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A B S T R A C T
In this paper, we propose a new heuristic method that hybridizes GRASP with Path Reli
to solve the conditional 𝑝-Dispersion problem. Given 𝑛 elements, from which 𝑞 < 𝑛 have
already selected, this problem seeks to select 𝑝 < 𝑛 additional unselected elements to max
the minimum dissimilarity among them. The conditional 𝑝-dispersion problem models a f
location problem motivated by a real situation faced in many practical settings arising when
facilities have been already located. The algorithm includes a novel proposal based on an effi
interplay between search intensification and diversification provided by the Path Reli
component, and it also incorporates an intelligent way to measure the diversity among solu
An extensive computational experimentation is carried out to compare the performance
heuristic with the state of the art method. The comparison shows that our proposal is comp
with the existing method, since it is able to identify 17 best-known values. Additionall
experimentation includes a real practical case solved for a Spanish company in its expa
process. This case illustrates both the applicability of the conditional 𝑝-dispersion mode
the suitability of our algorithm to efficiently solve practical instances.

troduction
aximum diversity problems consist in selecting a subset of elements from a given set in such a way
iversity among them is maximized. These problems have been widely studied in the literature, and m
dologies have been applied to solve them. Martí et al. (2022) reviewed existing publications on dive

ems, and conducted a critical analysis to determine the best algorithms to solve them.
ne of the most important models when dealing with diversity maximization is the 𝑝-dispersion problem (𝑝-
alled the MaxMin dispersion problem (Kuby, 1987). In this model, the number of selected elements 𝑝 is defi
ehand, and the diversity is measured as the minimum distance between each pair of elements in the subset
ed elements (|𝑃 | = 𝑝). This problem is -hard as proved by Erkut (1990). According to the geometrical s
rreño et al. (2021), one of the main characteristics of the 𝑝-DP is that the selected elements are scattered
istant over the entire region, which makes this model well suited for location problems. This study recomm
DP as the best model for practical applications, especially in logistics.
this paper, we target a variant of the 𝑝-DP proposed by Cherkesly and Contardo (2021), the condition

rsion Problem (c-𝑝DP). As far as we know, this is the only publication devoted to this practical varian
-DP. The c-𝑝DP consists in selecting 𝑝 elements in such a way that the dispersion is maximized, but su
re-established important constraint: 𝑞 elements are already selected. The c-𝑝DP has applications in loc

ems (Erkut and Neuman, 1989; Rahman and Kuby, 1995), portfolio optimization (Kudela, 2020), decision pla
ardo, 2020), biological preservation (Glover et al., 1995, 1998), judiciary or committees evaluation (Adil
h, 2005; Weitz and Lakshminarayanan, 1998, 1997). In fact, many of the existing applications of the 𝑝
ibed in the literature are better modeled by the c-𝑝DP. Consider, for example, the location problems in w
ve to establish new hospitals or warehouses in a territory to provide a good level of service. It is more rea
orresponding author
mail addresses: jesus.sanchezoro@urjc.es (J. Sánchez-Oro); gavara@uv.es (A. Martínez-Gavara); adlopsan@upo.es (A.D.
Sánchez); rmarti@uv.es (R. Martí); abraham.duarte@urjc.es (A. Duarte)
RCID(s): 0000-0003-1702-4941 (J. Sánchez-Oro); 0000-0001-9995-010X (A. Martínez-Gavara); 0000-0003-3022-3865 (A.D.
Sánchez); 0000-0001-7265-823X (R. Martí); 0000-0002-4532-3124 (A. Duarte)
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

nsider that some of the facilities are already operating, and we have to consider them when locating the
instead of assuming that we are locating all of them from scratch. The c-𝑝DP models different applications
ments may represent facilities in location problems, investments in portfolio context, or group members in
ion of a committee. We include in the computational experimentation a case study from the food industry
lved with the consulting company OGA (www.oga.ai), which triggered our interest on this problem.
his paper is not limited to simply solving the problem of the c-𝑝DP, but it also proposes a methodology tha
plied to solve other combinatorial optimization problems. In particular, we propose a framework to apply
blems with Max-Min objective function such as the c-𝑝DP (and it is aplicable to Min-Max problems as w
fically, exterior and interior PR strategies have been combined (hybridized) to deal with the flat landscap
ax-Min objective function. It is well-documented in the optimization literature, that objective functions wit

ax or Max-Min types, provide very low information to guide the search of heuristic algorithms. Our me
omes this lack of information with search indicators to guide the heuristic towards good regions in the se
. The combination between exterior and interior PR, coined as Reactive Path Relinking (Lozano-Osorio e
, was applied to solve the Bi-objective 𝑝-Median and 𝑝-Dispersion problem. To solve the 𝑐-pDP we apply
ive Path Relinking with diversification and intensification purposes by including different designs: the static
ic, and the evolutionary GRASP with PR. Our computational study will disclose which variant fits bett
, the problem of interest in this paper.

o sum it up, the main contributions of this work are: (i) to compare different variants of GRASP with PR to s
; (ii) to propose a GRASP construction phase that ensures diversity among all the constructed solutions; (i

ine exterior and interior path relinking strategies to allow diversification and intensification during the search
pose a new metric to evaluate the diversity between different solutions in the context of max-min and min-
ization problems; and (iv) to perform numerical experiments that reveal the best strategies for our problem
ve a real location application from the food industry.
he rest of this paper is organized as follows. In Section 2, we describe the mathematical model and we review
ng literature in c-𝑝DP. Section 3 describes the GRASP with PR methodology, including its variants. Se
vides a detailed description of our proposal to solve the c-𝑝DP, which constitutes a framework for o
inatorial optimization problems with objective functions of type Min-Max or Max-Min. Then, Section 5 rep
e experimental study, including a real application on a practical location problem. Finally, our conclusion
nted in Section 6.

roblem description and previous method
s mentioned in the introduction, the conditional 𝑝-dispersion problem, introduced by Cherkesly and Cont
), is a realistic variant of the well-known 𝑝-dispersion problem. Given a set 𝑉 of 𝑛 elements, let 𝑄 ⊂ 𝑉
t of 𝑞 < 𝑛 elements already selected. The conditional 𝑝-dispersion problem (c-𝑝DP) consists of selecting 𝑝
nts from the subset 𝑉 ⧵ 𝑄 in such a way that the dispersion among the selected elements is maximized. T
marizes the nomenclature and mathematical symbols that we use in the paper to describe the model and
sed algorithms.
he c-𝑝DP can be formally defined as follows. Let 𝑉 = 𝑄∪𝑅 be a set of 𝑛 elements where the elements in 𝑄
selected in advance, with |𝑄| = 𝑞. The elements in 𝑅 have not been selected yet, with 𝑅 ∩𝑄 = ∅. Let 𝐷 b
x with 𝐷(𝑖, 𝑗) = 𝐷(𝑗, 𝑖) ≥ 0 that measures the dissimilarity between two elements 𝑖, 𝑗 ∈ 𝑉 with 𝐷(𝑖, 𝑖) =
𝑖 ∈ 𝑉 . The goal of the c-𝑝DP is to select a subset 𝑃 ∗ ⊂ 𝑅 with |𝑃 ∗| = 𝑝 that maximizes the overall minim
ilarity among all the selected elements (including the already selected (𝑄) and the new selected elements

-𝑝DP can be formulated as follows:

𝑃 ∗ = argmax
𝑃⊂𝑅∶|𝑃 |=𝑝

min
𝑖,𝑗∈𝑄∪𝑃

𝐷(𝑖, 𝑗)

a similar way that in the 𝑝-dispersion problem, the mathematical programming model for c-𝑝DP is based o
y variables 𝑥𝑖 that take the value 1 if element 𝑖 is selected and 0 otherwise. Then, it can be stated as follows
chez-Oro et al.: Preprint submitted to Elsevier Page 2 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

1
ols and Definitions.

