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Abstract Heuristic search procedures aimed at finding globally optimal solutions to
hard combinatorial optimization problems usually require some type of diversifica-
tion to overcome local optimality. One way to achieve diversification is to re-start
the procedure from a new solution once a region has been explored, which consti-
tutes a multi-start procedure. In this chapter we describe the best known multi-start
methods for solving optimization problems. We also describe their connections with
other metaheuristic methodologies. We propose classifying these methods in terms
of their use of randomization, memory and degree of rebuild. We also present a com-
putational comparison of these methods on solving the Maximum Diversity Problem
to illustrate the efficiency of the multi-start methodology in terms of solution quality
and diversification power.
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1 Introduction

Metaheuristics are high level solution methods that provide guidelines to design and
integrate subordinate heuristics to solve optimization problems. These high level
methods characteristically focus on strategies to escape from local optima and per-
form a robust search of a solution space. Most of them are based, at least partially,
on a neighborhood search, and the degree to which neighborhoods are exploited
varies according to the type of method.

Multi-start procedures were originally conceived as a way to exploit a local or
neighborhood search procedure, by simply applying it from multiple random initial
solutions. It is well known that search methods based on local optimization that
are aimed at finding global optima usually require some type of diversification to
overcome local optimality. Without this diversification, such methods can become
reduced to tracing paths that are confined to a small area of the solution space,
making it impossible to find a global optimum. Multi-start methods, appropriately
designed, incorporate a powerful form of diversification.

For some problems, construction procedures are more effective than neighbor-
hood based procedures. For example, in constrained scheduling problems it is diffi-
cult to define neighborhoods (i.e., structures that allow transitions from a given solu-
tion to so-called adjacent solutions) that maintain feasibility, whereas solutions can
be created relatively easily by an appropriate construction process. Something simi-
lar happens in simulation-optimization where the model treats the objective-function
evaluation as a black box, making the search algorithm context-independent. In
these problems the generation of solutions by stepwise constructions, according
to information recorded during the search process, is more efficient than the ex-
ploration of solutions in the neighborhood of a given solution since the evaluation
requires a simulation process that is usually very time-consuming. Therefore, Multi-
start methods provide an appropriate framework within which to develop algorithms
to solve combinatorial optimization problems.

The re-start mechanism of multi-start methods can be superimposed on many dif-
ferent search methods. Once a new solution has been generated, a variety of options
can be used to improve it, ranging from a simple greedy routine to a complex meta-
heuristic. This chapter focuses on the different strategies and methods for generating
solutions to launch a succession of new searches for a global optimum. We illustrate
the efficiency of the multi-start methodology with a computational comparison of
different methods on solving the Maximum Diversity Problem. This chapter com-
plements a recent survey [44] devoted to multi-start methods in the context of com-
binatorial optimization. In particular, the survey sketches historical developments
that have motivated these methods and focuses on several contributions that defined
the state-of-the-art of the field in 2013.
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2 An Overview

Multi-start methods have two phases: the first one in which the solution is generated
and the second one in which the solution is typically (but not necessarily) improved.
Then, each global iteration produces a solution (usually a local optima) and the best
overall is the algorithm’s output.

In recent years, many heuristic algorithms have been proposed to solve some
combinatorial optimization problems. Some of them are problem-dependent and
the ideas and strategies implemented are difficult to apply to different problems,
while others are based on a framework that can be used directly to design solving
methods for other problems. In this section we describe the most relevant procedures
in terms of applying them to a wide variety of problems. We pay special attention
to the adaptation of memory structures to multi-start methods.

The explicit use of memory structures constitutes the core of a large number
of intelligent solving methods. They include tabu search [16], scatter search [35],
iterated-based methods [40], evolutionary path relinking [56], and some hybridiza-
tions of multi-start procedures. These methods focus on exploiting a set of strategic
memory designs. Tabu search (TS), the metaheuristic that launched this perspective,
is the source of the term Adaptive Memory Programming (AMP) to describe meth-
ods that use advanced memory strategies (and hence learning, in a non-trivial sense)
to guide a search.

In the following subsections we trace some of the more salient contributions to
multi-start methods of the past two decades (though the origins of the methods go
back somewhat farther). We have grouped them according to four categories: mem-
ory based designs (Subsection 2.1), GRASP (subsection 2.2), theoretical analysis
(Subsection 2.5), constructive designs (Subsection 2.3) and hybrid designs (Sub-
section 2.4). Based on the analysis of these methods, we propose a classification of
multi-start procedures (Section 3) in which the use of memory plays a central role.

2.1 Memory based designs

Many papers on multi-start methods that appeared before the mid-90s do not use ex-
plicit memory, as notably exemplified by the Monte Carlo random re-start approach
in the context of nonlinear unconstrained optimization. Here, the method simply
evaluates the objective function at randomly generated points. The probability of
success approaches one as the sample size tends to infinity under very mild assump-
tions about the objective function. Many algorithms have been proposed that com-
bine the Monte Carlo method with local search procedures [57]. The convergence
for random re-start methods is studied in [62], where the probability distribution
used to choose the next starting point can depend on how the search evolves. Some
extensions of these methods seek to reduce the number of complete local searches
that are performed and increase the probability that they start from points close to
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the global optimum [45]. More advanced probabilistic forms of re-starting based on
memory functions were subsequently developed in [58, 38].

