
An Exact Method for the Maximum Diversity Problem

RAFAEL MARTÍ
Departamento de Estadística e Investigación Operativa, Universidad de Valencia, Spain
Rafael.Marti@uv.es

MICAEL GALLEGO
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
Micael.Gallego@urjc.es

ABRAHAM DUARTE
Departamento de Ciencias de la Computación, Universidad Rey Juan Carlos, Spain.
Abraham.Duarte@urjc.es

Abstract — In this article we first review previous integer formulations for the

maximum diversity problem. This problem consists of selecting a subset of elements

from a data set in such a way that the sum of the distances between the chosen elements

is maximized. We propose a branch and bound algorithm and expressions for upper

bounds for this problem. As far as we know, this is the first exact algorithm proposed

for the maximum diversity problem. Empirical results with a collection of previously

reported instances indicate that the proposed algorithm is able to solve medium size

instances and compares favorably with the well-known optimizer Cplex when solving

the previous formulations.

KeyWords: Branch and Bound, Integer Programming, Lower Bounds.

An exact method for the MDP / 2

1. Introduction
The Maximum Diversity Problem (MDP) has been the subject of study since 1993 when
Kuo, Glover and Dhir proposed different linear integer formulations. Since then,
different heuristic algorithms have been proposed to obtain approximate solutions in
short computational times but, as far as we know, no exact method has been considered
for this problem.

We can find a large number of MDP applications in different contexts, such as
ecological, medical or social sciences, or in animal and plant genetics, where the goal of
obtaining new varieties by controlled breeding stocks with desired qualities of diversity
can be formulated as a MDP (Porter et al. 1975). The maximum diversity problem also
appears in the context of ethnicity when it is studied from a historical perspective, as
shown in Swierenga (1977), and more recently in the application of U.S. immigration
policy that promotes of ethnic diversity among immigrants (McConnell 1988).

Ghosh (1996) proved the completeness of the MDP, proposed a multi-start algorithm
and tested it on small instances. In Glover et al. (1998), four different heuristics are
introduced for this problem. Since different versions of the MDP include additional
constraints, the objective is to design heuristics whose basic moves for transitioning
from one solution to another are both simple and flexible, allowing these moves to be
adapted to multiple settings. The authors compare the solution obtained with their
heuristics with the optimal solution on small instances.

In the last few years, researchers have implemented different metaheuristics to obtain
high quality solutions to medium and large MDP instances. Silva et al. (2004) present
several GRASP algorithms for the MDP and test them on medium instances. Their
extensive computational experiments show that their procedures outperform previous
methods when they are allowed to run for extremely long times (their methods employ
on average more than 20 hours of CPU time). Duarte and Martí (2006) proposed
constructive and improvement algorithms for the MDP based on tabu search
methodology and Gallego et al. (2006) implemented scatter search for the MDP. Both
latter studies target large instances and, as shown in their computational testing, provide
the best known solutions for this problem.

In this paper we first describe in Section 2 previous formulations for the MDP. Section
3 presents our theoretical contributions, which basically consist of upper bounds for
partial solutions. A description of the exact algorithm is given in Section 4. It presents
our for provably optimal solving method, which implements efficient strategies for
branching and pruning. The paper finishes with a computational study and the
associated conclusions.

2. Previous Formulations
Kuo, Glover and Dhir (1993) proposed three linear integer formulations, F1, F2 and F3,
to solve the MDP. The authors illustrate the performance of F2 on a real example of
small size. However, they did not test these formulations with a MIP solver. The
experimentation described in Section 5 compares these three formulations when solving
small and medium MDP instances with Cplex 8.0.

An exact method for the MDP / 3

The MDP consists of selecting a subset of elements from a data set in such a way that
the sum of the distances between the chosen elements is maximized. In most
applications, it is assumed that each element can be represented by a set of attributes.
Let sik be the state or value of the kth attribute of element i, where k = 1, …, K. Then,
the distance dij between elements i and j may be simply defined as the Euclidean
distance (or as any other distance function). The maximum diversity problem can then
be formulated as the following quadratic zero-one integer program, where variable xi
takes the value 1 if element i is selected and 0 otherwise, i = 0, ..,n.

