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Abstract: Heuristic search procedures that aspire to find global optimal solutions to hard 
combinatorial optimization problems usually require some type of 
diversification to overcome local optimality.  One way to achieve 
diversification is to re-start the procedure from a new solution once a region 
has been explored.  In this chapter we describe the best known multi-start 
methods for solving optimization problems.  We propose a classification of 
these methods in terms of their use of randomization , memory and degree of 
rebuild.  We also present a computational comparison of these methods on 
solving the linear ordering problem in terms of solution quality and 
diversification power. 

1. INTRODUCTION 

Search methods based on local optimization that aspire to find global optima 
usually require some type of diversification to overcome local optimality.  
Without this diversification, such methods can become localized in a small 
area of the solution space, eliminating the possibility of finding a global 
optimum.  In recent years many techniques have been suggested for the 
avoidance of local optima.  One way to achieve diversification is to re-start 
the search from a new solution once a region has been extensively explored.  
Multi-Start strategies can then be used to guide the construction of new 
solutions in a long term horizon of the search process. 

 
There are some problems in which we can find that it is more effective to 

construct solutions than to apply a local search procedure.  For example, in 
constrained scheduling problems it is difficult to define neighborhoods to 
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keep feasibility whereas solutions can be relatively easily constructed.  
Therefore, Multi-Start methods provide an appropriate framework to develop 
algorithms for solving these problems. 

 
The re-start mechanism can be super-imposed on many different search 

methods.  Once a new solution has been generated, we can apply a simple 
greedy routine, slight perturbations or a complex metaheuristic to improve it.  
This chapter is focused on studying the different ways, strategies and 
methods of generating solutions to re-start a search for a global optimum. 

2. AN OVERVIEW 

Multi-Start methods have two phases: the first one in which the solution is 
generated and the second one in which the solution is typically (but not 
necessarily) improved.  Then, each global iteration produces a solution 
(usually a local optima) and the best overall is the algorithm’s output. 
 

Figure 1 shows a pseudo-code of the multi-start procedure.  A solution xi 
is constructed in Step 1 at iteration i.  This is typically performed with a 
constructive algorithm.  Step 2 is devoted to improving this solution, 
obtaining solution xi’.  A simple improvement method can be applied.  
However, this second phase has recently become more elaborate and, in 
some cases, is performed with a complex metaheuristic that may or may not 
improve the initial solution xi (in this latter case we set xi’=xi). 

 
Initialise i=1 
while(Stopping condition is not satisfied) 
{ 
 Step 1. (Generation) 
 Construct solution xi 

 Step 2. (Search) 
 Apply a search method to improve xi. 
 Let xi’ be the solution obtained 
 if( xi’ improves the best ) 
 Update the best 
  i=i+1 
} 

Figure 1.  Multi-Start procedure 

In recent years, a great number of heuristic algorithms have been 
proposed to solve some combinatorial optimization problems following the 
outline given in Figure 1.  Some of them are problem-dependent and the 
ideas and strategies implemented are difficult to apply to different problems, 
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while others are based on a framework that can be directly used to design 
solving methods for other problems.  In this section we describe the most 
relevant procedures in terms of their application to a wide variety of 
problems. 

 
Tabu Search is by now a well-known metaheuristic for solving hard 

combinatorial optimization problems.  One of the papers that contains a 
number of its foundation ideas (Glover, 1977), also includes a focus on 
applying these ideas within a framework of iterated re-starting.  Adaptive 
memory designs can be used to retain and analyze features of selected 
solutions and thus, provide a basis for improving future executions of the 
constructive process.  Different forms of memory functions, like frequency 
and recency information, are proposed to design these restarting 
mechanisms. 

 
Adaptive memory strategies introduced in this seminal paper have had 

widespread success in solving a variety of practical and difficult 
combinatorial optimization problems.  They have been adapted to many 
different fields in the combinatorial optimization theory, since the 
exploitation of such memory has been proved to be very effective in most of 
the metaheuristic methods.  Some of them are explicitly based on this 
memory structures like tabu search, while others like simulated annealing or 
re-starting methods, have evolved incorporating these ideas.  Some 
applications of probabilistic forms of re-starting based on memory functions 
are given in Rochat and Taillard (1995) and Lokketangen and Glover (1996). 

