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ABSTRACT 

The Capacitated Clustering Problem (CCP) consists of forming a specified number of clusters or 

groups from a set of elements in such a way that the sum of the weights of the elements in each 

cluster is within some capacity limits, and the sum of the benefits between the pairs of elements in 

the same cluster is maximized.  This problem— which has been recently tackled with a GRASP/VNS 

approach— arises in the context of facility planners at mail processing and distribution. We propose 

a tabu search and several GRASP variants to find high quality solutions to this NP-hard problem. 

These variants are based on several neighborhoods, including a new one, in which we implement a 

one-for-two swapping strategy. We also hybridize both methodologies to achieve improved 

outcomes. 

The Maximally Diverse Grouping Problem (MDGP) is a special case of the CCP in which all the 

elements have a weight of one unit. This problem has been recently studied in the academic context 

when forming student groups, and we adapt the best method reported in the literature, a tabu 

search with strategic oscillation (TS_SO), to the CCP.  Our empirical study with 50 large instances 

shows the superiority of the new GRASP with tabu search for the CCP with respect to both the 

previous GRASP/VNS approach and the adapted TS_SO. 
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1. Introduction 

Given a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is a set of 𝑛 nodes and 𝐸 is a set of edges, let 𝑤𝑖 ≥ 0 be the 

weight of node 𝑖 ∈ 𝑉 and let 𝑐𝑖𝑗  be the benefit of edge (𝑖, 𝑗) ∈ 𝐸. The Capacitated Clustering 

Problem (CCP) consists of partition 𝑉 into 𝑝 clusters in such a way that the sum of the weights of the 

elements in each cluster is within some integer capacity limits, 𝐿 and 𝑈, and the sum of the benefits 

between the pairs of elements in the same cluster is maximized. 

The CCP can be formulated as a quadratic integer program with binary variables 𝑥𝑖𝑘 that take the 

value of 1 if element 𝑖 is in cluster 𝑘 and 0 otherwise. 

                        (CCP) Maximize         ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘

𝑛

𝑗>𝑖
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𝑝

𝑘=1

 

                         subject to                    ∑ 𝑥𝑖𝑘

𝑝

𝑘=1

= 1                   𝑖 = 1,2, … , 𝑛 

                                                        𝐿 ≤ ∑ 𝑤𝑖𝑥𝑖𝑘

𝑛

𝑖=1

≤ 𝑈              𝑘 = 1,2, … , 𝑝 

                                                    𝑥𝑖𝑘 ∈ {0,1}                              𝑖 = 1, … , 𝑛  𝑘 = 1, … , 𝑝 

The objective function adds the total benefit of all pairs of elements that belong to the same cluster. 

The first set of constraints forces the assignment of each element to a cluster. The second set of 

constraints forces the sum of the weights of the pairs of elements in the same cluster to be between 

𝐿 and 𝑈.  

The literature on the CCP and related problems is vast and a recent paper (Deng and Bard, 2011) 

summarizes previous heuristics and formulations for this problem. We therefore do not duplicate 

the work here and refer the reader to Deng and Bard’s excellent survey. These authors proposed a 

GRASP (Greedy Randomized Adaptive Search Procedure) with VNS (Variable Neighborhood Search) 

that, according to their computational study, outperforms previous approaches. An interesting 

application of the problem, as mentioned by Deng and Bard, arises in the context of facility planners 

at mail processing and distribution centers within the US Postal Service. In particular, the design of 

the zones to help rationalize the bulk movement of mail can be framed as a CCP. 

An interesting characteristic of the GRASP in Deng and Bard (2011) is that it constructs the 

customary restricted candidate list (RCL) using both nodes and edges, which to the best of our 

knowledge is an unconventional strategy (Festa and Resende, 2009). This design triggered our 

interest on this problem, to compare this unconventional GRASP implementation with a standard 

one in which the RCL is formed with either nodes or edges but not both simultaneously. Deng and 

Bard (2011) computational study does not consider general CCP instances and limits itself to the 

case in which the node weights, 𝑤𝑖, are equal to 1. This means that although they proposed a 

procedure for the CPP, their tests were performed on the special case of the MDGP. We extend their 

testing to include general CCP instances to compare several GRASP designs. 
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When reviewing the recent clustering literature, we found an interesting connection not previously 

reported. In particular, the maximally diverse grouping problem (MDGP) consists of grouping a set of 

elements into 𝑝 mutually disjoint groups in such a way that the diversity among the elements in each 

group is maximized. The diversity among the elements in a group is calculated as the sum of the 

individual distance between each pair of elements. The objective of the problem is to maximize the 

overall diversity, i.e., the sum of the diversity of all groups, when the size of each group is within a 

specified range. Clearly, the MDGP is a special case of the CCP for which 𝑤𝑖 = 1 for all node 𝑖, and 

the distance between each pair of nodes (𝑖, 𝑗) is the benefit 𝑐𝑖𝑗. Therefore, from the CCP formulation 

above, the MDGP can be formulated as: 