 (F1) Maximize ∑∑
−

= +=

=
1

1 1

n

i

n

ij
jiij xxdz

 Subject to mx
n

i
i =∑

=1

 xi = {0, 1} 1 ≤ i ≤ n

Glover and Wolsey (1974) show how to convert a 0-1 polynomial programming
problem into a 0-1 linear programming problem. In particular, they propose replacing
the product of variables with a new variable , satisfying the following
additional constraints:

jQj x∈∏ Qx

1−≤−∑
∈

Qxx Qj
Qj

Qjxx Qj ∈∀≤+− ,0
0≥Qx

If the original variable xj is 0, the second additional constraint, -xj + xQ ≤ 0, implies xQ ≤
0; then, since xQ ≥ 0 (as given in the third additional constraint) we obtain xQ = 0.
Symmetrically, if the new variable xQ is 0, the first additional constraint implies that any
of the original variables must be 0, thus their product must also be 0. Then we have:

00 =⎯→←=∏ ∈ QjQj xx

On the other hand, if all the original variables have value 1, the first additional
constraint results in -xQ ≤ -1 and, together with any of the second additional constraints,
xQ ≤ 1, leads to xQ = 1. Symmetrically, if xQ takes the value 1, the second additional
constraints force the original variables to be larger than or equal to 1; therefore, they
must be 1 (since they are binary variables). Therefore, QjQj xx =∏ ∈ .

Kuo et al. (1993) apply this transformation and replace the product xixj in F1 with a new
variable yij, obtaining the mixed integer program F2 in which the additional constraints
have been added.

An exact method for the MDP / 4

 (F2) Maximize ∑∑
−

= +=

=
1

1 1

n

i

n

ij
ijij ydz

 Subject to mx
n

i
i =∑

=1

 1≤−+ ijji yxx 1 ≤ i < j ≤ n
 0≤+− iji yx 1 ≤ i < j ≤ n
 0≤+− ijj yx 1 ≤ i < j ≤ n

 yij ≥ 0 1 ≤ i < j ≤ n
 xi = {0, 1} 1 ≤ i ≤ n

Glover (1975) introduces some inequalities to handle quadratic integer programs with
both real and binary variables. Consider a variable w and a 0-1 variable x such that:

00 LwU ≥≥ if 0=x , and if 11 LwU ≥≥ 1=x .

A simple way to model this situation is given by:

xLLLwxUUU)()(010010 −+≥≥−+

U0, U1, L0, L1 are usually non-constant values and then the expressions (U1-U0)x and
(L1-L0)x will usually be nonlinear. Then, Glover (1975) introduces the following upper
and lower bounds:

111111000000 ,,, LLLUUULLLUUU ≥≥≥≥≥≥≥≥

to rewrite the inequalities above with these new expressions:

,)()(010010 xLLLwxUUU −+≥≥−+

).1)(()1)((101101 xLLLwxUUU −−+≥≥−−+

Kuo et al. (1993) apply this transformation to F1 by decomposing the objective function
into the sum of w-values:

∑∑ ∑
−

=

−

= +=

==
1

1

1

1 1

)(
n

i
i

n

i

n

ij
jiji wxdxz

Defining the following bounds,

00000 ==== LLUU , ∑
+=

===
n

ij
iji dDLU

1
11),0max(

and ∑
+=

===
n

ij
iji dDLU

1
11),0min(,

F1 is rewritten as F3:

An exact method for the MDP / 5

(F3) Maximize: ∑
−

=

=
1

1

n

i
iwz

Subject to: mx
n

i
i =∑

=1

 0≤+⋅− iii wxD , (1) ni ≤≤1

 0)1(
1

≤+−⋅+− ∑
+=

iii

n

ij
jij wxDxd , (2) ni ≤≤1

 xi = {0, 1} 1 ≤ i ≤ n (3)

We can see how the new constraints make wi take the appropriate value in order to
obtain the same z value as F1. For example, when xi = 0, (1) implies wi ≤ 0. Due to (2):

0
1

≤++− ∑
+=

ii

n

ij
jij wDxd ⎯→⎯ i

n

ij
jiji Dxdw −≤ ∑

+= 1

and by definition:

∑
+=

≤
n

ij
jiji xdD

1

Therefore, (2) is less restrictive than (1) in F3 and the maximum value that wi can take
to maximize the objective function z is 0. In short, if xi = 0 then wi = 0 and their
respective contribution to the objective function is 0. Similarly, we can see that if xi = 1
then

∑
+=

=
n

ij
jiji xdw

1
.

So F3 and F1 provide the same objective value and both problems are equivalents.
Therefore, the maximum diversity problem can be formulated as F1, F2 and F3. In the
computational experiments reported in Section 6 we will see their effectiveness when
solving a set of instances.

3. Upper Bounds for Partial Solutions
The maximum diversity problem can be defined in terms of graphs. We can represent
each element in the problem as a vertex in a graph and the distance between elements as
the weight or cost associated to the corresponding edge. The MDP then consists of
selecting a subset of vertices in such a way that the sum of the distances between them
is maximized. In this section we provide some expressions to compute the upper bound
of the MDP value of a set of solutions that share some vertices, which will be called a
partial solution.

Let V={v1, v2, …, vn} be the set of vertices of a graph G and let m < n be the number of
vertices that we have to select in an MDP solution. We define a partial solution

An exact method for the MDP / 6

Sel={s1, s2,…, sk} with k < m elements as a subset of V (Sel ⊂ V). Let SSel be the set of
solutions of the MDP in which all the elements in Sel are selected.