 
Early papers in multi-start methods are devoted to the Monte Carlo 

random re-start in the context of nonlinear unconstrained optimization, 
where the method simply evaluates the objective function at randomly 
generated points.  The probability of success approaches one as the sample 
size tends to infinity under very mild assumptions about objective function.  
Many algorithms have been proposed that combine the Monte Carlo method 
with local search procedures (Rinnooy Kan and Timmer, 1989).  Solis and 
Wets (1981) study convergence for random re-starts methods in which the 
probability distribution for choosing the next starting point can depend on 
the evolution of the search.  Some extensions of these methods seek to 
reduce the number of complete local searches that are performed and 
increase the probability that they are started from points close to the global 
optimum (Mayne and Meewella, 1988). 

 
Ulder et al. (1990) combines genetic algorithms with local search 

strategies improving previous genetic approaches for the travelling salesman 
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problem.  The method allows an iterative algorithm to improve each 
individual, either before or while being combined with other individuals to 
form a new solution “offspring”.   The combination of these three elements: 
Generation, Combination and Local Search , extends the paradigm of Re- 
Start and links with other areas of the metaheuristics such as Scatter Search 
(Glover et al., 2000) or Memetic Algorithms (Moscato, 1999). 

 
Hu et al. (1994) study from a theoretical point of view, the combination of 

the “gradient” algorithm with random initializations for finding a global 
optimum.  Efficacy of parallel processing, choice of the restart probability 
distribution and number of restarts are studied for both discrete and 
continuous models.  The authors show that the uniform probability is a good 
measure for restarting procedures. 

 
Boese et al. (1994) analyze relationships among local minima “from the 

perspective of the best local minimum”, finding convex structures in the cost 
surfaces.  From that study they propose a multi-start method where starting 
points for greedy descent are adaptively derived from the best previously 
found local minima.  In the first step, Adaptive Multi-Start heuristics (AMS) 
generate r random starting solutions and run a greedy descent method from 
each one to determine a set of corresponding random local minima.  In the 
second step, adaptive starting solutions are constructed based on the local 
minima obtained so far and improved with a greedy descent method.  This 
improvement is applied several times from each adaptive starting solution to 
yield corresponding adaptive local minima.  The authors test this method for 
the traveling salesman problem and obtain significant speedups over 
previous multi-start implementations.  Hagen and Kahng (1997) apply this 
method for the iterative partitioning problem. 

 
Moreno et al. (1995) proposed a stopping rule for the multi-start method 

based on a statistical study of the number of iterations needed to find the 
global optimum.  The authors introduce two random variables that provide 
together a way to estimate the number of global iterations needed to find the 
global optima: the number of initial solutions generated and the number of 
objective function evaluations performed on finding the global optima.  
From these measures, the probability that the incumbent solution is the 
global optimum is evaluated via a normal approximation.  Thus, at each 
global iteration, this value is computed and if it is greater than a prefixed 
threshold, the algorithm stops, otherwise a new solution is generated.  The 
authors illustrates these method in the median p-hub problem. 
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Simple forms of multi-start methods are often used as a way to compare 
other methods and measure their relative contribution.  Baluja (1995) 
compare different genetic algorithms for six sets of benchmark problems 
commonly found in the GA literature: Traveling salesman problem, job-shop 
scheduling, knapsack, bin packing, neural network weight optimization, and 
numerical function optimization.  The author uses the multi-start method 
(Multiple restart stochastic hill-climbing, MRSH) as a baseline in the 
computational testing.  Since solutions are represented with strings, the 
improvement step consist of a local search based on random flip of bits.  The 
results indicate that using genetic algorithms for the optimization of static 
functions does not yield a benefit, in terms of the final answer obtained, over 
simpler optimization heuristics.  Other comparisons between MRSH and 
GAs can be found, for example, in Ackley (1987) or Wattenberg and Juels 
(1994). 

 
One of the most well known Multi-start methods is the greedy adaptive 

search procedures (GRASP).  The GRASP methodology was introduced by 
Feo and Resende (1995).  It was first used to solve computationally difficult 
set covering problems (Feo and Resende, 1989).  Each GRASP iteration 
consists of constructing a trial solution and then applying a local search 
procedure to find a local optimum (i.e., the final solution for that iteration).  
The construction step is an adaptive and iterative process guided by a greedy 
evaluation function.  It is iterative because the initial solution is built 
considering one element at a time.  It is greedy because the addition of each 
element is guided by a greedy function.  It is adaptive because the element 
chosen at any iteration in a construction is a function of those previously 
chosen.  (That is, the method is adaptive in the sense of updating relevant 
information from one construction step to the next.).  At each stage, the next 
element to be added to the solution is randomly selected from a candidate list 
of high quality elements according to the evaluation function.  Once a 
solution has been obtained, it is typically improved by a local search 
procedure.  The improvement phase performs a sequence of moves towards 
a local optimum solution, which becomes the output of a complete GRASP 
iteration.  Some examples of successful applications are given in Laguna et 
al. (1994), Resende (1998) and Laguna and Martí (1999). 

