
Hybrid Heuristics for the Maximum Diversity Problem

MICAEL GALLEGO
Departamento de Informática, Estadística y Telemática, Universidad Rey Juan Carlos,
Spain. Micael.Gallego@urjc.es

ABRAHAM DUARTE
Departamento de Informática, Estadística y Telemática, Universidad Rey Juan Carlos,
Spain. Abraham.Duarte@urjc.es

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

ABSTRACT

The maximum diversity problem presents a challenge to solution methods based on
heuristic optimization. We undertake the development of hybrid procedures within the
scatter search framework with the goal of uncovering the most effective designs to tackle
this difficult but important problem. Our research revealed the effectiveness of adding
simple memory structures (based on recency and frequency) to key scatter search
mechanisms. Our extensive experiments and related statistical tests show that the most
effective scatter search variant outperforms state-of-the-art methods.

Latest Revision: June 9, 2006

Gallego, et al. — 2

1. Introduction

The maximum diversity problem (MDP) consists of selecting a subset of m elements
from a set of n elements in such a way that the sum of the distances between the chosen
elements is maximized. The notion of distance between elements is customized to
specific applications. As mentioned in Kuo, Glover and Dhir (1993) and Glover, Kuo
and Dhir (1998), the maximum diversity problem has applications in plant breeding,
social problems, ecological preservation, pollution control, product design, capital
investment, workforce management, curriculum design and genetic engineering. In most
applications, it is assumed that each element can be represented by a set of attributes. Let
sik be the state or value of the kth attribute of element i, where k = 1, …, K. Then the
distance between elements i and j may be defined as:

()∑
=

−=
K

k
jkikij ssd

1

2

In this case, dij is simply the Euclidean distance between i and j. The distance values are
then used to formulate the MDP as a quadratic binary problem:

 Maximize ∑∑
−

= +=

1

1 1

n

i

n

ij
jiij xxd

 Subject to mx
n

i
i =∑

=1

 xi = {0, 1} 1 ≤ i ≤ n

Kuo, Glover and Dhir (1993) use this formulation to show that the clique problem (which
is known to be NP-complete) is reducible to the MDP. These authors also suggest the
transformation of the quadratic binary model into a mixed integer program of the
following form:

 Maximize ∑∑
−

= +=

1

1 1

n

i

n

ij
ijij yd

 Subject to mx
n

i
i =∑

=1

 1≤−+ ijji yxx 1 ≤ i < j ≤ n

 0≤+− iji yx 1 ≤ i < j ≤ n

 0≤+− ijj yx 1 ≤ i < j ≤ n

 yij ≥ 0 1 ≤ i < j ≤ n
 xi = {0, 1} 1 ≤ i ≤ n

Note that the second set of constrains is redundant and was eliminated in the formulation
presented in the 1998 article by the same authors. This formulation produces a very weak

Gallego, et al. — 3

linear programming relaxation. Specifically, when the diversity values are uniformly

distributed, the LP relaxation results in
n
mxi = for all i. Hence, most branching rules

implemented in general-purpose MIP solvers fail to identify promising separation
variables and branching directions. Experiments with Cplex 10.0.1 corroborate the
difficult that commercial branch-bound codes encounter when approaching the maximum
diversity problem with this formulation.

We do not include a discussion of previous work on the maximum diversity problem
because fairly complete reviews have appeared in recent publications, including Silva,
Ochi and Martins (2004) and Duarte and Martí (2005). Our main contribution is the
development and testing of a solution method based on the scatter search framework that
outperforms the best approximation procedures reported in the literature. Specifically,
we compare our proposed procedure to two GRASP approaches developed by Silva, Ochi
and Martins (2004) and the tabu search due to Duarte and Martí (2006).