Fleurent and Glover [13] propose some adaptive memory search principles to
enhance multi-start approaches. The authors introduce a template of a constructive
version of Tabu Search using both a set of elite solutions and intensification strate-
gies based on identifying strongly determined and consistent variables. Strongly de-
termined variables are those whose values cannot be changed without significantly
eroding the objective function value or disrupting the values of other variables. A
consistent variable is defined as one that receives a particular value in a significant
portion of good solutions. The authors propose the inclusion of memory structures
within the multi-start framework as it is done with tabu search. Computational ex-
periments for the quadratic assignment problem show that these methods improve
significantly over previous multi-start methods like GRASP and random restart that
do not incorporate memory based strategies.

Patterson et al. [51] introduce a multi-start framework (Adaptive Reasoning
Techniques, ART) based on memory structures. The authors implement the short
term and long term memory functions, proposed in the Tabu Search framework,
to solve the Capacitated Minimum Spanning Tree Problem. ART is an iterative,
constructive solution procedure that implements learning methodologies on top of
memory structures. ART derives its success from being able to learn about, and
modify the behavior of a primary greedy heuristic. The greedy heuristic is executed
repeatedly, and for each new execution, constraints that prohibit certain solution
elements from being considered by the greedy heuristic are probabilistically intro-
duced. The active constraints are held in a short term memory. A long term memory
holds information regarding the constraints that were in the active memory for the
best set of solutions.

Glover [17] proposes approaches for creating improved forms of constructive
multi-start and strategic oscillation methods, based on new search principles: per-
sistent attractiveness and marginal conditional validity. These concepts play a key
role in deriving appropriate measures to capture information during prior search.
Applied to constructive neighborhoods, strategic oscillation operates by alternating
constructive and destructive phases, where each solution generated by a constructive
phase is dismantled (to a variable degree) by the destructive phase, after which a new
phase builds the solution anew. The conjunction of both phases and their associated
memory structures provides the basis for an improved multi-start method.

The principle of persistent attractiveness says that good choices derive from
making decisions that have often appeared attractive, but that have not previously
been made within a particular region of the search space. That is, persistent attrac-
tiveness also carries with it the connotation of persistently unselected (i.e., not se-
lected in many trials) within a specific domain or interval. The principle of marginal
conditional validity specifies that the problem becomes more restricted as more and
more decisions are made. Consequently, as the search progresses future decisions
face less complexity and less ambiguity about which choices are likely to be prefer-
able. Therefore, early decisions are more likely to be bad ones or at least to look
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better than they should, once later decisions are made. Specific strategies for ex-
ploiting these concepts and their underlying principles are given in [17].

Scatter Search and Path-Relinking [23] are effective methodologies to solve a
great diversity of optimization problems. These methods differ from other evolu-
tionary procedures, such as genetic algorithms, in their approach to combine solu-
tions based on path construction. (both in Euclidean spaces and in neighborhood
spaces). In the context of Scatter Search, Laguna and Martı́ [34] discuss the de-
velopment and application of the OptQuest system. Using this library, Ugray et al.
[67] develop the algorithm called OQNLP to find global optimal for pure and mixed
integer non-linear problems, where all the functions are differentiable with respect
to continuous variables. It uses OptQuest to generate candidate starting points for a
local NLP solver as a kind of multi-start algorithm. Additionally, the authors show
in [66] that OQNLP is a promising approach to NLP smooth nonconvex problems
with continuous variables. Later, Lasdon and Plummer [37] describe modifications
to OptQuest/NLP and Multistart-NLP for global optimization, which allow them to
find feasible solutions to a system of nonlinear constraints more efficiently. Modifi-
cations include the replacement of the penalty function used to measure the good-
ness of an initial point by the sum of infeasibilities and ending the search when a
feasible solution is found.

Beausoleil at al. [3] consider a multi-objective combinatorial optimization prob-
lem called Extended Knapsack Problem. By applying multi-start search and path
relinking their solving method rapidly guides the search toward the most balanced
zone of the Pareto-optimal front (the zone in which all the objectives are equally
important). Through the Pareto relation, a subset of the best generated solutions
is designated as the current efficient set of solutions. A max-min criterion applied
to the Hamming distance is used as a measure of dissimilarity in order to find di-
verse solutions to be combined. The performance of this approach is compared with
several state-of-the-art Multi-Objective Evolutionary Algorithms on a suite of test
problems taken from the literature.

Considering the problem of finding global optima for restricted multimodal func-
tions, Lasdon et al. [36] present some multi-start methods based on the adaptive
memory programming (AMP) structure, which involves memory structures that can
be superimposed to a local optimizer, to guide the search for initial points when
solving global optimization problems. The first approach is based on a tabu tunnel-
ing strategy and the second one on a pseudo-cut strategy. Both are designed to avoid
being trapped in local optima.

