
1 
 

GRASP and Path Relinking  

for the Equitable Dispersion Problem 

 

 

RAFAEL MARTÍ 
Departamento de Estadística e Investigación Operativa 
Facultad de Ciencias Matemáticas 
Universidad de Valencia, Spain 
Rafael.Marti@uv.es 
 

FERNANDO SANDOYA 
Doctorado en Investigación de Operaciones 
Universidad Nacional Autónoma de México, México D.F. 
Instituto de Ciencias Matemáticas 
Escuela Superior Politécnica del Litoral, Guayaquil-Ecuador 
fsandoya@espol.edu.ec 
 

 

February 25, 2011 

 

 

Abstract 

The equitable dispersion problem consists in selecting a subset of elements from a given set in 
such a way that a measure of dispersion is maximized.  In particular, we target the max-mean 
dispersion model in which the average distance between the selected elements is maximized.  
We first review previous methods and mathematical formulations for this and related 
dispersion problems and then propose a GRASP with a Path Relinking in which the local search 
is based on the Variable Neighborhood methodology. Our method is specially suited for 
instances in which the distances represent affinity and are not restricted to take non-negative 
values.  The computational experience with 120 instances shows the merit of the proposed 
procedures compared to previous methods. 
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1. Introduction 

The problem of maximizing diversity deals with selecting a subset of elements from a given set 
in such a way that the diversity among the selected elements is maximized (Glover et al. 1995).  
Different models have been proposed to deal with this combinatorial optimization problem.  
All of them require a diversity measure, typically a distance function in the space where the 
objects belong. The definition of this distance between elements is customized to specific 
applications.  As described in Glover, Kuo and Dhir (1998), these models have applications in 
plant breeding, social problems, ecological preservation, pollution control, product design, 
capital investment, workforce management, curriculum design and genetic engineering. 

The most studied model is probably the Maximum Diversity Problem (MPD) also known as the 
Maxi-Sum Diversity Model (Ghosh 1996) in which the sum of the distances between the 
selected elements is maximized. Heuristics (Glover et al. 1998) and meta-heuristics (Duarte 
and Martí 2007) have been proposed for this model.  The Max-Min Diversity Problem (MMDP), 
in which the minimum distance between the selected elements is maximized, has been also 
well documented in recent studies (Resende et al. 2010). 

Prokopyev et al. (2009) introduced two additional models to deal with maximizing diversity in 
the context of equitable models. In particular, the Maximum Mean Dispersion Problem (Max-
Mean DP) consists of maximizing the average distance between the selected elements, while 
in the Minimum Differential Dispersion Problem (Min-Diff DP) we minimize the difference 
between the maximum sum and the minimum sum of the distances to the other selected 
elements.  These authors proved that the Max-Mean DP is strongly NP-hard if the distances 
(diversity measure) take both positive and negative values.  On the other hand, the Min-Diff 
problem is strongly NP-hard regardless the distance values. 

Most of the previous works on diversity limit themselves to problems with non-negative 
distances. However, as described in Glover et al. (1998), the diversity measure can be 
something in the nature of an affinity relationship, which expresses a relative degree of 
attraction between the elements as arises in settings with a behavioral component.  Typical 
examples are architectural space planning and analysis of social networks.  In such domains we 
do not require the “distance values” to satisfy distance norms or conditions since they only 
represent a measure to reflect proximity-diversity.   

In this paper we consider the optimization of the Max-Mean model to target general instances 
in which the “distances” can take positive and negative values and do not necessarily satisfy 
the usual distance properties, such as the triangular inequality.  We target two types of 
instances, Type I representing the affinity between individuals in a social network (with affinity 
values in [−10,10]), and Type II with random numbers in [−10,−5]∪ [5,10], reflecting the 
polarization that occurs when people get together in groups, in which we can identify clusters 
of individuals, with a high attraction within clusters and a high repulsion between clusters, and 
with no room for indifference.  Note that the Max-Mean Dispersion Problem is polynomially 
solvable if all the distances are non-negative, but, as mentioned above, it is strongly NP-hard if 
they can take positive and negative values (Prokopyev et al. 2009). 
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In mathematical terms, given a set 𝑁𝑁 of 𝑛𝑛 elements and 𝑑𝑑𝑖𝑖𝑖𝑖  the affinity between any elements 

𝑖𝑖 and 𝑖𝑖, the Max-Mean DP consists of selecting a subset 𝑀𝑀 of 𝑁𝑁 in such a way that the 
dispersion mean 𝑑𝑑𝑑𝑑(𝑀𝑀), in terms of the affinity values, is maximized. 

𝑑𝑑𝑑𝑑(𝑀𝑀) =
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖 ;𝑖𝑖,𝑖𝑖 ∈𝑀𝑀

|𝑀𝑀|  

The 𝑑𝑑𝑑𝑑(𝑀𝑀) value reflects an equity measure based on an average dispersion.  The Max-Mean 
Dispersion Problem can be trivially formulated with binary variables as: 

  Max    
∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=𝑖𝑖+1
𝑛𝑛−1
𝑖𝑖=1

∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1

  

𝑠𝑠. 𝑡𝑡.   �𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

≥ 2    

𝑥𝑥𝑖𝑖  ∈ {0,1}   𝑖𝑖 = 1, 2, … ,𝑛𝑛 

where variable 𝑥𝑥𝑖𝑖  takes the value 1 if element 𝑖𝑖 is selected and 0 otherwise.  Note that the 
number of selected elements, |𝑀𝑀|, is not set a priori as in the rest of diversity models, such as 
the MDP or the MMDP, where it is pre-specified as a problem constraint.  On the contrary, in 
the Max-Mean model we do not impose the number of elements that have to be selected, but 
it is obtained as an output of the method when maximizing 𝑑𝑑𝑑𝑑(𝑀𝑀).  We therefore cannot 
directly apply a solving method for other diversity model to the Max-Mean model, unless we 
repeatedly apply it for any possible value of 𝑑𝑑 = |𝑀𝑀|. 

 

2. Previous Heuristics 

Prokopyev et al. (2009) introduced several models to deal with the equitable dispersion 
problem.  The authors proposed a GRASP for the Max-MinSum variant in which for each 
selected element (in 𝑀𝑀), they compute the sum of the distances to the other selected 
elements (also in 𝑀𝑀) and then calculate the minimum of these values. The objective of the 
Max-MinSum model is to maximize this minimum sum of distances. 