 
Hickernell and Yuan (1997) present a multi-start algorithm for 

unconstrained global optimization based on quasirandom samples.  
Quasirandom samples are sets of deterministic points, as opposed to random, 
that are evenly distributed over a set.  The algorithm applies an inexpensive 
local search (steepest descent) on a set of quasirandom points to concentrate 
the sample.  The sample is reduced replacing worse points by new 
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quasirandom points.  Any point that is retained for a certain number of 
iterations is used to start an efficient complete local search.  The algorithm 
terminates when no new local minimum is found after several iterations.  An 
experimental comparison shows that the method performs favorably with 
respect to other global optimization procedures. 

 
Hagen and Kang (1997) used an adaptive multi start method for the 

partitioning optimization VLSI problem where the objective is to minimize 
the number of signals which pass between components.  The method 
consists of two phases: (1) Generate a set of random starting points and call 
the iterative (local search) algorithm, thus determining a set of local 
minimum solutions; and (2) construct adaptive starting points that are central 
from the best local minimum solutions found so far.  The authors add a 
preprocessing cluster module to reduce the size of the problem.  The 
resulting Clustering Adaptive Multi-Start method (CAMS) is fast an stable 
and improves upon previous partitioning results in the literature. 

 
Fleurent and Glover (1999) propose some adaptive memory search 

principles to enhance multi-start approaches.  The authors introduce a 
template of a constructive version of Tabu Search based on both, a set of 
elite solutions and the intensification strategies that rely on the identification 
of strongly determined and consistent variables.  Strongly determined 
variables are those whose values cannot be changed without significantly 
eroding the objective function value or disrupting the values of other 
variables.  A consistent variable is defined as one that receives a particular 
value in a significant portion of good solutions.  The authors propose the 
inclusion of memory structures within the multi-start framework as those 
used in tabu search: recency, frequency and attractiveness  Computational 
experiments for the quadratic assignment problem disclose that these 
methods improve significantly over previous multi-start methods like 
GRASP and Random Restart that do not incorporate memory based 
strategies. 

 
Multi-Start procedures usually follow the global scheme given in Figure 

1; but there are some applications in which Step 2 can be applied several 
times within a global iteration.  In the incomplete construction methods, the 
improvement phase was periodically invoked during the construction 
process to the partial solution rather than the standard implementation after 
the complete construction.  See Russell (1995) and Chiang and Russell 
(1995) for successful applications to this approach in vehicle routing. 
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Patterson et al (1999) introduce a multi-start framework (Adaptive 
Reasoning Techniques, ART) based on memory structures.  The authors 
implement the short term and long term memory functions, proposed in the 
tabu search framework, to solve the Capacitated Minimum Spanning Tree 
Problem.  ART is an iterative, constructive solution procedure that 
implements learning methodologies on top of memory structures.  ART 
derives its success from being able to learn about, and modify the behavior 
of a primary greedy heuristic.  The greedy heuristic is executed repeatedly, 
and for each new execution we probabilistically introduce constraints that 
prohibit certain solution elements from being considered by the greedy 
heuristic.  The active constraints are held in a short term memory.  A long 
term memory holds information regarding which constraints were in the 
active memory for the best set of solutions. 

 
Glover (2000) proposes approaches for creating improved forms of 

constructive multi-start and strategic oscillation methods, based on new 
search principles: persistent attractiveness and marginal conditional 
validity.  These concepts play a key role in deriving appropriate measures to 
capture information during prior search.  Applied to constructive 
neighborhoods, strategic oscillation operates by alternating constructive and 
destructive phases, where each solution generated by a constructive phase is 
dismantled (to a variable degree) by the destructive phase, after which a new 
phase builds the solution anew.  The conjunction of both phases and their 
associated memory structures provides the basis of an improved multi-start 
method. 

 
Prais and Ribeiro (2000) propose an improved GRASP implementation, 

called reactive GRASP, for a matrix decomposition problem arising in the 
context of traffic assignment in communication satellites.  The method 
incorporates a memory structure to record information about the solutions 
previously found.  In Reactive GRASP, the basic parameter which defines 
the restrictive-ness of the candidate list during the construction phase is self-
adjusted, according to the quality of the solutions previously found.  The 
proposed method matches most of the optimal solutions known. 

