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ABSTRACT 

The maximum diversity problem presents a challenge to solution methods based on 
heuristic optimization.  We undertake the development of hybrid procedures within the 
scatter search framework with the goal of uncovering the most effective designs to tackle 
this difficult but important problem.  Our research revealed the effectiveness of adding 
simple memory structures (based on recency and frequency) to key scatter search 
mechanisms.  Our extensive experiments and related statistical tests show that the most 
effective scatter search variant outperforms state-of-the-art methods. 
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1. Introduction 

The maximum diversity problem (MDP) consists of selecting a subset of m elements 
from a set of n elements in such a way that the sum of the distances between the chosen 
elements is maximized.  The notion of distance between elements is customized to 
specific applications.  As mentioned in Kuo, Glover and Dhir (1993) and Glover, Kuo 
and Dhir (1998), the maximum diversity problem has applications in plant breeding, 
social problems, ecological preservation, pollution control, product design, capital 
investment, workforce management, curriculum design and genetic engineering.  In most 
applications, it is assumed that each element can be represented by a set of attributes.  Let 
sik be the state or value of the kth attribute of element i, where k = 1, …, K.  Then the 
distance between elements i and j may be defined as: 
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In this case, dij is simply the Euclidean distance between i and j.  The distance values are 
then used to formulate the MDP as a quadratic binary problem: 
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 xi = {0, 1} 1 ≤ i ≤ n 
 
Kuo, Glover and Dhir (1993) use this formulation to show that the clique problem (which 
is known to be NP-complete) is reducible to the MDP.  These authors also suggest the 
transformation of the quadratic binary model into a mixed integer program of the 
following form: 
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 1≤−+ ijji yxx  1 ≤ i < j ≤ n 

 0≤+− iji yx  1 ≤ i < j ≤ n 

 0≤+− ijj yx  1 ≤ i < j ≤ n 

 yij ≥ 0 1 ≤ i < j ≤ n 
 xi = {0, 1} 1 ≤ i ≤ n 
 
Note that the second set of constrains is redundant and was eliminated in the formulation 
presented in the 1998 article by the same authors.  This formulation produces a very weak 
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linear programming relaxation.  Specifically, when the diversity values are uniformly 

distributed, the LP relaxation results in 
n
mxi =  for all i.  Hence, most branching rules 

implemented in general-purpose MIP solvers fail to identify promising separation 
variables and branching directions.  Experiments with Cplex 10.0.1 corroborate the 
difficult that commercial branch-bound codes encounter when approaching the maximum 
diversity problem with this formulation. 
 
We do not include a discussion of previous work on the maximum diversity problem 
because fairly complete reviews have appeared in recent publications, including Silva, 
Ochi and Martins (2004) and Duarte and Martí (2005).  Our main contribution is the 
development and testing of a solution method based on the scatter search framework that 
outperforms the best approximation procedures reported in the literature.  Specifically, 
we compare our proposed procedure to two GRASP approaches developed by Silva, Ochi 
and Martins (2004) and the tabu search due to Duarte and Martí (2006). 
 

2. Scatter Search Approach 

Scatter search (SS) is a metaheuristic framework that explores a solution space by 
evolving a set of reference points.  The search starts with the application of a 
diversification generation method that results in a population of points from which a 
subset is selected as the initial reference set (RefSet).  The evolution of the reference set is 
induced by the application of four additional methods: subset generation, combination, 
improvement and update.  The diversification generation method may be used again if the 
rebuilding of the reference set becomes necessary.  Typically, the rebuilding phase is 
triggered after an iteration in which no new solutions become part of the current reference 
set.  A detailed description of the method and a comprehensive list of applications appear 
in the book by Laguna and Martí (2003).  Figure 1 summarizes the basic scatter search 
design. 
 