Symbol Definition

𝑉 set of 𝑛 elements
𝑄 set of 𝑞 elements already selected from 𝑉 , fixed in advance
𝑅 complement set of 𝑄: 𝑉 = 𝑄 ∪ 𝑅
𝑃 feasible solution, set of the new 𝑝 selected elements
𝐷(𝑖, 𝑗) dissimilarity between element 𝑖 and 𝑗
𝑓 (𝑃 ) objective function value of solution 𝑃

max min
𝑖,𝑗∈𝑄∪𝑅∶𝑥𝑖=𝑥𝑗=1

𝐷(𝑖, 𝑗)

s.t. ∑
𝑖∈𝑅

𝑥𝑖 = 𝑝

𝑥𝑖 = 1 ∀ 𝑖 ∈ 𝑄
𝑥𝑗 ∈ {0, 1} ∀ 𝑗 ∈ 𝑅.

s define as 𝑓 (𝑃 ) the objective function of the c-𝑝DP, i.e., the minimum distance between each pair of elem
𝑄.

herkesly and Contardo (2021) propose an exact method to solve the c-𝑝DP. Their proposal, called the e
mental clustering algorithm, has the following main steps. Initially, it constructs a feasible solution usi
stic algorithm. The objective function value of the constructed solution serves as a lower bound for the opt
on. The algorithm then discards all elements with a distance to the fixed elements less than this lower b
t is clear that a better solution should contain elements with a distance larger than 𝑧 from the selected elem
lgorithm takes advantage of this fact, reducing the size of the graph and, consequently, the computational t
ly, the authors employ the exact algorithm proposed by Contardo (2020) for the 𝑝-DP on the reduced grap
fy a new solution or conclude that it does not exist. It is important to highlight that this proposal is exec
n a prescribed time limit, which implies that not all instances are solved to optimality.
s shown in the computational experimentation of Cherkesly and Contardo (2021), their exact algorithm perfo
on small instances, especially those with a small value of 𝑝. We have empirically found that its perform
ly deteriorates when increasing the value of 𝑝. This is to be expected since, as shown in Martí et al. (2022)
er of solutions exponentially grows with this parameter. Figure 1 illustrates this fact by showing the numb
ons in a small instance with 𝑛 = 25 as a function of the number of selected elements 𝑚.
he main motivation of our paper is to target medium and large size instances, in line with the realistic applica
s problem, and to provide high-quality solutions to them.

RASP with Path Relinking Methodology
ath Relinking (PR) is a trajectory-based metaheuristic mostly applied as an intensification strategy to enh
ent optimization technologies. It was proposed in the context of Tabu Search (Glover and Laguna, 1997), a
volved into a more generic methodology, usually applied as a post-processing in GRASP (Resende et al., 20
he PR methodology explores trajectories that connect pairs of solutions (𝑃𝑖, 𝑃𝑔), with the aim to find impr
ons along the path from the initiating solution 𝑃𝑖 to the guiding solution 𝑃𝑔 . The procedure generates interme
ons by combining attributes from both solutions, the initiating and the guiding solutions, iteratively inclu
utes of 𝑃𝑔 into 𝑃𝑖 until 𝑃𝑔 is obtained.
aguna and Martí (1999) incorporated PR into the framework of GRASP as a long-term intensification. In
xt, the concept of relinking involves establishing a connection between a solution obtained through GRASP
cted elite solution, also obtained with a previous GRASP iteration. As a result, the interpretation of relin
n GRASP differs from its original implementation in Tabu Search, where solutions from consecutive iteration
chez-Oro et al.: Preprint submitted to Elsevier Page 3 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

Figure 1: Number of solutions, as a function of 𝑚 = 𝑝 + 𝑞 in the 𝑥-axis, of an instance with 𝑛 = 25.

through a sequence of moves. Moreover, this seminal work opened the door to other hybridizations in whic
pled with other heuristics, such as Variable Neighborhood Search, Iterated Local Search or Genetic Algorit
hybridizations resulted in improvements in solution quality and running times. According to Resende e

), there are several possibilities for combining GRASP with PR, resulting in different variants. In this pape
on the most successful ones: static, dynamic, and evolutionary PR.
Static Path Relinking
o simplify the description, and to keep it in generic terms, we consider that we have obtained an initial popula
of 𝑁 solutions (|Pop| = 𝑁), with the previous application of GRASP.
tatic Path Relinking first selects a small set with the best GRASP solutions, and then operates on it (ignorin
f the solutions in the initial population). This set is called elite set (𝐸𝑆), and it contains the best solutions
ined with PR. It must be noted that the meaning of best in this context refers to both quality and diversit
ular, a subset of 𝑏 solutions (where 𝑏 < 𝑁) is selected from the initial population to form 𝐸𝑆, and a solutio
ated with GRASP is included in the 𝐸𝑆 if it satisfies any of the following conditions:
The elite set is not entirely populated, i.e., |𝐸𝑆| ≤ 𝑏.
The elite set is complete, i.e., |𝐸𝑆| = 𝑏, and the solution 𝑃𝑗 has better objective function value than the w
solution in 𝐸𝑆. In this case, the most similar solution in 𝐸𝑆 to 𝑃𝑗 is removed from 𝐸𝑆 (i.e., 𝑃𝑗 replaces i

GRASP

|Pop|=N |ES|=b PR

Start End

Figure 2: Static GRASP with PR.

nce the elite set with size 𝑏 is created, PR is applied to combine every pair of solutions in 𝐸𝑆. The flow diag
ted in Figure 2 is referred to as the static approach because it involves two steps: initially applying GRAS
the 𝐸𝑆, and subsequently using PR to generate solutions by considering all pairs of solutions within 𝐸𝑆.

hese two steps are sequentially performed, and PR is applied when GRASP has already finished.
chez-Oro et al.: Preprint submitted to Elsevier Page 4 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

Dynamic Path Relinking
different approach to implementing GRASP with PR involves a dynamic update of the 𝐸𝑆, as in the ori
sal by Laguna and Martí (1999). In this design, every solution generated using GRASP undergoes the

ithm directly. PR is applied between this solution and a solution randomly chosen from the 𝐸𝑆.
is worth mentioning that in this design the 𝐸𝑆 changes throughout the process. As depicted in Figure 3, GR
ructs 𝑏 solutions to initialize the 𝐸𝑆. Subsequently, GRASP is executed, and PR is applied between each n
ated solution and a randomly selected solution from the 𝐸𝑆. This process is repeated 𝑁 times.