         (MDGP) Maximize         ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑘𝑥𝑗𝑘
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                                                    𝑥𝑖𝑘 ∈ {0,1}                        𝑖 = 1, … , 𝑛  𝑘 = 1, … , 𝑝 

The MDGP is called the 𝑘-partition problem in Feo et al. (1992) and the equitable partition problem 

in O’Brien and Mingers (1995).  It belongs to the family of diversity problems (Gallego et al. 2009, 

Martí and Sandoya 2013). One of the most popular MDGP applications appears in the academic 

context of forming student groups (Weitz and Jelassi, 1992). Gallego et al. (2013) proposed a tabu 

search with strategic oscillation, TS_SO, for the MDGP that outperforms the previous approaches for 

this problem. Recognizing the connection between MDGP and CCP, as part of our work, we also 

extend the TS_SO to tackle the general CCP. 

The main contributions of our current development are: 

 A new (simplified) GRASP for the CCP and a thorough 

comparison with Deng’s and Bard’s GRASP 

 An adaptation of TS_SO to handle instances of the CCP 

 A new TS for the CCP to be hybridized with GRASP 

 Testing of all the methods on a new set of CCP instances 

The next section summarizes the Deng and Bard GRASP for the CCP and the Gallego et al. TS_SO for 

the MDGP. Section 3 describes the proposed new procedures. This is followed by the description of 

our extensive experimentation that includes 50 new CCP instances with 𝑛 = 82, 240, and 480. 

Statistical analysis shows the merit of our approach when compared to existing methods (including 

the adaptation of TS_SO to the CCP). 
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2. Existing CCP and Adapted MDGP Approaches 

Deng and Bard (2011) proposed a GRASP for the CCP, which as customary in GRASP 

implementations, it alternates between two phases: construction and improvement. In the 

construction phase, the 𝑝 clusters are first seeded with the heaviest weight edges algorithm (HWE), 

and then completed with a greedy randomized procedure. Specifically, the HWE identifies the 𝑝 

nodes with the largest weights and assigns them, separately, to the 𝑝 clusters. The heaviest edges 

incident to these nodes are then identified, and their endpoints are assigned to the corresponding 

clusters. An alternative constructive method, labeled CMC, proposed by Deng and Bard was shown 

to be inferior to HWE and therefore we do not consider it here. 

HWE produces clusters containing two nodes. At this point, a candidate list 𝐶𝐿 of elements is built to 

continue the construction process according to the GRASP methodology. In particular, 𝐶𝐿 is formed 

with the nodes and edges (pairs of nodes) that can be inserted into a solution cluster without 

exceeding the upper capacity limit 𝑈. For each node 𝑖 ∈ 𝐶𝐿, let 𝐼(𝑖, 𝑘) be the increase in the 

objective function if node 𝑖 is added to cluster 𝑘. In other words, the sum of the benefits 𝑐𝑖𝑗  for all 

the nodes 𝑗 already in cluster 𝑘. Similarly, let 𝐼(𝑒, 𝑘) be the increase in the objective function when 

edge 𝑒 is added to cluster 𝑘 (i.e., when its two endpoint nodes are in the cluster). The restricted 

candidate list 𝑅𝐶𝐿 is formed with the best elements in 𝐶𝐿 according to this evaluation. This set of 

top candidates is computed as a fraction 𝛼 of the number of elements in 𝐶𝐿, where 𝛼 ∈ ]0,1]. Deng 

and Bard implemented a so-called reactive GRASP in which effective values for this search 

parameter are self-adjusted as the iterations progress. 

An important characteristic of this method is that the 𝐶𝐿 consists of both, nodes and edges. That is, 

the next element to be included in the solution may be either a single node or a pair of nodes (if an 

edge is selected). This is somewhat unconventional in GRASP, if one considers the implementations 

in the annotated bibliography by Festa and Resende (2009).  We will compare this design with a 

more conventional design in which the 𝐶𝐿 consists of either nodes or edges, but not both. 

In the second phase of their GRASP, Deng and Bard proposed three different neighborhoods to 

improve a constructed solution 𝑥: 𝑁1(𝑥), 𝑁2(𝑥), and 𝑁3(𝑥). Let  𝑉𝑘 be the set of nodes in cluster 𝑘 

of this solution, and let 𝑊𝑘 be the sum of the weights of the nodes in 𝑉𝑘 (i.e., 𝑊𝑘 = ∑ 𝑤𝑖𝑖∈𝑉𝑘
); then, 

𝑊𝑘 must be within the capacity limits: 𝐿 ≤ 𝑊𝑘 ≤ 𝑈 for 𝑘 = 1,2, … , 𝑝. 