Given a solution x={s1, s2,…, sk, u1, u2,…, um-k} in SSel, we denote the set of vertices in x
not present in Sel as Unsel(x)={u1, u2,…, um-k}. The value z of x can be broken down
into z = z1 + z2 + z3, where z1 is the sum of the distances (edge weights) between the
pairs of selected vertices (vertices in Sel), z2 is the sum of the edge weights with one
extreme in Sel and the other in Unsel(x), and z3 is the sum of edge weights with both
extremes in Unsel(x).

∑∑
−

= +=

=
1

1 1
1),(

k

i

k

ij
ji ssdz ∑∑

=

−

=

=
k

i

km

j
ji usdz

1 1
2),(∑ ∑

−−

=

−

+=

=
1

1 1
3),(

km

i

km

ij
ji uudz

We use the example given in Figure 1 and the associated Euclidean distance matrix in
Table 1 to illustrate these concepts. The dimensions of the example problem are n = 6
and m = 4.

Figure 1. MDP example

 1 2 3 4 5 6
1 - 2.24 3.16 6.08 5.66 4.12
2 2.24 - 2.24 4.00 3.61 3.16
3 3.16 2.24 - 3.61 5.10 5.39
4 6.08 4.00 3.61 - 3.61 5.83
5 5.66 3.61 5.10 3.61 - 3.00
6 4.12 3.16 5.39 5.83 3.00 -

Table 1: Distance matrix

Consider the partial solution Sel={1,3} in the example given in Table 1. We have
SSel={{1,3,2,4}, {1,3,4,5}, {1,3,5,6}, {1,3,2,5}, {1,3,4,6}, {1,3,2,6}}. Consider for
example solution x={1,3,5,6} in SSel, then Unsel(x)={5,6}. We can compute its value as
z = z1 + z2 + z3 = 3.16 + 20.27 + 3.00 = 26.43 where

z1 = d(1,3) = 3.16
z2 = d(1,5) + d(3,5) + d(1,6) + d(3,6) = 5.66 + 5.10 + 4.12 + 5.39 = 20.27
z3 = d(5,6) = 3.00

Figure 2 illustrates the decomposition of the value z of the solution x={1,3,5,6}. It is
clear that for any solution in SSel, z1 is an invariant and in this example it takes the value
of 3.16. In this section we want to obtain an upper bound of the value of any solution in
SSel. Propositions 1 and 2 provide an upper bound for the value of z2 and z3 respectively
for any solution in SSel. Proposition 3 provides an improved upper bound for the value
of z2 + z3.

An exact method for the MDP / 7

Figure 2. Decomposition of the solution value

Given a set of vertices, Sel={s1, s2,…, sk}, and a vertex v ∈V-Sel, we define zSel(v) as

∑
=

=
k

i
iSel vsdvz

1

),()(

we can interpret zSel(v) as the potential contribution of v with respect to the selected
vertices if we add it to the partial solution Sel.

Proposition 1

Given a partial solution Sel={s1, s2, …, sk} with k < m, let be the
ordered values of z

kn
SelSelSel zzz −,...,, 21

Sel(v) for all v in V-Sel (where is the maximum); then, for any
solution x in S

1
Selz

Sel :

∑
−

=

≥=
km

j

j
Sel zzUB

1
22 .

Proof

Given the solution x={s1, s2,…, sk, u1, u2,…, um-k} in SSel, it is clear that:

 ■ ∑∑∑∑
−

=

−

==

−

=

≤==
km

j

j
Sel

km

j
jSel

k

i

km

j
ji zuzusdz

111 1
2)(),(

Given a partial solution Sel={s1, s2,…, sk} with k < m, let
be the ordered values of the distances between v in V-Sel and the other vertices in V-Sel
(where is the maximum). We define z

)(,),(),(121 vdvdvd kn
UnselUnselUnsel

−−K

)(1 vdUnsel Unsel(v) as:

)(
2
1)(

1

1

vdvz
km

i

i
UnselUnsel ∑

−−

=

=

we can interpret zUnsel(v) as an upper bound of the potential contribution of v with
respect to the unselected vertices if we add it to the partial solution Sel under
construction.

An exact method for the MDP / 8

In the example in Figure 1 and Table 1 with Sel={1,3}, if we consider vertex 2, we have
d(2,4)=4.00, d(2,5)=3.61 and d(2,6)=3.16. Then,

16.3)2(,00.4)2(,00.4)2(321 === UnselUnselUnsel ddd and 00.200.4
2
1)2(==Unselz

Proposition 2

Given a partial solution Sel={s1, s2, …, sk} with k < m, let be the
ordered values of z

kn
UnselUnselUnsel zzz −,...,, 21

Unsel(v) for all v in V-Sel (where is the maximum); then, for any
solution x in S

1
Unselz

Sel :

∑
−

=

≥=
km

j

j
Unsel zzUB

1
33 .

