
GRASP AND PATH RELINKING FOR THE

MAX-MIN DIVERSITY PROBLEM

MAURICIO G.C. RESENDE, RAFAEL MARTÍ, MICAEL GALLEGO,
AND ABRAHAM DUARTE

Abstract. The Max-Min Diversity Problem (MMDP) consists in selecting a

subset of elements from a given set in such a way that the diversity among the
selected elements is maximized. The problem is NP-hard and can be formu-
lated as an integer linear program. Since the 1980s, several solution methods
for this problem have been developed and applied to a variety of fields, partic-
ularly in the social and biological sciences. We propose a heuristic method –
based on the GRASP and path relinking methodologies – for finding approx-
imate solutions to this optimization problem. We explore different ways to
hybridize GRASP and path relinking, including the recently proposed variant
known as GRASP with evolutionary path relinking. Empirical results indi-
cate that the proposed hybrid implementations compare favorably to previous
metaheuristics, such as tabu search and simulated annealing.

1. Introduction

The problem of maximizing diversity deals with selecting a subset of elements
from a given set in such a way that the diversity among the selected elements is
maximized. As stated in Kuo et al. (1993), there are basically two approaches
to formulate these problems: the Max-Sum and the Max-Min models. Both have
received much attention in recent years. The former, also known as the maximum
diversity problem (MDP) has been studied in Glover et al. (1998), Silva et al. (2004),
and Duarte and Mart́ı (2007). For the max-min diversity problem (MMDP), both
exact (Erkut, 1990) and heuristic approaches, such as simulated annealing (Kincaid,
1992), tabu search (Kincaid, 1992), and GRASP (Ghosh, 1996) have been proposed.
Because of the flat landscape of max-min problems, these papers agree that the
MMDP presents a challenge to solution methods based on heuristic optimization.

The MMDP consists in selecting a subset M of m elements (|M | = m) from
a set N of n elements in such a way that the minimum distance between the
chosen elements is maximized. The definition of distance between elements is cus-
tomized to specific applications. As mentioned in Kuo et al. (1993) and Glover
et al. (1998), the MMDP has applications in plant breeding, social problems, and
ecological preservation. In most of these applications, it is assumed that each ele-
ment can be represented by a set of attributes. Let sik be the state or value of the
k-th attribute of element i, where k = 1, . . . , K. The distance between elements i

Key words and phrases. Max-Min Diversity Problem, Metaheuristics, Adaptive Memory
Programming, GRASP, Path Relinking.

1

2 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

1 2 3 4 5 6 7

1 - 4.6 6.2 2.1 3.5 3.6 4.4
2 4.6 - 6.6 7.1 8.2 2.4 5.3
3 6.2 6.6 - 7.3 3.3 2.4 3.8
4 2.1 7.1 7.3 - 5.5 1.1 2.3
5 3.5 8.2 3.3 5.5 - 6.4 3.4
6 3.6 2.4 2.4 1.1 6.4 - 5.4
7 4.4 5.3 3.8 2.3 3.4 5.4 -

Figure 1. Distance matrix of an instance with n = 7.

and j can be defined as

dij =

√

√

√

√

K
∑

k=1

(sik − sjk)2.

In this case, dij is simply the Euclidean distance between i and j. The distance
values are then used to formulate the MMDP as a quadratic binary problem, where
for i = 1, . . . , n, variable xi takes the value 1 if element i is selected and 0 otherwise:

(MMDP) max zMM (x) = min
i<j

dijxixj

subject to

n
∑

i=1

xi = m

xi = {0, 1}, i = 1, . . . , n.

Erkut (1990) and Ghosh (1996) showed independently that the MMDP is NP-
hard. The maximum diversity problem (MDP) can be formulated in a similar way
by simply replacing the objective function, zMM (x), in the formulation above with

zMS (x) =
∑

i<j

dijxixj .

Although the MDP and the MMDP are related, we should not expect a method
developed for the MDP to perform well on the MMDP. The example in Figure 1
illustrates that the correlation between the values of the solutions in both problems
can be relatively low.

Suppose we have seven elements of which we need to select five. Furthermore, the
distances between each pair of elements are given by the matrix of Figure 1. For such
a small example, we can enumerate all possible solutions (selections of m out of n

elements) and compute for each one the values zMS (x) and zMM (x). The correlation
between both objective functions is 0.52, which can be considered relatively low.
Moreover, we find that the optimal solution x∗ of the MDP has a value zMS (x∗) =
54.4 and a value zMM (x∗) = 2.1. However, the optimal solution y∗ of the MMDP
has a value zMM (y∗) = 3.3, which is relatively larger than zMM (x∗). Moreover,
30% of the solutions present a zMM (x) value larger than zMM (x∗). Therefore, we
should not expect a method for the MDP to obtain good solutions for the MMDP.
In this paper, we restrict our attention to solution methods specifically designed
for the MMDP.

In Section 2, we describe previous work. In this paper, we explore the hybridiza-
tion of the GRASP, path relinking, and evolutionary path relinking methodologies

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 3

to find optimal or near-optimal solutions to the MMDP. Then, we introduce our al-
gorithms in Sections 3 and 4. Computational experiments are described in Section 5
and concluding remarks are made in Section 6.

2. Previous Methods

Chandrasekaran and Daughety (1981) introduced the MMDP under the name
of m-dispersion problem. They proposed two simple polynomial-time heuristics
for the special case of tree networks. Kuby (1987) introduced the problem on
general networks, proposing integer linear programming formulations with O(n2)
constraints and n binary variables, and tested the formulations on instances of
dimension n = 25 (m = 5 and m = 10).

Erkut (1990) proposed a branch and bound algorithm and a heuristic method.
The branch and bound method was able to solve problems with n = 40 in half
an hour of CPU time (on an AT-compatible microcomputer with clock speed of
10 Mhz). The heuristic method consists of construction plus local search. The
construction starts with the infeasible solution where all n elements are selected.
To reduce the set of selected elements to m, the procedure performs n ·m steps. At
each step, it de-selects the element i∗ with an associated shortest distance. Note
that given a shortest distance dij there are at least two elements with this associ-
ated distance. The method randomly selects one of them. The construction can be
repeated, obtaining a different solution each time. The local search method scans
the set of selected elements in search of the best exchange to replace a selected ele-
ment with an unselected one. The method performs moves as long as the objective
value increases and stops when no improving exchange can be found.

Kincaid (1992) proposed two heuristics for the MMDP based on exchanges: a
simulated annealing (SA) heuristic and a tabu search (TS) heuristic. In a given
iteration, the SA method generates a random move (an exchange between a se-
lected and an unselected element). If it is an improving move, it is automatically
made; otherwise, it still may be made with positive probability. The so-called
temperature and cooling schedule in the SA that manage the evolution of this ac-
ceptance probability are implemented according to Lundi and Mess (1986). The
algorithm starts with an initial temperature equal to the largest distance value and
it is reduced according to the factor tfactr = 0.89. For each temperature value,
sample size = 10n moves are generated. The SA method terminates when a max-
imum number of iterations max it = 80 is reached (note that within this number
of iterations the temperature value is still strictly positive).