In their GRASP algorithm, Prokopyev et al. (2009) consider 𝑀𝑀𝑘𝑘 , a partial solution with 𝑘𝑘 
selected elements.  Each construction phase of GRASP starts by randomly selecting an 
element, which constitutes the initial set 𝑀𝑀1.  Then, in each iteration, the method computes a 
candidate list 𝐿𝐿 with the elements that can be added to the partial solution under 
construction: 𝐿𝐿 = {1, 2, … ,𝑛𝑛} ∖ 𝑀𝑀𝑘𝑘 .  For each element 𝑖𝑖 in 𝐿𝐿, the method computes its 

marginal contribution, Δ𝑓𝑓𝑘𝑘(𝑖𝑖), if it is added to 𝑀𝑀𝑘𝑘  to obtain 𝑀𝑀𝑘𝑘+1.  As it is customary in GRASP 
constructions, a restricted candidate list 𝑅𝑅𝑅𝑅𝐿𝐿 is computed with the bests elements in 𝐿𝐿. In 
particular, the method orders the elements in 𝐿𝐿 according to their marginal contribution and 
forms 𝑅𝑅𝑅𝑅𝐿𝐿 with the first 𝛼𝛼 elements (where 𝛼𝛼 is an integer randomly selected in [1, |𝐿𝐿|]).  
Then, it randomly selects (according to a uniform distribution) an element 𝑖𝑖⋆ in 𝑅𝑅𝑅𝑅𝐿𝐿 and adds 
it to the partial solution: 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘⋃{𝑖𝑖⋆}.  Each construction phase terminates when the pre-
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established number of selected elements 𝑑𝑑 is reached (|𝑀𝑀𝑘𝑘 | = 𝑑𝑑).  Figure 1 outlines the 
pseudo-code of this method. 

1. Randomly select an element 𝑖𝑖⋆ in 𝑁𝑁 = {1, 2, … ,𝑛𝑛}. 
2. Make 𝑀𝑀1 =  {𝑖𝑖⋆} and 𝑘𝑘 = 1. 
3. Let 𝑑𝑑 be the number of elements to select from 𝑁𝑁. 

While ( 𝑘𝑘 < 𝑑𝑑 ) 
4. Compute 𝐿𝐿 = {1, 2, … ,𝑛𝑛} ∖ 𝑀𝑀𝑘𝑘   
5. Compute Δ𝑓𝑓𝑘𝑘(𝑖𝑖)  ∀𝑖𝑖 ∈ 𝐿𝐿 

6. Order the elements in 𝐿𝐿 according to their Δ𝑓𝑓𝑘𝑘  value 
7. Randomly select 𝛼𝛼 in [1, |𝐿𝐿|]) 
8. Construct 𝑅𝑅𝑅𝑅𝐿𝐿 with the first 𝛼𝛼 elements in 𝐿𝐿  
9. Randomly select an element 𝑖𝑖⋆ in 𝑅𝑅𝑅𝑅𝐿𝐿 
10. 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘⋃{𝑖𝑖⋆} 
11. 𝑘𝑘 = 𝑘𝑘 + 1 

Figure 1. GRASP construction phase 

We can easily adapt the method above, originally proposed for the Max-MinSum, to the Max 
Mean model.  Specifically, given a partial solution 𝑀𝑀𝑘𝑘 , its value for this later model, dispersion 
mean 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘), is computed as: 

𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘) =
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖 ;𝑖𝑖,𝑖𝑖∈𝑀𝑀𝑘𝑘

𝑘𝑘
 

Then, the dispersion mean value of 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘⋃{𝑖𝑖⋆} can be incrementally computed as: 

𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘+1) =
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖<𝑖𝑖 ;𝑖𝑖,𝑖𝑖∈𝑀𝑀𝑘𝑘+1

𝑘𝑘 + 1
=
∑ 𝑑𝑑𝑖𝑖𝑖𝑖 + ∑ 𝑑𝑑𝑖𝑖⋆𝑖𝑖𝑖𝑖∈𝑀𝑀𝑘𝑘𝑖𝑖<𝑖𝑖 ;𝑖𝑖,𝑖𝑖∈𝑀𝑀𝑘𝑘

𝑘𝑘 + 1
=
𝑘𝑘 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘)
𝑘𝑘 + 1

+
∑ 𝑑𝑑𝑖𝑖⋆𝑖𝑖𝑖𝑖∈𝑀𝑀𝑘𝑘

𝑘𝑘 + 1
 

We therefore consider in the algorithm above,  

Δ𝑓𝑓𝑘𝑘(𝑖𝑖) = 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘+1) − 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘) =
−𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘)
𝑘𝑘 + 1

+
∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖∈𝑀𝑀𝑘𝑘

𝑘𝑘 + 1
 

The algorithm in Figure 1 considers the Max MinSum model for which the value of 𝑑𝑑 is fixed.  
To adapt it to the Max Mean model, we can simply select 𝑑𝑑  at random in each construction; 
thus obtaining solutions for all possible values of 𝑑𝑑 when the method is run for a relative large 
number of times.  So we replace Step 3 in Figure 1 with the following instruction: 

- Randomly select an integer 𝑑𝑑 in [2,𝑛𝑛]. 

After a solution 𝑀𝑀 has been constructed, an improvement phase is performed. It basically 
consists of an exchanging mechanism in which a selected element (in 𝑀𝑀) is replaced with an 
unselected one (in 𝑁𝑁 ∖𝑀𝑀).  The method randomly selects both elements and exchanges them 
if the objective is improved; otherwise, the selection is discarded.  The improvement phase 
terminates after 100 iterations without any improvement.  We will call this entire method 
GRASP1 and will compare our proposal with it in the computational experiments shown in 
Section 5. 
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Duarte and Martí (2007) proposed different heuristics for the Max-Sum model. In particular 
the authors adapted the GRASP methodology to maximize the sum of the distances among the 
selected elements.  Given a partial solution 𝑀𝑀𝑘𝑘 , its value on this model, dispersion sum 
𝑑𝑑𝑠𝑠(𝑀𝑀𝑘𝑘), is computed as: 

𝑑𝑑𝑠𝑠(𝑀𝑀𝑘𝑘) = � 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖<𝑖𝑖 ;𝑖𝑖,𝑖𝑖∈𝑀𝑀𝑘𝑘

 