2. Scatter Search Approach

Scatter search (SS) is a metaheuristic framework that explores a solution space by
evolving a set of reference points. The search starts with the application of a
diversification generation method that results in a population of points from which a
subset is selected as the initial reference set (RefSet). The evolution of the reference set is
induced by the application of four additional methods: subset generation, combination,
improvement and update. The diversification generation method may be used again if the
rebuilding of the reference set becomes necessary. Typically, the rebuilding phase is
triggered after an iteration in which no new solutions become part of the current reference
set. A detailed description of the method and a comprehensive list of applications appear
in the book by Laguna and Martí (2003). Figure 1 summarizes the basic scatter search
design.

1. Construction of a set P consisting of PopSize diverse solutions via the application of the
diversification generation method

2. Application of the improvement method to all solutions in P
3. Construction of the initial reference set. RefSet consists of b solutions in P, from which q% are

chosen due to their quality (as measured by the objective function value) and (1-q)% are
selected due to their diversity (as measure by the distance between them and the rest of the
solutions already in the reference set)

4. Application of the subset generation method to create a list of all subsets of reference solutions
that will be combined

5. Application of the combination method to all subset of reference solutions generated in the
previous step

6. Application of the improvement method to all the trial solutions generated by the combination
method

7. Updating of the RefSet if any new trial solution is better than any of the current reference
solutions

8. If a new solution has been included in the RefSet then go back to step 4, otherwise the procedure
stops.

Figure 1. Basic scatter search procedure

Gallego, et al. — 4

An extension of the basic scatter search design considers the rebuilding of the RefSet.
This means that instead of stopping when no new solutions are added to the reference set,
the diversification generation method is invoked again to generate a brand new
population of solutions (i.e., a new P). The new RefSet is built with the best q% from the
current RefSet and (1-q)% diverse solutions from P. After the RefSet is rebuilt, the
procedure goes back to step 4. The search stops after a given execution time limit or a
limit on the number of rebuilding steps. In our implementation, instead of constructing a
new P during the rebuilding step, we use the solutions remaining in P from the previous
rebuilding step. If the set becomes empty before the procedure terminates, then the
diversification method is employed to repopulate it.

The definition of distance between solutions is a key design issue in scatter search
implementations. Distance is used to measure how diverse one solution is with respect to
a set of solutions. Specifically, for the MDP, let r

ix be the value of the ith variable for the
reference solution r (i.e., r ∈ RefSet). Also let t

ix be the value of the ith variable for the
trial solution t. Then, the distance between the trial solution t and the solutions in the
RefSet in our SS implementation is defined as:

distance(t, RefSet) = ∑∑
= =

−
b

r xi

r
i

t
i

xbm
1 1:

The formula simply counts the number of times that each selected element in the trial
solution t appears in the reference solutions and subtracts this value from the maximum
possible distance (i.e., bm). The maximum distance occurs when no element that is
selected in the trial solution t appears in any of the reference solutions. When choosing
solutions to rebuild the reference set, we select the trial solution that has the maximum
distance between itself and the solutions currently in the RefSet. Since the solutions are
added one at a time, the distance calculations have to be updated before the next solution
is selected.

Within the framework described above, we implemented three variants of the scatter
search procedure. The differences among these implementations are related to the
methods used to construct, combine and improve solutions, as indicated in Table 1. The
Base method does not use any specific information about the problem context. The
GRASP Hybrid implements several strategies that take advantage of characteristics that
are specific to the MDP. The Tabu Search Hybrid uses both context information and
memory structures that are typical to tabu search implementations (Glover and Laguna
1997).

As shown in Table 1, the base procedure generates diversification by simply selecting m
elements at random. The diversification generated in this way refers to the distances
between the solutions and not about the objective function values. The GRASP Hybrid
employs a more elaborate procedure for generating diverse solution. The procedure,
referred to as GRASP_D-2 and developed by Duarte and Martí (2006), is based on
randomizing D-2, a deterministic destructive heuristic developed by Glover, Kuo and

Gallego, et al. — 5

Dhir (1998). D-2 starts with the infeasible solution for which xi = 1 for all i. That is, all
n elements are originally selected. In order to reduce the set of selected elements to m,
the procedure performs n-m steps. At each step, the procedure deselects element i* (i.e.,

ix is set to zero), where i is such that

() ()()iDMiniD
ixi 1:

*

=
= ,

and () ∑=
j

jiij xxdiD .