GRASP

PR

|ES|< b Improve?

Yes

No

Yes

No

|Pop|≤N

Start

Yes

End

No

Figure 3: Dynamic GRASP with PR.

n important difference between the static and the dynamic designs is that, in the static PR, the solutions obta
the application of PR are not considered to enter in the 𝐸𝑆. In this variant, PR is applied as a post-proces
to all the pairs of solutions in the 𝐸𝑆; and after this, the method stops. On the other hand, in the dynamic de
lutions obtained with PR are considered to become part of 𝐸𝑆. Therefore, it is possible to replace a solu
elite set if any of the intermediate solutions qualify. Consequently, iterations in this design have two steps
ne applying GRASP, and the second one PR, and the method performs iterations until the stopping criteri
ed.
Evolutionary Path Relinking
his is the most complex PR implementation proposed so far, since it combines the dynamic and static varian
ective way. We usually refer as GRASP with EvPR to its hybridization with GRASP proposed first by Res
erneck (2004).
the first stage, GRASP with EvPR follows a similar approach that the dynamic strategy. In each iteratio
s both GRASP, as well as PR, to obtain the elite set (see Figure 4). After a predetermined number of iterat

rst stage terminates. This is depicted in the bottom part of the figure highlighted in gray.
the second stage, GRASP with EvPR applies a post-processing phase based on the static design. In partic
applied to every pair of solutions in the 𝐸𝑆. The solutions obtained through this subsequent application o
nsidered as potential candidates to enter in the 𝐸𝑆, thus replacing the elements there. This process allow
et to evolve over time, and this is why the method is called Evolutionary PR. Solutions in the 𝐸𝑆 are comb

submitted to PR) until the time limit is reached or until no improvement is attained from one iteration to the
his second stage is represented in the upper right part of the diagram in Figure 4.

RASP with EvPR is based on the evolution of a small set of selected solutions (Resende and Werneck, 20
ithm 1 shows the pseudo-code for the GRASP with EvPR. The inputs of the algorithm are the parameters 𝛼
chez-Oro et al.: Preprint submitted to Elsevier Page 5 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

Figure 4: GRASP with Evolutionary PR.

ameter 𝛼 balances the greediness and randomness of GRASP, and parameter 𝑏 is the size of the elite set. I
hile-loop (from step 3 to 18), the pseudo-code of the dynamic GRASP with PR is shown. First, the algor

ates the set 𝐸𝑆 using GRASP (steps 4 to 8). Each new incumbent solution 𝑃 (steps 9 and 10) is hybridized
domly selected solution from the elite set. Then, the best solution found during the path is incorporated in
f an intermediate solution has a better objective function value, and the set is updated. The specific details o
ithm for solving the conditional 𝑝-dispersion is defined in Section 4.

he proposed algorithm for the Conditional 𝑝-Dispersion
his section focuses on applying the three variants of GRASP with PR described in Section 3 to solve
itional 𝑝-Dispersion problem. Additionally, we propose the use of two different PR strategies, interior PR (
xterior PR (EPR) in order to provide intensification and diversification in the search, respectively.
lthough path relinking has been applied to many optimization problems, most of these implementations
selves to the IPR, which creates a path between two solutions. We may consider that this IPR somehow genera
oncept of the so-called convex combination in global optimization as long as it explores the solutions
etween two given solutions. In this paper however, we complement this exploration with the beyond-for

relinking (non-convex exploration) proposed in Glover (2014) and called Exterior Path Relinking. Instea
ucing into the initiating solution elements from the guiding solution, EPR introduces in the initiating solu
nts not present in the guiding solution. In this way, we may say that EPR separates or disconnects two
ons (Lozano-Osorio et al., 2023).
this section, we first describe our heuristic algorithm for solving the c-𝑝DP. We introduce the search elements

haracteristics of the proposed GRASP for c-𝑝DP (see Subsection 4.1), and then, we describe our Path Relin
mentation for this problem (4.2). Note that we propose several search strategies that include not only t
oned above, but also some reactive mechanisms that permit our heuristic to automatically adapt itself to effici
each specific instance.
GRASP
s briefly introduced, the PR strategy begins with the creation of an elite set consisting of high-quality and div
ons. One of the features of the Greedy Randomized Adaptive Search Procedure (GRASP) is its ability to bal
uality and the diversity of the generated solutions. In general terms, GRASP (Feo et al., 1994) is a multi-
ithm in which each iteration consists of two phases: construction phase and improvement phase. As its very n
tes, the construction phase builds initial feasible solutions using a greedy randomized adaptive algorithm an
vement phase applies a local search by exploring the neighborhood solutions in order to escape from pos
optimum. Usually, the output of the GRASP is the best solution found along a number of 𝑁 iterations. How
combining GRASP with PR, a subset of GRASP solutions are kept in the elite set to apply the PR post-proces
chez-Oro et al.: Preprint submitted to Elsevier Page 6 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

ithm 1 GRASP with Evolutionary PR(𝛼,b)
∗ ← −∞ ⊳ Initialize the objective function v
𝑆 ← ∅ ⊳ Initialize the Elite
hile stopping criterion is not satisfied do

while |𝐸𝑆| < 𝑏 do
𝑃 ← Greedy_Randomized_Adaptive_Construction(𝛼) ⊳ see Section
𝑃 ← Local_Search(𝑃 ) ⊳ see Section
𝐸𝑆 ← {𝑃 }

end while
𝑃 ← Greedy_Randomized_Adaptive_Construction(𝛼) ⊳ see Section
𝑃 ← Local_Search(𝑃 ) ⊳ see Section
𝑃 ′ ← Select_Solution(𝐸𝑆)
𝑃 ′′ ← PR(𝑃 ′, 𝑃 ) ⊳ see Sectio
𝐸𝑆 ← Update_Elite(𝐸𝑆, 𝑃 ′′)
if 𝑓 (𝑃 ′′) > 𝑓 ∗ then

𝑃 ∗ ← 𝑃 ′′

𝑓 ∗ ← 𝑓 (𝑃 ∗)
end if

nd while
hile ∃ 𝑃𝑖, 𝑃𝑔 ∈ 𝐸𝑆 not yet relinked do
𝑃 ← PR(𝑃𝑖, 𝑃𝑔) ⊳ see Sectio
𝐸𝑆 ← Update_Elite(𝐸𝑆, 𝑃 )
if 𝑓 (𝑃 ) > 𝑓 ∗ then