 
An open question in order to design a good search procedure is whether it 

is better to implement a simple improving method that allows a great number 
of global iterations or, alternatively, to apply a complex routine that 
significantly improves a few generated solutions.  A simple procedure 
depends heavily on the initial solution but a more elaborate method takes 
much more running time and therefore can only be applied a few times, thus 
reducing the sampling of the solution space.  Some metaheuristics, such as 
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GRASP, launch limited local searches from numerous constructions (i.e., 
starting points).  In most of the tabu search implementations, the search 
starts from one initial point and if a restarting procedure is also part of the 
method, it is invoked only a limited number of times.  However, the 
inclusion of re-starting strategies within the tabu search framework has been 
well documented in several papers (Glover, 1977, Glover and Laguna, 
1997). 

 
Martí et al. (2000) study the balance between restarting and search-depth 

(i.e., the time spent searching from a single starting point) in the context of 
the bandwidth matrix problem.  They tested both alternatives and concluded 
that it was better to invest the time searching from a few starting points than 
restarting the search more often.  Although we cannot draw a general 
conclusion from these experiments, the experience in the current context and 
in previous projects indicates that some metaheuristics like tabu search need 
to reach a critical search depth to be effective.  If this search depth is not 
reached, the effectiveness of the method is severely compromised. 

3. A CLASSIFICATION 

We have found three key elements in multi-start methods that can be used 
for classification purposes: memory, randomization and degree of rebuild.  
The choices for each one of these elements are not restricted to the extreme 
case of “present” or “not present”, but they represent the whole range 
between both extremes that can be labeled as Memory/Memory-less, 
Systematic/Randomized and Rebuild/Build from scratch, respectively. 

 
The first element is the Memory and it is used to identify elements that 

are common to good solutions previously generated.  As in the Tabu Search 
framework (Glover and Laguna, 1997), it provides a foundation for 
incentive-based learning, where inducements are provided to reinforce 
actions that lead to good solutions.  Thus, instead of simply resorting to 
randomized re-starting processes, in which current decisions derive no 
benefit from knowledge accumulated during prior search, specific types of 
information are identified for exploiting history.  On the other hand, the 
avoidance of memory (Memory-less) is not as unreasonable as might be 
imagined since the construction of “unconnected” solutions may be 
interpreted as a means of strategically sampling the solution space.  It should 
be noted that the meaning of good is not restricted to the objective function, 
but also includes the notion of diversity as described later. 
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Starting solutions can be randomly generated or, on the contrary, they 
can be generated in a systematic way.  Randomization is a very simple way 
of achieving diversification, but with no control over the diversity achieved 
since in some cases we can obtain very similar solutions.  We can add some 
mechanisms to control the similarities in order to discard some solutions or 
generate the solutions in a deterministic way that guarantees a certain degree 
of difference.  The extremes of this element can be described as Randomized 
where solutions are generated in a random way and Systematic where 
solutions are generated in a deterministic way.  Between both extremes there 
are a great number of possibilities for combining random elements with 
deterministic rules.  GRASP constructions is an example of a combined 
method. 

 
The Degree of Rebuild indicates the elements that remain fixed from 

one generation to another.  Most applications build from scratch the solution 
at each generation, but recent implementations have fixed, for a certain 
number of iterations, some elements in the construction process that have 
appeared in previously generated solutions.  Such an approach was proposed 
in the context of identifying and then iteratively exploiting ‘strongly 
determined and consistent variables’ in Glover (1977).  This selective fixing 
of elements by reference to their previous impact and frequency of 
occurrence in various solution classes is a memory-based strategy of the type 
commonly used in tabu search.  It can also be considered as an instance of 
Path Relinking (Glover and Laguna, 1993) that generates new solutions by 
exploring trajectories that connect high-quality solutions.  This approach 
seeks to incorporate the attributes of elite solutions previously generated by 
creating inducements to favor these attributes in the solutions.  In an extreme 
case all the elements in the new solution will be fixed by the information 
generated from the set of elite solutions considered.  This is labeled as 
Rebuild. 