Proof

Given the solution x={s1, s2,…, sk, u1, u2,…, um-k} in SSel, it is clear that:

 ∑∑∑ ∑∑ ∑
−

=

−

=

−

=

−

≠=

−−

=

−

+=

≤≤==
km

i

i
Unsel

km

i
iUnsel

km

i

km

ijj
ji

km

i

km

ij
ji zuzuuduudz

111 ,1

1

1 1
3)(),(

2
1),(■

Consider again the partial solution Sel={1,3} in the example given in Table 1.
Applying Propositions 1 and 2 we can bound the value z of any solution in SSel as:

z = z1 + z2 + z3 ≤ z1 + UB2 + UB3 = 3.16 + 20.45 + 5.83 = 29.44

It is easy to check that 29.44 is larger than any solution value in this set:

f({1, 3, 2, 4}) = 21.33
f({1, 3, 2, 5}) = 22.01
f({1, 3, 2, 6}) = 20.31
f({1, 3, 4, 6}) = 28.19
f({1, 3, 4, 5}) = 27.22
f({1, 3, 5, 6}) = 26.43

Note that UB2 and UB3 are computed independently. We can improve the final bound if
we simply merge both values. Given a partial solution Sel={s1, s2, …, sk} with k < m
for any v in V-Sel, we define z(v) as:

z(v)=zSel(v)+zUnsel(v)

Proposition 3
Given a partial solution Sel={s1, s2, …, sk} with k < m, let be the ordered

values of z(v) for all v in V-Sel (where is the maximum); then, for any solution x in
S

knzzz −,...,, 21

1z
Sel :

∑
−

=

+≥=
km

j

j zzzUB
1

3223

An exact method for the MDP / 9

Proof

We only need to put together the proofs of Propositions 1 and 2 to obtain this result.

23
11 11

32

1 ,11 1

1

1 11 1
32

)()()(

),(
2
1),(),(),(

UBzuzuzuzzz

uudusduudusdzz

km

i

i
km

i

km

i
iiUnsel

km

i
iSel

km

i

km

ijj
ji

k

j

km

i
ij

km

i

km

ij
ji

k

j

km

i
ij

=≤=+≤+

+=+=+

∑∑ ∑∑

∑ ∑∑∑∑ ∑∑∑
−

=

−

=

−

=

−

=

−

=

−

≠==

−

=

−−

=

−

+==

−

=

 ■

In the example above we have

48.6
2
00.448.4)

2
16.3,

2
61.3,

2
00.4max(48.4

)
2

)6,2(,
2

)5,2(,
2

)4,2(max(48.4)2()2()2(

=+=+

=+=+=
dddzzz UnselSel

Similarly,

61.12)
2
83.5,

2
61.3,

2
00.4max(96.9)4(=+=z

57.12)
2
00.3,

2
61.3,

2
61.3max(76.10)5(=+=z

43.12)
2
00.3,

2
83.5,

2
16.3max(51.9)6(=+=z

Therefore the improved bound given in Proposition 3 for this example is z1+UB23=3.16
+12.61+12.57=28.34, which is better (lower) than the bound of 29.44 obtained with
Propositions 1 and 2. Note that it is easy to see that UB23≤UB2+UB3 because UB2 is
computed with respect to the maximum zSel(v) values and UB3 is computed with respect
to the maximum zUnsel(v) values. Then, the vertices v in UB2 and UB3 may be different,
while UB23 is computed with respect to the vertices for which zSel(v)+zUnsel(v) is
maximum. We use the same vertices v in zSel(v) and zUnsel(v) when computing UB23 and
therefore its maximum is lower than or equal to UB2+UB3.

4. Search Tree
Given a graph G=(V,E) with a set of vertices V={v1, v2, …, vn} and letting m<n be the
number of vertices that we have to select in a solution, the search tree provides a
generation and partition of the set of solutions for the Maximum Diversity Problem in
which each node represents a partial solution (except the leaf or final nodes that
represent complete solutions).

An exact method for the MDP / 10

Figure 3. Basic search tree

In a first approach to this problem we can build the complete enumeration tree as
follows. The initial node branches into n nodes (labeled from 1 to n, where node i
represents the partial solution Sel={i}). Each of these n nodes in the first level branches
into n-1 nodes (which will be referred to as nodes in level 2). For instance, node 2 in
the first level (Sel={2}) has n-1 successors in level 2 (labeled as 1, 3, 4,.., n). So, node 3
in the second level, the successor of node 2 in the first level, represents the partial
solution Sel={2,3}. Therefore, at each level in the search tree, the algorithm extends the
current partial solution by adding one more vertex. Figure 3 represents this basic search
tree for an example with n = 5 and m = 3.