The authors introduced the distance between an element 𝑖𝑖⋆ and a partial solution 𝑀𝑀𝑘𝑘 , 
𝑑𝑑𝑠𝑠(𝑖𝑖⋆,𝑀𝑀𝑘𝑘), to incrementally compute the dispersion value of 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘⋃{𝑖𝑖⋆}, as: 

𝑑𝑑𝑠𝑠(𝑀𝑀𝑘𝑘+1) = � 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖<𝑖𝑖 ;𝑖𝑖,𝑖𝑖∈𝑀𝑀𝑘𝑘+1

= � 𝑑𝑑𝑖𝑖𝑖𝑖 + � 𝑑𝑑𝑖𝑖⋆𝑖𝑖
𝑖𝑖∈𝑀𝑀𝑘𝑘𝑖𝑖<𝑖𝑖 ;𝑖𝑖,𝑖𝑖∈𝑀𝑀𝑘𝑘

= 𝑑𝑑𝑠𝑠(𝑀𝑀𝑘𝑘) + 𝑑𝑑𝑠𝑠(𝑖𝑖⋆,𝑀𝑀𝑘𝑘) 

Based on these elements, they proposed a GRASP construction, called GRASP_C2, to solve the 
Max-Sum problem.  In their case, the restricted candidate list, 𝑅𝑅𝑅𝑅𝐿𝐿, is computed with those 
elements 𝑖𝑖 ∈ 𝐿𝐿 with 𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀𝑘𝑘) larger than a threshold value. Specifically, 

𝑅𝑅𝑅𝑅𝐿𝐿 = {𝑖𝑖 ∈ 𝐿𝐿: 𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀𝑘𝑘) ≥ 𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖𝑛𝑛 (𝑀𝑀𝑘𝑘) + 𝛼𝛼(𝑑𝑑𝑠𝑠𝑑𝑑𝑚𝑚𝑥𝑥 (𝑀𝑀𝑘𝑘)− 𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖𝑛𝑛 (𝑀𝑀𝑘𝑘))} 

where  𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖𝑛𝑛 (𝑀𝑀𝑘𝑘) = 𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖∈𝐿𝐿  𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀𝑘𝑘), 𝑑𝑑𝑠𝑠𝑑𝑑𝑚𝑚𝑥𝑥 (𝑀𝑀𝑘𝑘) = 𝑑𝑑𝑚𝑚𝑥𝑥𝑖𝑖∈𝐿𝐿  𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀𝑘𝑘) and the value of 𝛼𝛼 is 
set to 0.5.  As in the algorithm above for the Max-MinSum, we can easily adapt this method to 
solve the Max-Mean model by selecting 𝑑𝑑 at random in each construction and dividing the 
value of the constructed solution by 𝑑𝑑.  Figure 2 shows the associated pseudo code. 

1. Select an element 𝑖𝑖⋆ at random in 𝑁𝑁 = {1, 2, … ,𝑛𝑛}. 
2. Make 𝑀𝑀1 =  {𝑖𝑖⋆} and 𝑘𝑘 = 1. 
3. Select 𝑑𝑑 at random in [2,𝑛𝑛]. 

While ( 𝑘𝑘 < 𝑑𝑑 ) 
4. Compute 𝐿𝐿 = {1, 2, … ,𝑛𝑛} ∖ 𝑀𝑀𝑘𝑘   
5. Compute 𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀𝑘𝑘)  ∀𝑖𝑖 ∈ 𝐿𝐿, 𝑑𝑑𝑠𝑠𝑑𝑑𝑖𝑖𝑛𝑛 (𝑀𝑀𝑘𝑘) and 𝑑𝑑𝑠𝑠𝑑𝑑𝑚𝑚𝑥𝑥 (𝑀𝑀𝑘𝑘) 
6. Construct 𝑅𝑅𝑅𝑅𝐿𝐿  
7. Randomly select an element 𝑖𝑖⋆ in 𝑅𝑅𝑅𝑅𝐿𝐿 
8. 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘⋃{𝑖𝑖⋆} 
9. 𝑘𝑘 = 𝑘𝑘 + 1 

Figure 2. GRASP2 construction phase 

The local search post-processing of GRASP_C2 also performs exchanges (as GRASP1). However, 
instead of randomly selecting the two elements for exchange, the method focuses on the 
selected element with the lowest contribution to the value of the current solution and tries to 
exchange it with an unselected one.  Specifically, for each 𝑖𝑖 ∈ 𝑀𝑀 we compute 

𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀) = �𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑀𝑀
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and consider the element 𝑖𝑖⋆ with minimum 𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀).  Then, the method scans the unselected 
elements in search for the first exchange of 𝑖𝑖⋆ to improve the value of 𝑀𝑀.  Note that when an 
improving move is identified, it is performed without examining the remaining elements in 
𝑁𝑁 ∖𝑀𝑀.  This improvement phase is performed as long as the solution is improved. 

 

3. Mathematical Models 

Prokopyev et al. (2009) proposed the following linearization of the mathematical formulation 
for the Max-Mean model shown in the introduction: 

(MaxMean) Max    ∑ ∑ 𝑑𝑑𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=𝑖𝑖+1

𝑛𝑛−1
𝑖𝑖=1    

𝑠𝑠. 𝑡𝑡.     𝑦𝑦 − 𝑧𝑧𝑖𝑖 ≤ 1 − 𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖 ≤ 𝑦𝑦,  𝑧𝑧𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑛𝑛     

𝑦𝑦 − 𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 2 − 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 𝑦𝑦, 𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ,   

𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖 ≥ 0, 1 ≤ 𝑖𝑖 < 𝑖𝑖 ≤ 𝑛𝑛;    

 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 ≥ 2;   ∑ 𝑧𝑧𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 1,     𝑥𝑥𝑖𝑖 ∈ {0,1}        

 

On the other hand, Kuo et al. (1993) proposed the following mathematical programming 
formulation of the Max-Sum model: 

(MaxSum)  Max     � � 𝑑𝑑𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=𝑖𝑖+1

𝑛𝑛−1

𝑖𝑖=1

 

 
               s.t.:  ∑ 𝑥𝑥𝑖𝑖 = 𝑑𝑑𝑛𝑛

𝑖𝑖=1  

𝑧𝑧𝑖𝑖𝑖𝑖  ≥  𝑥𝑥𝑖𝑖  +  𝑥𝑥𝑖𝑖 − 1, 𝑧𝑧 𝑖𝑖𝑖𝑖  ≤ 𝑥𝑥 𝑖𝑖 ,       𝑧𝑧𝑖𝑖𝑖𝑖 ≤ 𝑥𝑥𝑖𝑖 ,       1 ≤ 𝑖𝑖 ≤ 𝑖𝑖 ≤ 𝑛𝑛; 

