve OBMA in terms of the average percentage
deviation; however, a p-value < 0.001 of the one-sided pairwise Wilcoxon test confirms the
superiority of OBMA. On the other hand, this table also shows that most of the problems are
too large to be solved with CPLEX, and only in some of the instances sets it obtains feasible
solutions.930

If we compare the best method proposed in each period, we can see that in the early
period, the best results were obtained with D2 that presents an average deviation of 36.95%.
In the expansion period (second decade in our study), the best method is B-VNS, and the
percentage deviation drops to 0.2%. Finally, in the development period (last decade) a slightly
improvement is achieved with very complex methods, being OBMA the best method (closely935

followed by TS-MA), with a deviation of 0.16 (and 0.02 for TS-MA).
In the next experiment, we compare the best methods identified for each period time,

namely D2, B-VNS, and OBMA, run with a time limit of 600 seconds per instance. We include
in this experiment the solutions obtained with CPLEX and MSES which require on average
about an hour of CPU time. Table 7 shows the same statistical parameters than the previous940

table. The results in this table show that simple heuristics are not able to improve complex
metaheuristics over a long period of time, and OBMA emerges as the best algorithm again,
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Instance Class

GKD-c GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b SOM-c all

# inst. 20 140 60 60 20 50 20 80 450

% dev

CPLEX 3.83 3.05 - - - 2.45 6.40 - -
C2 97.35 16.54 74.51 74.04 99.56 85.65 96.45 19.05 70.39
D2 22.27 41.33 40.59 28.27 76.23 41.01 22.73 23.21 36.95
B-VNS 0.00 0.06 1.18 0.07 0.08 0.00 0.00 0.20 0.20
ITS 0.00 0.58 1.19 0.10 0.20 0.05 0.00 0.25 0.30
TS-MA 0.02 0.06 0.01 0.04 0.04 0.00 0.00 0.02 0.02
OBMA 0.00 0.06 1.14 0.03 0.00 0.00 0.00 0.03 0.16

# best

CPLEX 0 46 0 0 0 18 0 0 65
C2 0 0 0 0 0 0 0 0 0
D2 0 0 0 0 0 0 0 0 0
B-VNS 19 108 22 0 0 50 20 13 232
ITS 19 109 20 24 0 48 19 10 249
TS-MA 1 45 58 44 0 50 20 63 281
OBMA 19 108 28 24 20 50 20 58 327

0.00 means less than 0.001

Table 6: Comparison of the best methods for the Max-Sum problem in 10 seconds.

obtaining the best percentage deviation overall. Furthermore, OBMA exhibits a remarkable
99% of the best solutions, while this percentage in the B-VNS is around 70%. The pairwise
Wilcoxon statistical test confirms that OBMA outperforms B-VNS, with a p-value less than945

0.001. These comments are in line with the results in the previous experiment.
The last experiment in this subsection evaluates how close the solutions of the algorithms

are with respect to the optimal values. We can compute it for the 45 small instances that
CPLEX is able to optimally solve. Table 8 shows the average percentage deviation from the
optimal solution (% gap) and the number of optimal solutions found by each algorithm (# opt)950

over the set of these 45 instances. Since the size of these instances is small (n ∈ {25, 50}),
and the number of elements to be selected is less than 7 (< n/3), we may consider these 45
instances as easy to solve. However, simple heuristics, such as C2 and D2, are not able to match
the optimal solutions, while metaheuristics can achieve almost all of them. Furthermore, the
results obtained by the heuristics are on average less than 34 percent away from the optimal955

value.
To summarize the situation on the MaxSum problem, we conclude that simple heuristics

obtain low quality solutions, and we should avoid their use. The efforts made in the last
two decades on this problem, result in very efficient metaheuristics that are able to obtain
good solutions even in very short running times, such as the 10 seconds tested. Results960

obtained with the metaheurstics in the development period (last decade analyzed) slightly
improve those in the previous period, and many of them would be adequate for a large range
of applications in which a medium size instance has to be solved. Regarding the optimal
values, the MaxSum model implemented in CPLEX is only able to certify optimal solutions in
a small fraction of the instances (around a 10% overall), which indicates that this model is965
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Instance Class