The tabu search heuristic also performs exchange moves. At each iteration,
sample size = 10n moves are considered and the method performs the best ad-
missible move among them. Admissible here refers to the tabu status. When a move
is performed and a selected item i is exchanged with an unselected item j, the un-
ordered pair (i, j) is recorded in the tabu list and is labeled tabu for tabu size = 20
iterations. A selected move is admissible if it is not labeled tabu, or if its value
improves upon the best known solution (aspiration criterion). After max it = 65
iterations, the search is re-initiated from a new initial solution for diversification
purposes. The author examines the performance of both methods on 30 instances
of size n = 25 (in three groups of ten with different characteristics) and m ranging
from 5 to 15.

4 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

Kuo et al. (1993) proposed the following improved integer linear programming
formulation:

max Z = w

subject to

n
∑

i=1

xi = m,

(C − dij)yij + w ≤ C,1 ≤ i < j ≤ n,

xi + xj − yij ≤ 1, 1 ≤ i < j ≤ n,

− xi + yij ≤ 0, 1 ≤ i < j ≤ n,

− xj + yij ≤ 0, 1 ≤ i < j ≤ n,

yij ≥ 0, 1 ≤ i < j ≤ n

and illustrated it on small examples. The constant C takes an arbitrarily large
value. The authors state that, for both exact and heuristic methods, the MMDP is
harder to solve than the MDP. As reported in Section 5, we will use this formulation
to solve small-size instances with an integer linear programming solver.

Ghosh (1996) proposed a solution construction procedure and a local search
method. Given a set N with n elements, the construction method performs m

steps as follows. Let Mk−1 be a partial solution with k − 1 elements (1 ≤ k ≤ m).
For any i ∈ N \Mk−1, let ∆zMM (i) be the contribution of i to the value of the
solution. Let ∆zL(i) and ∆zU (i) be, respectively, a lower and an upper bound of
∆zMM (i). ∆zL(i) is computed as the minimum between the value of the current
solution and the minimum distance between i and the other elements in N . ∆zU (i)
is computed by first sorting the distances between i and the elements in N \Mk−1

and then computing the smallest among the largest m−k elements. Then ∆z′(i) =
(1− u)∆zL(i) + u∆zU (i) is an estimate of ∆zMM (i) (where u is a random number
from the U(0,1) uniform distribution). The element i∗ with the largest value of the
estimate is selected to be included in the partial solution:

Mk = Mk−1 ∪ {i
∗}, ∆x′(i∗) = max

i∈N\Mk−1

{∆z′(i)}.

Starting with a randomly selected element, this process is repeated until Mm is
finally delivered as the output of the construction (|Mm| = m). The local search is
similar to the one introduced in Erkut (1990) and begins at the conclusion of the
construction phase, attempting to improve upon an incumbent solution through
neighborhood search. The neighborhood of a solution is the set of all solutions
obtained by replacing one element by another. Given a solution M , for each i ∈M

and j ∈ N\M , we compute the move value ∆zMM (i, j) associated with the exchange
of i and j. The method scans the entire neighborhood and performs the move with
the largest ∆zMM value, if it improves the current solution. The current solution
is updated as well as its corresponding value. The search stops when no move
improves the current solution (i.e. when ∆zMM (i, j) ≤ 0 for all i and j). The
method performs ten global phases (construction followed by improvement) and
the best solution overall is returned as the output.

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 5

begin GRC
1 Sel ← ∅;
2 Select i randomly from N ;
3 Sel ← {i};
4 while |Sel | < m do

5 dj ← min
k∈Sel

djk, ∀j ∈ CL = N \ Sel ;

6 d∗ ← max
j∈CL

dj ;

7 RCL← {j | dj ≥ α · d∗};
8 Select i∗ randomly in RCL;
9 Sel ← Sel ∪ {i∗};
10 end-while;
end

Figure 2. Constructive heuristic GRC.

3. GRASP

The GRASP methodology was developed in the late 1980s (Feo and Resende,
1989; 1995) and the acronym was coined in Feo et al. (1994). We refer the reader to
Resende and Ribeiro (2003) for a recent survey of this metaheuristic. Each GRASP
iteration consists in constructing a trial solution and then applying local search
from the constructed solution. The construction phase is iterative, randomized
greedy, and adaptive. In this section we describe our adaptation of the GRASP
methodology for the MMDP.

3.1. Construction procedures. From the previous algorithms reviewed in Sec-
tion 2, we can point to two construction procedures. ErkC, the method proposed
in Erkut (1990) is based on de-selecting elements, and GhoC, the one due to Ghosh
(1996), is based on an estimate of the contribution of the elements. In this section,
we propose two new construction methods based on the GRASP methodology.

Given a set N with n elements, the construction procedure GRC performs m

steps to produce a solution with m elements as shown in Figure 2. The set Sel rep-
resents the partial solution under construction. At each step, GRC selects a candi-
date element i∗ ∈ CL = N \ Sel with a large distance to the elements in the partial
solution Sel . Specifically, it first computes dj as the minimum distance between
element j and the selected elements. Then, it constructs the restricted candidate
list RCL with all the candidate (unselected) elements j with a distance value dj

within a fraction α (0 ≤ α ≤ 1) of the maximum distance d∗ = max{dj | j ∈ CL}.
Finally, GRC randomly selects an element in RCL.

GRC implements a typical GRASP construction in which first each candidate
element is evaluated by a greedy function to construct the RCL and then an ele-
ment is selected at random from the RCL. We now consider GRC2, an alternative
construction procedure introduced in Resende and Werneck (2004) as random plus
greedy construction. In GRC2 we first randomly choose candidates and then evalu-
ate each candidate according to a greedy function to make the greedy choice. GRC2
first constructs the restricted candidate list RCL2 with a fraction β (0 ≤ β ≤ 1)
of the elements in CL selected at random. Then, it evaluates all the elements in
RCL2, computing dj for all j ∈ RCL2 , and selects the best one, i.e. the element

6 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

j∗ such that
dj∗ = max

j∈RCL2

dj .

In the computational study, we discuss how search parameters α and β affect
GRC and GRC2, respectively. We also test the reactive variants (Reactive-GRC
and Reactive-GRC2) in which the value of the parameter is randomly determined
according to an empirical distribution of probabilities (Prais and Ribeiro, 2000).

During the initial constructions of Reactive-GRC (Reactive-GRC2), the value of
α (β) is randomly selected from the set S = {0, 0.1, 0.2, . . .0.9, 1} with a uniform
distribution. 20% of the constructions sample from the uniform distribution while
80% sample according to the hits value. In each iteration, we test whether the
constructed solution x(a) obtained with α = a (β = a), has a value zMM (x(a))
within a pre-established threshold of the best constructed solution so far.1 In this
case, we increment hits(a) by one unit (where hits(i) is initially set to zero for all
i ∈ S). Otherwise, hits(a) remains unchanged. Therefore, initially all the values
considered in S have the same opportunity to be selected for construction. However,
as the algorithm progresses, those values better suited for a particular instance
(those that produce better constructions) are more frequently selected. In this way,
the reactive construction customizes the best value (or values) of the parameter for
each instance. Note that in the non-reactive variants described earlier, the selection
of the parameter is made offline and adjusted to a fixed value for all the instances
considered.