As shown in Figure 3, the basic search tree described above contains repetitions of the
same solutions. For example, the nodes marked as A, B, C and D, all represent the
same solution {1,2,3}. Therefore, this tree does not represent a partition of the set of
solutions of the MDP. So we then consider a search tree with no repetitions.
Specifically, the initial node branches into n–m+1 nodes (labeled from 1 to n-m, where
node i represents the partial solution Sel={i}). Each of these n–m+1 nodes in the first
level branches into a number of nodes in level 2 that depends on the value of their label.
In general terms node i in level k branches into n-(m-k)-i nodes, beginning with node
i+1 and ending with node n-(m-k). In the example above with n = 5 and m = 3, Figure 4
shows this search tree with no repetitions. Node 1 in level 1 branches into nodes 2, 3
and 4; node 2 in level 1 branches into nodes 3 and 4, and node 3 in level 1 branches into
node 4. Node 2 in level 2 branches into nodes 3, 4 and 5; nodes 3 branch into nodes 4

An exact method for the MDP / 11

and 5, and nodes 4 branch into node 5. The nodes in level 3, leaf nodes, represent
complete solutions that are shown in the right hand column. Comparing the search tree
in Figure 4 with that in Figure 3, we can see that the size has been substantially reduced
by avoiding the repetitions.

Figure 4. Search tree

A direct way to implement the construction of the search tree is by means of a recursive
procedure. Figure 5 shows the pseudo-code of this procedure. This algorithm has two
input parameters, level k and the partial solution under construction. Once the final
level is reached and the solution is completed, the method prints it and performs a
backward step. For the sake of simplicity, this figure does not show the implementation
details and data structures that make our final procedure more efficient.

procedure createSolutions (k , solution)
var
 init_value, i: integer;
begin
 if k = m+1 then
 print(solution); // Solution output
 else
 if k = 1 then // Initialization for each level
 init_value := 1;
 else
 init_value := solution[k - 1] + 1;
 end if
 for i := init_value to n-(m-k) do // Create the new nodes in the tree
 solution[k]:=i;
 createSolutions(k+1, solution); // Recursive call
 end for
 end if
end

Figure 5. Search tree construction procedure

The value of a heuristic solution gives a lower bound for the problem. The tree is
explored in a depth first search where nodes represent partial solutions (except the leaf
nodes in level m that represent complete solutions). The upper bound z1+UB23 is
computed at each node. If it is lower than the lower bound we fathom the node,

An exact method for the MDP / 12

otherwise we branch the node and explore its first child node. We apply a second test to
fathom nodes in the search tree based on the following proposition.

Given a solution x={s1, s2, …, sm}, we can express its value as:

)(),(
2
1

1 ,1 1
i

m

i

m

ijj

m

i
ji sdssdz ∑ ∑ ∑

= ≠= =

== , where ∑
≠=

=
m

ijj
jii ssdsd

,1

),(
2
1)(

represents the contribution of si to the value z. From this expression we can introduce
the maximum, dmax(v), and minimum, dmin(v), potential contribution of a vertex v to any
solution. Let d(v,vσ(1)), d(v,vσ(2)),…, d(v,vσ(n-1)) be the ordered values of the distances
between v and the other vertices in the graph (where d(v,vσ(1)) is the maximum).

∑
−

=
−=

1

1
)(min),(

2
1)(

m

j
jnvvdvd σ , ∑

−

=

=
1

1
)(max),(

2
1)(

m

j
jvvdvd σ

It is clear from the definition that any solution with vertex v selected verifies:

dmin(v) ≤ d(v) ≤ dmax(v)

Proposition 4
Given an optimal solution x and two vertices u, v∈V, if dmax(u) < dmin(v) and v is not
selected in x, then u cannot be selected in x.

Proof

Consider that u is in the optimal solution x= } and we will see that it leads
us to a contradiction. The value z of x can be broken down into:

,...,,,{ 32 msssu

∑∑∑
−

= +==

+=
1

2 12

),(),(
m

i

m

ij
ji

m

j
j ssdsudz

From the definition of dmax we have:

∑∑∑∑∑
−

= +=

−

= +==

+≤+=
1

2 1
max

1

2 12

),()(2),(),(
m

i

m

ij
ji

m

i

m

ij
ji

m

j
j ssdudssdsudz

Similarly, if we consider the solution y={v, s2, s3, …, sm}, its value z' verifies:

∑∑∑∑∑
−

= +=

−

= +==

+≥+=
1

2 1
min

1

2 12

),()(2),(),('
m

i

m

ij
ji

m

i

m

ij
ji

m

j
j ssdvdssdsvdz

Applying dmax(u) < dmin(v) in the two previous inequalities, we obtain z'>z. This
contradicts the fact that x is an optimal solution; therefore, u cannot be selected in an
optimal solution in which v is not selected.