𝑃 ∗ ← 𝑃
𝑓 ∗ ← 𝑓 (𝑃 ∗)

end if
nd while

eturn 𝑃 ∗

. Construction phase
olutions for the c-𝑝DP consist of subsets 𝑃 ⊂ 𝑅 of 𝑝 selected elements. To implement the GRASP construc
didate List (𝐶𝐿) is created containing all available elements to be added to the solution (initially, 𝐶𝐿 =
quently, a subset of the 𝐶𝐿, known as the Restricted Candidate List (𝑅𝐶𝐿) is calculated containing the

ising candidate elements to be added to the solution. An element is considered if its greedy function value exc
shold 𝜏, which is calculated as: 𝜏 = 𝑔max − 𝛼 ⋅ (𝑔max − 𝑔min), where the parameter 𝛼 is responsible for contro
lements that will be part of the 𝑅𝐶𝐿 and 𝑔min and 𝑔max are the minimum and maximum value of the gr
ion 𝑔(𝑖) = min𝑗∈𝑃 𝐷(𝑖, 𝑗) for all candidate elements 𝑖 ∈ 𝐶𝐿, respectively. Note that, if 𝛼 = 1, the 𝑅𝐶𝐿
in all candidate elements, so 𝑅𝐶𝐿 and 𝐶𝐿 are equal and therefore, the construction is totally random. On
ary, if 𝛼 = 0, the 𝑅𝐶𝐿 will only contain the most promising element to be added to the solution, therefor
ruction is totally deterministic. An element is randomly selected from the 𝑅𝐶𝐿 to be included in the solu
construction 𝑃 , and then the 𝐶𝐿 is updated by removing the selected element. This process is repeated un
le solution is reached.

o address the c-𝑝DP, the greedy function is directly the objective function of the problem. Therefore, the
ising element to be added to the solution will be the furthest from all already selected elements (see equatio
portant strategy in the method is that, as previously mentioned, solutions need to be both good and diverse

ating solutions based on the increment of the objective function value, we ensure their relative quality. How
ieve diversity, the algorithm checks that each newly generated solution differs from previously constructed o
new solution shares the same elements as any previously generated solution, it is discarded as it has already
ined.
chez-Oro et al.: Preprint submitted to Elsevier Page 7 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

. Improvement phase
nce a solution has been constructed, the improvement phase is applied. During this phase, the solution is enha
gh the execution of a standard local search until a termination criterion is satisfied. We define 𝑁(𝑃 ) a
borhood of solution 𝑃 , which is determined by swap moves. Specifically, 𝑁(𝑃 ) consists of the set of all solu
an be reached by exchanging an element 𝑢 ∈ 𝑃 with an element 𝑣 ∈ 𝑅 ⧵ (𝑃 ∪𝑄). In mathematical terms:
𝑁(𝑃 ) = {𝑃 ′ ⊂ 𝑉 ∶ 𝑃 ′ = 𝑃 ⧵ {𝑢} ∪ {𝑣}, 𝑢 ∈ 𝑃 , 𝑣 ∈ 𝑅 ⧵ (𝑃 ∪𝑄)}

he proposed local search instead of performing a complete exploration of the search space only considers stra
nges not only to save computing time, but also because we are only interested in the movements able to re
lue of the objective function. This local search is based on similar local search strategies have been propos
d problems (Lozano-Osorio et al., 2022; Lu et al., 2023).
ur improvement method creates two lists and conducts exchanges between elements in both lists. On the one h
𝚒𝚜𝚝 contains the elements of the solution with the minimum distance value, i.e., 𝚒𝚗_𝚕𝚒𝚜𝚝 = {𝑖 ∈ 𝑃 ∶ 𝑑𝑖 =
𝑑𝑖 = 𝑚𝑖𝑛𝑗∈𝑄∪𝑃𝐷(𝑖, 𝑗) and 𝑑∗ is the objective function value of the solution 𝑃 , 𝑑∗ = 𝑚𝑖𝑛𝑖,𝑗∈𝑄∪𝑃𝐷(𝑖, 𝑗)

ther hand, 𝚘𝚞𝚝_𝚕𝚒𝚜𝚝 contains the non-selected elements with distances larger than 𝑑∗, i.e., 𝚘𝚞𝚝_𝚕𝚒𝚜𝚝 =
∪𝑄 ∶ 𝑑𝑗 > 𝑑∗}. To improve the objective function value, the algorithm exchanges elements in 𝚒𝚗_𝚕𝚒𝚜𝚝

nts in 𝚘𝚞𝚝_𝚕𝚒𝚜𝚝.
Reactive Path Relinking

this work, we propose to hybridize two PR methodologies, Interior and Exterior Path Relinking instea
ing a standard PR. This algorithm has been recently proposed by Lozano-Osorio et al. (2023), and it is co
active Path Relinking (RPR). The rationale behind the RPR is to intensify when two solutions are differen
ing IPR) and diversify when two solutions are similar (by applying EPR). IPR and EPR are explained in deta
llowing subsections.
. Interior Path Relinking
R creates a path that connects two good solutions, exploring new intermediate solutions attaining a
bility of finding good solutions in the path that connects them. This is the standard PR. This strategy intens
arch by exploring repeatedly promising regions of the search space.
he path between 𝑃𝑖 and 𝑃𝑔 is created by including in 𝑃𝑖 elements that are in 𝑃𝑔 ⧵ 𝑃𝑖, exchanging them with t
nts in 𝑃𝑖 ⧵𝑃𝑔 . Then, at every step, the IPR modifies the current intermediate solution 𝑃 𝑗

𝑖 to become more sim
, until it is reached.
igure 5 shows an example of the IPR where the initiating and guiding solutions are 𝑃𝑖 = {1, 2, 3, 4, 5, 6}
{1, 2, 3, 7, 8, 9}, respectively. At the first step of the IPR, element 4 is replaced by element 7, obtaining
ediate solution𝑃 1

𝑖 = {1, 2, 3, 7, 5, 6}, then, at the second step, element 5 is interchanged by element 8, resulti
intermediate solution, 𝑃 2

𝑖 = {1, 2, 3, 7, 8, 6}, and at the last step, element 6 is substituted by element 9 obtain
h a way, the guiding solution, 𝑃𝑔 . Similarly, to transform 𝑃𝑔 into 𝑃𝑖, the first step of the IPR replaces element
nt 4, obtaining the intermediate solution 𝑃 1

𝑔 = {1, 2, 3, 4, 8, 9}, then, at the second step, element 8 is intercha
ement 5, resulting in the solution 𝑃 2

𝑔 = {1, 2, 3, 4, 5, 9}, and the last step substitutes element 9 by eleme
ning, in such a way, the initiating solution, 𝑃𝑖.otice that the IPR is applied when the two high-quality solutions are sufficiently different according to a g
ce metric. In Section 4.2.3, we propose a new metric and compare it with the conventional one.