3.2. Local search methods. Erkut (1990) and Ghosh (1996) propose the local
search method BLS, based on the best-improvement strategy, in which at each it-
eration the method scans the entire neighborhood in search of the best exchange
(between a selected and an unselected element). In what follows, we propose two
new local search methods based on the first-improvement strategy (also known as
mildest ascent). The first method, FLS, consists in a straightforward implementa-
tion of this strategy, while the second, called improved local search (IMLS), explores
the neighborhood according to an evaluation function.

Given a set N with n elements, and a solution Sel with m selected elements, we
compute the following values:

di = min
j∈Sel

dij , d∗ = min
j∈Sel

dj ,

where di is the minimum distance of element i to the selected elements (those in
Sel), and d∗ is the objective function of the current solution, i.e. d∗ = zMM (Sel).
It is clear that to improve a solution we need to remove (and thus replace) the
elements i in the solution for which di = d∗.

The FLS method scans, at each iteration, the list of elements in the solution
(i ∈ Sel) with minimum di value, i.e. for which di = d∗. It scans the list of elements
in lexicographical order, starting with a randomly selected element. Then, for each
element i with a minimum di-value, FLS examines the list of unselected elements
(j ∈ N \Sel) in search for the first improving exchange. The unselected elements are
also examined in lexicographical order, starting with a randomly selected element.
The method performs the first improving move (Sel ← Sel \ {i}∪{j}) and updates
di for all elements i ∈ Sel as well as the objective function value d∗, concluding

1We have empirically found that a conservative value of 90% for this threshold provides good
results.

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 7

1 2 3 4 5 6

1 - 3 4 5 7 5
2 3 - 3 4 8 1
3 4 3 - 6 4 7
4 5 4 6 - 5 9
5 7 8 4 5 - 8
6 5 1 7 9 8 -

Figure 3. Local search performance

the current iteration. The algorithm repeats iterations as long as improving moves
can be performed and stops when no further improvement is possible. As described
below, the definition of “improving” is not limited to the objective function.

The example in Figure 3 with n = 6 and m = 4 illustrates the performance of
the local search procedure. Consider the solution Sel = {1, 2, 3, 4}, depicted with
dark circles, with a value of d∗ = 3 in which we perform an iteration of the FLS
method. For the sake of clarity, Figure 3 only depicts some of the distances between
the elements. The di values of the elements in the solution are d1 = 3, d2 = 3,
d3 = 3, and d4 = 4. The FLS method selects an element with minimum di value,
say for example i = 1. It then scans the list of unselected vertices in search for an
improving move. Note, however, that when we remove element 1, elements 2 and
3 remain in the solution and therefore d∗ will be equal to d23 = 3, regardless of
the element that we introduce in the solution to replace element 1. Then, strictly
speaking, we cannot find any improving exchange when we remove element 1. On
the other hand, it is clear that in a certain sense the solution improves when we
remove element 1, because the number of elements for which d∗ is reached decreases
and therefore we can say that we are closer to obtaining a better solution. This is
why we consider an extended definition of improving for a given move, including
not only when the move increases the value of d∗, but also when d∗ remains fixed
and the number of elements i with di = d∗ is reduced. In this example, when we
replace element 1 with element 5 obtaining Sel ′ = {2, 3, 4, 5}, we say that this is
an improving move, because d∗ = 3 and di only matches d∗ in two elements (2 and
3), which compares favorably with the initial solution Sel (in which three elements
matched d∗ = 3).

The example in Figure 3 also illustrates that when we select an element for
exchange, it would be better to consider not only the distance with the closest
element, but also the second closest, third closest, and so on. Given an element
i, let d1

i , d
2
i , . . . , d

k
i be its k lowest distance values between i and the m elements

in the solution (k < m) sorted in increasing order (di = d1
i). In the example,

d1
1 = 3, d2

1 = 4, d1
2 = 3, and d2

2 = 3. Then it is better to remove element 2 instead of
element 1 because by removing element 2 the objective d∗ could increase to d3

2 = 4.
Therefore, we propose a new local search method, that we call IMLS, which is based
on the evaluation of the value

e(i) =

k
∑

j=1

d
j
i

j

8 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

for elements i ∈ Sel with di = d∗, according to each element’s lowest k distance
values (where k is a search parameter).

The local search method IMLS selects, at each iteration, the element i∗ with
the lowest e(i) value among the selected elements i ∈ Sel with di = d∗. It then
moves this element from the solution: Sel ← Sel \ {i∗} to the unselected set, and
computes the e(s) value for all elements s ∈ N \ Sel . The method then scans the
elements in N \ Sel in decreasing order of e(s) and performs the first improving
move. If no improving move is found, the method selects the next element with
lowest e(i) value among the selected elements i ∈ Sel with di = d∗ and tries to find
an improving move. We also apply here the definition of improving move introduced
in FLS (increasing the value of d∗, or keeping d∗ fixed and reducing the number
of elements i with di = d∗). The method stops when no further improvement is
possible.

4. Path relinking

Path relinking (PR) was suggested as an approach to integrate intensification
and diversification strategies in the context of tabu search (Glover, 1996; Glover
and Laguna, 1997). This approach generates new solutions by exploring trajecto-
ries that connect high-quality solutions – by starting from one of these solutions,
called an initiating solution, and generating a path in the neighborhood space that
leads toward the other solutions, called guiding solutions. This is accomplished by
selecting moves that introduce attributes contained in the guiding solutions, and
incorporating them in an intermediate solution initially originated in the initiating
solution.

Laguna and Mart́ı (1999) adapted PR in the context of GRASP as a form of
intensification. The relinking in this context consists in finding a path between a
solution found with GRASP and a chosen elite solution. Therefore, the relinking
concept has a different interpretation within GRASP since the solutions found from
one GRASP iteration to the next are not linked by a sequence of moves (as in the
case of tabu search). Resende and Ribeiro (2003) present numerous examples of
GRASP with PR. In this section we explore the adaptation of GRASP with PR to
the MMDP across different designs in which greedy, randomized, and evolutionary
elements are considered in the implementation.

4.1. Greedy path relinking. Let x and y be two solutions of the MMDP, in-
terpreted as the sets of m selected elements Selx and Sely, respectively (|Selx| =
|Sely| = m). The path relinking procedure PR(x, y) starts with the first solution
x, and gradually transforms it into the second one y, by swapping out elements
selected in x with elements selected in y. The elements selected in both solutions
x and y, Selxy, remain selected in the intermediate solutions generated in the path
between them. Let Selx−y be the set of elements selected in x and not selected in y

and symmetrically, let Sely−x be the set of elements selected in y and not selected
in x, i.e.

Selxy = Selx ∩ Sely, Selx−y = Selx \ Selxy, Sely−x = Sely \ Selxy.

Let p0(x, y) = x be the initiating solution in the path P(x, y) from x to y. To
obtain the solution p1(x, y) in this path, we unselect in p0(x, y) a single element
i ∈ Selx−y, and select a single element j ∈ Sely−x, thus obtaining

Selp1(x,y) = Selp0(x,y) \ {i} ∪ {j}.