The randomization of D-2 that is employed within the GRASP_D-2 consists of selecting
i* from a reduced candidate list formed by all those elements i such that
() () ()*1 iDiD α+≤ . The value of α is initially set to 0.5 and decreased by 0.1 after a pre-

specified CPU time is consumed without improving the incumbent to a minimum of 0.1.
We set this value to a 20% of the total CPU time in our implementation.

Procedure Diversification Generation Combination Improvement
Base Random selection of m

elements from all n elements
in the problem

Random selection of m
elements from the union
of the elements in the
solutions being
combined

LS, “largest
improvement” local
search

GRASP Hybrid GRASP_D-2, based on the
randomization of the
destructive heuristic D-2

Application of D-2 to
the union of the
elements in the solutions
being combined

I_LS, “first
improvement” local
search

Tabu Search
Hybrid

Tabu_ D-2, based on adding
memory structures to D-2

Application of Tabu_ D-
2 to the union of the
elements in the solutions
being combined

Local search with short
term memory

Table 1. Summary of scatter search methods implemented for testing

The diversification generator within the Tabu Search Hybrid variant is also based on the
destructive procedure D-2. At each step of the procedure, the element i* to be deselected
is such that:

() () () () ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
δ+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
β−=

=
maxmax

1:

*)()(min
q

iqrange
f

ifrangeiDiD
ixi

,

where ()() ()()iDiDrange
ii xixi 1:1:

minmax
==

−=

In this modified distance calculation, f(i) indicates the frequency in which element i has
appeared in previous solutions and q(i) is the average quality (as measured by the
objective function value) of past solutions that included element i. The fmax and qmax are
the maximum values of f and q overall elements. The penalty factors β and δ are
respectively set to 0.1 and 0.0001 in our experiments.

Gallego, et al. — 6

The Local Search method LS (Ghosh 1996) scans the set of selected elements in search
of the best exchange to replace a selected element with an unselected one. The method
performs moves as long as the objective value increases and it stops when no improving
exchange can be found. The Improved Local Search method, I_LS, (Duarte and Martí
2006) selects the element i* (1* =ix) that provides the smallest contribution to the
objective function value of the current solution. Then, it searches for an element j (xj = 0)
to be exchange with element i*. The first element j that results in an improving move is
selected and the exchange is performed without examining the remaining unselected
elements. If no improving move can be found to exchange element i*, then the selected
element with the next smallest contribution is examined. This process continues until no
improving exchange can be found.

LS_TS (Duarte and Martí 2006) implements a short-term tabu search method also based
on exchanges. An iteration of this method begins with a random selection of an element i
(xi = 1). The probability of selecting element i is inversely proportional to D(i). The list
of unselected elements is scanned and the first improving move that exchanges elements i
and j (xj = 0) is selected. If no improving move is found, then the least non-improving
move is chosen. The chosen exchange is performed and both elements participating in
the exchange are classified tabu-active for a number of iterations (known as the tabu
tenure). Tabu-active elements are not allowed to participate in any exchanges. The
LS_TS method stops if after a number of consecutive iterations the incumbent solution is
not modified.

The original LS_TS method was modified when added to our scatter search framework.
The modification consists of using an asymmetric tabu tenure in which elements added to
the solution are given shorter tabu tenures than the tenure assigned to those elements that
have been deleted from the solution. Also, the tabu tenure and the maximum number of
iterations have been made dependent on the number of elements in the solution.
According to the experimentation reported in Duarte and Martí (2006), the tabu tenure for
selected elements is set to 0.28m, while the tabu tenure for unselected elements is set to
0.028m. The maximum number of iterations without improvement is set to 0.1n.

During preliminary experimentation, we observed that the diversification and
combination methods yielded the same solutions more than once. In order to avoid the
application of the improvement method to a solution more than once, we developed a
filtering method based on the hash function in Figure 2. The method is capable of
filtering 0.5% of the GRASP Hybrid solutions and 82% of the Tabu Search Hybrid
solutions.