. Exterior Path Relinking
PR follows the opposite idea of IPR in geometrical terms and creates a path that “disconnect” or “separates”
ising solutions given that they are similar, leading to explore new solutions. This strategy inputs diversity i
h by exploring different regions of the search space.
iven an initiating solution 𝑃𝑖 and a guiding solution 𝑃𝑔 , EPR iteratively includes in 𝑃𝑖 elements that are n
ith the aim of reaching new solutions which are diverse with respect to both 𝑃𝑖 and 𝑃𝑔 .
igure 6 shows an example of the EPR where 𝑃𝑖 = {1, 2, 3, 4, 5, 6} and 𝑃𝑔 = {1, 2, 3, 7, 8, 9} are two pai
ons. The task is to eliminate the shared elements, 𝑃𝑖 ∩ 𝑃𝑔 = {1, 2, 3}, from both solutions. At the first
EPR, element 1 is replaced with element 10, getting the intermediate solution 𝑃 1

𝑖 = {10, 2, 3, 4, 5, 6}. A

chez-Oro et al.: Preprint submitted to Elsevier Page 8 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

Figure 5: Interior Path Relinking.

d step, element 2 is interchanged by element 11, obtaining 𝑃 2
𝑖 = {10, 11, 3, 4, 5, 6}. At the third step, elem

stituted by element 12, resulting in the intermediate solution 𝑃 3
𝑖 = {10, 11, 12, 4, 5, 6}. Similarly, if we start

lution 𝑃𝑔 thought 𝑃𝑖, 𝑃𝑔 = {1, 2, 3, 7, 8, 9}, then the first step of the EPR interchanges element 1 with ele
sulting in the intermediate solution 𝑃 1

𝑔 = {10, 2, 3, 7, 8, 9}. The second step of the EPR replaces element
nt 11, getting the solution 𝑃 2

𝑔 = {10, 11, 3, 7, 8, 9}. And finally, at the last step of the EPR, the element
ituted by element 12, obtaining the intermediate solution 𝑃 3

𝑔 = {10, 11, 12, 7, 8, 9}.

Figure 6: Exterior Path Relinking.

otice that the EPR is applied when two solutions contain similar elements to diversify the search (see Se
.
. Evaluating solution diversity
o measure the diversity between two solutions 𝑃𝑖 and 𝑃𝑗 , a standard metric 𝛾 is the number of different elem
en both solutions, i.e., 𝛾(𝑃𝑖, 𝑃𝑗) = 𝑛 − |𝑃𝑖 ∩ 𝑃𝑗|. Therefore, the diversity between a given solution 𝑃𝑗et of solutions in 𝐸𝑆 is measured as the distance to the nearest solution 𝑃𝑗 in the elite set 𝐸𝑆. Form
𝐸𝑆) = min𝑃𝑖∈𝐸𝑆{𝑛 − |𝑃𝑗 ∩ 𝑃𝑖|}.
et 𝑃𝑎 = {1, 2, 3, 4, 5, 6}, 𝑃𝑏 = {1, 2, 3, 4, 7, 8}, and 𝑃𝑐 = {1, 2, 7, 8, 9, 10}, be three feasible solutions,
𝑃𝑏) = 2, since they have two different elements, and 𝛾(𝑃𝑎, 𝑃𝑐) = 4, since they have four different elem
fore, solution 𝑃𝑎 is more diverse compared to 𝑃𝑐 than compared to 𝑃𝑏.this problem, given that the objective function value is determined by the shortest edge, we propose an altern
c to evaluate the diversity between two solutions 𝑃𝑖 and 𝑃𝑗 . This new diversity metric, denoted by 𝛿, take
1 if the shortest edge of solution 𝑃𝑖 is different to the shortest edge of solution 𝑃𝑗 and 0, otherwise. There

iversity of a solution 𝑃𝑗 compared to the 𝐸𝑆 solutions is 1 if the shortest edge of 𝑃𝑗 differs from the sho
chez-Oro et al.: Preprint submitted to Elsevier Page 9 of 18
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GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

in all solutions in 𝐸𝑆. The diversity 𝛿(𝑃𝑗 , 𝐸𝑆) is calculated for each solution 𝑃𝑗 ∈ 𝐸𝑆. The idea is to a
on to 𝐸𝑆 if the value of the 𝛿 diversity is 1. Note that this way of measuring the diversity is valid not only fo
tional 𝑝-dispersion problem but also for the optimization problems in which the objective function is focuse

izing a minimum or minimizing a maximum in which case, it is necessary to define 𝛿 as 1 if the largest v
ution two solutions are different.
et 𝑃𝑎 = {1, 2, 3, 4, 5, 6}, 𝑃𝑏 = {1, 2, 3, 4, 7, 8}, and 𝑃𝑐 = {1, 2, 7, 8, 9, 10}, be three feasible solut
ermore, let’s assume that (1, 2), (1, 2) and (7, 10) are the shortest edges of 𝑃𝑎, 𝑃𝑏 and 𝑃𝑐 , respectively. T
𝑃𝑏) = 0, since they have the same shortest edge so both solutions are similar, but 𝛿(𝑃𝑎, 𝑃𝑐) = 1 or 𝛿(𝑃𝑏, 𝑃𝑐)they do not have the same shortest edge so such solutions are considered diverse.
t this point, it is worth mentioning how the diversity metric is used in the RPR. As previously mentioned,
s IRP if two solutions are different, that is, if they are diverse, meanwhile RPR applies EPR if two solution

ar. To determine which of the PR variants must be used by the RPR, it is crucial to know how the diversity
asure.
ote that if we use 𝛾 to measure the diversity, it is considered that two solutions are different if they have m
a half elements different, and so, IPR is applied, otherwise, EPR is applied. When measuring the diversity
s much more easier since the value 1 indicates that solutions are different, so IPR should be applied, otherw
0 indicates that solutions are similar, so EPR should be applied.
Computational complexity
his section is devoted to present the computational complexity of the proposed algorithm. In particular,
onent of the algorithm is first independently analyzed and, then, the complexity of the complete propos
uted. The complexity is analyzed in terms of the Big O notation, which refers to the worst case scenar
lish the bounds of the algorithm.
he first component of the algorithm is the constructive procedure presented in Section 4.1.1. The creation o
s a complexity of 𝑂(𝑛), since it requires to add every single candidate to the list. Then, in each iteration, the
puted with a complexity of𝑂(𝑛) and, after selecting the next element, the remaining ones in CL are updated,
plexity of 𝑂(𝑛). Therefore, the final complexity of each iteration is max(𝑂(𝑛), 𝑂(𝑛)) = 𝑂(𝑛). Then, the com

ructive procedure has a complexity of 𝑂(𝑛2), since it has a complexity of 𝑂(𝑛) in each iteration, requirin
rm 𝑛 iterations, (𝑂(𝑛 ⋅ 𝑛) = 𝑂(𝑛2)).
he second component evaluated is the local search method described in Section 4.1.2. This is usually the
utationally demanding part of any optimization algorithm, so it has to be carefully implemented in order to
cient procedure. In each iteration of the local search, all the elements of the solution are examined in the w

and, for each iteration, the evaluation of the movement is performed with a complexity of 𝑂(𝑛). Therefore
lete complexity of the local search procedure is 𝑂(𝑛2).
inally, the complexity of the complete Evolutionary Path Relinking procedure is evaluated. The first stage o
ithm consists of generating the initial elite set. This stage creates a fixed number of solutions and the compl
h generated solution is the maximum between the complexity of the constructive procedure and the complexi
cal search method. Therefore, generating 𝑛 solutions results in a complexity of𝑂(𝑛⋅𝑛2) = 𝑂(𝑛3). The second s
Dynamic PR. In this phase, for each iteration a solution is constructed and improved, resulting in a compl
𝑛2). Then, the combination method is applied. The proposed combination methods traverses all the candid
erform a local search to each solution in the path, with a total complexity of 𝑂(𝑛3). Hence, the complexi
mic PR is evaluated as max(𝑂(𝑛2), 𝑂(𝑛2), 𝑂(𝑛3)) = 𝑂(𝑛3).
he final stage of the algorithm is the evolution of the elite set applying path relinking. In this case, the proce
es while an improvement is found, with linear complexity. In each iteration, it is required to consider every
utions to be combined, with a complexity of 𝑂(𝑛2), performing a combination over every pair of solutions
plexity of 𝑂(𝑛2). Thus, the complete complexity of this phase is equal to 𝑂(𝑛4).