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 9

In the greedy path relinking (GPR) algorithm, the selection of the elements i and
j is made in a greedy fashion. To obtain pk+1(x, y) from pk(x, y), we evaluate
all the possibilities for i ∈ Selpk(x,y)−y to be de-selected and j ∈ Selx−pk(x,y)

to be selected, and perform the best swap. In this way, we reach y from x in
r = |Selx−y| = |Sely−x| steps, i.e. pr(x, y) = y. The output of the PR algorithm
is the best solution, different from x and y, found in the P(x, y) path (among
p1(x, y), p2(x, y), . . . , pr−1(x, y)).

The PR algorithm operates on a set of solutions, called elite set (ES), constructed
with the application of a previous method. In this paper, we apply GRASP to build
the elite set. If we only consider a quality criterion to populate the elite set, we
could simply populate the elite set with the the best |ES | solutions generated with
GRASP. However, previous studies (Resende and Werneck, 2004) have empirically
found that an application of PR to a pair of solutions is likely to be unsuccessful
if the solutions are very similar. Therefore, to construct ES we will consider both
quality and diversity.

Initially ES is empty, and we apply GRASP for b = |ES | iterations and populate
it with the solutions obtained. We order the solutions in ES from the best (x1)
to the worst (xb). Then, in the following GRASP iterations, we test whether the
generated (constructed and improved) solution x′ qualifies to enter ES. Specifically,
if x′ is better than the best x1, it is put in the set. Moreover, if it is better than
the worst xb and it is sufficiently different from the other solutions in the elite set
(d(x′, ES) ≥ dth), it is also put in ES. The parameter dth is a distance threshold
value that reflects the term “sufficiently different” and it is empirically adjusted
(see Section 5). To keep the size of ES constant and equal to b, whenever we add
a solution to this set, we remove another one. To maintain the quality and the
diversity, we remove the closest solution to x′ in ES among those worse than it in
value. Figure 4 shows pseudo-code of the GRASP with PR algorithm.

The design in Figure 4 is called static since we first apply GRASP to construct
the elite set ES and then we apply PR to generate solutions between all the pairs
of solutions in ES. Given two solutions in ES , x and y, we apply path relinking
in both directions, i.e. PR(x, y) from x to y and PR(y, x) from y to x. The
best solution generated in both paths is subjected to the local search method for
improved outcomes. As shown in Figure 4, we always keep the best solution in the
elite set (x1) during the realization of the GRASP phase and we only replace it
when the new solution generated improves it in quality. The algorithm terminates
when PR is applied to all the pairs in ES and the best overall solution xbest is
returned as the output.

As aforementioned, distance is used to measure how diverse one solution is with
respect to a set of solutions. Specifically, for the MMDP, let xr

i be the value of
the i-th variable for the elite solution r ∈ ES . Also let xt

i be the value of the i-th
variable for the trial solution t. Then, the distance between the trial solution t and
the solutions in the ES is defined as

d(t,ES) = b ·m−
b

∑

r=1

∑

i:xt

i
=1

xr
i .

The formula simply counts the number of times that each selected element in
the trial solution t appears in the elite solutions and subtracts this value from the
maximum possible distance (i.e., b · m). The maximum distance occurs when no

10 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

begin StaticGRASP+PR
1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations

to populate ES ← {x1, x2, . . . , xb};
3 iter ← b + 1;
4 while iters ≤ GlobalIter do

5 x← GRASP construction phase;
6 x′ ← GRASP local search starting at x;
7 if zMM (x′) > zMM (x1) or (zMM (x′) > zMM (xb) and d(x′,ES) ≥ dth) then

8 xk ← closest solution to x′ in ES with zMM (x′) > zMM (xk);
9 ES ← ES \ {xk};
10 Insert x′ into ES so that ES remains sorted from best x1 to worst xb;
11 end-if;
12 iters ← iters + 1;
13 end-while;
14 xbest ← x1;
15 for (i = 1 to b− 1 and j = i + 1 to b do

16 Apply PR(xi, xj) and PR(xj , xi) and let x← best solution found;
17 x′ ← local search phase of GRASP starting from x;
18 if zMM (x′) > zMM (xbest) then

19 xbest ← x′;
20 end-if;
21 end-for;
22 return xbest ;
end

Figure 4. GRASP with PR in a static variant.

element that is selected in the trial solution t appears in any of the elite solutions
in ES .

An alternative implementation of GRASP with PR consists in a dynamic update
of the elite set as introduced in Laguna and Mart́ı (1999). In this design, each solu-
tion x′ generated with GRASP is directly subjected to the PR algorithm, which is
applied between x′ and a solution xj selected from ES . The selection is probabilis-
tically made according to the value of the solutions. As in the static design, the
local search method is applied to the output of PR, but now, the resulting solution
is directly tested for inclusion in ES. If successful, it can be used as guiding solution
in later applications of PR. Figure 5 shows pseudo-code for this dynamic variant.

In our computational experience, described on Section 5, we compare the static
variant versus the dynamic variant with respect to both quality and speed.

4.2. Greedy randomized path relinking. Faria Jr. et al. (2005) introduced
greedy randomized path relinking (GRPR) where instead of moving between the
initiating and the guiding solutions in a greedy way, the moves are done in a greedy
randomized fashion.

As described above for the greedy path relinking algorithm, at each step in the
path from the initiating solution x to the guiding solution y, the selection of the
elements i (to be de-selected) and j (to be selected) is made in a greedy fashion. In
the GRPR algorithm, we construct a set of good candidates i and j for swapping
and randomly select one among them. This procedure mimics the selection method
employed in a GRASP construction.

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 11

begin DynamicGRASP+PR
1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations

to populate ES ← {x1, x2, . . . , xb};
3 iter ← b + 1;
4 while iters ≤ GlobalIter do

5 x← GRASP construction phase;
6 x′ ← GRASP local search starting at x;
7 Randomly select xj from ES ;
8 Apply PR(x′, xj) and PR(xj , x′) and let y be the best solution found;
9 y′ ← GRASP local search starting at y;
10 if zMM (y′) > zMM (x1) or (zMM (y′) > zMM (xb) and d(y′, ES) ≥ dth) then

11 xk ← closest solution to y′ in ES with zMM (y′) > zMM (xk);
12 Add y′ to ES and remove xk;
13 Sort ES from best x1 to worst xb;
14 end-if;
15 end-while;
16 xbest ← x1;
17 return xbest ;
end

Figure 5. GRASP with PR in a dynamic variant.

To obtain pk+1(x, y) from pk(x, y), we evaluate all the possibilities for i ∈
Selpk(x,y)−y to be de-selected and j ∈ Sely−pk(x,y) to be selected. The candidate
set C contains all these swaps, i.e.

Ck(x, y) = {(i, j) | i ∈ Selpk(x,y)−y, j ∈ Sely−pk(x,y)}.

Let z(i, j) be the value of the move associated with de-select i and select j in the
current solution pk(x, y) to obtain pk+1(x, y). Then,

z(i, j) = zMM (pk+1(x, y))− zMM (pk(x, y)).