Since we cannot refer here to all the previous developments in this area, and
we limit ourselves to a few significant examples. For instance, there is a recent ap-
plication in the context of mobile network design [64]. The problem of assigning
network elements to controllers when defining network structure can be modeled as
a graph partitioning problem. Accordingly, a comprehensive analysis of a sophis-
ticated graph partitioning algorithm for grouping base stations into packet control
units for a mobile network is presented. The proposed algorithm combines multi-
level and adaptive multi-start schemes to obtain high quality solutions efficiently.
Performance assessment is carried out on a set of problem instances built from mea-
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surements in a live network. The overall results confirm that the proposed algorithm
finds solutions better than those obtained by classical multi-level approaches and
much faster than classical multistart approaches. The analysis shows that the best
local minima share strong similarities, which explains the superiority of adaptive
multi-start approaches

2.2 GRASP

One of the most well known Multi-start methods is the Greedy Adaptive Search Pro-
cedures (GRASP), which was introduced by Feo and Resende [11]. It was first used
to solve set covering problems [10]. Each GRASP iteration consists of constructing
a trial solution and then applying a local search procedure to find a local optimum
(i.e., the final solution for that iteration). The construction step is an adaptive and
iterative process guided by a greedy evaluation function. It is iterative because the
initial solution is built considering one element at a time. It is greedy because the
addition of each element is guided by a greedy function. It is adaptive because the
element chosen at any iteration in a construction is a function of previously chosen
elements. (That is, the method is adaptive in the sense of updating relevant infor-
mation from one construction step to the next.). At each stage, the next element to
be added to the solution is randomly selected from a candidate list of high quality
elements according to the evaluation function. Once a solution has been obtained,
it is typically improved by a local search procedure. The improvement phase per-
forms a sequence of moves towards a local optimum, which becomes the output of
a complete GRASP iteration. Some examples of successful applications are given
in [32, 54, 33]. Recently, Festa and Resende [12] present an overview of GRASP,
describing its basic components and enhancements to the basic procedure, including
reactive GRASP and intensification strategies.

Laguna and Martı́ [33] introduce Path Relinking within GRASP as a way to im-
prove Multi-start methods. Path Relinking has been suggested as an approach to
integrate intensification and diversification strategies in the context of tabu search
[22]. This approach generates new solutions by exploring trajectories that connect
high-quality solutions. It starts from one of these solutions and generates a path in
the neighborhood space that leads toward the other solutions. This is accomplished
by selecting moves that introduce attributes contained in the guiding solutions. Re-
linking in the context of GRASP consists of finding a path between a solution found
after an improvement phase and a chosen elite solution. Therefore, the relinking
concept has a different interpretation within GRASP, since the solutions found from
one iteration to the next are not originally linked by a sequence of moves (as in tabu
search), they are then linked for the first time when this process is applied. The pro-
posed strategy can be applied to any method that produces a sequence of solutions;
specifically, it can be used in any multi-start procedure. Based on these ideas, [4]
proposed the Greedy Randomized Adaptive Path Relinking. Many different designs
named Evolutionary Path Relinking have also been studied in [55].
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Prais and Ribeiro [52] propose an improved GRASP implementation, called re-
active GRASP, for a matrix decomposition problem arising in the context of traffic
assignment in communication satellites. The method incorporates a memory struc-
ture to record information about previously found solutions. In Reactive GRASP,
the basic parameter which restricts the candidate list during the construction phase
is self-adjusted, according to the quality of the previously found solutions. The pro-
posed method matches most of the best solutions known.

Morillo et al. [48] propose a new design of the GRASP for solving the latency-
aware partitioning problem in Distributed Virtual Environments (DVE systems)
called M-GRASP or GRASP with memory. The idea is to start from scratch and
to design a specific GRASP that can be implemented in parallel and can provide a
feasible solution for the considered problem at any iteration, in such a way that it
can be adapted to any time constraint. Since each iteration in GRASP consists of a
constructive phase and a local search phase, they propose different alternatives for
each phase, evaluating the performance obtained with each alternative. Additionally,
they enhance this basic approach with some intensification strategies, selecting the
option with the best performance as the proposed final implementation.

Ribeiro and Resende [56] compare the run time distributions of GRASP with and
without path-relinking implementations for four different applications: three-index
assignment, maximum satisfiability, bandwidth packing, and quadratic assignment.
In all cases the plots show that GRASP with path relinking performs better (found-
ing target solutions faster ) than the memoryless basic algorithm.

Glover [19] introduces a new design for a framework that links iterated neigh-
borhood search methods and iterated constructive methods by exploiting the notions
of conditional influence within a strategic oscillation framework. These approaches,
which are unified within a class of methods called multi-wave algorithms, exploit
memory-based strategies that draw on the concept of persistent attractiveness. These
algorithms provide new forms of both neighborhood search methods and multi-start
methods and are readily embodied within evolutionary algorithms and memetic al-
gorithms by solution combination mechanisms derived from path relinking.