 ■

An exact method for the MDP / 13

Figure 6 illustrates the application of Proposition 4 to fathom some nodes in the search
tree in an example with n=6 and m=3. Consider in this example that dmax(3)<dmin(1),
then according to Proposition 4, if vertex 1 is not selected in an optimal solution, vertex
3 cannot be selected. Therefore, we can fathom all the solutions (partial and complete)
in which vertex 3 is selected and vertex 1 is not, because they cannot be optimal
solutions. Figure 6 shows the search tree of this example in which ten nodes (depicted
with dashed lines) are fathomed. Note that one of the fathomed nodes is in the first
level and three of them are in the second one.

Figure 6. Fathomed nodes in search tree

As we have mentioned, at each node of the search tree we compute z1+UB23 and test
whether we can fathom the node or not. To calculate UB23, we first need to obtain
z(v)=zSel(v)+zUnsel(v) for any v in V-Sel, where zUnsel(v) involves several time-consuming
calculations. However, we have found that the way in which we generate the search
tree, in order to avoid duplications, allows us to compute zUnsel(v) offline. Specifically,
zUnsel(v) only depends on the value of v, k (number of selected vertices) and, in this
search tree, on the largest label of the selected vertices (max_label). For example, in the
search tree shown in Figure 6, we can see that the two nodes labeled with 3 in level 2
have the same values for zUnsel(4), zUnsel(5) and zUnsel(6) because k=2 and max_label=3.
The same happens with the nodes labeled as 4 and 5 in level 2 of Figure 6. Therefore,
we compute the values of zUnsel(v) for each possible combination of k and max_label at
the beginning of the method. In the next section we empirically show the effectiveness
of this offline computation.

An exact method for the MDP / 14

5. Computational Experiments
This section describes the computational experiments that we performed to test the
efficiency of our branch and bound procedure as well as comparing it with the solution
obtained with the previous linear integer formulations. We have implemented the
branch and bound in Java SE 6 and solved the integer formulations with Cplex 8.0. All
the experiments were conducted on a Pentium 4 computer at 3 GHz with 3 GB of RAM.

We have employed three sets of instances in our experimentation. The first one was
introduced in Glover et al. (1998), the second is an extension of the first one to target
large graphs, and the third set is from Silva et al. (2004):

Glover: This data set consists of 75 matrices for which the values were
calculated as the Euclidean distances from randomly generated points
with coordinates in the 0 to 100 range. The number of coordinates
for each point is also randomly generated between 2 and 21. Glover,
Kuo and Dhir (1998) developed this data generator and constructed
instances with n=10, 15 and 30. The value of m ranges from 0.15n to
0.75n.

Glover2: This data set consists of 50 matrices constructed with the same graph

generator employed in the Glover set. We generated ten instances
with n=25, 50, 100, 125 and 150. For each value of n we consider
m=0.1n, 0.3n (generating five instances for each combination of n
and m).

Silva: This data set consists of 50 matrices with random numbers between 0

and 9 generated from an integer uniform distribution. These
instances were introduced by Silva, Ochi and Martins (2004). We
use their generator to construct instances of the same size as those in
the Glover2 set (in order to compare the performance of the methods
in both sets).

In our first experiment we compare the three linear integer formulations, F1, F2 and F3,
introduced in Section 2. We limit the execution of the Cplex solver to 1 hour (3,600
seconds) of computer time. Table 2 shows, for each combination of the n and m values
in the Glover set of instances, the average value of the gap, Gap, the CPU time in
seconds, CPU, and the number of optima that each method is able to match, #Opt. The
value of the gap is computed as the upper bound minus the lower bound and divided by
the upper bound (and multiplied by 100).

Table 2 shows that, as expected, formulation F3 produces better results than F1 and F2
in shorter running time. Specifically, F1 presents an average gap value of 0.7%
achieved in 591.6 seconds on average, F2 0.8% achieved in 711.7 seconds, and F3 0.0%
achieved in 96.9 seconds. On the other hand, F1, F2 and F3 obtain 65, 66 and 75
optimal solutions respectively (out of 75 instances).