𝑥𝑥𝑖𝑖𝑖𝑖  , 𝑧𝑧𝑖𝑖𝑖𝑖  ∈ {0,1},      1 ≤ 𝑖𝑖 ≤ 𝑖𝑖 ≤ 𝑛𝑛                      

It is clear that to obtain the optimum solution of the Max-Mean problem, we can solve the 
Max-Sum model for any possible value of 𝑑𝑑 (𝑖𝑖. 𝑒𝑒. , 2, 3, … ,𝑛𝑛) and divide the value of each 
solution obtained by the corresponding value of 𝑑𝑑.  The best value, across the 𝑛𝑛 − 1 Max-Sum 
problems solved, is the optimum of the Max-Mean model.  Figure 3 shows the Max-Mean 
value (𝑦𝑦-axis) of each Max-Sum problem solved (𝑑𝑑 = 2, … , 50 on the 𝑥𝑥-axis) on an instance 
with 𝑛𝑛 = 50 in which the distances between the elements were randomly generated in 
[−10,10]. 

Figure 3 shows that the Max-Mean value of the Max-Sum solution increases as 𝑑𝑑 increases 
from 2 to 14.  Then, it decreases in the rest of the range (from 𝑑𝑑 = 15 to 50).  We therefore 
conclude that the optimum of the Max-Mean model is reached in this instance when 𝑑𝑑 = 14.  
We have observed the same pattern (a concave function) in all the examples tested with 
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positive and negative distances randomly generated. We will consider this pattern to design an 
efficient GRASP algorithm in the next section. 

 

Figure 3. Max-Mean value for Max-Sum solutions 

On the other hand, when distances are positives and satisfy the triangle inequality the Max-
mean is an increasing function and the best value is obtained when all the elements have been 
selected (𝑑𝑑 = 𝑛𝑛).  The following proposition proves that the Max-Mean value of a given 
solution 𝑀𝑀, 𝑑𝑑𝑑𝑑(𝑀𝑀), is lower than the value of the solution 𝑀𝑀 ∪ {𝑘𝑘} for any element 𝑘𝑘 non-
selected in 𝑀𝑀. Therefore, a solution with 𝑑𝑑 < 𝑛𝑛 selected elements cannot provide the 
optimum of the Max-Mean model because we could improve it by simply adding an extra 
element.  Then we conclude that, under these conditions, the optimum has the 𝑛𝑛 elements 
selected. 

Proposition. Given an instance where the distances are non-negatives, symmetric (𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖 ) 

and satisfy the triangle inequality, and given a solution 𝑀𝑀 with 𝑑𝑑𝑑𝑑(𝑀𝑀) its Max-Mean value, 
then 𝑑𝑑𝑑𝑑(𝑀𝑀) < 𝑑𝑑𝑑𝑑(𝑀𝑀 ∪ {𝑘𝑘}) for any element 𝑘𝑘 non-selected in 𝑀𝑀. 

Proof. For any 𝑖𝑖, 𝑖𝑖 ∈ 𝑀𝑀 and given 𝑘𝑘 ∉ 𝑀𝑀 the triangle inequality gives 𝑑𝑑𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑖𝑖𝑘𝑘 .  Adding it 

for all pairs in 𝑀𝑀 we obtain: 

� 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖 ,𝑖𝑖∈𝑀𝑀
𝑖𝑖<𝑖𝑖

≤ � 𝑑𝑑𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖 ,𝑖𝑖∈𝑀𝑀
𝑖𝑖<𝑖𝑖

 

Note that in the right hand side of the expression above 𝑑𝑑𝑖𝑖𝑘𝑘  appears (𝑑𝑑 − 1) times, where 
𝑑𝑑 = |𝑀𝑀|.  Then, 

� 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖 ,𝑖𝑖∈𝑀𝑀
𝑖𝑖<𝑖𝑖

≤ � 𝑑𝑑𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖,𝑖𝑖 ∈𝑀𝑀
𝑖𝑖<𝑖𝑖

= (𝑑𝑑 − 1)�𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖∈𝑀𝑀

< 𝑑𝑑�𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖∈𝑀𝑀

 

Dividing by 𝑑𝑑 we obtain, 

1
𝑑𝑑

� 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖 ,𝑖𝑖∈𝑀𝑀
𝑖𝑖<𝑖𝑖

< �𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖∈𝑀𝑀
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Adding ∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 ,𝑖𝑖∈𝑀𝑀
𝑖𝑖<𝑖𝑖

 to both sides, 

𝑑𝑑 + 1
𝑑𝑑

� 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖 ,𝑖𝑖∈𝑀𝑀
𝑖𝑖<𝑖𝑖

< � 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖 ∈𝑀𝑀
𝑖𝑖<𝑖𝑖

+ �𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖∈𝑀𝑀

= � 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖,𝑖𝑖∈𝑀𝑀∪{𝑘𝑘}

𝑖𝑖<𝑖𝑖

 

Dividing by 𝑑𝑑 + 1 we obtain, 

𝑑𝑑𝑑𝑑(𝑀𝑀) =
1
𝑑𝑑

� 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖 ,𝑖𝑖∈𝑀𝑀
𝑖𝑖<𝑖𝑖

<
1

𝑑𝑑 + 1
� 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑(𝑀𝑀 ∪ {𝑘𝑘}).

𝑖𝑖 ,𝑖𝑖∈𝑀𝑀∪{𝑘𝑘}
𝑖𝑖<𝑖𝑖

 

∎ 

Note that in the proposition above we cannot relax the triangle inequality condition. The 
following example with 𝑛𝑛 = 4 and distance matrix 

𝑑𝑑 = �

0 20 18 1
20 0 20 2
18 20 0 1
1 2 1 0

� , 

not verifying the triangle inequality, presents the max-mean optimum when elements 1, 2 and 
3 are selected, with a value of 19.33.  When all the elements are selected the max-mean value 
is 15.5. 

 

4. A New Method 

In this section we describe our proposal to obtain high quality solutions to the Max-Mean 
problem. It consists of a GRASP (construction plus local search) with a Path Relinking post-
processing. 