GKD-c GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b SOM-c all

# inst. 20 140 60 60 20 50 20 80 450

% dev

CPLEX 3.83 2.98 - - 0.00 2.45 6.40 - -
D2 10.05 24.99 20.03 18.44 76.23 26.92 19.26 19.48 29.92
B-VNS 0.00 0.00 0.01 0.01 0.02 0.00 0.00 0.05 0.01
MSES 0.00 0.71 1.15 0.72 0.41 0.00 0.07 0.89 0.49
OBMA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

# best

CPLEX 0 79 3 5 0 18 0 0 105
D2 0 0 0 0 0 0 0 0 0
B-VNS 20 138 43 0 2 50 20 45 318
MSES 20 126 17 12 0 50 9 0 244
OBMA 20 138 60 60 20 50 20 80 447

0.00 means less than 0.001

Table 7: Comparison of the best methods for the Max-Sum problem in 600 seconds.

Procedure C2 D2 B-VNS ITS OBMA TS-MA MSES

% gap 33.54 25.03 0.00 0.05 0.00 0.00 0.00
# opt 0 0 45 44 45 44 45

0.00 means less than 0.001

Table 8: Comparison with 45 optimal values obtained with CPLEX in the MaxSum.

still a challenge for the operation research community, and further research is necessary to
obtain a model that could increase the number of optimal solutions found.

6.2. The MaxMin model

This section describes the numerical experiments that we have performed to test the effi-
ciency of the most representative algorithms for the MaxMin model. The first two algorithms970

that we include in the comparison belong to the early period, and fall under the category
of heuristic algorithms. Specifically, we adapt the constructive and destructive algorithms
proposed by Glover et al. (1998) to the MaxMin problem, and we name them as C2Ad and
D2Ad, respectively. They are similar to those proposed by Erkut (1990). At the end of the
expansion period, Resende et al. (2010) performed a numerical analysis to compare their pro-975

posed algorithm GPR with the previous metaheuristics, and conclude that GPR outperformed
the state-of-art at that time (see Table 3). So, we consider GPR in the next comparison as
the representative algorithm of that period. Finally, in the development period (the last
decade in our study), we can only find the metaheuristic proposed by Porumbel et al. (2011),
which consists in combining add and drop operations with a simple tabu search (named980

DropAdd-TS).
In contrast to what happens with the MaxSum model, in the last decade, new formulations

have been proposed to the MaxMin, increasing the number of optimal solutions that can be
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solved with CPLEX. Results in Tables 9 and 10 are obtained with the model proposed by
Sayyady & Fathi (2016), running it with a time limit of 1 hour per instance.985

Instance Class

GKD-c GKD-d MDG-a MDG-b MDG-c SOM-a SOM-b SOM-c all

# inst. 20 140 60 60 20 50 20 80 450

% dev

CPLEX 4.55 0.22 - - - 0.00 15.00 - -
C2Ad 56.06 91.35 65.38 98.16 100.00 68.61 35.00 100.00 76.82
D2Ad 16.01 42.41 44.51 74.54 75.23 62.53 35.00 86.09 54.54
GPR 4.00 30.46 7.87 54.02 100.00 7.30 10.00 64.21 34.73
DropAdd-TS 0.01 21.00 1.35 25.43 0.00 2.72 0.00 0.00 6.31

# best

CPLEX 2 139 40 20 0 50 17 0 268
C2Ad 0 0 20 0 0 15 13 0 48
D2Ad 0 0 20 0 0 12 13 0 45
GPR 0 29 39 14 0 44 18 0 144
DropAdd-TS 20 32 58 39 20 47 20 80 316

0.00 means less than 0.001

Table 9: Comparison of the best methods for the Max-Min problem in 10 seconds.