An exact method for the MDP / 15

 F1 F2 F3
n m Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt

10 2 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5
10 3 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5
10 4 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5
10 6 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5
10 8 0.0 0.0 5 0.0 0.1 5 0.0 0.0 5
15 3 0.0 0.0 5 0.0 0.6 5 0.0 0.1 5
15 4 0.0 0.1 5 0.0 0.8 5 0.0 0.1 5
15 6 0.0 0.4 5 0.0 1.3 5 0.0 0.2 5
15 9 0.0 0.4 5 0.0 1.1 5 0.0 0.2 5
15 12 0.0 0.0 5 0.0 0.6 5 0.0 0.0 5
30 6 0.0 59.0 5 0.0 514.7 5 0.0 35.7 5
30 9 0.0 1597.0 5 4.7 3564.7 1 0.0 292.9 5
30 12 7.6 3600.0 0 6.8 3501.9 1 0.0 929.3 5
30 18 3.5 3600.0 0 1.0 3055.9 4 0.0 193.2 5
30 24 0.0 16.8 5 0.0 33.7 5 0.0 1.9 5

Summary 0.7 591.6 65 0.8 711.7 66 0.0 96.9 75
Table 2. Linear integer formulations

In the following experiments we test our branch and bound method. In line with testing
the effectiveness of the branch and bound procedure, we use a simple heuristic to obtain
the initial lower bound. Specifically, we run the D2 method introduced in Glover et al.
(1998) to obtain the initial solution (its value is used as the initial lower bound) of the
branch and bound method in all the experiments.

In our second experiment we test the efficiency of the offline computation of zUnsel(v)
described in Section 4. We run the branch and bound method with and without this pre-
calculation on ten Glover2 and ten Silva instances with n=50. We do not reproduce the
table of this experiment, but we report that the method without offline pre-calculation
takes 574.21 seconds, while the method with the pre-calculation only takes 17.12
seconds on average (and in both cases the method is able to obtain the optimal solution
in the twenty examples considered). In this experiment we also compute the percentage
of nodes in the search tree explored with the algorithm (i.e. we measure the
effectiveness of the upper bound). The branch and bound only explores 0.09% of the
nodes in the search tree, thus fathoming the rest of them. In the following experiments
we consider the version with offline pre-calculation in our branch and bound algorithm.

In the third experiment, we compare three different versions of our branch and bound
algorithm. The first version, BB, explores the search tree in lexicographical order. In
Section 4 we introduce dmin(v) and dmax(v) as the minimum and maximum potential
contribution of a vertex v to any solution. The second version of the branch and bound,
BBmax, explores the search tree in the order given by dmax(v). In particular, we order
the vertices according to their dmax-value (where the vertex with the maximum value is
the first), and the method explores the nodes in the search tree according to this order.
Similarly, BBmin, explores the search tree in the order given by dmin(v) (visiting first the
nodes with maximum dmin-value of their vertices). Table 3 reports the average value of
the gap, Gap, the CPU time in seconds, CPU, and the number of optima that each
method is able to match, #Opt, for the fifty Glover2 and fifty Silva instances

An exact method for the MDP / 16

 BB BBmax BBmin
 Gap CPU #Opt Gap CPU #Opt Gap CPU #Opt
Glover2 6.4 1689.9 27 3.9 1291.3 34 4.8 1505.0 31
Silva 13.2 1760.3 30 12.9 1714.0 30 12.8 1736.5 30

Table 3. Comparison of branch and bound variants

Table 3 shows that the BBmax method performs better than the other two variants
considered. This table shows that BB, BBmax and BBmin obtain 27, 34 and 31 optimal
solutions (out of 50 Glover2 instances) achieved in 1689.9, 1291.3 and 1505.0 seconds
respectively. Similarly, in the 50 Silva instances, BB, BBmax and BBmin obtain 30, 30
and 30 optimal solutions achieved in 1760.3, 1714.0 and 1736.5 seconds respectively.
Regarding the Gap values, BBmax obtains 8.4% on average over the 100 instances
considered in Table 3, which compares favorably with 9.8% of the BB and with 8.8% of
the BBmin. Therefore, we will use the BBmax variant in the following experiments in
which we compare our branch and bound method with the linear integer formulation F3
solved with Cplex. As in the previous experiments, we limit the execution time on each
instance to a maximum of 1 hour (3,600 seconds).

 BBmax F3
Instance n m Gap CPU #Opt Gap CPU #Opt

25 2 0.0 0.0 5 0.0 0.2 5
25 7 0.0 0.0 5 0.0 15.0 5
50 5 0.0 0.0 5 0.0 462.2 5
50 15 0.0 0.4 5 27.7 3609.7 0

100 10 0.0 4.4 5 71.5 3609.0 0
100 30 8.6 3576.2 1 41.9 3603.8 0
125 12 0.0 297.9 5 75.2 3600.0 0
125 37 13.7 3600.0 0 45.3 3600.0 0
150 15 5.4 1834.4 3 77.7 3600.0 0

Glover2

150 45 10.9 3600.1 0 52.7 3600.0 0
25 2 0.0 0.0 5 0.0 0.1 5
25 7 0.0 0.0 5 0.0 4.5 5
50 5 0.0 0.0 5 0.0 265.7 5
50 15 0.0 22.8 5 25.8 3600.0 0