In 2007, Hirsch [27] proposed an adaptation of GRASP for continuous global
optimization called continuous GRASP (C-GRASP), which was shown to perform
well on a set of multimodal test functions, as well as on real-world applications.
C-GRASP is a stochastic local search metaheuristic for finding cost-efficient solu-
tions to continuous global optimization problems subject to box constraints. Like
GRASP, C-GRASP is a multi-start procedure where a starting solution for local
improvement is constructed in a greedy randomized fashion. In 2010 Hirsch et al.
[26] described several improvements to speed up the original C-GRASP and make
it more robust. The authors compare the new C-GRASP with the original version
as well as with other algorithms from the recent literature on a set of benchmark
multimodal test functions whose global minima are known. A sequential stopping
rule is implemented and C-GRASP is shown to converge.

De Santis et al. [8] recently propose a variant of the GRASP framework that
uses a nonmonotone strategy to explore the neighborhood of the current solution.
Inspired by an idea proposed for Newton’s method, this approach controls uphill
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moves without using a tabu list but rather by maintaining a number of previously
computed objective function values. A new solution is accepted if its function value
improves the worst value in the set. The authors formally state the convergence of
the nonmonotone local search to a locally optimal solution and illustrate the effec-
tiveness of the resulting Nonmonotone GRASP on three classical hard combinato-
rial optimization problems: the maximum cut problem (MAX-CUT), the weighted
maximum satisfiability problem (MAX-SAT), and the quadratic assignment prob-
lem (QAP).

2.3 Constructive designs

Multi-start procedures usually follow a global scheme in which generation and im-
provement alternate for a certain number of iterations. Note that there are some
applications in which the improvement can be applied several times within a global
iteration. In the incomplete construction methods, the improvement phase is peri-
odically invoked during the construction process of the partial solution rather than
after the complete construction, as it is usually done (see [59, 7] for successful ap-
plications of this approach in vehicle routing).

Hickernell and Yuan [25] present a multi-start algorithm for unconstrained global
optimization based on quasirandom samples. Quasirandom samples are sets of de-
terministic points, as opposed to random points, that are evenly distributed over a
set. The algorithm applies an inexpensive local search (steepest descent) on a set
of quasirandom points to concentrate the sample. Then, the sample is reduced by
replacing worse points with new quasirandom points. Any point that is retained for
a certain number of iterations is used to start an efficient complete local search. The
algorithm terminates when no new local minimum is found after several iterations.
An experimental comparison shows that the method performs favorably with respect
to other global optimization procedures.

Hagen and Kahng [24] implement an adaptive multi start method for a VLSI
partitioning optimization problem where the objective is to minimize the number of
signals sent between components. The method consists of two phases: (1) generate
a set of random starting points and perform the iterative (local search) algorithm
on each point, thus producing a set of local minima; and (2) construct adaptive
starting points derived from the best local minima found so far. The authors add
a preprocessing cluster module to reduce the size of the problem. The resulting
Clustering Adaptive Multi Start method (CAMS) is fast and stable and improves
upon previous partitioning results reported in the literature.

Tu and Mayne [65] describe a multi-start approach with a clustering strategy
for constrained optimization problems. It exploits the characteristics of non-linear
constrained global optimization problems by extending a strategy previously tested
on unconstrained problems. In this study, variations of multi-start with clustering
are considered including a simulated annealing procedure for sampling the design
domain and a quadratic programming (QP) sub-problem for cluster formation. The



Intelligent Multi-Start Methods 9

strategies are evaluated by solving 18 non-linear mathematical problems and six
engineering design problems. Numerical results show that the solution of a one-step
QP sub-problem helps predict possible basins of attraction of local minima and can
enhance robustness and effectiveness in identifying local minima without sacrificing
efficiency. In comparison with other multi-start techniques, the strategies proposed
in this study are superior in terms of the number of local searches performed, the
number of minima found and the number of function evaluations required.

Bronmo et al. [6] present a multi-start local search heuristic for a typical ship
scheduling problem. Their method generates a large number of initial solutions
with a randomized insertion heuristic. The best initial solutions are improved with
a quick local search heuristic coupled with an extended version. The quick local
search is used to improve a given number of the best initial solutions. The extended
local search heuristic then further improves some of the best solutions found. The
multi-start local search heuristic is compared with an optimization-based solution
approach with respect to computation time and solution quality. The computational
study shows that the multi-start local search method consistently returns optimal or
near-optimal solutions to real-life instances of the ship scheduling problem within a
reasonable amount of CPU time.

In 2013, Glover [18] introduces advanced greedy algorithms and applies them on
knapsack and covering problems with linear and quadratic objective functions. Be-
ginning with single-constraint problems, he provides extensions for multiple knap-
sack and covering problems, where the elements should be assigned to different
knapsacks and covers. For multi-constraint knapsack and covering problems, the
constraints are exploited using surrogate constraint strategies. Also, he introduces a
progressive probe strategy for improving the selection of variables that should be as-
signed a value. The author describes ways to utilize these algorithms with multi-start
and strategic oscillation metaheuristics. He also identifies how surrogate constraints
can be employed to produce inequalities that dominate those previously used in the
best linear programming methods for multi-constraint knapsack problems. These al-
gorithms are often embedded within constructive processes used in multi-start meta-
heuristics and also within linked constructive and destructive processes in strategic
oscillation metaheuristics.