ummarizing, the final complexity of the proposed algorithm is the maximum among all the evaluated elem
ing in max(𝑂(𝑛2), 𝑂(𝑛2), 𝑂(𝑛3), 𝑂(𝑛4)) = 𝑂(𝑛4). It is interesting to remark that this evaluation refers to
-case scenario, which is not the most common situation of the algorithm. Therefore, as it is customar
istic papers”, to have a more precise and representative analysis of the performance of the method, we per
perimental evaluation via simulation over a set of representative instances, which permits to draw signifi
usions, as described in the following in Section 5.
chez-Oro et al.: Preprint submitted to Elsevier Page 10 of 18



Journal Pre-proof

Table
Comp

5. C
T nces

solve er of
eleme , the
autho ng 5,
10, 15 eedy
algor re, a
total d on
an AM hout
this s ailed
result

T
-
-
- t.
-
R ents,

param on is
also c and
eleme s. As
custo f the
𝐸𝑆 i t the
state-
5.1.

A fore,
the fi end,
we ha alue
RND this
exper

A that
diver 0.9
and 𝛼 ore
diver

J. Sán
Jo
ur

na
l P

re
-p

ro
of

GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

2
arison among different values for 𝛼 parameter in GRASP.

𝛼 T(s) OF Dev(%) #Best

RND 0.10 12251.29 0.94 73
0.1 0.07 12047.88 1.63 55
0.2 0.08 12064.61 1.63 48
0.3 0.08 12065.79 1.48 56
0.4 0.09 12155.39 1.33 64
0.5 0.10 12167.34 1.18 69
0.6 0.11 12154.90 1.23 66
0.7 0.11 12095.57 1.09 68
0.8 0.12 12225.22 0.80 77
0.9 0.13 12247.71 0.60 94

omputational experiments
his section is devoted to present and discuss the computational experiments. We use the same set of 40 insta
d by Cherkesly and Contardo (2021) taken from the well-known TSPLIB (Reinelt, 1991), with a numb
nts ranging between 1621 and 104815. To adapt these instances to the conditional 𝑝-dispersion problem
rs generated the set Q using three strategies: greedy, optimal and random, and with the values of 𝑞 and 𝑝 bei
and 20, obtaining a total of 16 combinations. In this work, we consider the set Q generated using the same gr

ithm. For further details about the generation of the instances see Cherkesly and Contardo (2021). Therefo
of 640 instances are solved to perform a fair comparison with the state-of-the-art. All instances were solve

D Ryzen 5950x with 128 GB RAM, and the algorithms were implemented using Java 17. Note that throug
ection, tables summarize the results obtained in each specific experiment. All instances, source code, and det
s are publicly available at https://grafo.etsii.urjc.es/cpDP.
o evaluate the performance of each procedure, we consider the following metrics:
𝑇 (𝑠), the total time in seconds.
𝑂𝐹 , the average of the objective function value.
𝐷𝑒𝑣(%), average value of the percentage deviation with respect to the best solution found in the experimen
#𝐵𝑒𝑠𝑡, the number of best solutions with each algorithm.

esults are divided into two subsections: preliminary experiments and final results. In the preliminary experim
eters are tuned and furthermore, the contribution of each component of the algorithm is tested. This secti
alled “scientific testing” in the literature on optimization to highlight that it provides insight on the strategies
nts of the algorithm. To avoid overfitting, we have selected a subset of 25% instances, in total 160 instance

mary in the literature, in the preliminary experiments, GRASP was performed 100 iterations, and the size o
s fixed at 10 solutions. Once the final configuration of our proposal is set, we present a comparison agains
of-the-art in the final results, also called competitive testing.
Preliminary experiments
s previously explained our proposal requires an initial population of solutions that is built with GRASP. There
rst preliminary experiment is focused on selecting the best parameter 𝛼 for the GRASP algorithm. To that
ve generated 100 solutions by testing values ranging from 0.1 to 0.9 with a step of 0.1. Additionally, the v
indicates that a random value for 𝛼 is selected in each construction. Table 2 shows the results obtained in
iment.
s can be drawn from the results, the quality of the solutions increases with the value of 𝛼. This indicates
sity plays an important role in the proposed algorithm. Although the best results are found by both 𝛼 =
= RND, we select 𝛼 = RND for the remaining experiments since it provides equivalent results but with m

sity.
chez-Oro et al.: Preprint submitted to Elsevier Page 11 of 18
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3
arison between two diversity strategies in Static GRASP with RPR.

T(s) OF Dev(%) #Best

𝛿-RPR 0.78 12258.35 0.04 152
𝛾-RPR 0.77 12257.17 0.12 149

4
arison among GRASP and the different GRASP with PR strategies proposed.

T(s) OF Dev(%) #Best

GRASP 1.14 12197.01 1.30 73
Static GRASP with RPR 1.30 12245.00 0.96 92
Dynamic GRASP with RPR 1.46 12300.24 0.70 105
GRASP with EvRPR 2.52 12363.47 0.23 131

iven the nature of the c-𝑝DP, where the objective function is a max-min mathematical expression (see Se
, we have introduced a new diversity metric, 𝛿, to compare two solutions in the RPR, instead of the tradit

sity metric, 𝛾 . Therefore, the following experiment evaluates the relevance of selecting an adequate dive
c. Moreover, we analyze the impact of the proposed diversity metric in the context of RPR.
he two strategies compared are the static GRASP with RPR with the 𝛿 diversity metric, which consider
sity between two solutions with respect to their objective function value, and the traditional strategy, base
diversity metric, which evaluates the number of different elements selected in each solution. We called the
R and 𝛾-RPR, respectively. Table 3 shows the results obtained in this experiment performed using the stan
eters for 𝑃𝑜𝑝 and 𝐸𝑆 sizes, which are 100 and 10, respectively.

lthough both strategies present similar results in terms of quality and computing time, it can be seen that the
sity metric performs slightly better, being able to reach a larger number of best solutions with a deviation w
ost 0. Therefore, we select 𝛿-RPR as the best Static GRASP with RPR strategy.
t this point, we intend to compare the Static GRASP with PR, the Dynamic GRASP with PR and the EvPR w
riant of PR is a 𝛿-RPR as in the previous variants. The objective of this comparison is to evaluate which i
roposal to solve the considered problem. Table 4 shows the results when comparing GRASP, GRASP with S
GRASP with Dynamic RPR, and GRASP with EvRPR.