𝑁1(𝑥) is the result of extended insertion moves, in which a node 𝑖 is moved from a cluster 𝑘 to a 

cluster 𝑠. The node 𝑖 is only removed from 𝑉𝑘 if this cluster remains feasible after the move (i.e., if 

𝐿 ≤ 𝑊𝑘 − 𝑤𝑖), but if there is not enough capacity in cluster 𝑠 for node 𝑖 (i.e., if 𝑊𝑠 + 𝑤𝑖 > 𝑈), 

instead of discarding the move, a node 𝑗 in 𝑉𝑠 is moved from cluster 𝑠 to a different one, say cluster 

𝑡, with enough capacity for node 𝑗. The move is performed if the final solution is feasible, in other 

words, if 𝐿 ≤ 𝑊𝑘 − 𝑤𝑖,   𝐿 ≤ 𝑊𝑠 + 𝑤𝑖 − 𝑤𝑗 ≤ 𝑈, and 𝑊𝑡 + 𝑤𝑗 ≤ 𝑈. 

𝑁2(𝑥) consists of edge insertions. Given an edge (𝑖, 𝑗) ∈ 𝐸, if both nodes are in the same cluster 

𝑘 (i.e., 𝑖, 𝑗 ∈ 𝑉𝑘), an edge insertion considers moving the nodes to another cluster 𝑠, as long as the 

resulting solution remains feasible. In mathematical terms, we move (𝑖, 𝑗) from cluster 𝑘 to cluster 𝑠 

if 

𝐿 ≤ 𝑊𝑘 − 𝑤𝑖 − 𝑤𝑗 and   𝑊𝑠 + 𝑤𝑖 + 𝑤𝑗 ≤ 𝑈 
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This neighborhood also contains moves of edges with endpoints in two different clusters. In 

particular, given an edge (𝑖, 𝑗) ∈ 𝐸 with 𝑖 ∈ 𝑉𝑘 and 𝑗 ∈ 𝑉𝑠, it examines moving 𝑖 to cluster 𝑠, moving 𝑗 

to cluster 𝑘, or moving both nodes to another cluster 𝑡. In any case, only capacity-feasible moves are 

considered. 

𝑁3(𝑥) implements a classical swap move, that is, one in which a node 𝑖 is moved from a cluster 𝑘 to 

a cluster 𝑠, and simultaneously a node 𝑗 is moved from the cluster 𝑠 to the cluster 𝑘.  As in the other 

neighborhoods, the move is performed if the resulting solution is feasible. In mathematical terms: 

𝐿 ≤ 𝑊𝑘 − 𝑤𝑖 + 𝑤𝑗 ≤ 𝑈 and   𝐿 ≤ 𝑊𝑠 + 𝑤𝑖 − 𝑤𝑗 ≤ 𝑈. 

Deng and Bard proposed two improvement methods based on these three neighborhoods. The first 

one, called CNS, examines the neighborhoods in a sequential/cyclical fashion, terminating when no 

improvement is possible. The second one implements the so-called variable neighborhood descent, 

VND, in which the method switches from the current neighborhood 𝑁𝑢 to the next one,𝑁𝑢+1 , when 

𝑁𝑢 cannot produce an improvement of the current solution. Moreover, if a better solution is 

obtained with 𝑁𝑢 with 𝑢 > 1, the method switches back to 𝑁1.  The VND terminates when 𝑁3 is 

applied and no further improvement is possible. Finally, the authors implemented a Randomized 

VND, called RNVD, in which the neighborhood to be searched in the next iteration is probabilistically 

selected, where the probability of selection is linked to the merit of each neighborhood as 

determined by the quality of the solutions found during the search. 

In the computational testing, Deng and Bard (2011) compared their designs and concluded that the 

combination of HWE with RVND resulted in the best overall performance. We use this variant for the 

purpose of comparison and call it Prev_GRASP. As a side note, Deng and Bard tested a Path Relinking 

post-processing strategy and concluded that its inclusion did not result in a significant improvement 

and therefore we have left it out of our experiments. 

Gallego et al. (2013) proposed a tabu search with strategic oscillation, TS_SO, for the maximally 

diverse grouping problem (MDGP). TS_SO is the state-of-the-art solution method for MDGPs. 

Empirical evidence shows that TS_SO outperforms the improvement method LCW (Weitz and 

Lakshminarayanan, 1998) and the hybrid genetic algorithm LSGA (Fan et al., 2011). As described in 

the previous section, the MDGP is a special case of the CCP. We briefly describe TS_SO, which is 

based on three steps: 1) construction of the initial solution, 2) neighborhood search and 3) strategic 

oscillation, and our adaptation of TS_SO to the CCP. 

The construction step (GC, for greedy construction) for the MDGP starts by randomly selecting 𝑝 

nodes and assigning each of these elements to a separate group (cluster in our case). Therefore, at 

the end of the first step, each group has one node assigned to it.  Then, the procedure performs 𝑛 −

𝑝 iterations to assign the remaining unassigned elements to groups. In order to generate a feasible 

solution, the iterations are divided into two phases. In the first phase, the elements are assigned to 

groups that currently contain fewer elements than the desired minimum number of elements. In the 

second phase, the remaining elements are assigned to groups with a number of elements that is 

smaller than the desired maximum number of elements. 
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In our adaptation of GC to the CCP, the first phase adds a randomly selected node 𝑖 to the cluster 𝑘 

that maximizes 𝐼(𝑖, 𝑘) and for which 𝑊𝑘 < 𝐿. When all the clusters have a sum of weights of their 

nodes larger than or equal to 𝐿, the second phase proceeds in a similar way, by adding randomly 

selected elements to the cluster 𝑘 that maximizes 𝐼(𝑖, 𝑘), without exceeding the upper capacity limit 

𝑈. 