Let hash = 1

 for (i = 1, …, n)
 hash = 31hash + 1231 xi + 1237(1- xi)
 end for

Figure 2. Hash function calculation

Gallego, et al. — 7

A hash value is stored for each solution generated during the search. The hash value of a
solution that is candidate for improvement is checked against the database of hash values.
If a match is found then the solution under consideration is not subjected to the
improvement method.

2.1. Combination Methods

In this subsection, we describe the mechanisms that we have developed to combine
solutions during the scatter search. We use the distance matrix in Table 2 to illustrate the
processes that yield new solutions as combinations of reference solutions. The
dimensions of the example problem are n = 10 and m = 3.

 2 3 4 5 6 7 8 9 10
1 2.65 2.83 2.65 2.00 2.83 2.45 2.65 3.00 2.65
2 3.32 3.74 1.73 1.00 2.65 3.16 1.41 2.00
3 2.65 3.46 3.16 2.45 2.65 2.65 4.12
4 3.87 3.61 3.87 2.00 3.46 3.74
5 2.00 2.00 3.87 2.24 1.73
6 2.83 3.32 1.73 1.73
7 3.87 2.24 3.32
8 3.16 4.00
9 2.83

Table 2. Distances between elements

Suppose that during the scatter search two reference r1 and r2 solutions are to be
combined. For ease of notation, we represent each solution as the set of the selected
elements: r1 = {1, 4, 6} and r2 = {1, 5, 10}. The objective function values associated
with these solutions are 9.09 (2.65 + 2.38 + 3.61) and 6.38 (2 + 2.65 + 1.73),
respectively.

Random Selection

This method consists of selecting m elements from the union of the elements in both
reference solutions. In our example, the union of the elements is U = {1, 4, 5, 6, 10}.
The random selection consists of choosing 3 elements from U. For example, the new
trial solution may be t = {1, 4, 10} with objective function 9.04 (2.65 + 2.65 + 3.74).

D-2 Selection

This method consists of the application of the destructive heuristic D-2 (Glover, Kuo and
Dhir, 1998) to the union of the elements in the reference solutions being combined. The
method starts with the selection of all elements in the union and then it deselects one
element at a time until there are only m selected elements remaining. The element i that
is deselected at each step is the one with the minimum D(i) value. In our example, the
union consists of 5 elements and therefore the method performs two steps only. In the
first step, the D values are:

Gallego, et al. — 8

D(1) = d(1,4) + d(1,5) + d(1,6) + d(1,10) = 2.65 + 2 + 2.83 + 2.65 = 10.13
D(4) = d(4,1) + d(4,5) + d(4,6) + d(4,10) = 2.65 + 3.87 + 3.61 + 3.74 = 13.87
D(5) = d(5,1) + d(5,4) + d(5,6) + d(5,10) = 2 + 3.87 + 2 + 1.73 = 13.22
D(6) = d(6,1) + d(6,4) + d(6,5) + d(6,10) = 2.83 + 3.61 + 2 + 1.73 = 10.17
D(10) = d(10,1) + d(10,4) + d(10,5) + d(10,6) = 2.65 + 3.74 + 1.73 + 1.73 = 9.85

The minimum D value corresponds to element 10 and therefore this element is
deselected. The updated union is U = {1, 4, 5, 6}. For the next step, the corresponding D
values are 7.48, 10.13, 7.87 and 8.44. Therefore, element 1 is deselected and the trial
solution that results from the application of this combination method is t = {4, 5, 6} with
an objective function value equal to 9.48.

Tabu_D-2 Selection

This method consists of the application of the Tabu_D-2 procedure to the union of the
elements of the reference solutions being combined. This method uses information about
solutions generated in the past as well as information associated with those solutions
combined in previous iterations. To illustrate how this procedure works, we will assume
that after a number of iterations, the information in Table 3 is available.