1. Construction of a set P consisting of PopSize diverse solutions via the application of the 
diversification generation method 

2. Application of the improvement method to all solutions in P 
3. Construction of the initial reference set.  RefSet consists of b solutions in P, from which q% are 

chosen due to their quality (as measured by the objective function value) and (1-q)% are 
selected due to their diversity (as measure by the distance between them and the rest of the 
solutions already in the reference set) 

4. Application of the subset generation method to create a list of all subsets of reference solutions 
that will be combined 

5. Application of the combination method to all subset of reference solutions generated in the 
previous step 

6. Application of the improvement method to all the trial solutions generated by the combination 
method 

7. Updating of the RefSet if any new trial solution is better than any of the current reference 
solutions 

8. If a new solution has been included in the RefSet then go back to step 4, otherwise the procedure 
stops. 

Figure 1. Basic scatter search procedure 
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An extension of the basic scatter search design considers the rebuilding of the RefSet.  
This means that instead of stopping when no new solutions are added to the reference set, 
the diversification generation method is invoked again to generate a brand new 
population of solutions (i.e., a new P).  The new RefSet is built with the best q% from the 
current RefSet and (1-q)% diverse solutions from P.  After the RefSet is rebuilt, the 
procedure goes back to step 4.  The search stops after a given execution time limit or a 
limit on the number of rebuilding steps.  In our implementation, instead of constructing a 
new P during the rebuilding step, we use the solutions remaining in P from the previous 
rebuilding step.  If the set becomes empty before the procedure terminates, then the 
diversification method is employed to repopulate it. 
 
The definition of distance between solutions is a key design issue in scatter search 
implementations.  Distance is used to measure how diverse one solution is with respect to 
a set of solutions.  Specifically, for the MDP, let r

ix  be the value of the ith variable for the 
reference solution r (i.e., r ∈ RefSet).  Also let t

ix  be the value of the ith variable for the 
trial solution t.  Then, the distance between the trial solution t and the solutions in the 
RefSet in our SS implementation is defined as: 
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The formula simply counts the number of times that each selected element in the trial 
solution t appears in the reference solutions and subtracts this value from the maximum 
possible distance (i.e., bm).  The maximum distance occurs when no element that is 
selected in the trial solution t appears in any of the reference solutions.  When choosing 
solutions to rebuild the reference set, we select the trial solution that has the maximum 
distance between itself and the solutions currently in the RefSet.  Since the solutions are 
added one at a time, the distance calculations have to be updated before the next solution 
is selected. 
 
Within the framework described above, we implemented three variants of the scatter 
search procedure.  The differences among these implementations are related to the 
methods used to construct, combine and improve solutions, as indicated in Table 1.  The 
Base method does not use any specific information about the problem context.  The 
GRASP Hybrid implements several strategies that take advantage of characteristics that 
are specific to the MDP.  The Tabu Search Hybrid uses both context information and 
memory structures that are typical to tabu search implementations (Glover and Laguna 
1997). 
 
As shown in Table 1, the base procedure generates diversification by simply selecting m 
elements at random.  The diversification generated in this way refers to the distances 
between the solutions and not about the objective function values.  The GRASP Hybrid 
employs a more elaborate procedure for generating diverse solution.  The procedure, 
referred to as GRASP_D-2 and developed by Duarte and Martí (2006), is based on 
randomizing D-2, a deterministic destructive heuristic developed by Glover, Kuo and 
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Dhir (1998).  D-2 starts with the infeasible solution for which xi = 1 for all i.  That is, all 
n elements are originally selected.  In order to reduce the set of selected elements to m, 
the procedure performs n-m steps.  At each step, the procedure deselects element i* (i.e., 

*ix  is set to zero), where i* is such that 
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The randomization of D-2 that is employed within the GRASP_D-2 consists of selecting 
i* from a reduced candidate list formed by all those elements i such that 
( ) ( ) ( )*1 iDiD α+≤ .  The value of α is initially set to 0.5 and decreased by 0.1 after a pre-

specified CPU time is consumed without improving the incumbent to a minimum of 0.1.  
We set this value to a 20% of the total CPU time in our implementation. 
 
Procedure Diversification Generation Combination Improvement 
Base Random selection of m 

elements from all n elements 
in the problem 

Random selection of m 
elements from the union 
of the elements in the 
solutions being 
combined 

LS, “largest 
improvement” local 
search 

GRASP Hybrid GRASP_D-2, based on the 
randomization of the 
destructive heuristic D-2 

Application of D-2 to 
the union of the 
elements in the solutions 
being combined 

I_LS, “first 
improvement” local 
search 

Tabu Search 
Hybrid 

Tabu_ D-2, based on adding 
memory structures to D-2 

Application of Tabu_ D-
2 to the union of the 
elements in the solutions 
being combined 