Talarico et al. [63] develop and combine four constructive heuristics, as well as a
local search composed of six operators to solve a variant of the capacitated vehicle
routing problem. The initial solution obtained with one of the four construction
heuristics serves as input for the local search. The construction heuristics and the
local search are embedded in two different global metaheuristic structures: a multi-
start and a perturb-and-improve (or perturbation) structure. The multi-start structure
repeats both the construction phase and the local search phase a number of times.
The perturbation structure only uses the construction heuristic once, and restarts the
local search block from a perturbed solution. The resulting metaheuristics are able
to obtain solutions of excellent quality in very limited computing times.

Luis et al. [41] investigate a multi-start constructive heuristic algorithm based on
the furthest distance rule and a concept of restricted regions is developed to tackle
a variant of the classical multi-source location-allocation problem in the presence
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of capacity restrictions. The classical problem assumes that the number of facilities
is known in advance, whereas in practice, determining the number of facilities is a
decision factor. This new approach determines the number of facilities minimizing
the total sum of fixed and variable costs in accordance with finding the best trade-off
between customer demand and opening of new facilities. The proposed method is
assessed using benchmark data sets from the literature.

2.4 Hybrid designs

Ulder et al. [68] combine genetic algorithms with local search strategies to improve
previous genetic approaches for the travelling salesman problem. They apply an it-
erative algorithm to improve each individual, either before or while being combined
with other individuals to form a new solution (offspring). The combination of these
three elements: Generation, Combination and Local Search, extends the paradigm
of Re-Start and establishes links with other metaheuristics such as Scatter Search
[17] or Memetic Algorithms [49].

Mezmaz et al. [46] hybridize the multi-start framework with a model in which
several evolutionary algorithms run simultaneously and cooperate to compute bet-
ter solutions (called island model). They propose a solving method in the context
of multi-objective optimization on a computational grid. The authors point out that
although the combination of these two models usually provides very effective par-
allel algorithms, experiments on large-size problem instances must often be stopped
before convergence. The full exploitation of the cooperation model needs a large
amount of computational resources and the management of fault tolerance issues.
In this paper, a grid-based fault-tolerant approach for these models and their imple-
mentation on the XtremWeb grid middleware is proposed. The approach has been
tested on the bi-objective Flow-Shop problem on a computational grid made of 321
heterogeneous Linux PCs within a multi-domain education network. The prelimi-
nary results, obtained after an execution time of several days, demonstrate that the
use of grid computing effectively and efficiently exploits the two parallel models
and their combination for solving challenging optimization problems. In particu-
lar, the effectiveness is improved by over 60 percent when compared with a serial
meta-heuristic.

An open question about the design of a good search procedure is whether it is bet-
ter to implement a simple improving method that allows a large number of global
iterations or, alternatively, to apply a complex routine that significantly improves
a few generated solutions. A simple procedure depends heavily on the initial so-
lution but a more elaborate method takes much more running time and therefore
can only be applied a few times, thus reducing the sampling of the solution space.
Some metaheuristics, such as GRASP, launch limited local searches from numer-
ous constructions (i.e., starting points). In most tabu search implementations, the
search starts from one initial point and if a restarting procedure is also part of the
method, it is invoked only a limited number of times. However, the inclusion of re-
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starting strategies within the Tabu Search framework has been well documented in
several papers (see for example [15, 22]). In [43] the balance between restarting and
search-depth (i.e., the time spent searching from a single starting point) is studied
in the context of the Bandwidth Matrix Problem. The authors tested both alterna-
tives and concluded that it was better to invest the CPU time to search from a few
starting points than re-starting the search more often. Although we cannot draw a
general conclusion from these experiments, the experience gained in this work and
in previous research indicates that some metaheuristics, like Tabu Search, need to
reach a critical search depth to be effective. If this search depth is not reached, the
effectiveness of the method is severely compromised.

Based on Iterated Local Search (ILS), Prins [53] proposes heuristics for the Ve-
hicle Routing Problem: an ILS with several offspring solutions per generation called
Evolutionary Local Search (ELS), and two hybrid forms of GRASP. These variants
share three main features: a simple structure, a mechanism to alternate between so-
lutions encoded as giant tours and VRP solutions, and a fast local search based on a
sequential decomposition of moves. Using this idea, Lacomme et al. [31] address an
extension of the Capacitated Vehicle Routing Problem where the demand of a cus-
tomer consists of three-dimensional weighted items(3L-CVRP), and the objective
is to design a set of trips for a homogeneous fleet of vehicles based at a depot node
so as to minimize the total transportation cost. The items in each vehicle trip must
satisfy the three-dimensional orthogonal packing constraints. The proposed method
is a multi-start algorithm where ELS is applied to the initial solutions generated by
the greedy randomized heuristics.