Element Frequency Quality
1 13 7.73
2 19 7.25
3 17 8.69
4 8 9.37
5 45 6.64
6 17 7.71
7 16 8.42
8 16 9.09
9 19 7.44

10 13 8.50

Table 3. Information about past generated and combined solutions

We use the data in Table 3 to calculate the modified D values in the same way as
described above for the diversification generator based on Tabu_D-2.

D(1) = 10.13 – (0.02)(13) + (0.000043)(7.73) = 9.87
D(4) = 13.87 – (0.02)(8) + (0.000043)(9.37) = 13.71
D(5) = 13.22 – (0.02)(45) + (0.000043)(6.64) = 12.32
D(6) = 10.17 – (0.02)(17) + (0.000043)(7.71) = 9.83
D(10) = 9.85 – (0.02)(13) + (0.000043)(8.50) = 9.59

The minimum D value corresponds to element 10 and therefore this element is
deselected. The updated union is U = {1, 4, 5, 6}. For the next step, the corresponding D
values are 7.30, 10, 7.24 and 8.20. Therefore, element 5 is deselected and the trial
solution that results from the application of this combination method is t = {1, 4, 6} with
an objective function value equal to 9.09.

Gallego, et al. — 9

3. Alternative Scatter Search Designs
In order to determine the best configuration of our scatter search procedure, we
performed 5 preliminary experiments. We useed two types of problem instances:

• Type I — Diversity values are real numbers uniformly distributed between
0 and 1000

• Type II — Diversity values are real numbers uniformly distributed
between 0 and 10

We generate 10 problems of each type with n = 500 and m = 50. We use the outcomes of
our experiments to calculate the average percent deviation (pDev) of the solutions
obtained by each procedure when compared to the best solutions during the given
experiments. We also report on the number of best solutions (nBest) found by each
method.

3.1. Search Framework and Improvement Method

The objective of this experiment is to determine the relative merit of the scatter search
variants described in Table 4. We set a time limit of 3 CPU minutes and we run each
procedure with and without the improvement method. The results are summarized in
Table 4.

Procedure Improvement Average Deviation Number of Best
Base No 13.7% 0
 Yes 0.68% 0
GRASP Hybrid No 1.16% 0
 Yes 0.18% 2
Tabu Search Hybrid No 1.07% 0
 Yes 0.00% 20

Table 4. Summary of results for preliminary experiment 1

The results in Table 4 indicate the advantage of using an improvement method within our
design. In terms of average deviation from the best solutions, the improvement method
has the largest impact in the case of the Base design. Also, the improvement method
makes a significant difference in the number of best solutions found in the Tabu Search
Hybrid. In general, we conclude that the procedures embedded in the Tabu Search
Hybrid variant results in the best scatter search configuration. For the remaining of this
paper, the scatter search that we use is the one that implements the Tabu Search Hybrid
procedures (including the improvement method), as described in Table 1.

Gallego, et al. — 10

3.2. Reference Set Configuration

The objective of this experiment is testing the selective application of the improvement
method. So far, our scatter search is such that every solution generated by the
diversification generation method or by the combination method is subjected to the
improvement method. Since the execution of the improvement method is
computationally expensive, applying it to every solution may prevent the search from
visiting additional solutions during the allotted search time. Therefore, in this
experiment, we test the idea of selectively applying the improvement method to a subset
of the solutions that are visited during the search. Specifically, we skip step 2 in Figure 1
and select the best (q%)b solutions from P. Once these solutions have been added to the
RefSet, then the improvement method is applied to these solutions only. Similarly, after
the application of the combination method, the improvement method is not applied to all
the resulting solutions. Instead, the best (q%)b are selected and the improvement method
is applied to this subset only. The selective application of the improvement method may
result in a trajectory that misses a high-quality solution that could have been found when
applying the improvement method to a relatively inferior solution. This is why we
designed this preliminary experiment with the goal of identifying parameter settings (i.e.,
values for b and q) that would be effective under the selective application of the
improvement method. Table 5 summarizes the results of this experiment.