Local search with short 
term memory 

Table 1. Summary of scatter search methods implemented for testing 
 
The diversification generator within the Tabu Search Hybrid variant is also based on the 
destructive procedure D-2.  At each step of the procedure, the element i* to be deselected 
is such that: 
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In this modified distance calculation, f(i) indicates the frequency in which element i has 
appeared in previous solutions and q(i) is the average quality (as measured by the 
objective function value) of past solutions that included element i.  The fmax and qmax are 
the maximum values of f and q overall elements.  The penalty factors β and δ are 
respectively set to 0.1 and 0.0001 in our experiments. 
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The Local Search method LS (Ghosh 1996) scans the set of selected elements in search 
of the best exchange to replace a selected element with an unselected one.  The method 
performs moves as long as the objective value increases and it stops when no improving 
exchange can be found.  The Improved Local Search method, I_LS, (Duarte and Martí 
2006) selects the element i* ( 1* =ix ) that provides the smallest contribution to the 
objective function value of the current solution.  Then, it searches for an element j (xj = 0) 
to be exchange with element i*.  The first element j that results in an improving move is 
selected and the exchange is performed without examining the remaining unselected 
elements.  If no improving move can be found to exchange element i*, then the selected 
element with the next smallest contribution is examined.  This process continues until no 
improving exchange can be found. 
 
LS_TS (Duarte and Martí 2006) implements a short-term tabu search method also based 
on exchanges.  An iteration of this method begins with a random selection of an element i 
(xi = 1).  The probability of selecting element i is inversely proportional to D(i).  The list 
of unselected elements is scanned and the first improving move that exchanges elements i 
and j (xj = 0) is selected.  If no improving move is found, then the least non-improving 
move is chosen.  The chosen exchange is performed and both elements participating in 
the exchange are classified tabu-active for a number of iterations (known as the tabu 
tenure).  Tabu-active elements are not allowed to participate in any exchanges.  The 
LS_TS method stops if after a number of consecutive iterations the incumbent solution is 
not modified. 
 
The original LS_TS method was modified when added to our scatter search framework.  
The modification consists of using an asymmetric tabu tenure in which elements added to 
the solution are given shorter tabu tenures than the tenure assigned to those elements that 
have been deleted from the solution.  Also, the tabu tenure and the maximum number of 
iterations have been made dependent on the number of elements in the solution.  
According to the experimentation reported in Duarte and Martí (2006), the tabu tenure for 
selected elements is set to 0.28m, while the tabu tenure for unselected elements is set to 
0.028m.  The maximum number of iterations without improvement is set to 0.1n. 
 
During preliminary experimentation, we observed that the diversification and 
combination methods yielded the same solutions more than once.  In order to avoid the 
application of the improvement method to a solution more than once, we developed a 
filtering method based on the hash function in Figure 2.  The method is capable of 
filtering 0.5% of the GRASP Hybrid solutions and 82% of the Tabu Search Hybrid 
solutions. 
 

 
Let hash = 1 

 for ( i = 1, …, n ) 
 hash = 31hash + 1231 xi + 1237(1- xi)  
 end for 

Figure 2. Hash function calculation 
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A hash value is stored for each solution generated during the search.  The hash value of a 
solution that is candidate for improvement is checked against the database of hash values.  
If a match is found then the solution under consideration is not subjected to the 
improvement method. 
 

2.1. Combination Methods 

In this subsection, we describe the mechanisms that we have developed to combine 
solutions during the scatter search.  We use the distance matrix in Table 2 to illustrate the 
processes that yield new solutions as combinations of reference solutions.  The 
dimensions of the example problem are n = 10 and m = 3. 
 

 2 3 4 5 6 7 8 9 10 
1 2.65 2.83 2.65 2.00 2.83 2.45 2.65 3.00 2.65 
2  3.32 3.74 1.73 1.00 2.65 3.16 1.41 2.00 
3   2.65 3.46 3.16 2.45 2.65 2.65 4.12 
4    3.87 3.61 3.87 2.00 3.46 3.74 
5     2.00 2.00 3.87 2.24 1.73 
6      2.83 3.32 1.73 1.73 
7       3.87 2.24 3.32 
8        3.16 4.00 
9         2.83 

Table 2. Distances between elements 
 
Suppose that during the scatter search two reference r1 and r2 solutions are to be 
combined.  For ease of notation, we represent each solution as the set of the selected 
elements: r1 = {1, 4, 6} and r2 = {1, 5, 10}.  The objective function values associated 
with these solutions are 9.09 (2.65 + 2.38 + 3.61) and 6.38 (2 + 2.65 + 1.73), 
respectively. 
 