In step k of the path from x to y, the restricted candidate list RCLk(x, y) of
good candidates for swapping is

RCLk(x, y) = {(i, j) ∈ Ck(x, y) | z(i, j) ≥ δz∗},

where z∗ is the maximum of z(i, j) in Ck(x, y) and δ (0 ≤ δ ≤ 1) is a search
parameter. A pair (i, j) ∈ RCLk(x, y) is randomly selected and the associated
swap is performed.

In the application of PR in the GRASP with PR algorithm, we can apply
the greedy variant (GPR) described in Subsection 4.1 or the randomized variant
(GRPR) described in this subsection. Specifically, in the static variant we only
need to apply GPR or GRPR in step 16 of the pseudo-code shown in Figure 4,
and similarly in the dynamic variant we apply one or the other in step 8 of the
pseudo-code in Figure 5.

4.3. Truncated path relinking. As aforementioned, path relinking explores a
path in the solution space from an initiating solution x = p0(x, y) to a guiding
solution y = pr(x, y), where r = |Selx−y| = |Sely−x| is the number of steps from x

to y.
At each intermediate solution pk(x, y), a restricted neighborhood of the solution

is searched for the next solution in the path from pk(x, y) to y. The neighborhood

12 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

is restricted because only moves that remove element i ∈ Selpk(x,y)−y and put in
its place an element j ∈ Sely−pk(x,y) are allowed. As the procedure moves from
one intermediate solution to the next, the cardinalities of sets Selpk(x,y)−y and
Sely−pk(x,y) decrease by one element each. Consequently, as the procedure nears
the guiding solution, there are fewer allowed moves to explore and the search tends
to be less effective. This suggests that path relinking tends to find good solutions
near the initiating solution since it can explore the solution space more effectively
around that solution. If this happens, then the effort made by path relinking near
the guiding solution is fruitless.

In truncated path relinking, a new stopping criterion is used. Instead of con-
tinuing the search until the guiding solution is reached, only κ steps are allowed,
i.e. the resulting path in the solution space is p1(x, y), p2(x, y), . . . , pκ(x, y) and the
best of these solutions is returned as the path relinking solution.

4.4. Evolutionary path relinking. Resende and Werneck (2004) introduced evo-
lutionary path relinking (EvPR) as a post-processing phase for GRASP with PR
(see also Andrade and Resende (2007)). In EvPR, the solutions in the elite set
(ES) are evolved in a similar way that the reference set evolves in scatter search
(SS) (Laguna and Mart́ı, 2003).

As in the dynamic variant of GRASP with greedy path relinking, in GRASP
with EvPR we apply in each iteration the construction and the improvement phase
of GRASP as well as the PR method to obtain the elite set (see steps 5 to 9 in
the pseudo-code shown in Figure 5). After a pre-established number of iterations
the GRASP with greedy path relinking stops. However, in GRASP with EvPR, a
post-processing phase based on path relinking is applied to each pair of solutions in
ES. The solutions obtained with this latter application of PR are considered to be
candidates to enter ES, and PR is again applied to them as long as new solutions
enter ES. This way we say that ES evolves. Figure 6 shows the pseudo-code of
GRASP with EvPR in which this process is repeated for GlobalIter iterations.

GRASP with EvPR and scatter search (SS) are evolutionary methods based
on evolving a small set of selected solutions (elite set in the former and reference
set in the latter). We can, therefore, observe similarities between them. In some
implementations of SS, GRASP is used to populate the reference set, but note
that other constructive methods can be used as well. Similarly, PR can be used to
combine solutions in SS, but we can use any other combination method (Mart́ı et al.,
2006). From an algorithmic point of view, we may find two main differences between
these methods. The first one is that in SS we do not apply PR to the solutions
obtained with GRASP (as we do in steps 7 and 8 in pseudo-code of GRASP with
EvPR shown in Figure 6), but rather, we only apply PR as a combination method
between solutions already in the reference set. The second difference is that in SS
when none of the new solutions obtained with combinations are admitted to the
reference set (elite set), it is rebuilt, removing some of its solutions, as specified in
the reference set update method (Mart́ı et al., 2006). In GRASP with EvPR we do
not remove solutions from ES, but rather, we again apply GRASP (starting from
step 5) and use the same rules for inclusion in the ES.

5. Computational experiments

This section describes the computational experiments that we performed to test
the efficiency of our GRASP with path relinking procedures as well as to compare

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 13

begin GRASP+EvPR
1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations

to populate ES ← {x1, x2, . . . , xb};
3 for iter = 1, . . . , GlobalIter do

4 for i = 1, . . . ,LocalIter do

5 x← GRASP construction phase;
6 x′ ← GRASP local search starting at x;
7 Randomly select xj from ES ;
8 Apply PR(x′, xj) and PR(xj , x′) and let y be the best solution found;
9 y′ ← GRASP local search starting at y;
10 if zMM (y′) > zMM (x1) or (zMM (y′) > zMM (xb) and d(y′, ES) ≥ dth) then

11 xk ← closest solution to y′ in ES with zMM (y′) > zMM (xk);
12 Add y′ to ES and remove xk;
13 Sort ES from best x1 to worst xb;
14 end-if;
15 end-for;
16 NewSol ← 1;
17 while NewSol do

18 NewSol ← 0;
19 Apply PR(x, x′) and PR(x′, x) for every pair (x, x′) in ES

not combined before. Let y be the best solution found;
20 y′ ← GRASP local search starting at y;
21 if zMM (y′) > zMM (x1) or (zMM (y′) > zMM (xb) and d(y′, ES) ≥ dth) then

22 xk ← closest solution to y′ in ES with zMM (y′) > zMM (xk);
23 Add y′ to ES and remove xk;
24 Sort ES from best x1 to worst xb;
25 NewSol ← 1;
26 xbest ← x1;
27 end-if;

28 end-while;
29 end-for;
30 return x1;
end

Figure 6. GRASP with EvPR.

them with the previous methods identified to be the state-of-the-art for the MMDP.
We implemented the methods in Java SE 6 and solved the integer linear program-
ming formulation described in Section 2 with Cplex 8.0. All the experiments were
conducted on a Pentium 4 computer running at 3 GHz with 3 GB of RAM. We
have employed three sets of instances in our experiments:

Glover : This data set consists of 75 matrices for which the values were calculated as
the Euclidean distances from randomly generated points with coordinates
in the 0 to 100 range. The number of coordinates for each point is also
randomly generated between 2 and 21. Glover et al. (1998) developed this
test problem generator and constructed instances with n = 10, 15, and 30.
The value of m ranges from 0.2n to 0.8n.

Geo: This data set consists of 60 matrices constructed with the same test problem
generator employed in the Glover set. We generated twenty instances with
n = 100, 250, and 500. For each value of n we consider m = 0.1n, 0.3n

(generating ten instances for each combination of n and m). These instances
are similar to the geometric instances introduced in Erkut (1990).