Once a solution 𝑥 has been constructed, the neighborhood search (phase 2 of the TS_SO method) is 

applied. The search neighborhood in TS_SO consists of all node insertions and swaps. Note that 

insertions and swaps are considered simultaneously instead of sequentially, as done by Deng and 

Bard (2011).  Moreover, the TS_SO implements simple insertions, involving only two groups, instead 

of the extended version (involving three groups) implemented in 𝑁1(𝑥). We denote the simple 

insertion neighborhood as 𝑁0(𝑥). In mathematical terms, at each step the method selects the best 

feasible move in 𝑁0(𝑥) ∪ 𝑁3(𝑥). TS_SO includes a short-term tabu memory (Glover and Laguna, 

1997) that enables the method to search beyond the first local optimal point. Specifically, when the 

local search reaches a point where no improving moves are available, the best non-improving move 

is selected and executed. At this point, elements that are moved from their current group to another 

are not allowed to move again for 𝑡𝑎𝑏𝑢𝑇𝑒𝑛𝑢𝑟𝑒 = 𝑛/10 iterations. The process terminates when 

𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 𝑛/2 consecutive iterations have been performed without improving the best solution 

found during the search. TS_SO can be straightforwardly adapted to the CCP by simply checking the 

feasibility of moves in terms of the sum of the weights of the nodes in each cluster instead of the 

cluster cardinality. 

So far, we have assumed that feasibility is maintained through the search. However, the third phase 

of TS_SO —the strategic oscillation (SO) phase— explores solutions for which the group cardinality 

restrictions may be violated. In particular, the method applies the neighborhood search described 

above but the number of the elements in a group is allowed to be outside the specified limits by a 

certain amount 𝑠𝑜 that ranges between 0 and 𝑠𝑜𝑚𝑎𝑥. This means that when 𝑠𝑜 > 0 the search is 

allowed to visit infeasible solutions.  To create the oscillation pattern, the value of 𝑠𝑜 is reset to one 

after every successful application of the improvement method, otherwise 𝑠𝑜 is increased by one unit 

until it reaches 𝑠𝑜𝑚𝑎𝑥. 

In our adaptation of the SO phase to the CCP, we consider that the sum of the weights of the 

elements in a cluster has to be within the following limits: 

𝐿 − 𝑠𝑜 ≤ 𝑊𝑘 ≤ 𝑈 + 𝑠𝑜 

Note that this method does not guarantee that the final solution is feasible. When this happens, we 

apply a repair mechanism that consists of removing elements from clusters 𝑘 for which 𝑊𝑘 > 𝑈 and 

adding elements to clusters 𝑠 for 𝑊𝑠 < 𝐿. The elements are selected at random and the process 

continues until the weight constraints of the clusters are satisfied. We refer to the entire adaptation 

of TS_SO to the CPP as CCP_TS_SO. 

3. A Simplified GRASP for the CCP 

In our view, the GRASP implementation of Deng and Bard (2011) is overly complicated and a 

simplified version should be able to obtain solutions of similar quality. The best way to describe their 
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method is that it is the result of hybridizing Reactive GRASP with VND with three different 

neighborhoods that are combined in a probabilistic fashion, where the neighborhoods consist of a 

set of compound moves that may change the node assignment of up to three clusters. In addition, 

the candidate list in the construction process includes both nodes and edges. In contrast, we 

propose a simplified GRASP implementation in which only nodes are candidates in the construction 

process and two simple neighborhoods are combined into a deterministic VND design. 

Our GRASP starts by seeding the 𝑝 clusters 𝑉1, 𝑉2, … , 𝑉𝑝 with 𝑝 randomly selected nodes. Then, we 

explore the clusters in lexicographical order assigning elements until all of them satisfy the lower 

bound constraint (i.e., until the sum of the weights of the nodes already assigned to the cluster is 

larger than or equal to 𝐿). To do so, the candidate set 𝐶𝐿 is formed with all the unassigned nodes 

and the value 𝐼(𝑖, 𝑘) is calculated for all pairs (𝑖, 𝑘) of nodes and clusters.  𝑅𝐶𝐿𝑘—that is, the 

restricted candidate list of nodes for cluster 𝑘—is formed with all nodes 𝑖 for which 𝐼(𝑖, 𝑘) is within a 

percentage 𝛼 ∈ ]0,1]  of the maximum value 𝐼𝑚𝑎𝑥 in 𝐶𝐿: 

𝑅𝐶𝐿𝑘 = {𝑖 ∈ 𝐶𝐿 ∶   𝐼(𝑖, 𝑘) ≥ 𝛼 𝐼𝑚𝑎𝑥 } where 𝐼𝑚𝑎𝑥 = max
𝑖∈𝐶𝐿

𝐼(𝑖, 𝑘) 

Our constructive method randomly selects an element in 𝑅𝐶𝐿𝑘, and performs the corresponding 

assignment. The method proceeds in this way, starting with cluster 𝑘 = 1, and assigning elements to 

it until the lower bound constraint is satisfied (𝐿 ≤ 𝑊1 where 𝑊1 = ∑ 𝑤𝑗𝑗∈𝑉1
).  Then, the process 

moves to cluster 2 and proceeds in this way until the sum of the weights of the elements assigned to 

each cluster is larger than or equal to 𝐿. 