Random Selection 
 
This method consists of selecting m elements from the union of the elements in both 
reference solutions.  In our example, the union of the elements is U = {1, 4, 5, 6, 10}.  
The random selection consists of choosing 3 elements from U.  For example, the new 
trial solution may be t = {1, 4, 10} with objective function 9.04 (2.65 + 2.65 + 3.74). 
 
D-2 Selection 
 
This method consists of the application of the destructive heuristic D-2 (Glover, Kuo and 
Dhir, 1998) to the union of the elements in the reference solutions being combined.  The 
method starts with the selection of all elements in the union and then it deselects one 
element at a time until there are only m selected elements remaining.  The element i that 
is deselected at each step is the one with the minimum D(i) value.  In our example, the 
union consists of 5 elements and therefore the method performs two steps only.  In the 
first step, the D values are: 
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D(1) = d(1,4) + d(1,5) + d(1,6) + d(1,10) = 2.65 + 2 + 2.83 + 2.65 = 10.13 
D(4) = d(4,1) + d(4,5) + d(4,6) + d(4,10) = 2.65 + 3.87 + 3.61 + 3.74 = 13.87 
D(5) = d(5,1) + d(5,4) + d(5,6) + d(5,10) = 2 + 3.87 + 2 + 1.73 = 13.22 
D(6) = d(6,1) + d(6,4) + d(6,5) + d(6,10) = 2.83 + 3.61 + 2 + 1.73 = 10.17 
D(10) = d(10,1) + d(10,4) + d(10,5) + d(10,6) = 2.65 + 3.74 + 1.73 + 1.73 = 9.85 

 
The minimum D value corresponds to element 10 and therefore this element is 
deselected.  The updated union is U = {1, 4, 5, 6}.  For the next step, the corresponding D 
values are 7.48, 10.13, 7.87 and 8.44.  Therefore, element 1 is deselected and the trial 
solution that results from the application of this combination method is t = {4, 5, 6} with 
an objective function value equal to 9.48. 
 
Tabu_D-2 Selection 
 
This method consists of the application of the Tabu_D-2 procedure to the union of the 
elements of the reference solutions being combined.  This method uses information about 
solutions generated in the past as well as information associated with those solutions 
combined in previous iterations.  To illustrate how this procedure works, we will assume 
that after a number of iterations, the information in Table 3 is available. 
 

Element Frequency Quality 
1 13 7.73 
2 19 7.25 
3 17 8.69 
4 8 9.37 
5 45 6.64 
6 17 7.71 
7 16 8.42 
8 16 9.09 
9 19 7.44 

10 13 8.50 

Table 3.  Information about past generated and combined solutions 
 
We use the data in Table 3 to calculate the modified D values in the same way as 
described above for the diversification generator based on Tabu_D-2. 
 

 
D(1) = 10.13 – (0.02)(13) + (0.000043)(7.73) = 9.87 
D(4) = 13.87 – (0.02)(8) + (0.000043)(9.37) = 13.71 
D(5) = 13.22 – (0.02)(45) + (0.000043)(6.64) = 12.32 
D(6) = 10.17 – (0.02)(17) + (0.000043)(7.71) = 9.83 
D(10) = 9.85 – (0.02)(13) + (0.000043)(8.50) = 9.59 

 
The minimum D value corresponds to element 10 and therefore this element is 
deselected.  The updated union is U = {1, 4, 5, 6}.  For the next step, the corresponding D 
values are 7.30, 10, 7.24 and 8.20.  Therefore, element 5 is deselected and the trial 
solution that results from the application of this combination method is t = {1, 4, 6} with 
an objective function value equal to 9.09. 
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3. Alternative Scatter Search Designs 
In order to determine the best configuration of our scatter search procedure, we 
performed 5 preliminary experiments.  We useed two types of problem instances: 
 

• Type I — Diversity values are real numbers uniformly distributed between 
0 and 1000 
 

• Type II — Diversity values are real numbers uniformly distributed 
between 0 and 10 

 
We generate 10 problems of each type with n = 500 and m = 50.  We use the outcomes of 
our experiments to calculate the average percent deviation (pDev) of the solutions 
obtained by each procedure when compared to the best solutions during the given 
experiments.  We also report on the number of best solutions (nBest) found by each 
method. 
 