14 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

Ran: This data set consists of 60 matrices with random numbers. These instances
are based on the generator introduced by Silva et al. (2004). As for the
Geo set, we generated twenty instances with n = 100, 250, and 500 (and for
each value of n we consider m = 0.1n, 0.3n). The integer random numbers
are generated between 50 and 100 in all the instances except when n = 500
and m = 150 in which they are generated between 1 and 200 (to make them
harder in terms of comparison among heuristics).

In each experiment, we compute for each instance the overall best solution value,
BestValue, obtained by all executions of the methods considered. Then, for each
method, we compute the relative percentage deviation between the best solution
value obtained with that method and BestValue for that instance. We report
the average of this relative percentage deviation (Dev.) across all the instances
considered in each particular experiment. We finally report, for each method, the
number of instances (#Best) in which the value of the best solution obtained with
this method matches BestValue. We also report the statistic Score achieved by each
method, as described in Ribeiro et al. (2002). For each instance, the n score of a
method M is defined as the number of methods that found a better solution than
M . In case of ties, all the methods receive the same n score, equal to the number
of methods strictly better than all of them. We then report Score as the sum of
the n score values across all the instances in the experiment. Thus, the lower the
Score the better the method.

In our preliminary experimentation we consider the set of 40 instances formed
with ten instances from the Geo set with n = 100 and ten with n = 25 and
similarly from the Ran set (half with m = 0.1n and half with m = 0.3n). In the
first preliminary experiment, we study the parameter α in constructive method
GRC as well as the parameter β in the constructive method GRC2. We run GRC
and GRC2 100 times, thus obtaining 100 solutions for each method and instance
pair. Table 1 reports, for this set of 40 instances and each value of α, the values of
Dev., #Best, and Score described above.

The results in Table 1 show that the best outcomes are obtained when the
constructive method GRC2 is run with a value of β = 0.90. Therefore, we use this
method in the rest of our experimentation.

Table 1. New constructive methods on Geo and Ran instances
with n = 100, 250.

GRC(α) GRC2(β)

0.75 0.90 0.95 Reactive 0.75 0.90 0.95 Reactive

Dev. 9.23% 2.51% 1.09% 0.81% 0.70% 0.58% 0.66% 1.07%
#Best 0 5 10 16 21 21 18 15
Score 277 184 101 60 41 43 51 90

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 15

Table 2. Constructive methods on Geo and Ran instances with
n = 100, 250.

Method RanC TD2 GD2 ErkC GhoC GRC2

Dev. 22.85% 23.21% 17.10% 6.08% 1.68% 0.12%
#Best 0 1 0 4 15 37
Score 168 151 117 80 26 4

In our second preliminary experiment we compare the constructive method
GRC2(0.9) with the two previous constructive methods for the MMDP: ErkC,
(Erkut, 1990) and GhoC (Ghosh, 1996). We also consider a random construction
(RanC) in which the m elements in the solution are randomly selected as a baseline
for comparison. In addition, we include in this experiment two previous algorithms
developed for the maximum diversity problem (MDP) considered to be the best
constructive methods for this variant of the problem: TD2 and GD2 (Duarte and
Mart́ı, 2007). We generate 100 solutions with each method on each instance and
report the three statistics described above.

Results in Table 2 clearly show the superiority of the proposed method (GRC2)
on these instances. The method is able to obtain 37 best solutions out of 40
instances. Moreover, this experiment confirms that the methods developed for the
MDP provide low-quality solutions when employed to solve the MMDP. Specifically,
TD2 and GD2 obtain, respectively, 23.21 and 17.10 relative percentage deviation
on average, while ErkC, GhoC, and GRC2 obtain 6.08, 1.68, and 0.12 respectively.
As expected, RanC obtains low-quality solutions.

In the third preliminary experiment, we compare the constructive with the local
search methods for the MMDP. Specifically we target the constructive and im-
provement methods ErkC+BLS (Erkut, 1990) and GhoC+BLS (Ghosh, 1996). We
consider the two local search methods proposed in Subsection 3.2, FLS and IMLS in
combination with the constructive method GRC2. We denote by GRASP1 the con-
structive method GRC2(0.9) coupled with the local search FLS, and by GRASP2
the GRC2(0.9) method with IMLS. We construct and improve 100 solutions in
each instance with these four methods and report the statistics of the best solu-
tions found in Table 3. We do not report the solution methods for the MDP since,
as in the previous experiment, they provide low-quality results.

Table 3. Local search method on Geo and Ran instances with n = 100, 250.

Method ErkC+BLS GhoC+BLS GRASP1 GRASP2

Dev. 2.40% 0.82% 0.24% 0.38%
#Best 8 22 29 29
Score 81 85 16 22

16 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

 50

 52

 54

 56

 58

 60

 62

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

Solutions sorted by objective function value

GRASP1
GhoC+BLS
ErkC+BLS

Figure 7. Solution values with construction + local search

Table 3 shows that our two new approaches based on the GRASP methodology
are able to improve upon previous methods also based on construction plus local
search. Specifically, GRASP1 and GRASP2 present an average percent deviation
from the best solutions obtained in this experiment of 0.24 and 0.38, respectively,
while ErkC+BLS and GhoC+BLS obtain 2.4 and 0.82, respectively. To complement
the information shown in Table 3, Figure 7 shows the values of the 100 solutions
obtained with GRASP1, GhoC+BLS, and ErkC+BLS, ordered from lowest to high-
est, on a Ran instance of dimension n = 250 and m = 25. The results shown in
Figure 7 show that GRASP1 systematically obtains better solutions than the other
two methods tested. Although, for the sake of simplicity, this figure only shows the
results for one instance, we have found that it is representative of the evolution of
the tested methods in the entire set.

In the following experiment we compare the two variants of the greedy path re-
linking algorithm described in Subsection 4.1. We consider both the static version
in which the PR is applied after GRASP1 (pseudo-code shown in Figure 4), and
the dynamic version in which the PR is executed within each iteration of GRASP1
(pseudo-code shown in Figure 5). The path relinking method depends on the pa-
rameter dth that specifies the minimum distance for a solution to enter the elite
set. Table 4 reports, for the set of 40 instances considered in our preliminary ex-
periments and four different values of dth, the average percentage deviation from
the best solution obtained (Dev.), the number of best solutions (#Best), the sum
of the n score values (Score), and the average CPU time (Time) in seconds.

Table 4 clearly shows that the greedy path relinking (GPR) in its dynamic variant
obtains better solutions than the GPR in the static variant, although it consumes
more running time (about 18 seconds on average compared with the 11 seconds of
the static version). Moreover, this table also shows that the best value of dth in the

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 17

Table 4. Greedy path relinking methods on Geo and Ran in-
stances with n = 100, 250.

Static GPR Dynamic GPR

dth 4 8 10 12 4 8 10 12

Dev. 0.65% 0.63% 0.54% 0.76% 0.21% 0.32% 0.49% 0.47%
#Best 20 21 24 20 30 29 22 22
Score 86 71 62 85 35 29 69 52
Time 11.0s 11.3s 10.7s 11.0s 18.1s 18.6s 18.3s 18.2s

dynamic version is 4, since the method obtains an average percentage deviation of
0.21 and 30 best solutions, which compares favorably with the other values shown.
We therefore set the value of dth to 4 in the following path relinking algorithms
and restrict our attention to the dynamic variant.