Kaucic [29] presents a multi-start Particle Swarm Optimization (PSO) algorithm
for the global optimization of a function subject to bound constraints. The procedure
consists of three main steps. In the initialization phase, an opposition-based learning
strategy is performed. Then, a variant of an adaptive differential evolution scheme is
used to adjust the velocity of the particles. Finally, a re-initialization strategy based
on two swarm diversity measures is applied to avoid premature convergence and
stagnation. The overall idea is to increase the search abilities of PSO by employing
an opposition-based selection for the initial swarm and an adaptive velocity update
equation for the following iterations. The restart scheme is applied to the particles
in the swarm whenever premature convergence and stagnation occur.

Pacheco et al. [50] propose a heuristic method for solving a problem of sequenc-
ing jobs on a machine with programmed preventive maintenance and sequence-
dependent set-up times. The method hybridizes multi-start strategies with Tabu
Search. Their algorithm, called Multi-start Tabu (MST), is an iterative algorithm
that generates a solution in each iteration using a constructive algorithm (called
Diversification Generator), and then, improves it using a Tabu Search procedure
(called Basic Tabu). In this way, each iteration produces a local optimum and the
best one is the algorithms output.To explore the whole space of feasible solutions,
the designed constructive procedure takes into account the knowledge accumulated
during previous executions, generating solutions in regions not visited previously.

The research work of Sharma and Glemmestad [60] focuses on the use of the
Generalized Reduced Gradient (GRG) method [66] to solve a constraint multivari-
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able lift gas allocation optimization problem. The GRG algorithm is a local solver
i.e. the solution provided by GRG may only be a local optimum. To ensure that the
final solution is as close as possible to a global optimum, a multi-start search routine
is applied on top of the GRG algorithm. First, different feasible starting points are
generated. Then, GRG is applied to each of these feasible starting points and the
corresponding local optima are stored. Finally, when all points have been exploited,
the solution which maximizes the objective function is returned as the final solution.

2.5 Theoretical analysis

From a theoretical point of view, Hu et al. [28] study the combination of the gradient
algorithm with random initializations to find a global optimum. Efficacy of parallel
processing, choice of the restart probability distribution and number of restarts are
studied for both discrete and continuous models. The authors show that the uniform
probability is a good choice for restarting procedures.

Boese et al. [5] analyze relationships among local minima from the perspective
of the best local minimum, finding convex structures in the cost surfaces. Based on
the results of that study, they propose a multi-start method where starting points for
greedy descent are adaptively derived from the best previously found local minima.
In the first step, Adaptive Multi-start heuristics (AMS) generate r random starting
solutions and run a greedy descent method from each one to determine a set of cor-
responding random local minima. In the second step, adaptive starting solutions
are constructed based on the local minima obtained so far and improved with a
greedy descent method. This improvement is applied several times from each adap-
tive starting solution to yield corresponding adaptive local minima. The authors test
this method for the traveling salesman problem and obtain significant speedups over
previous multi-start implementations. Hagen and Kahng [24] apply this method for
the iterative partitioning problem.

Moreno et al. [47] propose a stopping rule for the multi-start method based on a
statistical study of the number of iterations needed to find the global optimum. The
authors introduce two random variables that together provide a way of estimating the
number of global iterations needed to find the global optima: the number of initial
solutions generated and the number of objective function evaluations performed to
find the global optima. From these measures, the probability that the incumbent
solution is the global optimum is evaluated via a normal approximation. Thus, at
each global iteration, this value is computed and if it is greater than a fixed threshold,
the algorithm stops, otherwise a new solution is generated. The authors illustrate the
method using the median p-hub problem.

Simple forms of multi-start methods are often used to compare other methods and
measure their relative contribution. Baluja [2] compares different genetic algorithms
for six sets of benchmark problems commonly found in the GA literature: Traveling
Salesman Problem, Job-Shop Scheduling, Knapsack, Bin Packing, Neural Network
Weight Optimization, and Numerical Function Optimization. The author uses the
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multi-start method (Multiple Restart Stochastic Hill-climbing, MRSH) as a baseline
in the computational testing. Since solutions are represented with strings, the im-
provement step consists of a local search based on random flip of bits. The results
indicate that using Genetic Algorithms for the optimization of static functions does
not yield a benefit, in terms of the final result obtained, over simpler optimization
heuristics. Other comparisons between MRSH and GAs can be found, for example,
in [1, 70].

Many heuristics used for global optimization can be described as population-
based algorithms in which, at every iteration, the quality of a population of solutions
is evaluated and a new population is randomly generated according to a given rule,
designed to achieve an acceptable trade-off in the allocation of computational effort
for ”exploration” versus ”exploitation”. Wang and Garcı́a [69] propose an algorith-
mic design for global optimization with multiple interacting threads. It applies a
multi-start method that makes use of a local search algorithm to guarantee the di-
versity of search spaces. In the proposed design, each thread implements a search
with a relative emphasis on exploitation that does not vary over time. More efficient
exploration is achieved by means of a simple acceptance-rejection rule preventing
duplication of the search spaces.