3.1. Search Framework and Improvement Method 

The objective of this experiment is to determine the relative merit of the scatter search 
variants described in Table 4.  We set a time limit of 3 CPU minutes and we run each 
procedure with and without the improvement method.  The results are summarized in 
Table 4. 
 
Procedure Improvement Average Deviation Number of Best 
Base No 13.7% 0 
 Yes 0.68% 0 
GRASP Hybrid No 1.16% 0 
 Yes 0.18% 2 
Tabu Search Hybrid No 1.07% 0 
 Yes 0.00% 20 

Table 4. Summary of results for preliminary experiment 1 
 
The results in Table 4 indicate the advantage of using an improvement method within our 
design.  In terms of average deviation from the best solutions, the improvement method 
has the largest impact in the case of the Base design.  Also, the improvement method 
makes a significant difference in the number of best solutions found in the Tabu Search 
Hybrid.  In general, we conclude that the procedures embedded in the Tabu Search 
Hybrid variant results in the best scatter search configuration.  For the remaining of this 
paper, the scatter search that we use is the one that implements the Tabu Search Hybrid 
procedures (including the improvement method), as described in Table 1. 
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3.2. Reference Set Configuration 

The objective of this experiment is testing the selective application of the improvement 
method.  So far, our scatter search is such that every solution generated by the 
diversification generation method or by the combination method is subjected to the 
improvement method.  Since the execution of the improvement method is 
computationally expensive, applying it to every solution may prevent the search from 
visiting additional solutions during the allotted search time.  Therefore, in this 
experiment, we test the idea of selectively applying the improvement method to a subset 
of the solutions that are visited during the search.  Specifically, we skip step 2 in Figure 1 
and select the best (q%)b solutions from P.  Once these solutions have been added to the 
RefSet, then the improvement method is applied to these solutions only.  Similarly, after 
the application of the combination method, the improvement method is not applied to all 
the resulting solutions.  Instead, the best (q%)b are selected and the improvement method 
is applied to this subset only.  The selective application of the improvement method may 
result in a trajectory that misses a high-quality solution that could have been found when 
applying the improvement method to a relatively inferior solution.  This is why we 
designed this preliminary experiment with the goal of identifying parameter settings (i.e., 
values for b and q) that would be effective under the selective application of the 
improvement method.  Table 5 summarizes the results of this experiment. 
 

  Improve All Selective Improvement 
b q% Avg. Deviation Num. of Best Avg. Deviation Num. of Best 

90% 0.0200% 15 0.1065% 5 
70% 0.0094% 14 0.0653% 11 
50% 0.0181% 16 0.0690% 9 

8 

30% 0.0017% 19 0.0663% 11 
90% 0.0148% 14 0.0937% 7 
70% 0.0134% 15 0.0777% 8 
50% 0.0069% 16 0.0924% 8 

10 

30% 0.0017% 19 0.1282% 7 
90% 0.0937% 17 0.0622% 11 
70% 0.0017% 19 0.0569% 11 
50% 0.0017% 19 0.0397% 14 

20 

30% 0.0000% 20 0.0616% 11 
90% 0.0000% 20 0.0221% 17 
70% 0.0017% 19 0.0437% 13 
50% 0.0000% 20 0.0443% 13 

40 

30% 0.0000% 20 0.0488% 12 

Table 5. Summary of results for preliminary experiment 2 
 
Regarding the average deviation, the results in Table 5 reveal that the best average 
performance when applying the improvement method to all solutions is achieved when q 
is set to 30.  Likewise, the best average deviation for the selective procedure is achieved 
when q is set to 70.  When considering average deviation and number of best solutions, 
the “Improve All” variant outperforms the selective application of the improvement 
method. 
 
Given the effectiveness of the “Improve All” version with q = 30, we performed an 
additional experiment where we varied the values of b from 4 to 160.  The experiment 



Gallego, et al. — 11 

showed that the best results are found when b = 12 and therefore we set the parameters to 
these preferred values, 12 for b and 30 for q. 
 