4.1 GRASP construction 

All the previous methods described in Section 2 a priori set the number of selected elements. 
However, from the results shown in Figure 3, we can design a new constructive method in 
which we add elements to the partial solution under construction as long as the Max-Mean 
value improves, and when this value starts to decrease, we stop the construction.  In this way, 
the method selects by itself the value of 𝑑𝑑, which seems adequate to this problem. 

On the other hand, previous GRASP constructions for diversity problems implemented a typical 
GRASP construction (Resende and Ribeiro 2001) in which first each candidate element is 
evaluated by a greedy function to construct the Restricted Candidate List (RCL) and then an 
element is selected at random from RCL.  However, more recent studies (Resende and 
Werneck 2004) have shown that an alternative design in which we first apply the 
randomization and then the greediness can obtain improved outcomes. In particular, in our 
constructive method for the Max-mean problem, we first randomly choose candidates and 
then evaluate each candidate according to the greedy function, selecting the best candidate. 
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In mathematical terms, given a partial solution 𝑀𝑀𝑘𝑘  with 𝑘𝑘 selected elements, the candidate list 
𝑅𝑅𝐿𝐿 is formed with the 𝑛𝑛 − 𝑘𝑘 non-selected elements.  The restricted candidate list, 𝑅𝑅𝑅𝑅𝐿𝐿 
contains a fraction 𝛼𝛼 (0 < 𝛼𝛼 ≤ 1) of the elements in 𝑅𝑅𝐿𝐿 selected at random.  Each element 
𝑖𝑖 ∈ 𝑅𝑅𝑅𝑅𝐿𝐿 is evaluated according to the change in the objective function: 

𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒(𝑖𝑖) = 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘 ∪ {𝑖𝑖})− 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘) 

The method selects the best candidate 𝑖𝑖⋆ in 𝑅𝑅𝑅𝑅𝐿𝐿 if it improves the current solution 
(𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒(𝑖𝑖⋆) > 0) and adds it to the partial solution, 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘 ∪ {𝑖𝑖⋆}; otherwise the method 
stops. Figure 4 shows a pseudo-code of the method that we will call GRASP3. 

 
1. Select an element 𝑖𝑖⋆ at random in 𝑁𝑁 = {1, 2, … ,𝑛𝑛}. 
2. Make 𝑀𝑀1 =  {𝑖𝑖⋆}, 𝑘𝑘 = 1 and 𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 = 1. 

While ( 𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 = 1 ) 
3. Compute 𝑅𝑅𝐿𝐿 = {1, 2, … ,𝑛𝑛} ∖ 𝑀𝑀𝑘𝑘   
4. Construct 𝑅𝑅𝑅𝑅𝐿𝐿 with 𝛼𝛼|𝑅𝑅𝐿𝐿| elements randomly selected in 𝑅𝑅𝐿𝐿 
5. Compute  𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒(𝑖𝑖) = 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘 ∪ {𝑖𝑖}) − 𝑑𝑑𝑑𝑑(𝑀𝑀𝑘𝑘)  ∀𝑖𝑖 ∈ 𝑅𝑅𝑅𝑅𝐿𝐿 
6. Select the element 𝑖𝑖⋆ in 𝑅𝑅𝑅𝑅𝐿𝐿 with maximum 𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒 value 

If (𝑒𝑒𝑒𝑒𝑚𝑚𝑒𝑒(𝑖𝑖⋆) > 0) 
7. 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘⋃{𝑖𝑖⋆} 
8. 𝑘𝑘 = 𝑘𝑘 + 1 

Else 
9. 𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 = 0 

Figure 4. GRASP3 construction phase 

 
4.2 Local Search 

The GRASP construction usually does not obtain a local optimum and it is customary in GRASP 
to apply a local search method to the solution constructed.  As shown in Section 2, previous 
local search methods for diversity problems limit themselves to exchange a selected with an 
unselected elements, keeping constant the number 𝑑𝑑 of selected elements.  Since we do not 
have this size constraint in the Max-Mean model and we admit solutions with any value of 𝑑𝑑, 
we can consider an extended neighborhood.  Specifically, based on the Variable Neighborhood 
Descent (VND) methodology (Hansen and Mladenovic 2003), we consider the combination of 
three neighborhoods in our local search procedure: 

 𝑁𝑁1:  Remove an element from the current solution, thus reducing the number of 
selected elements by one unit. 

 𝑁𝑁2:  Exchange a selected element with an unselected one, keeping constant the number 
of selected elements. 

 𝑁𝑁3:  Add an unselected element to the set of selected elements, thus increasing its size 
by one unit. 

Given a solution, 𝑀𝑀𝑑𝑑 , the local search first tries to obtain a solution in 𝑁𝑁1 to improve it.  If it 
succeeds, and finds 𝑀𝑀𝑑𝑑−1

′  with 𝑑𝑑𝑑𝑑(𝑀𝑀𝑑𝑑−1
′ ) > 𝑑𝑑𝑑𝑑(𝑀𝑀𝑑𝑑 ), then we apply the move and consider 

𝑀𝑀𝑑𝑑−1
′  as the current solution.  Otherwise, the method resorts to 𝑁𝑁2 and search for the first 
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exchange that improves 𝑀𝑀𝑑𝑑 .  If it succeeds, and finds 𝑀𝑀𝑑𝑑
′  with 𝑑𝑑𝑑𝑑(𝑀𝑀𝑑𝑑

′ ) > 𝑑𝑑𝑑𝑑(𝑀𝑀𝑑𝑑 ), then we 
apply the move and consider 𝑀𝑀𝑑𝑑

′  as the current solution.  In any case, regardless that we 
found the improved solution in 𝑁𝑁1 or in 𝑁𝑁2, in the next iteration the method starts scanning 𝑁𝑁1 
to improve the current solution. If neither 𝑁𝑁1 nor 𝑁𝑁2 is able to contain a solution better than 
the current solution, we finally resort to 𝑁𝑁3.  If the method succeeds, finding 𝑀𝑀𝑑𝑑+1

′  with 
𝑑𝑑𝑑𝑑(𝑀𝑀𝑑𝑑+1

′ ) > 𝑑𝑑𝑑𝑑(𝑀𝑀𝑑𝑑 ), then we apply the move and consider 𝑀𝑀𝑑𝑑+1
′  as the current solution 

(and come back to 𝑁𝑁1 in the next iteration). Otherwise, since none of the neighborhoods 
contain a solution better that the current one, the method stops. 