In the next preliminary experiment we undertake to compare the greedy path re-
linking (GPR) algorithm considered above with the greedy randomized path relink-
ing (GRPR) described in Subsection 4.2. We first study the effect of the parameter
δ in the performance of the GRPR algorithm, considering δ = 0.1, 0.3, 0.5, 0.7, and
0.9. We do not reproduce the results of this experiment in a table, but we simply
report that we obtain slightly better solutions with δ set to 0.9 than with the other
values (an improvement of 0.2% for the average deviation from the best solutions
in this experiment). We then compare the performance of GPR and GRPR with
δ = 0.9 both running for two minutes, and consider in this experiment the truncated
strategy described in Subsection 4.3 in which the path is truncated when a portion
depth of the solutions is explored. When depth is set to 100%, the entire path is
explored (and therefore no truncation at all is applied). Alternatively, when depth
is set to 10%, for example, only the first 10% solutions in the path are explored.
Table 5 reports the statistics Dev., #Best, Score, as well as the number of paths
explored (#Paths) and the average running time in seconds (PR time) that each
method dedicates to the path relinking algorithm.

Table 5 shows that the GPR method provides better solutions than the GRPR,
since the average percentage deviation values obtained with the former range from
0.20% to 0.26% while with GRPR these values range from 0.34% to 0.58%. As
expected, as the value of the parameter depth increases, the time dedicated to the
path relinking (PR time) also increases. Moreover, given that the total running
time is set to 2 minutes in all the cases, the number of explored paths (#Paths)
is reduced as depth increases. However, these variations (PR time and #Paths)
are small since the time saved when the path is truncated is very small in this
implementation because the cardinality of the neighborhood explored in the path
reduces as the path approaches the guiding solution. Therefore, variations in the
parameter depth have a small effect on the quality of the final solution obtained
with the method.

18 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100%

A
ve

ra
ge

 n
um

be
r

of
 b

es
t s

ol
ut

io
ns

Percentage of path length

Figure 8. Average number of best solutions in the path

Figure 8 complements the information shown in Table 5, plotting the number of
best solutions found in each part of the path. The figure shows the average number
of best solutions found in the first 10% of the path, the number of best solutions
in the second 10% of the path (from 10% to 20%), and so on. The figure confirms
the hypothesis that the best solutions are mainly obtained at the beginning of the
path. However, good solutions are also obtained in the final part of the path. This
fact, together with the small time saving associated with truncated the path lead us
to consider in the following experiments the GPR method with depth set to 100%.

Table 5. Truncated GPR and GRPR methods on Geo and Ran
instances with n = 100, 250.

GPR GRPR

depth 50% 70% 90% 100% 50% 70% 90% 100%

Dev. 0.26% 0.23% 0.25% 0.20% 0.37% 0.34% 0.43% 0.58%
#Best 31 33 32 34 28 30 28 23
Score 18 20 14 14 39 33 43 91
#Paths 3268.95 3115.10 3026.58 3094.68 3277.18 3142.88 3111.90 3208.15
PR time 0.28s 0.30s 0.31s 0.33s 0.26s 0.30s 0.30s 0.30s

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 19

In our final experiment, we compare our best methods with the state-of-the-art
methods for the MMDP. Specifically, we consider the following six algorithms (all
run for 100 global iterations except GRASP+EvPR):

GhoC+BLS : Multi-start method (Ghosh, 1996).
SA: Simulated annealing (Kincaid, 1992).
TS : Tabu search (Kincaid, 1992).

GRASP1 : Constructive method GRC2(0.9) coupled with the
local search FLS.

GPR: Dynamic greedy path relinking in which the PR is executed
within each iteration of GRASP1 with dth = 4 and
depth = 100%.

GRASP+EvPR: Evolutionary path relinking with GlobalIter = 5 (generation
with GPR and evolution with PR of the elite set) and
LocalIter = 20.

Tables 6, 7, and 8 report, for each method on each set of instances, the average
relative percentage deviation (Dev.) between the best solution values obtained with
each method and the best known, the number of instances (#Best) in which the
value of the best solution obtained with each method matches the best known, the
statistic Score where the lower the Score the better the method, and the average
CPU time in seconds. Experiments with CPLEX 8.0 (with the Kuo et al. (1993)
formulation) confirm that the best known solutions in the 75 Glover instances
reported in Table 6 are the optimal solutions.

The problem instances in the Glover set (Table 6) do not provide a way of
differentiating the performances of the methods that we are comparing. They
are easy to solve and all the methods are capable of quickly finding the optimal
solutions.

Tables 7 and 8 show the merit of the proposed procedures. Our GPR and
GRASP+EvPR implementations consistently produce the best solutions with per-
cent deviations smaller than those of the competing methods (and with number of
best solutions found larger than the others). GRASP+EvPR presents a marginal
improvement when compared with GPR but requires longer running times (espe-
cially for large instances). On the other hand, the GRASP1 algorithm is able to
obtain relatively good solutions in short computational time, with a performance
very similar to the GhoC+BLS method. The SA and TS methods perform well
on small Geo instances (n = 100) but are clearly inferior to the others reported
in our comparison when target large sized instances (n = 500). The ranking of
the methods with respect to the best solutions found in the 120 Geo and Ran

Table 6. Best methods – Glover instances

GhoC+BLS SA TS GRASP1 GPR GRASP+EvPR

Dev. 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
#Opt 75 75 75 75 75 75
Score 0 0 0 0 0 0
Time 0.03s 0.98s 1.56s 0.02s 0.02s 0.04s

20 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000 2500 3000 3500

A
ve

ra
ge

 p
er

ce
nt

ag
e

de
vi

at
io

n

CPU time (seconds)

GRASP+EvPR

GRASP1

GhoC+BLS

SA

SA
GhoC+BLS

GRASP1
GRASP+EvPR

Figure 9. Search profiles on large Geo instance.

instances is: GRASP+EvPR(96), GPR(73), GRASP1(37), SA(34), TS(32), and
GhoC+BLS(30).

Figure 9 shows the typical search profile for the methods that we compared.
This run corresponds to the largest Geo instances (n = 500, m = 150) with a time
limit of 60 minutes per instance and method.