3.3. Subset Generation Strategies 

The purpose of this experiment is identifying the most effective method for generating 
subsets of reference solutions that are in turn the input to the combination method.  For 
this experiment, we consider combinations of 2, 3, 4 and 5 solutions.  Our subset 
generation method (see step 4 in Figure 1) operates as described in Section 2 of Chapter 5 
in Laguna and Martí (2003).  All subsets of size 2 are considered.  That is, all pairs of 
reference solutions are added to the list of subsets.  Subsets of size 3 are constructed by 
considering each subset of size 2 and adding the best reference solution that is not part of 
the subset.  Subsets of higher dimensions are constructed following the same logic.  That 
is, subsets of size 4 are based on subsets of size 3.  Likewise, subsets of size 5 are 
constructed by adding a solution to subsets of size 4.  This mechanism avoids the 
exponential explosion in the number of subsets generated had we considered all possible 
subsets of size 3, 4 and 5. 
 
The experiment consists of using the scatter search procedure, as configured after the 
previous preliminary experiments, and testing the merit of four variants of the subset 
generation method: 
 

SG1: Generate all subsets of size 2.  This method generates all pairs of reference 
solutions and therefore it results in b(b-1)/2 subsets that are passed to the 
combination method. 

 
SG2: Generate all subsets of size 2 and then augment each pair to generate 

subsets of size 3.  The way a solution is added to each pair creates 
duplicates and therefore b(b-1) is an upper bound on the number of subsets 
generated by this variant. 

 
SG3: Augment SG2 with subsets of size 4 that are generated by adding a 

solution to the subsets of size 3. 
 
SG4: Augment SG3 with subsets of size 5 that are generated by adding a 

solution to the subsets of size 4. 
 
The results of running this experiment are summarized in Table 6. 
 

Subset Generation Method Average Deviation Number of Best 
SG1 0.0000% 20 
SG2 0.0017% 19 
SG3 0.0000% 20 
SG4 0.0042% 18 

Table 6. Summary of results for preliminary experiment 3 
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The results of this preliminary experiment indicate that there is no additional gain that 
could be realized by generating and combining subsets with more than 2 solutions.  
Hence, we perform step 2 (see Figure 1) of the scatter search implementation by limiting 
the subset generation to all pairs of reference solutions.  These results are in line with 
similar experiments for other combinatorial optimization problems (Campos, et al. 2001). 
 

4. Computational Experiments 

This section describes the computational experiments that we performed to compare our 
proposed procedure to state-of-the-art methods for solving the maximum diversity 
problem.  Our scatter search implementation follows the basic framework outlined in 
Figure 1.  The diversification generation, combination and improvement methods are 
those corresponding to the Tabu Search Hybrid in Table 1.  The improvement method is 
applied to all the combined solutions (as described in Section 3.2) with b = 12 and q = 30.  
Finally, the subset generation method is limited to generating subset of size 2.  This 
procedure (labeled SS in subsequent tables) is compared to the following solution 
methods: 
 

• KLD (Silva, Ochi and Martins, 2004) with local search (Ghosh, 1996) 
• KLDv2 (Silva, Ochi and Martins, 2004) with local search (Ghosh, 1996) 
• Tabu_D-2 with LS_TS (Duarte and Martí, 2006) 

 
For this comparison, we use the same four data sets employed in Duarte and Martí 
(2006): 
 

SOM: This data set consists of 20 matrices with random numbers between 0 
and 9 generated from an integer uniform distribution.  The problem 
sizes are such that for n = 100, m = 10, 20, 30 and 40; for n = 200, 
m = 20, 40, 60 and 80; for n = 300, m = 30, 60, 90 and 110; for 
n = 400, m = 40, 80, 120, and 160; and for n = 500, m = 50, 100, 150 
and 200.These instances were generated by Silva, Ochi and Martins 
(2004). 

 
GKD: This data set consists of 20 matrices for which the values were 

calculated as the Euclidean distances from randomly generated points 
with coordinates in the 0 to 10 range.  The number of coordinates for 
each point is also randomly generated between 2 and 21.  Glover, Kuo 
and Dhir (1998) developed this data generator and constructed 
instances with n = 30.  We generated instances with n = 500 and 
m = 50. 

 
Type I: We generate 20 instances of Type I, as described in section 2, with 

n = 2000 and m = 200. 
 