In the following steps, the candidate set 𝐶𝐿 is formed with the pairs (𝑖, 𝑘) with unassigned nodes 𝑖 

and those clusters 𝑘 such that the sum of the weights of the elements already assigned to the cluster 

plus the weight of 𝑖 is lower than or equal to 𝑈. 

𝐶𝐿 = {(𝑖, 𝑘) ∶ 1 ≤ 𝑘 ≤ 𝑝, 𝑊𝑘 + 𝑤𝑖 ≤ 𝑈 }   where 𝑊𝑘 = ∑ 𝑤𝑗𝑗∈𝑉𝑘
 

The method proceeds to evaluate 𝐼(𝑖, 𝑘) for all (𝑖, 𝑘) in 𝐶𝐿 build 𝑅𝐶𝐿 with the (𝑖, 𝑘) pairs with an 

evaluation within a percentage 𝛼 ∈ ]0,1]  of the maximum value in 𝐶𝐿, and select one pair at 

random. It stops when all the nodes have been assigned to clusters. 

Once a solution 𝑥 is obtained, we apply our improvement method, which consists of a deterministic 

VND (Variable Neighborhood Descent) based on two neighborhoods, 𝑁0(𝑥) and 𝑁3(𝑥). The method 

determines first a best neighbor 𝑥′ of 𝑥 in 𝑁0(𝑥). If 𝑥′ is better than 𝑥, then 𝑥 is replaced with 𝑥′ and 

the method searches now for the best neighbor in 𝑁0(𝑥′), thus performing a local search in 𝑁0 while 

it improves the current solution.  When the current solution 𝑥 cannot be improved in 𝑁0, then the 

method resorts to 𝑁3 and determines the best neighbor 𝑥′ of 𝑥 in 𝑁3(𝑥).  If 𝑥′ is better than 𝑥, then 

the method comes back to search in 𝑁0(𝑥′); otherwise the VND finishes.  In short, the algorithm 

performs a local search for the best solution in 𝑁0 and only resorts to searching 𝑁3 when the process 

is trapped in a local optimum found in 𝑁0. The improvement method considers only feasible moves. 
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4. Tabu Search for the CCP 

As an alternative to the methods described in the previous sections, we engaged in the development 

of a tabu search specifically designed for the CCP. In other words, we studied the characteristics of 

the CCP and instead of adapting an existing procedure, we designed an original one. The main 

characteristic of this procedure consists of a new neighborhood structure based on 2-1 exchanges 

that we refer to as 𝑁4(𝑥). 

𝑁4(𝑥) may be considered a variant of 𝑁2(𝑥) in the sense that it explores exchanges of two nodes, 

say 𝑖 and 𝑗, belonging to the same cluster 𝑘 for a node 𝑙 that belongs to a cluster 𝑠. In this 

neighborhood, unlike in 𝑁2(𝑥), nodes 𝑖 and 𝑗 may or may not be connected. That is, 𝑁4(𝑥) does not 

require that (𝑖, 𝑗) ∈ 𝐸. The neighborhood includes moves that are contained neither in 𝑁0(𝑥) nor in 

𝑁3(𝑥). For instance, consider the following situation. 

Cluster A contains nodes 1 and 2 with weights 𝑤1 = 𝑤2 = 3 and has remaining capacity of 2 units. A 

Cluster B contains node 3 with 𝑤1 = 6 and remaining capacity of 1. Under 𝑁0(𝑥), the insertions of 

node 1 to cluster B, node 2 to cluster B and node 3 to cluster A are considered. However, none of 

these moves are feasible. Likewise, the swaps of nodes 1 with 3 and 2 with 3 under 𝑁3(𝑥) result in 

infeasible solutions. However, the 2-1 exchange that moves nodes 1 and 2 from cluster A to B and 

node 3 from cluster B to A is feasible. 

Our short-term memory tabu search based on 𝑁4(𝑥) operates as follows. All 2-1 exchanges are 

evaluated and the best move (according to the objective function value) is selected. The three nodes 

participating in the exchange are made tabu-active. In subsequent iterations, a move is classified 

tabu if it contains one or more tabu-active nodes. Nodes remain tabu-active for 𝑡𝑒𝑛𝑢𝑟𝑒 iterations. 

The tabu status of a move is waved if the exchange leads to a solution that improves upon the 

incumbent. 

5. Computational Experiments 

This section describes the computational experiments that we performed to test the effectiveness 

and efficiency of the procedures discussed above. The GRASP by Deng and Bard (2011), Prev_GRASP, 

and our adaptation to the CCP of the TS_SO originally proposed for the MDGP by Gallego et al. 