Given a solution 𝑀𝑀𝑑𝑑 , we compute the contribution of each selected element 𝑖𝑖, as well as the 
potential contribution of each unselected element 𝑖𝑖 as: 

𝑑𝑑𝑠𝑠(𝑖𝑖,𝑀𝑀𝑑𝑑 ) = � 𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑀𝑀𝑑𝑑

 

Then, when we explore 𝑁𝑁1 to remove an element from 𝑀𝑀𝑑𝑑 , we scan the selected elements in 
the order given by 𝑑𝑑𝑠𝑠, where the element with the smallest value comes first.  Similarly, when 
we explore 𝑁𝑁2 we explore the selected elements in the same order but the unselected ones in 
the “reverse order” (i.e., we first consider the unselected elements with larger potential 
contribution). Finally, when we explore 𝑁𝑁3 the unselected elements, considered to be added 
to the current solution, are explored in the same way as in 𝑁𝑁2, in which the element with the 
largest potential contribution is explored first. 

 
4.3 Path Relinking 

The PR algorithm (Glover and Laguna, 1997) operates on a set of solutions, called Elite Set 
(𝐸𝐸𝐸𝐸), constructed with the application of a previous method.  In this paper we apply GRASP to 
build the Elite Set considering both quality and diversity.  Initially 𝐸𝐸𝐸𝐸 is empty, and we apply 
GRASP for 𝑏𝑏 = |𝐸𝐸𝐸𝐸| iterations and populate it with the solutions obtained (ordering the 

solutions in 𝐸𝐸𝐸𝐸 from the best 𝑥𝑥1 to the worst 𝑥𝑥𝑏𝑏 ).  Then, in the following GRASP iterations, we 
test whether the generated (constructed and improved) solution 𝑥𝑥′ , qualify or not to enter 𝐸𝐸𝐸𝐸.  

Specifically, if 𝑥𝑥′  is better than 𝑥𝑥1, it enters in the set.  Moreover, if it is better than 𝑥𝑥𝑏𝑏  and it is 
sufficiently different from the other solutions in the set (𝑑𝑑(𝑥𝑥′ ,𝐸𝐸𝐸𝐸) ≥ 𝑑𝑑𝑡𝑡ℎ), it also enters 𝐸𝐸𝐸𝐸. To 
keep the size of 𝐸𝐸𝐸𝐸 constant and equal to 𝑏𝑏, when we add a solution to this set, we remove 
another one.  To maintain the quality and the diversity, we remove the closest solution to 𝑥𝑥′  in 
𝐸𝐸𝐸𝐸 among those worse than it in value. 

Given two solutions, 𝑥𝑥 and 𝑦𝑦, interpreted as binary vectors with 𝑛𝑛 variables, where variable 𝑥𝑥𝑖𝑖  
(𝑦𝑦𝑖𝑖 ) takes the value 1 if element 𝑖𝑖 is selected and 0 otherwise, the distance between them can 
be computed as  

𝑑𝑑(𝑥𝑥,𝑦𝑦) = �|𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 |
𝑛𝑛

𝑖𝑖=1

 

and the distance between a solution 𝑥𝑥 and the set 𝐸𝐸𝐸𝐸, 𝑑𝑑(𝑥𝑥′ ,𝐸𝐸𝐸𝐸), can therefore be computed 
as the sum of the distances between 𝑥𝑥 and all the elements in 𝐸𝐸𝐸𝐸. 
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Given two solutions 𝑥𝑥,𝑦𝑦 ∈ 𝐸𝐸𝐸𝐸, the path relinking procedure 𝑃𝑃𝑅𝑅(𝑥𝑥,𝑦𝑦) starts with the first 
solution 𝑥𝑥, called the initiating solution, and gradually transforms it into the final one 𝑦𝑦 called 
the guiding solution.  At each iteration we consider to remove an elements in 𝑥𝑥 not present in 
𝑦𝑦, or to add an element in 𝑦𝑦 not present in 𝑥𝑥.  The method selects the best one among these 
candidates, creating the first intermediate solution, 𝑥𝑥(1).  Then, we consider to remove an 
element in 𝑥𝑥(1) not present in 𝑦𝑦, or to add an element in 𝑦𝑦 not present in 𝑥𝑥(1).  The best of 
these candidates is the second intermediate solution 𝑥𝑥(2).  In this way we generate a path of 
intermediate solutions until we reach 𝑦𝑦.  The output of the PR algorithm is the best solution, 
different from 𝑥𝑥 and 𝑦𝑦, found in the path.  We submit this best solution to the improvement 
method.  Figure 5 shows a pseudo-code of the entire GRASP with Path Relinking algorithm in 
which we can see that we apply both 𝑃𝑃𝑅𝑅(𝑥𝑥,𝑦𝑦) and 𝑃𝑃𝑅𝑅(𝑦𝑦, 𝑥𝑥) to all the pairs 𝑥𝑥,𝑦𝑦 in the elite set 
𝐸𝐸𝐸𝐸. 

1. Set GlobalIter equal to the number of global iterations. 
2. Apply the GRASP method (construction plus improvement) 
    for b=|ES| iterations to populate ES={ x1, x2, …, xb }. 
3. iter=b+1. 
While( iter ≤ GlobalIter ) 
 4. Apply the construction phase of GRASP ⇒ x. 
 5. Apply the local search phase of GRASP to x ⇒ x'. 
 If ( f(x') > f(x1)  or  (f(x') > f(xb) and d(x',ES) ≥ dth ) ) 
 6. Let xk be the closest solution to x' in ES with f(x')>f(xk). 
 7. Add x' to ES and remove xk. 
 8. Update the order in ES (from the best x1 to the worst xb). 
9. Let xbest= x1. 
  
For(i=1 to b-1 and j=i+1 to b) 
 10. Apply PR(xi,xj) and PR(xj,xi), let x be the best solution found 
 11. Apply the local search phase of GRASP to x ⇒ x'. 
 If(f(x') > f(xbest)) 
  12. xbest= x'. 
 