Type II: We generate 20 instances of Type II, as described in section 2, with 

n = 500 and m = 50. 
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In these experiments, we observed the solution quality obtained by each method after 30 
seconds and after 3 minutes of search time.  We also included a 30-miunte run for Type I 
problems.  All the experiments were conducted on a Pentium 4 computer at 3 GHz with 3 
GB of RAM.  We coded all the procedures in Java and executed them in the Java 
Runtime Environment 1.5.  Tables 7 and 8 show the summary of our results. 
 

Data Set Time KLD KLDv2 Tabu_D-2 SS 
SOM 30 sec. 1.056% 1.463% 0.138% 0.002% 
 3 min. 0.178% 0.187% 0.095% 0.000% 
GKD 30 sec. 0.000% 0.000% 0.000% 0.000% 
 3 min. 0.000% 0.000% 0.000% 0.000% 
Type II 30 sec. 0.857% 1.083% 0.245% 0.010% 
 3 min. 0.525% 0.607% 0.203% 0.000% 
Type I 30 sec. 9.807% 100.000% 0.453% 0.453% 
 3 min. 9.807% 9.828% 0.331% 0.331% 
 30 min 1.018% 0.923% 0.233% 0.000% 

Table 7. Comparison of average percent deviation at several times during the search 

 
 

Data Set Time KLD KLDv2 Tabu_D-2 SS 
SOM 30 sec. 6 6 4 17 
 3 min. 7 9 6 20 
GKD 30 sec. 20 19 20 20 
 3 min. 20 20 20 20 
Type II 30 sec. 1 0 0 15 
 3 min. 1 0 0 20 
Type I 30 sec. 0 0 0 0 
 3 min. 0 0 0 0 
 30 min. 0 0 0 20 

Table 8. Comparison of number of best solutions at several times during the search 
 
Tables 7 and 8 show the merit of the proposed procedure.  Our scatter search 
implementation consistently produces the best solutions with percent deviations that in 
some cases are orders of magnitude smaller than those of the competing methods.  The 
problem instances in the GKD set do not provide a way of differentiating the 
performance of the methods that we are comparing.  They are either easy to solve and all 
the methods are capable of finding the optimal solutions in a very short period of time or 
the problems are difficult and all the methods are attracted to the same local optima.  We 
speculate that the former is true.  Figure 3 shows the typical search profile for the 
methods that we compared.  This run corresponds to the SOM set with a time limit of 3 
minutes. 
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Figure 3.  Search profile for a 3-minute run of the SOM set 
 
We have applied a statistical test to the data used to generate Table 7.  The results from 
the 30-second runs were not used because KLDv2 is not able to obtain solutions for Type 
I instances within the allotted time (see the 100% deviation in Table 7).  We applied the 
Friedman test for paired samples to the best solutions obtained by each method.  The 
resulting significance level of 0.000 clearly indicates that there are statistically significant 
differences among the four methods tested.  Specifically, the rank values produced by 
this test are 1.98, 1.86, 2.82 and 3.36 for the KLD, KLDv2, Tabu_D-2 and SS, 
respectively.  This indicates that among the procedures that we tested, SS is the best at 
obtaining solutions with large diverse scores, followed by Tabu_D-2, KLD and finally 
KLDv2. 
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Figure 4.  Search profile for a 30-minute run on Type I instances 
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It is interesting to point out that for the large Type I instances, there is no significant 
difference in performance between Tabu_D-2 and SS when the procedures are terminated 
after 3 minutes.  This is due to the time that SS spends generating the initial population of 
solutions and, hence, within the 3-minute limit, it does not reach the phase where 
reference solutions are combined to generate others.  Differences between the two 
methods are only detected after 20 minutes of search time, as shown in Figure 4. 

5. Conclusions 
We have described the development and implementation of a scatter search procedure for 
the solution of the maximum diversity problem.  We arrived to our final design by way of 
performing a series of preliminary experiments.  The final design is then compared to 
state-of-the-art methods and the outcome of our experiments seems quite conclusive in 
regard to the merit of the procedure that we propose.  To the best of our knowledge, our 
work is the first one to test several hybridized procedures within the scatter search 
framework.  We believe that the performance boost that we achieved by the use of simple 
memory mechanisms (some based on recency and some based on frequency information) 
within a scatter search design is a valuable lesson for future implementations. 
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