 
The constructive algorithm depicted in Figure 2 has no memory 

structures, a combination between randomization and systematic 
construction rules and, at each iteration, the solution is completely built from 
scratch. 
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Figure 2. Multi-Start classification 

Given different re-starting methods for a problem, one way of comparing 
them is to generate a set of solutions with each one and compare their quality 
and diversity.  Since the quality is trivially measured by the objective 
function, we now propose two measures of diversity.  We restrict our 
attention to solutions represented by permutations. 

3.1 Diversity Measures 

The first measure consists of computing the distances between each solution 
and a “center” of the set of solutions P.  The sum (or alternatively the 
average) of these |P| distances provides a measure of the diversity of P.  The 
second one consists of computing the distance between each pair of solutions 
in P.  The sum of these |P x P| distances provides another way of measuring 
the diversity of P. 

 
The first diversity measure is calculated as follows: 

1. Calculate the median position of each element i in the solutions in P. 
2. Calculate the dissimilarity of each solution in the population with respect 

to the median solution.  The dissimilarity is calculated as the sum of the 
absolute difference between the position of the elements in the solution 
under consideration and the median solution. 

3. Calculate d as the sum of all the individual dissimilarities. 
 
To illustrate, suppose that P consists of the following three orderings: 

(A,B,C,D), (B,D,C,A), (C,B,A,D).  The median position of element A is 
therefore 3, since it occupies positions 1, 3 and 4 in the given orderings.  In 
the same way, the median positions of B, C and D are 2, 3 and 4, 

Systematic 

Memory 

Rebuild 

Memory less 

Build from scratch 

Randomized 

Constructive Method 
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respectively.  Note that the median positions might not induce an ordering, 
as in the case of this example.  The dissimilarity of the first solution is then 
calculated as follows: 

 
d1 = |1-3| + |2-2| + |3-3| + |4-4| = 2. 
 
In the same way, the dissimilarities of the other two solutions are d2 = 4 

and d3 = 2.  The diversity measure of P is then given by d = 2+4+2 = 8. 
 
The second measure is calculated, for each pair of solutions in P, as the 

sum of the absolute differences between the positions of each element in 
both solutions.  The sum of these |P x P| values provides the measure of the 
diversity of the set P.  The value with solutions (A,B,C,D) and (B,D,C,A) in 
the previous example is computed as follows: 

 
d’12 = |1-4| + |2-1| + |3-3| + |4-2| = 6. 
 
In the same way, the values of the other three pairs of solutions are d’13 = 

4 and d’23 = 6.  The diversity measure of P is then given by d’ = 6+4+6 = 16. 
 
We have found computationally that both measures are strongly 

correlated and provide the same information.  Since the second measure is 
computationally more expensive than the first, we will use the first one in 
the following experiments. 

 
It should be noted that a third measure could be added to evaluate a set of 

solutions.  The notion of influence introduced by Glover (1990) in the 
context of Tabu Search, can be adapted to our study.  The influence 
considers the potential and the structure of a solution in the search process.  
The authors propose memory functions that classify moves relative to their 
attractiveness within “distance classes” and other measures of their impact.  
Consider, for example, two solutions a and b with the same objective and 
diversity values, but a is close to a local optimum with a better objective 
function value than a and b, while b is itself a local optimum.  Consequently, 
we probably obtain a better solution with a search from a rather than from b.  
Therefore it is more valuable to have a than b in the set of solutions since it 
has more influence in the search for the global optimum.  Obviously we do 
not know a priori if a given solution is closer to a local optimum than 
another, but if we identify some properties of good solutions we will be able 
to define evaluators and measures to reflect the “importance” or influence of 
the solutions.  Good starting points for this study are given by the solution 
structure, landscape and neighborhood induced by the local search method. 
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4. COMPUTATIONAL EXPERIMENTS 

The linear ordering problem (LOP) has generated a considerable amount of 
research interest over the years, as documented in Grotschel, et al. (1984) 
and Campos et al. (1999).  Because of its practical and theoretical relevance, 
we use this problem as a test case for re-start mechanisms. 

 
Given a matrix of weights E = { eij }m�m, the LOP consists of finding a 

permutation p of the columns (and rows) in order to maximize the sum of the 
weights in the upper triangle.  In mathematical terms, we seek to maximize: 
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where p(i) is the index of the column (and row) in position i in the 
permutation.  Note that in the LOP, the permutation p provides the ordering 
of both the columns and the rows.  The equivalent problem in graphs 
consists of finding, in a complete weighted graph, an acyclic tournament 
with a maximal sum of arc weights (Reinelt, 1985).  