13. Return xbest. 

Figure 5. GRASP with Path Relinking 
 

5. Computational Experiments 

This section describes the computational experiments that we performed to first study the 
search parameters of our proposed procedure and then compare it to state-of-the-art 
methods for solving the maximum mean dispersion problem.  Our GRASP with Path Relinking 
implementation follows the framework described in Section 4 (Figure 5).  For this comparison, 
we use the following two sets of instances where, as explained above, the distances can take 
both negative and positive values and do not satisfy the triangular inequality: 

Type I: This data set consists of 60 symmetric matrices with random numbers between -10 
and 10 generated from a uniform distribution.  They represent the affinity between 
individuals in a social network. We generate 10 instances for each size of 𝑛𝑛 =
20, 25, 30, 35, 150 and 500. 



12 
 

Type II: This data set consists of 60 symmetric matrices with random numbers in [−10,−5] ∪
[5,10].  These instances reflect the polarization that occurs when people get together 
in groups.  We can identify clusters of individuals with a high attraction within 
clusters and a high repulsion between clusters and with no room for indifference.  
We generate 10 instances for each size of 𝑛𝑛 = 20, 25, 30,35, 150 and 500. 

In our first experiment we consider the two mathematical models described in Section 3 and 
the 60 small instances in our test-bed (𝑛𝑛 = 20, 25, 30, 35).  Specifically, we compare the 
solutions obtained with Cplex 12 when solving the Prokopyev et al. (2009) Max-Mean model 
and the Kuo et al. (1993) Max-Sum model 𝑛𝑛 − 1 times (for any possible value of 𝑑𝑑 =
2,3, … ,𝑛𝑛).  Table 1 shows, for each method and each size, the average objective function value 
(Value), the average of the number of selected elements in the solution (𝑑𝑑), and the average 
CPU time. 

 

  
Type I instances Type II instances 

𝒏𝒏   
Max-Mean 

Max-Sum 
(𝒏𝒏 -1) times 

Max-Mean 
Max-Sum 

(𝒏𝒏 -1) times 

20 

CPU (s) 50.33 14.66 4.5254 31.95 

Value 14.43 14.43 48.56 48.56 

m 7.4 7.40 14 14.00 

25 

CPU (s) 694.60 41.83 22.0547 206.55 

Value 17.32 17.32 63.21 63.21 

m 9.8 9.80 18 18.00 

30 

CPU > 5 hours 102.30 240.5314 885.19 

Value - 18.75 75.26 75.26 

m - 10.70 21 21.00 

 
CPU > 5 hours 719.51 719.5 8392.26 

35 Value - 16.94 88.95 88.95 

 
m - 9 25 25 

Table 1. Max-Mean solutions with Cplex 12 

 
Results in Table 1 clearly indicate that Cplex is only able to solve small problems within 
moderate running times.  In particular, with the Max-Mean model (Prokopyev et al. 2009) it 
only solves the Type I instances with 𝑛𝑛 = 20 and 25, and it cannot solve the Type I instances 
with 𝑛𝑛 = 30 and 35 in 5 hours of CPU time.  Surprisingly, the Max-Sum model (Kuo et al. 1993) 
applied 𝑛𝑛 − 1 times is able to solve these later instances with a total average time of 102.3 
seconds for 𝑛𝑛 = 30 and 719.51 for 𝑛𝑛 = 35 and in all the Type I instances tested performs 
better than the Max-Mean model.  On the other hand, the comparison between both models 
on Type II instances draws a different picture.  Specifically, both models are able to solve all 
the small instances (up to 𝑛𝑛 = 35) and, as expected, the Max-Mean model seems better suited 
to solve these Max-Mean instances than the Max-Sum model applied 𝑛𝑛 − 1 times (since it 
consistently exhibits shorter running times). 
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For the following preliminary experimentation with heuristics we consider the 10 instances of 
Type I with 𝑛𝑛 = 150 and the 10 instances of Type II with 𝑛𝑛 = 150.  All the methods have been 
implemented in MathematicaV.7 (Wolfram Research Inc.) and conducted on a Laptop Intel 
Core Solo 1.4 GHz at 3 Gb of RAM 

In the second experiment we study the parameter 𝛼𝛼 in our GRASP constructive method run for 
100 iterations. Figure 6 depicts the search profile of the average best values across the 10 type 
I instances for five different 𝛼𝛼 values.  The best solutions are consistently obtained with 
𝛼𝛼 = 0.6 and the worst with 𝛼𝛼 = 0.3.  On the other hand we have not observed significant 
differences among the solutions obtained with different values 𝛼𝛼 of when solving the Type II 
instances. 

 

Figure 6. Search profile of GRASP constructions. 

In our third experiment we compare our constructive method (C3) outlined in Figure 4 with the 
parameter 𝛼𝛼 set to 0.6, with two previous constructive methods, C1 (Prokopyev et al. 2009) 
and C2 (Duarte and Martí 2007). As described in Section 2 these two methods were originally 
proposed for the Max-MinSum and Max-Sum models respectively and we adapt them to the 
Max-Mean model.  Table 2 shows, for each method, the average objective function value 
(Value), the average of the number of selected elements (m), , the number of best solutions (of 
this experiment) found with each method (#Best), the percent deviation from the best 
solutions in the experiment (Deviation) and the average CPU time (seconds on a Pentium 4). 

  C1 C2 C3 
 Value 26.068 28.733 41.797 
 m 57.9 81.8 45.3 
Type I # Best 0 0 10 
 Deviation 37.68 % 31.24 % 0.00 % 
 CPU time (s) 178.9 52.5 9.7 
 Value 257.599 384.219 393.556 
 m 97.4 104.1 106 
Type II # Best 0 0 10 
 Deviation 34.54 % 2.37 % 0.00% 
 CPU time (s) 154.8 54.4 33.0 

Table 2. Constructive methods 
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Table 2 shows that our constructive procedure C3 outperforms previous constructive methods 
for this problem.  In the 20 instances tested it is able to obtain better solutions than C1 and C2.  
It is interesting to observe that the best solutions obtained with C3 present a lower number of 
selected elements (m) than the best solutions of C1 and C2 in Type I instances. However, Type 
II instances exhibit a different pattern since the average of the m value is larger in C3 than in 
C1 and C2.  Finally it must be noted that C3 needs shorter running times than its competing 
methods to reach better solutions than them. 

In our fourth experiment we compare our entire GRASP algorithm described in Section 4, 
constructive + local search, called GRASP3, with the previous methods GRASP1 (Prokopyev et 
al. 2009) and GRASP2 (Duarte and Martí 2007) described in Section 2.  Table 3 reports the 
associated results on the medium sized instances (𝑛𝑛 = 150).  