(2013), CCP_TS_SO, were implemented in Java SE 6.  Our GRASP (Section 3), simply called GRASP, 

and the TS (Section 4) for the CCP were implemented in C. All experiments were conducted on an 

Intel Core 2 Quad CPU Q 8300 with 6 GB of RAM. 

We employed 50 instances in our experimentation. This benchmark set of instances, referred to as 

CCPLIB, is available at http://www.optsicom.es/ccp. The set is divided into two subsets: 

1. RanReal — This set, originally proposed by Gallego et al. (2013) for the MDGP, consists 

of 40 𝑛 × 𝑛 matrices in which the benefit values 𝑐𝑖𝑗  are real numbers generated using a 

Uniform distribution 𝑈(0,1000). We have adapted these instances to the CCP by 

generating the node weights with a Uniform distribution 𝑈(0,10). There are 20 

instances with 𝑛 = 240, 𝑝 = 12, 𝐿 = 75, and 𝑈 = 125. The remaining 20 instances 

have 𝑛 = 480, 𝑝 = 20, 𝐿 = 100, and 𝑈 = 150. 
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2. DB — This set is based on the problem with 𝑛 = 82 and 𝑝 = 8 introduced by Deng and 

Bard (2011) in the context of mail delivery. We keep the benefit values as they appear in 

that original instances. However, instead of considering all the node weights equal to 1, 

as in Deng’s and Bard’s article, we randomly generate the node weights with a Uniform 

distribution 𝑈(0,10) and thus changing the instances from MDGP to CCP. The set 

consists of 10 instances with 𝑛 = 82, 𝑝 = 8, 𝐿 = 25, and 𝑈 = 75. 

We have selected 15 representative instances with different characteristics to perform a 

preliminary experimentation to identify effective values for critical search parameters and to 

compare different designs. Specifically, we select 6 RanReal instances with 𝑛 = 240, 6 RanReal 

instances with 𝑛 = 480, and 3 DB instances. 

In our first preliminary experiment we test four different variants of the simplified GRASP 

method for the CCP described in Section 3. In particular, we consider four different values of the 

parameter α, namely, 0.2, 0.4, 0.6, and 0.8. We generated 100 different solutions to each 

instance with each GRASP variant. Table 1 shows, for each variant, the average objective 

function value, the average percent deviation from the best solutions obtained within this 

experiment, and the number of instances in which the method is able to match the best 

solutions obtained within this experiment (out of 15 instances). These measures are “local” in 

the sense that the best solutions are those found within the experiment. They are used because 

they allow us to discriminate among the procedures being tested and identify the better 

alternatives. However, as a point of reference, Table 1 also includes the average deviation 

achieved by each variant against the best-know solutions. This is a “global” measure in the sense 

that the best-known solutions are those found across all experiments in this paper, which as far 

as we know represents the best-known published solutions. 

Additionally, Table 1 includes the Score statistic described in Ribeiro et al. (2002). For each 

problem instance in an experiment, the Score of a method is the number of methods that found 

a solution that is strictly better than the one that the method being scored found. For a set of 

instances, the Score is the sum of the individual scores. Therefore, while the overall best score in 

any experiment is zero, the worst score depends on the number of alternative procedures and 

the size of the test set. Since there are 15 instances in the test set for this experiment and 4 

different procedures (one for each value of alpha) then the worst possible score is 45 (i.e., 15 

instances times 3 competing procedures).  

Metric 
α 

0.2 0.4 0.6 0.8 

Average objective function value 233397.5 233203.9 233392.9 233226.3 

Number of best solutions 3 3 5 4 

Local average deviation 0.36% 0.44% 0.36% 0.43% 

Global average deviation 14.95% 14.91% 14.95% 14.96% 

Score (worst = 45) 24 23 19 24 

Table 1. GRASP with different values of α. 

Table 1 shows the slightly better performance (in terms of both number of best solutions and 

deviation) achieved by GRASP with the parameter α set to 0.6.  This table also shows that, in 
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general, the differences observed among these statistics related to the four variants tested are 

relatively small. This is particularly true in the deviations with respect to the overall best known 

solutions, which confirms that GRASP constructions on their own are not able to produce high 

quality solutions. The local measures, including the Score all favor the parameter setting with 

𝛼 = 0.6. 

An important question in the context of multi-start procedures in general, and GRASP in 

particular, relates to the origin of the high-quality solutions obtained after applying the 

improvement method. Specifically, we are interested in measuring the correlation between the 

objective function value of the constructed solutions and the value of the improved solutions 

(i.e., the local optima found after applying the improvement method). We would like determine 

whether high-quality local optima are related to high-quality constructions. If so, this could lead 

us to implementing filter mechanisms to save the computational time invested on attempting to 

improve somewhat poor constructions. To this end, we generated 100 solutions for each 

problem in our set of 15 representative instances (testing set) and computed the correlation 

coefficient between both the initial solution and the local optimum. The resulting correlation 

coefficient of 0.01 indicates that good local optima can come from initial solutions of any quality. 