 Improve All Selective Improvement
b q% Avg. Deviation Num. of Best Avg. Deviation Num. of Best

90% 0.0200% 15 0.1065% 5
70% 0.0094% 14 0.0653% 11
50% 0.0181% 16 0.0690% 9

8

30% 0.0017% 19 0.0663% 11
90% 0.0148% 14 0.0937% 7
70% 0.0134% 15 0.0777% 8
50% 0.0069% 16 0.0924% 8

10

30% 0.0017% 19 0.1282% 7
90% 0.0937% 17 0.0622% 11
70% 0.0017% 19 0.0569% 11
50% 0.0017% 19 0.0397% 14

20

30% 0.0000% 20 0.0616% 11
90% 0.0000% 20 0.0221% 17
70% 0.0017% 19 0.0437% 13
50% 0.0000% 20 0.0443% 13

40

30% 0.0000% 20 0.0488% 12

Table 5. Summary of results for preliminary experiment 2

Regarding the average deviation, the results in Table 5 reveal that the best average
performance when applying the improvement method to all solutions is achieved when q
is set to 30. Likewise, the best average deviation for the selective procedure is achieved
when q is set to 70. When considering average deviation and number of best solutions,
the “Improve All” variant outperforms the selective application of the improvement
method.

Given the effectiveness of the “Improve All” version with q = 30, we performed an
additional experiment where we varied the values of b from 4 to 160. The experiment

Gallego, et al. — 11

showed that the best results are found when b = 12 and therefore we set the parameters to
these preferred values, 12 for b and 30 for q.

3.3. Subset Generation Strategies

The purpose of this experiment is identifying the most effective method for generating
subsets of reference solutions that are in turn the input to the combination method. For
this experiment, we consider combinations of 2, 3, 4 and 5 solutions. Our subset
generation method (see step 4 in Figure 1) operates as described in Section 2 of Chapter 5
in Laguna and Martí (2003). All subsets of size 2 are considered. That is, all pairs of
reference solutions are added to the list of subsets. Subsets of size 3 are constructed by
considering each subset of size 2 and adding the best reference solution that is not part of
the subset. Subsets of higher dimensions are constructed following the same logic. That
is, subsets of size 4 are based on subsets of size 3. Likewise, subsets of size 5 are
constructed by adding a solution to subsets of size 4. This mechanism avoids the
exponential explosion in the number of subsets generated had we considered all possible
subsets of size 3, 4 and 5.

The experiment consists of using the scatter search procedure, as configured after the
previous preliminary experiments, and testing the merit of four variants of the subset
generation method:

SG1: Generate all subsets of size 2. This method generates all pairs of reference
solutions and therefore it results in b(b-1)/2 subsets that are passed to the
combination method.

SG2: Generate all subsets of size 2 and then augment each pair to generate

subsets of size 3. The way a solution is added to each pair creates
duplicates and therefore b(b-1) is an upper bound on the number of subsets
generated by this variant.

SG3: Augment SG2 with subsets of size 4 that are generated by adding a

solution to the subsets of size 3.

SG4: Augment SG3 with subsets of size 5 that are generated by adding a

solution to the subsets of size 4.

The results of running this experiment are summarized in Table 6.

Subset Generation Method Average Deviation Number of Best
SG1 0.0000% 20
SG2 0.0017% 19
SG3 0.0000% 20
SG4 0.0042% 18

Table 6. Summary of results for preliminary experiment 3

Gallego, et al. — 12

The results of this preliminary experiment indicate that there is no additional gain that
could be realized by generating and combining subsets with more than 2 solutions.
Hence, we perform step 2 (see Figure 1) of the scatter search implementation by limiting
the subset generation to all pairs of reference solutions. These results are in line with
similar experiments for other combinatorial optimization problems (Campos, et al. 2001).