3 A Classification

We have found three key elements in multi-start methods that can be used for clas-
sification purposes: memory, randomization and degree of rebuild. The possible
choices for each element are not restricted to its presence or absence, but rather
represent a whole continuum between these two extremes. We can identify these
extremes as:

• Memory/Memory-less
• Systematic/Randomized
• Rebuild/Build-from-scratch

The Memory classification refers to elements that are common to certain pre-
viously generated solutions. As in the Tabu Search framework [22], such memory
provides a foundation for incentive-based learning, where actions leading to good
solutions are reinforced through incentives or actions leading to bad solutions are
discouraged through deterrents. Thus, instead of simply resorting to randomized
re-starting processes, in which the current decisions do not get any benefit from
the knowledge accumulated during prior search, specific information is identified to
exploit the search history. On the other hand, memory avoidance (via the Memory-
less classification) is employed in a variety of methods where the construction of
unconnected solutions is viewed as a means of strategically sampling the solution
space. It should be noted that memory is not restricted to recording good solutions
(or attributes of these solutions) but also includes recording solutions that exhibit
diversity.
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Starting solutions can be randomly generated or, on the contrary, they can be
generated in a systematic way. Randomization is a very simple way of achiev-
ing diversification, but with no control over the diversity achieved since in some
cases randomization can obtain very similar solutions. Moreover, there is a variety
of forms of diversity that can be more important for conducting an effective search
process than the haphazard outcomes of randomization. More systematic mecha-
nisms are available to control the similarities among solutions, as a way to yield
outcomes exhibiting a useful range of structural differences. Between the extremes
of Randomized and Systematic (or deterministic) generation of solutions lie a signif-
icant number of possibilities. These can range from imposing deterministic controls
on a randomized process to alternating in various ways between randomized and
deterministic processes. The GRASP method discussed later combines several of
these intermediate possibilities.

The Degree of Rebuild measures the number or proportion of elements that re-
main fixed from one generation to another. Most applications build the solution at
each generation from scratch, but some strategies fix (or lock-in) some elements
found in previously generated solutions. Such an approach was proposed in the
context of identifying and then iteratively exploiting strongly determined and con-
sistent variables [15]. This selective way of fixing elements, by reference to their
impact and frequency of occurrence in previously visited solutions, is a memory-
based strategy of the type commonly used in tabu search. This type of approach
is also implicit in the operation of Path Relinking [21] which generates new solu-
tions by exploring trajectories that connect high-quality solutions. In this case the
process seeks to incorporate the attributes of previously generated elite solutions by
creating incentives to favor these attributes in currently generated solutions. In an
extreme case all the elements in the new solution will be determined (and fixed) by
the information generated from the set of elite solutions considered. This is labeled
as (complete) Rebuild.

This classification has already been used in a practical approach to solve a vehi-
cle routing problem proposed by an international company operating in Spain. The
work reported in [39] considered a variant of the Open Vehicle Routing Problem in
which the makespan, i.e., the time spent on the vehicle by one person, must be min-
imized. A competitive multi-start algorithm producing high quality solutions within
reasonable computing time is proposed. The effectiveness of the algorithm is ana-
lyzed through computational testing on a set of 19 school-bus routing benchmark
problems from the literature, and on 9 hard real-world problem instances.

The multi-start algorithm in [39] is a classical two-phases iterative process. First,
there is a construction phase in which a feasible solution is generated, followed by
a local search phase in which an attempt to improve solution quality and (possi-
bly) infeasibility is performed. As a consequence, each iteration produces a locally
optimal solution, and the algorithm returns the best solution found during the iter-
ative process. According to our classification, the authors classify their method as
Memory-less, Randomized, and Build-from-scratch because those characteristics
favor solutione diversity, thus providing a best overall result.
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4 The Maximum Diversity Problem

In this section we consider a difficult optimization problem to illustrate how to im-
plement a multi-start method. In particular, we describe different solution methods
for the Maximum Diversity Problem. This gives also us the opportunity to evaluate
the use of memory structures in the context of multi-start methods.

The problem of choosing a subset of elements with maximum diversity from a
given set is known as the Maximum Diversity Problem (MDP). This problem has
a wide range of practical applications involving fields such as medical treatments,
environmental balance, immigration policies and genetic engineering, among others
[20]. The MDP has been studied by numerous authors, the most prominent among
them being Kuo et al. [30], who described four formulations of the problem, rang-
ing from the most intuitive to the most efficient. These formulations also served to
show that the MDP is NP-hard. In 1996, Ghosh [14] proposed a multi-start method
and proved the completeness of the problem. Later, Glover et al. [20] proposed
four deterministic heuristic methods, two of them constructive and the other two
destructive. Silva et al. [61] presented a multi-start algorithm based on the GRASP
methodology. Specifically, they described three constructive methods, called KLD,
KLDv2 and MDI, and two improvement methods: LS, which is an adaptation of the
one proposed by Ghosh, and SOMA, based on a VNS implementation.