Figure 1 shows this lack of correlation for 100 solutions of a representative instance in our test 

set.  We observe that the points are scattered in the plane without any discernible pattern. 

 

Figure 1.  Constructed and Improved values of 100 solutions 

In our second preliminary experiment we compare GRASP (with α set to 0.6) with the 

Prev_GRASP on the test set of 15 instances. We run both methods for 60 seconds on each 

instance and report the results in Table 2. 

Metric Prev_GRASP GRASP(0.6) 

Average objective function value 194109.8 233841.7 

Number of best solutions 6 9 

Local average deviation 10.99% 2.84% 

Global average deviation 20.68% 14.38% 

Score (worst = 15) 9 6 

Table 2. Comparison of GRASP methods. 
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Table 2 shows that the proposed simplified GRASP seems to perform slightly better than the one 

in the literature. GRASP(0.6) is able to match 9 out of 15 best solutions and exhibits a 2.84% 

deviation from the best solutions found within this experiment. The global average deviation 

(i.e., the one against the overall best-known solutions) of 14.38% compares well with 20.68% 

achieved by Prev_GRASP. Note that in a comparison of two methods, the Score provides the 

same information obtained by the “number of best solutions found.” Although not shown in 

Table 2, it is interesting to point out that Prev_GRASP performs better than GRASP(0.6) on the 

medium size RanReal instances (𝑛 = 240), while GRASP(0.6) outperforms Prev_GRASP on the 

large RanReal instances (𝑛 = 480).  We apply a statistical, non-parametric, test to confirm that 

both methods perform similarly. We employ the Wilcoxon test to make a pairwise comparison of 

Prev_GRASP and GRASP(0.6). The results of this test (with a 𝑝-value of 0.233) determined that 

the solutions obtained by the two methods could come from the same population. 

To finish the analysis of GRASP methods, we compare three different designs for the 

construction phase: 1) the one used in Prev_GRASP in which the candidate list 𝐶𝐿 consists of 

both, nodes and edges (N&E_GRASP), 2) one in which the 𝐶𝐿 consists of nodes (N_GRASP), and 

3) one in which the 𝐶𝐿 consists of edges (E_GRASP). To this end, we generated 100 solutions for 

each problem in our set of 15 representative instances with each of these three constructive 

methods and report, in Table 3, the results. They clearly shows the superiority of the 

conventional GRASP construction, N_GRASP, in which the next element to be included in the 

solution is a single node, instead of an edge, or either a node or an edge. 

Metric N_GRASP E_GRASP N&E_GRASP 

Average objective function value 195495.8 189815.8 181338.4 

Number of best solutions 15 0 0 

Local average deviation 0.0% 5.4% 8.7% 

Global average deviation 28.1% 32.3% 34.6% 

Score (worst = 30) 0 16 29 

Table 3. Comparison of GRASP constructive variants. 

In our fourth preliminary experiment, we test the tabu search method, TS, described in Section 

4, with several 𝑡𝑒𝑛𝑢𝑟𝑒 values. We set this parameter to 5, 10, 15, and √𝑛. Table 4 shows the 

results (i.e., average values of the five statistics) on the 15 test instances. These results show 

that the best outcomes are obtained with 𝑡𝑒𝑛𝑢𝑟𝑒 = 5 since this variant is able to achieve 8 best 

solutions and exhibits a local average percent deviation of 0.29%. 

Metric 
𝒕𝒆𝒏𝒖𝒓𝒆 

5 10 15 √𝒏 

Average objective function value 282305.3 282739.3 281972.7 281532.8 

Number of best solutions 8 4 2 1 

Local average deviation 0.29% 0.88% 2.05% 1.03% 

Global average deviation 2.40% 2.47% 3.61% 2.88% 

Score (worst = 45) 14 23 26 21 

Table 4. TS with different values of tenure. 
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In the final experiment of this block, we add to the comparison set our adaptation to the CCP of 

the tabu search developed by Gallego et al. (2013) for the MDGP. As described in Section 2, this 

method has the ability to search in the space of infeasible solutions by way of a strategic 

oscillation component. To test the merit of this feature, we have considered two variants of this 

adaptation: AdTS, without the SO, and AdTS_SO, with the oscillation. We also compare both 

methods with our TS with 𝑡𝑒𝑛𝑢𝑟𝑒 = 5. As in the previous preliminary experiments, we run each 

method for 60 seconds on each instance. The results associated with this experiment are in 

Table 5. 

Metric AdTS AdTS_SO TS 

Average objective function value 256406.2 269549.5 281203.4 

Number of best solutions 1 2 12 

Local average deviation 6.81% 2.89% 1.06% 

Global average deviation 8.02% 4.16% 2.37% 

Score (worst = 30) 26 14 6 

Table 5. Tabu search methods 

The results in Table 5 indicate that, as expected, our tabu search method specifically designed for 

the CCP obtains better solutions than the two versions adapted from the MDGP to the CCP. This 

table also shows that the strategic oscillation component (AdTS_SO) is effective when compared to 

the version without it. TS obtains 12 best solutions out of the 15 instances, while AdTS and AdTS-SO 

obtain 1 and 2, respectively. Additionally, both the local and global average deviations as well as the 

score favor TS. 