able 4 provides relevant information on the performance of the algorithmic variants proposed. First, it is impo
ark that GRASP isolated is able to provide high-quality solutions, being competitive with the PR vari

ver, these results suggest that applying PR increases the portion of the search space explored, thus leadin
results. Specifically, the best PR variant is clearly EvPR, which is able to reach 131 out of 160 best solut

ermore, the deviation of 0.23% indicates that, in those instances in which EvPR is not able to reach the
on, it still remains really close to it, emerging as the best PR strategy for the c-𝑝DP. Regarding Static and Dyn
he dynamic nature of the latter is a key feature to find better results than the former. Although both present h
y solutions, Dynamic PR is slightly better, with a smaller deviation and a larger number of best solutions fo
ly, the computing time for all the variants is negligible, requiring, on average, approximately 2 seconds, b
SP with EvRPR the slowest variant. Overall, we consider GRASP with EvRPR as our reference method, t
d in comparison with all instances in the Competitive-experiments subsection.

he final preliminary experiment is designed to determine the best values for the population and elite set
ain objective is to evaluate if the combination of these parameters contributes to an improvement of the ave

tive function value without a significant increase in the required computing time. Specifically, we have comb
parameters in the following way: 𝑁 = 100 with |𝐸𝑆| = 10; 𝑁 = 250 with |𝐸𝑆| = 10 and 25; and fin
500 with |𝐸𝑆| = 10, 25, and 50. In this manner, the maximum size of the elite set is limited to 10% o
ation size to keep a reasonable proportion in this subset of good and diverse solutions compared to the in
ation.
s shown in Table 5, the larger the population size, the better the average objective function value. Evide
ample size of the solution space increases with larger population sizes, leading to higher solution qu
chez-Oro et al.: Preprint submitted to Elsevier Page 12 of 18
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5
eter comparison in GRASP with EvRPR.

𝑁 |𝐸𝑆| T(s) OF Dev(%) #Best

100 10 8.23 12497.82 0.33 114

250 10 16.55 12482.09 0.28 125
25 35.68 12491.89 0.20 127

500 10 39.59 12500.78 0.10 141
25 53.44 12506.79 0.12 142
50 122.48 12507.66 0.05 150

equently, this increase results in longer execution times. Moreover, the improvement is not as significant w
ze of the elite set increases. In conclusion, the combination parameter 𝑁 = 250 and |𝐸𝑆| = 25 offers the
off between solution quality and computational time.
Competitive experiments

the previous section, the configuration of the algorithmic proposal has been set. Specifically, the GR
eter 𝛼 is randomly selected at each iteration of the algorithm see Table 2. The diversity metric in RPR i

c 𝛿, as indicated in Table 3. Additionally, we use the best variant among the four considered in Table 4,
GRASP with EvRPR, with 𝑁 = 250 and |𝐸𝑆| = 25 (see Table 5). Therefore, in this section, we focus

arison with the state-of-the-art algorithm (SOTA). Specifically, we compare GRASP with EvRPR, and the S
e testbed set, which consists of 640 instances with values of 𝑝: 5, 10, 15, and 20.

this first experiment, we test the ability of GRASP with EvRPR to match the best-known values obtained b
algorithm (Cherkesly and Contardo, 2021). We run our heuristic once on each instance, and then, we summ

omparative between SOTA and GRASP with EvRPR using statistical metrics in Table 6. Detailed result
ble in the aforementioned repository.
is well known that a fair empirical comparison between two algorithms relies on running them under the s
tions. This mainly implies to run them on the same computer and for the same time. Although the autho
revious heuristic, SOTA, kindly shared their implementation with us, their executable program does not pe
ust the running time, which makes a comparison with other methods complicated. In our experiments with

program, we observed a large variability in its running times across instances. We therefore classified the re
ding to these running times, that range from 10 to 10000 seconds in three groups (below 60 seconds, betwee
00 seconds, and above 600 seconds).
is well accepted in the optimization literature that heuristics are meant to be fast. In line with that, we de
ethod, GRASP with EvRPR, to obtain high-quality solutions in short computational times (i.e., in few sec
st of the cases). We then compare our method with the previous heuristic in the instances in which its prog
s a solution in short running times (say lower than 60 seconds). For the sake of completeness, we includ
6 the summary results of both methods (SOTA and GRASP with EvRPR) in all the instances, although w

elieve that their comparison when the running times are so different is adequate.
able 6 shows that GRASP with EvRPR outperforms SOTA in terms of average running times, percent devia
bjective function value on the instances where SOTA is able to produce a solution in requires less than 60 sec
U time. The average deviation from the best-known solution is 0.07% and our proposal achieves the best v
5 out of 367 instances. For the instances where SOTA requires more than 60 seconds, it exhibits slightly b
cs than our algorithm. However, SOTA requires 13 times more CPU time than our algorithm (199.7 sec
s 15.5 seconds) for the instances with execution times between 60 seconds and 600 seconds, and more tha
for the instances with more than 600 seconds of running time. To complement this analysis, we perform
-samples t-test1 (see Demšar (2006) for more details on the statistical test). This test resulted in a 𝑝 − 𝑣𝑎𝑙𝑢
5, which is not less than the significance level of 0.01, and there is no significant differences between GRASP
R and SOTA when grouping all the instances together. Note that this is remarkable considering the extre
running times of our algorithm.
e chose this test because with a sample size of at least 40, the Wilcoxon W statistic tends to follow a normal distribution.
chez-Oro et al.: Preprint submitted to Elsevier Page 13 of 18
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6
arison of SOTA with GRASP with EvRPR on testbed instances with 𝑝 ≤ 20.

SOTA with SOTA GRASP with EvRPR

CPU time p T(s) OF Dev(%) #Best T(s) OF Dev(%) #Best

below 60s.
(367 inst.)

5 21.6 13510.5 0.66 131 0.1 13521.1 0.00 136
10 26.3 6250.4 0.39 99 0.6 6255.1 0.00 101
15 31.0 5488.8 0.24 75 1.7 5490.6 0.04 69
20 31.3 5034.9 0.00 51 2.4 5031.6 0.22 39

all 27.5 7571.1 0.32 356 1.2 7574.6 0.07 345

between 60s.
and 600s.
(169 inst.)

5 168.1 31853.9 0.79 13 0.5 31874.1 0.00 14
10 205.5 26249.2 0.00 43 4.9 26226.6 0.37 34
15 217.9 13483.5 0.35 50 18.5 13483.5 0.31 44
20 207.2 7200.7 0.21 57 38.2 7161.5 0.69 32

all 199.7 19696.8 0.34 163 15.5 19686.4 0.34 124

above 600 s.
(88 inst.)

5 930.9 106107.6 0.00 5 3.5 106107.6 0.00 5
10 3015.7 67205.9 0.00 10 61.9 67172.8 0.33 8
15 3516.7 39414.6 0.00 27 167.1 39396.9 0.76 17
20 7756.7 28919.6 0.00 46 405.8 28655.0 1.39 16

all 3805.0 60411.9 0.00 88 159.6 60333.1 0.62 46
0.00 means less than 0.001

7
best-known objective function values.