 
Instances of input-output tables from sectors in the European Economy 

can be found in the public-domain library LOLIB (1997).  We employ these 
problem instances to compare different restarting methods. 

 
We have tested 10 re-starting generation methods.  Six of these methods 

are based on GRASP (Feo and Resende, 1995) constructions with a greedy 
function that selects sectors based on a measure of attractiveness.  

 
G1. A GRASP construction where the attractiveness of a row is the sum 

of the elements in its corresponding row.  The method randomly selects from 
a short list of the most attractive sectors and constructs the solution starting 
from the first position of the permutation. 

 
G2. A GRASP construction where the attractiveness of a sector is the 

sum of the elements in its corresponding column.  The method randomly 
selects from a short list of the most attractive sectors and constructs the 
solution starting from the first position of the permutation. 

 
G3. A GRASP construction where the attractiveness of a sector is the 

sum of the elements in its corresponding row divided by the sum of the 
elements in its corresponding column.  The method randomly selects from a 
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short list of the most attractive sectors and constructs the solution starting 
from the first position of the permutation. 

 
G4, G5 and G6.  These methods are identical to the first three, except that 

the selection of sectors is from a short list of the least attractive and the 
solution is constructed starting from the last position of the permutation. 

 
MIX. A mixed procedure derived from the previous six.  The procedure 

generates an even number of solutions from each of the previous six 
methods and combines these solutions into a single set.  That is, if n 
solutions are required, then each method Gi (for i = 1, …, 6) contributes with 
n/6 solutions. 

 
RND. A random generator.  This method simply generates random 

permutations. 
 
DG.  A general purpose diversification generator suggested in Glover 

(1998) which generates diversified permutations in a systematic way without 
reference to the objective function. 

 
FQ. A method using frequency-based memory, as proposed in Tabu 

Search (Glover and Laguna, 1997).  This method is based on modifying a 
measure of attractiveness with a frequency measure that discourages sectors 
from occupying positions that they have frequently occupied in previous 
solution generations.  See Campos et al. (1999) for a description of the 
method. 

 
In our first experiment we use the instance stabu3 from the LOLIB.  We 

have generated a set of N=100 solutions with each of the 10 generation 
methods.  Figures 3 and 4 show the box and whiskers plot of the objective 
function value and dissimilarity, respectively, of the solution set obtained 
with each method. 
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Figure 3. Objective function value box plot for each method 
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Figure 4. Dissimilarity box plot for each method 

With both diagrams together (Figures 3 and 4) we can observe the 
performance of the 10 generators on the problem stabu3.  We have repeated 
the same experiments on 10 other problems from the LOLIB, obtaining 
similar diagrams. 

 
A good re-starting method must produce a set of solutions with high 

quality and high diversity.  If we compare, for example, generators MIX and 
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G3 we observe in Figure 3 that G3 produces slightly better solutions in terms 
of solution quality, but Figure 4 shows that MIX outperforms G3 in terms of 
diversity.  Therefore, we will probably select MIX as a better method than 
G3. 

 
In order to rank the methods we have computed the average of both 

measures across each set.  Figure 5 shows in the x-axis the average of the 
dissimilarity and in the y-axis the average of the quality.  A point is plotted 
for each method. 

 

 

Figure 5. Quality and Dissimilarity for each method 

As expected, the random generator (RND) produces the maximum 
diversity (as measured by the dissimilarity value).  DG matches the diversity 
of RND using a systematic approach instead of randomness.  The mixed 
method MIX provides a good balance between dissimilarity and quality, by 
the union of solutions generated with methods G1 to G6. 

 
We have standardized both averages in order to directly compare them.  

We think that quality and diversity have the same importance, so we have 
added both relative averages, obtaining the following ranking where the  
overall best is the FQ generator: 
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G5, G4, G2, G1, DG, RND, G6, G3, MIX and FQ. 
 
This results are in line with previous works where the inclusion of 

memory structures has been shown to be effective within the multi-start 
framework.  However, it should be noted that this ranking of methods has 
been obtained considering both measures, quality and diversity, with equal 
weight.  If we vary this criterion, the ranking would also change. 

5. CONCLUSIONS 

The objective of this study has been to expand and advance the 
knowledge associated with the implementation of multi-start procedures.  
Unlike other well-known methods, it has not yet become widely 
implemented and tested as a metaheuristic itself for solving complex 
optimization problems.  We have shown new ideas that have recently 
emerged within the multi-start area that add a clear potential to this 
framework which has yet to be fully explored. 
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