We applied the Friedman test for paired samples to the data used to generate Table 5. The resulting 

𝑝-value of 0.001 obtained in this experiment indicates that there are statistically significant 

differences among the three methods tested (we are using the typical significance level of 𝛼 = 0.05. 

as the threshold between rejecting or not the null hypothesis). A typical post-test analysis consists of 

ranking the methods under consideration by their average rank values. The result is that the TS 

method is the best with an average rank of 2.60, followed by AdTS_SO (2.10), while AdTS ranks third 

(1.30). Finally, we compare the best two methods in this experiment, TS and AdTS_SO, with the 

pairwise Wilcoxon test. The resulting 𝑝-value of 0.002 obtained confirms that the two methods are 

significantly different. 

In our final experiment we compare the best methods on the entire set of 50 instances. Specifically, 

we compare: 

 Prev_GRASP. The GRASP method by Deng and Bard (2011) described in Section 2 

 AdTS_SO. Our adaptation of the tabu search by Gallego et al. (2013) described in Section 2. 

 GRASP. Our GRASP method described in Section 3. 

 TS. Our tabu search method described in Section 4. 

 GRASP+TS. A combination of the two methods that we have developed. 
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The GRASP+TS hybrid consists of running GRASP(0.6) for half of the total running time in the 

experiment, and then, for the rest of the running time, applying TS starting from the best solution 

found by GRASP. 

Tables 6, 7, and 8, show respectively the results of the 20 RanReal instances with 𝑛 = 240, 20 

RanReal instances with 𝑛 = 480, and the 10 DB instances. We run each method for 60 seconds on 

each instance. 

Metric Prev_GRASP AdTS_SO TS GRASP GRASP+TS 

Global average deviation 9.43% 2.79% 0.15% 14.55% 0.61% 

Number of best solutions 0 0 16 0 4 

Score (worst = 200) 79 40 4 100 16 

Table 6. Comparison of best methods on the 20 RanReal instances with 𝑛 = 240 

Metric Prev_GRASP AdTS_SO TS GRASP GRASP+TS 

Global average deviation 41.78% 7.54% 1.99% 19.85% 2.07% 

Number of best solutions 0 0 10 0 10 

Score (worst = 200) 100 37 10 80 13 

Table 7. Comparison of best methods on the 20 RanReal instances with 𝑛 = 480 

Metric Prev_GRASP AdTS_SO TS GRASP GRASP+TS 

Global average deviation 0.33% 0.02% 4.52% 0.08% 0.13% 

Number of best solutions 0 6 0 2 2 

Score (worst = 200) 41 11 50 20 21 

Table 8. Comparison of best methods on the 10 DB instances 

The results in Tables 6, 7, and 8 indicate that the performance of the competing methods varies with 

the data sets. For instance, Prev_GRASP has difficulties finding solutions of reasonable quality for 

RanReal problems with 𝑛 = 480, producing a large average deviation of 41.78%. However, the same 

method performs much better on the DB set, where it obtains an average deviation of 0.33%. On the 

other hand, TS shows better performance than the other procedures in the RanReal sets but comes 

out last in the DB set. 

We apply statistical tests to the data obtained from this last experiment in order to detect 

differences among the Prev_GRASP, AdTS_SO and GRASP+TS. From our three designs, GRASP, TS 

and GRASP+TS, we chose GRASP+TS because of its better average overall performance. We first 

applied the Friedman test to test the hypothesis that there are differences among the procedures. 

The hypothesis that they are the same is rejected with a 𝑝-value lower than 0.001. The resulting 

ranking is GRASP+TS (2.74), AdTS_SO (2.19), and Prev_GRASP (1.07). We then applied the pairwise 

Wilcoxon test to GRASP+TS and AdTS_SO, with the outcome indicating a better performance of 

GRASP+TS. This conclusion is reached with a 𝑝-value lower than 0.001. 

In an attempt to understand how GRASP and TS interact within GRASP+TS, we recorded the 

objective function value of the best solution found during the search when applying GRASP+TS to 
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the first RanReal instance with 𝑛 = 240. The profile of this run is depicted in Figure 2. The plot 

shows that TS is able to provide a boost after the GRASP search stalls. 

 

Figure 2.  Search profile of GRASP+TS on the RanReal240_01 instance 

 

6. Conclusions 

The CCP is a difficult combinatorial optimization problem that is closely related to the MDGP, 

although this connection had not been previously discussed. Of particular interest in our work has 

been testing the effects of a variety of search strategies —such as those that allow the search to 

move outside the feasible region— and neighborhood structures within the GRASP framework. We 

also explored a tabu search design with a 2-1 exchange neighborhood that proved effective. Our 

work is the first one in which the experiments are performed on general instances of the CCP, that is, 

those for which the node weights are different from one. These instances and associated tests 

establish a benchmark that currently is not in the literature. 
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