As in the previous section, we first compare the results obtained with the four algorithms
run with a small time limit (10 seconds), including in the comparison the CPLEX results. Table
9 summarizes the results by instance set, and shows the average percentage deviation from
the best solution known (% dev), and the number of best solutions found (# best). As in the
previous section, the average percentage deviation for CPLEX is only reported in a set, when990

it obtains feasible solutions in all the instances in that set.
As expected, Table 9 shows that metaheuristics outperform heuristics, and DropAdd-TS

arises as the best algorithm overall, with an average percentage deviation of 6.31% and 316
best solution found in the experiment. It is worth mentioning that CPLEX, with the Sayyady
& Fathi (2016) formulation, is able to obtain a total of 268 bests solutions out of 450 in the995

experiment (around 60% overall), even improving the results achieve by GPR. This formulation
solves to optimality many instances of large size (with n = 1000), and is able to obtain high
quality lower bounds in even larger instances (n = 2000). Finally, comparing the two simple
heuristics considered, we can see that the destructive method D2Ad obtains better solutions
than the constructive one (C2Ad). Specifically, D2Ad presents an average deviation of 54.51%1000

in contrast to the average deviation of 76.82% that C2Ad obtains.
We repeat the same experiment performed above with a time horizon of 600 seconds. The

results obtained are similar to those presented in Table 9 for 10 seconds, so we do not include
the results here. It must be emphasized that GPR is able to decrease by 10% the percentage
deviation to the best solution found in this experiment, and to increase its number of bests1005

solution (# best) from 144 to 159. This makes sense since the methodology applied in this
algorithm usually requires longer running times due to the combination of solutions.

Finally, the last experiment in this section has the objective to evaluate how far the
solutions provide by the algorithms are from optima, or if they are able to match them. As
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in the previous section, we compare the four algorithms in the subset of instances that CPLEX1010

optimally solves. In particular, the MaxMin model implemented in CPLEX is able to certify
optimal solutions in 227 instances out of 450 (around 50%). Clearly, the new formulations
that have been raised in the MaxMin model allow to optimally solve instances with large
size (n ≤ 1000 in our benchmark set) with relatively low running times, as opposite to what
happens in the MaxSum model. Table 10 shows the average percentage deviation from the1015

optimal solution (% gap) and the number of optimal solutions found by each algorithm (# opt)
over the set of these 227 instances. None of them is able to compete with the results obtained
by CPLEX, although it must be noted that they require smaller running times.

Procedure C2Ad D2Ad DropAdd-TS GPR

% gap 88.84 52.03 18.76 23.08
# opt 28 25 114 107

Table 10: Comparison with 227 optimal values in the MaxMin model.

6.3. The Bi-level MaxSum model

As mentioned, Porumbel et al. (2011) proposed a combined model between the MaxMin1020

and the MaxSum problems. They considered the MaxMin objective function, subject to the
MaxSum as a secondary objective, based on the fact that there is a large number of optimal
solutions for the MaxMin, so we look for the best one among them in terms of the MaxSum
objective. Parreño et al. (2021) support this point with a geometrical argument since they
disclose that the MaxMin avoids the selection of very close elements but can be at medium1025

distances (not very far away from each other), while the MaxSum favors the selection of points
at a large distance but permits very close elements, so in a way they complement each other.
The authors called it the Bi-level MaxSum problem.

Porumbel et al. (2011) designed a tabu search heuristic, DropAdd-TS, specifically for this
problem, in which the method tries to maximize both objectives (being the MaxSum sec-1030

ondary). Since we consider the bi-level model as a very interesting one, we perform an
experiment to evaluate how good this algorithm is in maximizing the sum of distances over
the set of optimal solutions of the MaxMin, and at the same time the practical significance of
the model. Note that, since we are applying heuristics, we cannot guarantee the optimality,
and therefore what we do to evaluate the quality of this method, is to compare it with a1035

previous heuristic. In particular, we run the GRASP with Path Relinking, GPR by Resende
et al. (2010) and the DropAdd-TS to solve our benchmark set of instances. Although GPR only
minimizes the MaxMin, we evaluate both objectives, MaxMin and MaxSum, in its output
solution. We do the same for the output of the DropAdd-TS.

To perform a fair test about the ability of the DropAdd-TS to find good solutions in1040

terms of the MaxSum, we only consider the instances in which both methods obtain the
same value of the MaxMin objective. Figure 6 shows the percentage improvement (% dev)
of the DropAdd-TS MaxSum value with respect to the GPR MaxSum value. This figure shows
a boxplot of the average percentage deviations in each instance set. Their positive values
indicate that DropAdd-TS always obtain a better (larger) sum of distances than GPR in all1045

the instances in which both methods obtain the same MaxMin value. This confirms that the
Bi-level model permits to discriminate among solutions, selecting the best one overall. It also
quantifies the relative contribution of the DropAdd-TS algorithm with respect to the GPR, thus
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certifying its superiority. We believe that this new model brings new research opportunities,
since it clearly deserves to be further studied.1050

Figure 6: MaxSum percentage improvement of DropAdd-TS with respect to GPR.