100 10 0.0 38.3 5 71.1 3600.0 0
100 30 31.7 3600.0 0 46.4 3600.0 0
125 12 0.0 2678.9 5 76.1 3600.0 0
125 37 34.6 3600.0 0 50.1 3600.0 0
150 15 26.7 3600.1 0 78.1 3600.0 0

Silva

150 45 35.6 3600.1 0 50.8 3600.0 0
Summary 8.4 1502.7 64 39.5 2558.5 30

Table 4. Comparison between best solution methods

Table 4 reports the results obtained with both methods, BBmax and F3, over the two
sets of large instances, Glover2 and Silva. Each row reports the results on the group of
five instances (with the same n and m values). As in previous tables, we report the
average value of the gap, Gap, the CPU time in seconds, CPU, and the number of
optima that each method is able to match, #Opt.

An exact method for the MDP / 17

Table 4 shows that the Cplex solver with the F3 formulation is able to solve the medium
size instances (up to n = 50 on both set of instances) within 1 hour of CPU time. On the
other hand, our branch and bound algorithm outperforms the other method since it is
able to optimally solve all the medium instances (n = 50) and some of the large size
instances (n = 100, m = 10). Moreover, considering the 100 instances reported in Table
4, BBmax presents an average gap value of 8.4% achieved in 1502.7 seconds, which
compares favourably with the 39.5% obtained with F3 in 2558.5 seconds on average.

6. Conclusions

We have developed an exact procedure based on the branch and bound methodology to
provide bounds and solutions for the maximum diversity problem. As far as we know,
this is the first exact algorithm proposed for this problem. We have introduced the
partial solution as the set of solutions that share some vertices, and we have proposed
several theoretical results to compute upper bounds on partial solutions. These bounds
allow us to explore a relatively small portion of the nodes in the search tree of the
branch and bound procedure (0.09% on average).

We perform extensive preliminary experimentation to study the effect of the elements
proposed in the solution method, such as the offline pre-calculation of time-consuming
computations in the upper bounds and the order of node exploration. The
experimentation shows that our method is able to solve medium size instances (up to
n = 100) and obtains an average gap, over all sets of instances, of 8.4%. We have
compared our method with the best previous linear integer formulation (Kuo et al.,
1993) solved with the well-known software Cplex. The comparison favors the proposed
procedure.

Acknowledgments

This research has been partially supported by the Ministerio de Educación y Ciencia of
Spain (Grant Refs. TIN2005-08943-C02-02, TIN2006-02696) and by the Comunidad de
Madrid – Universidad Rey Juan Carlos project (Ref. URJC-CM-2006-CET-0603).

References

Campos, V., F. Glover, M. Laguna and R. Martí (2001) "An Experimental Evaluation of
a Scatter Search for the Linear Ordering Problem," Journal of Global Optimization, vol.
21, pp. 397-414.

Duarte, A. and R. Martí (2006) “Tabu Search and GRASP for the Maximum Diversity
Problem,” to appear in the European Journal of Operational Research.

Gallego, M., Duarte, A., Laguna, M. and Martí, M. (2006), "Hybrid Heuristics for the
Maximum Diversity Problem", Technical report, University of Valencia, Spain.

Ghosh, J. B. (1996) “Computational Aspects of the Maximum Diversity Problem,”
Operations Research Letters, vol. 19, pp. 175-181.

Glover, F. (1975) "Improve Linear Integer Programming Formulations of Nonlinear
Integer Problems" Management Science 22 (4), 455 - 460.

An exact method for the MDP / 18

Glover, F. and Wolsey, R.E. (1974) "Converting the 0-1 Polynomial Programming
Problem to a 0-1 Linear Programming" Operations Research 22 (1), 180-182.

Glover, F., C. C. Kuo, and K. S. Dhir (1998) “Heuristic Algorithms for the Maximum
Diversity Problem,” Journal of Information and Optimization Sciences, vol. 19, no. 1,
pp. 109-132.

Glover, F., M. Laguna (1997) Tabu Search. Kluwer Academic Publisher.

Kuo, C. C., F. Glover and K. S. Dhir (1993) “Analyzing and Modeling the Maximum
Diversity Problem by Zero-One Programming,” Decision Sciences, vol. 24, no. 6, pp.
1171-1185.

Laguna, M. and R. Martí (2003) Scatter Search: Methodology and Implementations in
C, Kluwer Academic Publishers: Boston.

Silva, G. C., L. S. Ochi and S. L. Martins (2004) “Experimental Comparison of Greedy
Randomized Adaptive Search Procedures for the Maximum Diversity Problem,”
Lecture Notes in Computer Science 3059, Springer: Berlin Heidelberg, pp. 498-512.

	6. Conclusions
	References