4. Computational Experiments

This section describes the computational experiments that we performed to compare our
proposed procedure to state-of-the-art methods for solving the maximum diversity
problem. Our scatter search implementation follows the basic framework outlined in
Figure 1. The diversification generation, combination and improvement methods are
those corresponding to the Tabu Search Hybrid in Table 1. The improvement method is
applied to all the combined solutions (as described in Section 3.2) with b = 12 and q = 30.
Finally, the subset generation method is limited to generating subset of size 2. This
procedure (labeled SS in subsequent tables) is compared to the following solution
methods:

• KLD (Silva, Ochi and Martins, 2004) with local search (Ghosh, 1996)
• KLDv2 (Silva, Ochi and Martins, 2004) with local search (Ghosh, 1996)
• Tabu_D-2 with LS_TS (Duarte and Martí, 2006)

For this comparison, we use the same four data sets employed in Duarte and Martí
(2006):

SOM: This data set consists of 20 matrices with random numbers between 0
and 9 generated from an integer uniform distribution. The problem
sizes are such that for n = 100, m = 10, 20, 30 and 40; for n = 200,
m = 20, 40, 60 and 80; for n = 300, m = 30, 60, 90 and 110; for
n = 400, m = 40, 80, 120, and 160; and for n = 500, m = 50, 100, 150
and 200.These instances were generated by Silva, Ochi and Martins
(2004).

GKD: This data set consists of 20 matrices for which the values were

calculated as the Euclidean distances from randomly generated points
with coordinates in the 0 to 10 range. The number of coordinates for
each point is also randomly generated between 2 and 21. Glover, Kuo
and Dhir (1998) developed this data generator and constructed
instances with n = 30. We generated instances with n = 500 and
m = 50.

Type I: We generate 20 instances of Type I, as described in section 2, with

n = 2000 and m = 200.

Type II: We generate 20 instances of Type II, as described in section 2, with

n = 500 and m = 50.

Gallego, et al. — 13

In these experiments, we observed the solution quality obtained by each method after 30
seconds and after 3 minutes of search time. We also included a 30-miunte run for Type I
problems. All the experiments were conducted on a Pentium 4 computer at 3 GHz with 3
GB of RAM. We coded all the procedures in Java and executed them in the Java
Runtime Environment 1.5. Tables 7 and 8 show the summary of our results.

Data Set Time KLD KLDv2 Tabu_D-2 SS
SOM 30 sec. 1.056% 1.463% 0.138% 0.002%
 3 min. 0.178% 0.187% 0.095% 0.000%
GKD 30 sec. 0.000% 0.000% 0.000% 0.000%
 3 min. 0.000% 0.000% 0.000% 0.000%
Type II 30 sec. 0.857% 1.083% 0.245% 0.010%
 3 min. 0.525% 0.607% 0.203% 0.000%
Type I 30 sec. 9.807% 100.000% 0.453% 0.453%
 3 min. 9.807% 9.828% 0.331% 0.331%
 30 min 1.018% 0.923% 0.233% 0.000%

Table 7. Comparison of average percent deviation at several times during the search

Data Set Time KLD KLDv2 Tabu_D-2 SS
SOM 30 sec. 6 6 4 17
 3 min. 7 9 6 20
GKD 30 sec. 20 19 20 20
 3 min. 20 20 20 20
Type II 30 sec. 1 0 0 15
 3 min. 1 0 0 20
Type I 30 sec. 0 0 0 0
 3 min. 0 0 0 0
 30 min. 0 0 0 20

Table 8. Comparison of number of best solutions at several times during the search

Tables 7 and 8 show the merit of the proposed procedure. Our scatter search
implementation consistently produces the best solutions with percent deviations that in
some cases are orders of magnitude smaller than those of the competing methods. The
problem instances in the GKD set do not provide a way of differentiating the
performance of the methods that we are comparing. They are either easy to solve and all
the methods are capable of finding the optimal solutions in a very short period of time or
the problems are difficult and all the methods are attracted to the same local optima. We
speculate that the former is true. Figure 3 shows the typical search profile for the
methods that we compared. This run corresponds to the SOM set with a time limit of 3
minutes.