7. Conclusions

In the early period (1980 - 2000) two mathematical models were proposed to capture
the notion of diversity, the MaxSum and MaxMin, and simple heuristics were applied to solve
these models in short computational times. On the other hand, in this decade only small
instances were considered. In the following decade, that we called the expansion period,1055

the three main open problems at that time were approached. In particular, researchers
consider other models to include different aspects of diversity, they introduce larger instances
that pose a challenge to simple heuristics, and apply complex metaheuristics to efficiently
solve the problems.

During the last decade, called the development period (2010 - to now), researchers1060

have been mainly working on the lines proposed in the previous decade (described in Section
3). This is why we call it the development period because it intensifies the research over the
known models (collected in Table 4), without proposing new ones. Authors limit themselves
to the strict competition among methods, without extending the boundaries that currently
define the field. We want to give credit to them because the competition among methods is1065

now very hard, and the proposed methods both exact and heuristics are very sophisticated,
but we believe that there is still some work to do on expanding the area. In the same way
that heuristic methods require intensification and diversification for an efficient exploration
of the solution space, we believe that the scientific methodology requires to revisit the models
and problems to improve solving methods, but also to propose and explore new models to1070

approach in a more realistic way the complexity of real problems, connecting in this way the
area with related fields of knowledge.

Considering the characteristics of the solutions obtained by the different models, the most
important conclusions are:

• The MaxSum and MaxMinSum provide similar solutions in terms of their geometrical1075

location, since they select points close to the borders of the space, and with no points
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in the central region. Thus, it seems quite artificial the use of this latter complicated
model. These models may select a few elements that are very close to each other. They
reflect what we usually understand as dispersion.

• The MaxMin model generates solutions with a different structure than the MaxSum.1080

It usually obtains equidistant points, and it does not avoid to select points in the
central part. This mathematical formulation induces representativeness, more than
dispersion.

• The MinDiff only seeks for inter-distance equality (equity) among the selected points,
and ignores how large or small these distances are, thus neglecting diversity or disper-1085

sion, which could be an issue in many contexts.

7.1. Open problems

We finish our review pointing to potential new areas that, in our opinion, deserve the
attention of researchers.

It is shown in this review that for every diversity model, many heuristics have been pro-1090

posed, but only a few exact methods, if any. In spite of being the most studied model,
we can only solve to optimality medium size instances for the MaxSum. The study of valid
inequalities to strength mathematical models is nowadays a well established technique; how-
ever, it has not been applied to diversity models yet, with the exception of the MaxMin (with
excellent results). The adaptation of these techniques to the diversity problems, including the1095

polyhedral study of their feasible regions, may lead to significant progress in this field. On the
other hand, considering that the MaxMin exact methods are very efficient, the challenge is
now to design powerful metaheuristics that can obtain the already known optimal solutions in
short running times. In the last few years, constrained models have emerged as a natural
extension of the classic ones to adapt diversity to real situations. Cost or capacity, that are1100

common elements in many other location models, have been largely ignored in diversity mod-
els. In our opinion, their study in this context has just started, and we will witness important
developments in these lines.

The two equity models proposed so far, MaxMinSum and MinDiff, present drawbacks
that discourage their use as they are formulated now. However, we believe that the concept1105

of equity may find its realm in Operations Research, but only require to be better formulated.
As a matter of fact, in facility location problems, there is a vast literature of equity measures.
The bi-level formulation, recently considered for the MaxMin, may well be a good way to
overcome the limitations of their initial formulations.
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Carrasco, R., Pham, A., Gallego, M., Gortázar, F., Mart́ı, R., & Duarte, A. (2015). Tabu
search for the Max-Mean Dispersion Problem. Knowledge-Based Systems, 85 , 256–264.1145
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