Table 7. Best methods – Geo instances

GhoC+BLS SA TS GRASP1 GPR GRASP+EvPR

n = 100 Dev. 0.75% 0.00% 0.00% 0.76% 0.11% 0.09%
#Best 10 19 20 10 16 17
Score 42 1 0 44 13 8
Time 2.45s 20.96s 33.64s 0.68s 1.68s 3.76s

n = 250 Dev. 1.00% 0.68% 1.75% 1.11% 0.19% 0.16%
#Best 0 6 2 1 7 14
Score 65 36 73 71 18 11
Time 30.50s 220.57s 439.68s 5.58s 33.44s 65.57s

n = 500 Dev. 2.36% 3.48% 9.27% 2.39% 0.25% 0.04%
#Best 0 0 0 0 7 16
Score 56 62 100 61 13 4
Time 282.37s 1449.85s 3633.36s 34.99s 788.31s 1465.44s

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 21

Table 8. Best methods – Ran instances

GhoC+BLS SA TS GRASP1 GPR GRASP+EvPR

n = 100 Dev. 1.71% 2.89% 3.28% 1.37% 0.61% 0.49%
#Best 4 9 10 7 14 15
Score 51 41 44 40 16 9
Time 1.37s 10.82s 33.11s 0.84s 2.96s 7.36s

n = 250 Dev. 2.01% 3.73% 7.49% 1.34% 0.81% 0.26%
#Best 3 0 0 5 11 17
Score 34 78 90 20 9 3
Time 15.98s 115.10s 430.07s 19.22s 101.57s 271.05s

n = 500 Dev. 2.95% 41.62% 41.62% 1.70% 0.18% 0.27%
#Best 13 0 0 14 18 17
Score 11 80 80 8 2 3
Time 93.05s 868.00s 3606.49s 99.02s 2172.38s 6349.20s

Figure 9 clearly shows that GRASP+EvPR outperforms the other methods over
a long term horizon (3600 seconds in this experiment). Moreover, it is worthwhile
noting that GRASP+EvPR obtains high quality solutions (better than the com-
peting methods) from the first iterations (100 seconds). On the other hand, SA
presents a low performance when comparing with the other three methods in this
experiment.

The GRASP1 method obtains the best solutions within the first 50 seconds.
However, GRASP1 by itself (without the PR post-processing) is not able to improve
these initial solutions and presents a flat profile during the entire search.

6. Conclusions

The objective of this study has been to advance the current state of knowledge
about implementations of path relinking procedures (PR) for combinatorial opti-
mization. Unlike other evolutionary methods such as genetic algorithms or scatter
search, PR has not yet been extensively studied.

In this paper, we studied the generation of solutions with GRASP and their
combination with PR. We also tested four different variants of PR known as greedy
PR, greedy randomized PR, truncated PR, and evolutionary PR, as well as two
search strategies: static and dynamic. We performed several experiments with
previously reported instances. Our experiments show that the dynamic variants of
GRASP with greedy PR and GRASP with evolutionary PR are the best methods
for the MMDP instances tested in this paper. Moreover, the results indicate that
the proposed hybrid heuristics compare favorably to previous metaheuristics, such
as tabu search and simulated annealing.

Obviously, the results that we obtained with our implementation are not all
due to the strategies that we wanted to test and that we describe in Section 4.
Performance was definitely enhanced by the context-specific methods that we de-
veloped for the MMDP. However, our preliminary experiments do show the merit

22 M.G.C. RESENDE, R. MARTÍ, M. GALLEGO, AND A. DUARTE

of the mechanisms in Section 4 that we hope could become standard in future PR
implementations.

Acknowledgments

This research has been partially supported by the Ministerio de Educación y
Ciencia of Spain (Grant Refs. TIN2005-08943-C02-02, TIN2006-02696), by the
Comunidad de Madrid – Universidad Rey Juan Carlos project (Ref. URJC-CM-
2006-CET-0603).

References

D.V. Andrade and M.G.C. Resende. GRASP with evolutionary path-relinking. In
Proc. of Seventh Metaheuristics International Conference (MIC 2007), 2007.

R. Chandrasekaran and A. Daughety. Location on tree networks: p-centre and
n-dispersion problems. Mathematics of Operations Research, 6:50–57, 1981.

A. Duarte and R. Mart́ı. Tabu Search and GRASP for the maximum diversity
problem. European Journal of Operational Research, 178:71–84, 2007.

E. Erkut. The discrete p-dispersion problem. European Journal of Operational
Research, 46:48–60, 1990.

H. Faria Jr., S. Binato, M.G.C. Resende, and D.J. Falcão. Transmission network
design by a greedy randomized adaptive path relinking approach. IEEE Trans-
actions on Power Systems, 20:43–49, 2005.

T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally
difficult set covering problem. Operations Research Letters, 8:67–71, 1989.

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures.
Journal of Global Optimization, 6:109–133, 1995.

T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search
procedure for maximum independent set. Operations Research, 42:860–878, 1994.

J.B. Ghosh. Computational aspects of the maximum diversity problem. Operations
Research Letters, 19:175–181, 1996.

F. Glover. Tabu search and adaptive memory programing – Advances, applications
and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors,
Interfaces in Computer Science and Operations Research, pages 1–75. Kluwer
Academic Publishers, 1996.

F. Glover and M. Laguna. Tabu search. Kluwer Academic Publishers, 1997.
F. Glover, C.C. Kuo, and K.S. Dhir. Heuristic algorithms for the maximum diversity

problem. Journal of Information and Optimization Sciences, 19:109–132, 1998.
R.K. Kincaid. Good solutions to discrete noxious location problems via metaheuris-

tics. Annals of Operations Research, 40:265–281, 1992.
M.J. Kuby. Programming models for facility dispersion: The p-dispersion and

maximum dispersion problems. Geographical Analysis, 19:315–329, 1987.
C.C. Kuo, F. Glover, and K.S. Dhir. Analyzing and modeling the maximum diver-

sity problem by zero-one programming. Decision Sciences, 24:1171–1185, 1993.
M. Laguna and R. Mart́ı. GRASP and path relinking for 2-layer straight line

crossing minimization. INFORMS Journal on Computing, 11:44–52, 1999.
M. Laguna and R. Mart́ı. Scatter search: Methodology and implementations in C.

Kluwer Academic Publishers, 2003.
M. Lundi and A. Mess. Convergence of an annealing algorithm. Mathematical

Programming, 34:111–124, 1986.

GRASP AND PATH RELINKING FOR MAX-MIN DIVERSITY 23

R. Mart́ı, M. Laguna, and F. Glover. Principles of scatter search. European Journal
of Operational Research, 169:359–372, 2006.

M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decompo-
sition problem in TDMA traffic assignment. INFORMS Journal on Computing,
12:164–176, 2000.

M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures.
In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages
219–250. Kluwer Academic Publishers, 2003.

M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem.
Journal of Heuristics, 10:59–88, 2004.

C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations
for the Steiner problem in graphs. INFORMS Journal on Computing, 14:228–246,
2002.

G.C. Silva, L.S. Ochi, and S.L. Martins. Experimental comparison of greedy ran-
domized adaptive search procedures for the maximum diversity problem. Lecture
Notes in Computer Science, 3059:498–512, 2004.

(M.G.C. Resende) Algorithms and Optimization Research Department, AT&T Labs

Research, 180 Park Avenue, Room C241, Florham Park, NJ 07932 USA.

E-mail address: mgcr@research.att.com

(R. Mart́ı) Departamento de Estad́ıstica e Investigación Operativa, Universidad de

Valencia, Spain

E-mail address: rafael.marti@uv.es

(M. Gallego) Departamento de Ciencias de la Computación, Universidad Rey Juan

Carlos, Spain.

E-mail address: micael.gallego@urjc.es

(A. Duarte) Departamento de Ciencias de la Computación, Universidad Rey Juan Car-

los, Spain.

E-mail address: abraham.duarte@urjc.es