Instance p q SOTA algorithm GRASP with EvRPR

brd14051 5 10 1554 1780
brd14051 5 15 1264 1460
brd14051 10 15 1125 1194
brd14051 15 15 1040 1079
brd14051 5 20 1082 1460
brd14051 10 20 969 1186
brd14051 15 20 880 1079
brd14051 20 20 838 872
d18512 5 5 2258 2540
d18512 5 10 1758 2000
d18512 5 15 1419 1616
d18512 10 15 1261 1323
d18512 15 15 1194 1219
d18512 5 20 1250 1460
d18512 10 20 1155 1305
d18512 15 20 1041 1194
d18512 20 20 1000 1091

e now analyze the instances in which our method surpasses the previous one. In particular, GRASP with E
ithm outperforms the best-known value found so far in 17 instances. Specifically, in Table 7, we provide the na
bjective function values for these 17 instances in both algorithms.
o complement the above findings, we evaluate the performance of GRASP with EvRPR across a total of
ces. We combine parameter values of 𝑞 (5, 10, 15, and 20) with larger values of 𝑝 (25 and 30) while maintai

ar computational times. Table 8 shows that our proposed method achieves an average percent deviation of 0
the best-known solutions and it finds the best solution for 218 out of 220 instances. In contrast, the state-of
OTA) method finds only 99 best solutions with an average deviation of 0.65%. There are statistical signifi
chez-Oro et al.: Preprint submitted to Elsevier Page 14 of 18
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8
arison of SOTA with GRASP with EvRPR on testbed instances with 𝑝 = 25, 30.

SOTA GRASP with EvRPR

p OF Dev(%) #Best OF Dev(%) #Best

25 7308.41 0.49 58 7339.98 0.07 113
30 6328.50 0.83 41 6357.84 0,03 105

all 6836.27 0.65 99 6866.77 0.05 218
0.00 means less than 0.001

ence (p-value of 0.004, less than 0.01) between SOTA and our proposal for 𝑝 = 25 and 30, meaning that t
nificant evidences to reject the hypothesis that the GRASP with EvRPR and the SOTA attain similar obje
ion values.
o sum it up, the experimentation shows that our proposal provides the best trade-off between solution quality
utational running times.
Case study
his section details the strategic expansion of a Spanish company aiming to enhance its distribution netw
s the national territory. As part of this expansion, the company seeks to identify the best locations to host
ouses and to improve product distribution efficiency. Given the dynamic nature of customer locations and

for a robust preliminary approach, we considered the 𝑝-dispersion problem as a first approximation for wareho
on. Additionally, considering that the company is already operating and has some warehouses set, we addres
itional 𝑝-Dispersion Diversity Problem to account for existing warehouse locations in our optimization mod
ue to the confidentiality clause with the consulting company, OGA, for which we solved this problem, we ca
se the identity of the customer, but we can mention that it belongs to the food industry. This Spanish company
ienced significant growth and aims to expand its logistical footprint to better serve its customer base. The prim
tive of this project is to determine new warehouse locations that maximize geographic diversity, ensuring b
age and efficient distribution capabilities. We therefore considered to apply a diversity optimization model b
ximize the inter-distance minimum value since it is well documented that this model allows for the identific
ations that are widely spread out, thus providing a diverse and strategically advantageous distribution netw

eño et al., 2021; Lu et al., 2023).
iven that the company already operates several warehouses, we consider the conditional 𝑝-dispersion mod
be noted that this model perfectly fits the typical expansion scenario in which some locations are already sele
to the current operations of the company), and we have to select some new sites to maximize overall distribu
sity while incorporating these pre-established nodes.
ey steps in our methodology include:
Data Collection. Gathering geographical and logistical data relevant to potential warehouse sites acros
national territory.
Problem Formulation. Defining the Conditional p-Dispersion Problem to incorporate existing wareh
locations into our model.
Optimization. Applying metaheuristic techniques to identify new sites maximally dispersed. In particular
ran the GRASP Evolutionay PR algorithm to solve the problem.
Evaluation. Assessing the proposed locations for feasibility, accessibility, and alignment with the compa
strategic goals.

he instance provided by OGA contained 800 potential sites for warehouses over the Spanish territory. From
sites, 150 are already selected and they are currently operating, providing service to their customers. In
sion plan, the company considers to select 50 new sites to cover the entire Spanish peninsula. At this stage
customers is not defined and so they resort to geographical information to identify scatter and well-distrib
chez-Oro et al.: Preprint submitted to Elsevier Page 15 of 18



Journal Pre-proof

Figur (P).

point able
to pro ving
the C ions,
ensur

6. C
T 𝑝DP

is a v been
alread

T , we
propo used
on co vPR.
In the tegy
that c t) or
diver

M easy
to fin ods.
In ord tions
and in ined
as the orial
optim ion).

C plex
instan ilar
perfo s the
suitab ASP
with

J. Sán
Jo
ur

na
l P

re
-p

ro
of

GRASP with EvPR for the Conditional 𝑝-Dispersion Problem

e 7: Candidate sites for warehouse location. Red bullet: existing warehouse locations (Q). Black bullet: new sites

s, as identified by our model. Our heuristic method based on the evolutionary path relinking methodology is
vide a high-quality solution in 1 minute of computing time. Figure 7 shows the solution on a map. By sol
onditional 𝑝-Dispersion Problem, we provide a robust framework for identifying optimal warehouse locat
ing the company’s continued growth and operational efficiency in the Spanish market.

onclusion
his paper solves a problem known as the c-𝑝DP recently proposed by Cherkesly and Contardo (2021). The c-
ariant of the well-known dispersion problem that aims to select a set of 𝑝 elements when 𝑞 elements has
y selected while maximizing the dissimilarity among the elements.

his problem is -hard, which makes exact methods impractical for large scale instances. In this research
se different metaheuristics, from the simplest one (GRASP) to a set of more complex metaheuristics foc
mbining GRASP with PR, such as: static GRASP with PR, dynamic GRASP with PR and GRASP with E
context of path relinking, instead of implementing the standard variant, we propose a more intelligent stra

ombines interior and exterior PR, that is, the RPR, to intensify the search (when two solutions are differen
sity it (when two solutions are similar).
any combinatorial optimization problems, and in particular the c-𝑝D, that present flat landscapes where it is

d several different solutions presenting the same objective function value pose a challenge to heuristic meth
er to overcome this difficulty, a new diversity metric has been proposed to evaluate the similarity of two solu
such a way, to allow the algorithm to escape from suboptimal basin of attractions. The metric has been co
𝛿-metric along this work and it is not only valid to solve the c-𝑝D problem, but also to solve any combinat
ization problem in which the objective value is a max-min objective function (or a min-max objective funct
omputational results conclude that our proposal, GRASP with EvRPR, is able to solve large and com
ces in short computational time. A comparison with the state-of-the-art algorithm shows that both have a sim

rmance but our algorithm exhibits significantly in shorter times. Additionally, our experimentation show
ility of this method to solve a practical case from a Spanish company in the food industry. To conclude, GR

EvRPR is suitable to solve both academic and realistic problems.
chez-Oro et al.: Preprint submitted to Elsevier Page 16 of 18
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Highlights 

 
- Resolution of a new optimization problem: the conditional p-dispersion problem 
- A new diversity metric in the context of minmax and maxmin problems has been 

defined. 
- Different variants of the GRASP with Path Relinking have been tested.  
- Instead of the traditional Path Relinking methodology, a novel variant combining 

interior and exterior Path Relining have been adapted.  
- Perform numerical experiments that disclose the best strategies. 
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