Gallego, et al. — 14

0.00%

0.0001%

0.001%

0.01%

0.10%

1.00%

10.00%

100.00%

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

Execution Time (seconds)

A
v
e
ra

g
e

P
e
rc

e
n

t
D

e
v
ia

ti
o

n

KLD

KLDv2

Tabu_D2

SS

Figure 3. Search profile for a 3-minute run of the SOM set

We have applied a statistical test to the data used to generate Table 7. The results from
the 30-second runs were not used because KLDv2 is not able to obtain solutions for Type
I instances within the allotted time (see the 100% deviation in Table 7). We applied the
Friedman test for paired samples to the best solutions obtained by each method. The
resulting significance level of 0.000 clearly indicates that there are statistically significant
differences among the four methods tested. Specifically, the rank values produced by
this test are 1.98, 1.86, 2.82 and 3.36 for the KLD, KLDv2, Tabu_D-2 and SS,
respectively. This indicates that among the procedures that we tested, SS is the best at
obtaining solutions with large diverse scores, followed by Tabu_D-2, KLD and finally
KLDv2.

0.00%

0.10%

1.00%

10.00%

100.00%

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

Execution Time (seconds)

A
v
e
ra

g
e

P
e
rc

e
n

t
D

e
v
ia

ti
o

n

KLD

KLDv2

Tabu_D2

SS

Figure 4. Search profile for a 30-minute run on Type I instances

Gallego, et al. — 15

It is interesting to point out that for the large Type I instances, there is no significant
difference in performance between Tabu_D-2 and SS when the procedures are terminated
after 3 minutes. This is due to the time that SS spends generating the initial population of
solutions and, hence, within the 3-minute limit, it does not reach the phase where
reference solutions are combined to generate others. Differences between the two
methods are only detected after 20 minutes of search time, as shown in Figure 4.

5. Conclusions
We have described the development and implementation of a scatter search procedure for
the solution of the maximum diversity problem. We arrived to our final design by way of
performing a series of preliminary experiments. The final design is then compared to
state-of-the-art methods and the outcome of our experiments seems quite conclusive in
regard to the merit of the procedure that we propose. To the best of our knowledge, our
work is the first one to test several hybridized procedures within the scatter search
framework. We believe that the performance boost that we achieved by the use of simple
memory mechanisms (some based on recency and some based on frequency information)
within a scatter search design is a valuable lesson for future implementations.

Acknowledgments

This research has been partially supported by the Ministerio de Educación y Ciencia of
Spain (Grant Refs. TIN2005-08943-C02-02, TIN2006-02696).

References

Campos, V., F. Glover, M. Laguna and R. Martí (2001) "An Experimental Evaluation of
a Scatter Search for the Linear Ordering Problem," Journal of Global Optimization, vol.
21, pp. 397-414.

Duarte, A. and R. Martí (2006) “Tabu Search and GRASP for the Maximum Diversity
Problem,” to appear in the European Journal of Operational Research.

Ghosh, J. B. (1996) “Computational Aspects of the Maximum Diversity Problem,”
Operations Research Letters, vol. 19, pp. 175-181.

Glover, F., M. Laguna (1997) Tabu Search. Kluwer Academic Publisher.

Glover, F., C. C. Kuo, and K. S. Dhir (1998) “Heuristic Algorithms for the Maximum
Diversity Problem,” Journal of Information and Optimization Sciences, vol. 19, no. 1, pp.
109-132.

Kuo, C. C., F. Glover and K. S. Dhir (1993) “Analyzing and Modeling the Maximum
Diversity Problem by Zero-One Programming,” Decision Sciences, vol. 24, no. 6, pp.
1171-1185.

Laguna, M. and R. Martí (2003) Scatter Search: Methodology and Implementations in C,
Kluwer Academic Publishers: Boston.

Silva, G. C., L. S. Ochi and S. L. Martins (2004) “Experimental Comparison of Greedy
Randomized Adaptive Search Procedures for the Maximum Diversity Problem,” Lecture
Notes in Computer Science 3059, Springer: Berlin Heidelberg, pp. 498-512.