 
  GRASP1 GRASP2 GRASP3 

 Value 39.078 39.596 43.236 
 m 49.4 45.7 44 
Type I # Best 0 0 10 
 Deviation 9.63% 8.41% 0.00% 
 CPU time (s) 241.6 61.5 26.4 
 Value 360.353 389.569 393.556 
 m 100.9 105.2 106 
Type II # Best 0 3 10 
 Deviation 8.44 % 1.01 % 0.00 % 
 CPU time (s) 214.0 67.9 45.5 

Table 3. GRASP methods 

 
Results in Table 3 confirm the superiority of our proposal with respect to previous methods.  
Specifically, GRASP3 obtains an average percent deviation with respect to the best known 
solution of 0.00% and 0.00% on Type I and II instances respectively, while GRASP1 presents 
9.63 % and 8.44 % and GRASP2 8.41% and 1.01% respectively. 

To complement this information, we apply a Friedman test for paired samples to the data used 
to generate Table 3.  The resulting p-value of 0.000 obtained in this experiment clearly 
indicates that there are statistically significant differences among the three methods tested 
(we are using the typical significance level of 0.05 as the threshold between rejecting or not 
the null hypothesis).  A typical post-test analysis consists of ranking the methods under 
comparison according to the average rank values computed with this test.  According to this, 
the best method is the GRASP3 (with a rank value of 2.93), followed by the GRASP2 (1.93) and 
finally the GRASP1 (with 1.15 rank value). 

Our local search in GRASP3 is formed with three different neighborhoods in a VND method: 𝑁𝑁1 
(remove an element from the solution), 𝑁𝑁2 (exchange a selected element with an unselected 
one) and 𝑁𝑁3 (add an unselected element to the solution). Thus, an interesting study is to 
measure the contribution of each neighborhood to the quality of the final solution.  Figure 7 
depicts a bar chart with the average number of times, in the 20 instances used in our 
preliminary experimentation, that each neighborhood is able to improve the current solution.  
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We can see that, although 𝑁𝑁2 improves the solutions in a larger number of cases, 𝑁𝑁1 and 
𝑁𝑁3 are also able to improve them and therefore contribute to obtain the final solution. 

 

 

Figure 7. Average number of improvements of each GRASP3 neighborhood. 

 
In the final experiment we target the 20 largest instances in our data set (𝑛𝑛 = 500).  Table 4 
shows the average results on each type of instances of GRASP1 (Prokopyev et al. 2009), 
GRASP2 (Duarte and Martí 2007) and our two methods, GRASP3 and GRASP3 with Path 
Relinking described in Section 4.  We set the number of global iterations in order that all the 
methods run for similar CPU times.  The size of the elite set in the Path Relinking, 𝑏𝑏, is set to 20 
and the distance threshold 𝑑𝑑𝑡𝑡ℎ is set to 25. 

 
  GRASP1 GRASP2 GRASP3 GRASP3+PR 

 Value 66.796 70.163 77.232 77.740 
 m 154.4 157.6 136.6 142 
Type I # Best 0 0 1 9 
 Deviation 14.11% 9.79% 0.71% 0.06% 
 CPU time (s) 1522.5 1092.9 1094.9 1006.1 
 Value 1266.177 1311.651 1319.844 1319.844 
 m 357.1 350.4 353 353 
Type II # Best 0 0 9 10 
 Deviation 4.07% 0.62% 0.00% 0.00% 
 CPU time (s) 1824.5 1469.3 1114.9 1250.4 

Table 4. Comparison on large instances 

 
Results in Table 4 are in line with the results obtained in the previous experiments.  They 
confirm that GRASP3 consistently obtains better results than GRASP1 and GRASP2.  As shown 
in the last column of Table 4, Path Relinking is able to improve the results of GRASP3 in 9 out 
of 10 Type I instances but only in 1 out of 10 Type II instances.  According to our 
experimentation Type II instances seem easier for the heuristics and apparently, the results 
obtained with GRASP3 on them cannot be improved with any the methods considered (even if 
they run for long time).  The Friedman test applied to the results summarized in Table 4 
exhibits a p-value of 0.000 indicating that there are statistically significant differences among 
the four methods tested.  According to the ranking of this test, the best method is the 
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GRASP3+PR (with a rank value of 3.70), followed by the GRASP3 (3.30), GRASP2 (2.00) and 
finally the GRASP1 (with 1.00 rank value). 

Considering that GRASP3 and GRASP3+PR obtain similar rank values, we compared both with 
two well-known nonparametric tests for pairwise comparisons: the Wilcoxon test and the Sign 
test. The former one answers the question: Do the two samples (solutions obtained with 
GRASP3 and GRASP3+PR in our case) represent two different populations? The resulting p-
value of 0.028 indicates that the values compared come from different methods. On the other 
hand, the Sign test computes the number of instances on which an algorithm supersedes 
another one. The resulting p-value of 0.021 indicates that GRASP3+PR is the clear winner. 

Finally we depict in Figure 8 the search profile of the four methods on Type I instances for a 
1200 seconds run.  This figure clearly shows that from the very beginning GRASP3 obtains 
better results than GRASP1 and GRASP2. On the other hand, in the GRASP3+PR execution, Path 
Relinking is applied after 100 GRASP3 iterations, which occurs approximately after 700 
seconds.  Then it starts to apply PR to pairs of solutions in the elite set, obtaining new better 
solutions after 300 seconds (1000 seconds of total running time).  This diagram and the results 
in Table 4 show that Path Relinking constitutes a good post-processing for GRASP solutions.  

 

Figure 8. Search profile on large type I instances 

 

6.  Conclusions 

The Max-Mean maximization is a computationally difficult optimization problem that arises in 
the context of equitable dispersion problems. It has served us well as test case for a few new 
search strategies that we are proposing.  In particular, we tested a GRASP constructive 
algorithm based on a non-standard combination of greediness and randomization, a local 
search strategy based on the variable neighborhood descent methodology, which includes 
three different neighborhoods, and a path relinking post-processing.  This later method is 
based on a measure to control the diversity in the search process.  

GRASP3+PR 
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We performed extensive computational experiments to first study the effect of changes in 
critical search elements and then to compare the efficiency of our proposal with previous 
solution procedures.  The comparison with two previous methods also based on GRASP favors 
our proposal. 
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