The MDP can be formally described as a combinational optimization problem
which can be stated as follows: let S = {si : i ∈ N} be a set of elements where N =
{1,2, . . . ,n} is the set of indexes. Each element of the set si ∈ S may be represented
by a vector si = (si1 ,si2 , ..,sir). Let di j be the distance between two elements si and
s j and let m (with m < n) be the desired size of the maximum diversity set. In this
context, the solution of the MDP consists of finding a subset Sel of m elements of S
( Sel ⊂ S and |Sel|= m) in order to maximize the sum of the distances between the
selected elements. Mathematically, the MDP may be rewritten as an optimization
problem in the following terms:

max z = ∑
i< j

di jxix j

subject to
n

∑
i=1

xi = m

xi ∈ {0,1} i = 1, . . . ,n

where xi = 1 indicates that element si has been selected.
Two constructive algorithms are proposed to solve the MDP using a multi-start

scheme, one with memory and the other without. Each algorithm is described in
turn in the following sections.
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4.1 Multi-Start Without Memory (MSWoM)

The Multi-Start Without Memory (MSWoM) algorithm consists of a GRASP based
constructive procedure and a first improvement local search. This approach comes
from a heuristic method proposed in Glover et al. [20]. In each step, the constructive
procedure adds a high quality element (given by a greedy function) to the set Sel.
The non-selected elements are contained in the set S− Sel. The set Sel is initially
empty, meaning that all elements may be selected. The algorithm starts by selecting
an element from S at random and placing it in the set Sel. The distance from all
the non-selected elements si ∈ S− Sel to the elements in Sel is then computed as
follows:

d(si,Sel) = ∑
s j∈Sel

d(si,s j) (1)

To select the next element for inclusion in the set Sel, an ordered list L is constructed
with all the elements si ∈ S− Sel within a percent α of the maximum distance.
Mathematically, L is defined as:

L = {si ∈ S−Sel/d(si,Sel)≥ dmin +α(dmax−dmin)} (2)

where

dmax = max
si∈S−Sel

d(si,Sel) dmin = min
si∈S−Sel

d(si,Sel)

The next element introduced in set Sel is chosen at random among the elements in
L, thus ensuring a minimum quality as defined by the percentage α . So, it is not a
purely greedy selection, but it combiness greedyness with randomization. This pro-
cedure is repeated until m elements have been chosen (|Sel|= m). At this point, Sel
contains a solution to the problem. After niter executions, the arithmetic mean of the
niter solutions will typically be worse than if the solution had been constructed by
taking the element with a maximum distance over those already selected, although
some of the niter solutions will probably improve on this value.

For the algorithm to have a reactive behavior, the parameter α is initially set at 0.5
and then adjusted dynamically depending on the quality of the solutions obtained;
that is, if after niter/5 consecutive iterations, the best solution has not improved,
then α is increased by 0.1 (up to a maximum of 0.9).

The improvement method is based on a simplification of the local search de-
scribed in [14], which seeks to increase the efficiency of the local search. The pro-
posed method is classified as a first improvement local search which, as described
in [33], not only tends to yield better results than the best improvement strategies,
but also requires much less time. It does so by factoring the contribution from each
element si in Sel; that is, for each element si ∈ Sel, its contribution di to the objective
function is:

di = ∑
s j∈Sel

di j = d(si,Sel) (3)
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with the objective function defined as:

z =
1
2 ∑

si∈Sel
di (4)

Subsequently, the element si∗ ∈ Sel with the lowest contribution di∗ to the current
solution is selected and exchanged with the first element s j ∈ S− Sel (in lexico-
graphical order) that leads to an increase in the objective value. The search pro-
cedure continues for as long as the objective function improves by extracting the
element from the set Sel which contributes the least and inserting another element
from S−Sel which improves the value of the objective function. When there is no
improvement, the second least-contributing element is used, and so on. This proce-
dure is continued until no further improvement is obtained.

4.2 Multi-Start With Memory (MSWM)

Multistart with Memory (MSWM) is the second multistart algorithm described in
[9]. The method uses memory both in the solution construction and improvement
phases. These strategies are integrated within the Tabu Search method [22].

In each iteration, the constructive algorithm penalizes the frequency of use of
those elements which appeared in previous solutions. The procedure also rewards
those elements which previously appeared in high quality solutions. To implement
this algorithm, the number of times element si was selected in previous constructions
is stored in f req[i]. The maximum value of f req[i] over all i is stored in max f req.
The average value of the solutions in which element si has appeared is stored in
quality[i]. In addition, maxq stores the maximum value of quality[i] over all i. The
evaluation of each non-selected element in the current construction is modified de-
pending on these values, thus favoring the selection of low-frequency, high-quality
elements. This is achieved by using the following expression instead of the distance
metric described in Eq. (3) between an element and the set of selected elements:

d′(si,Sel) = d(si,Sel)−β range(Sel)
f req[i]

max f req
+δ range(Sel)

quality[i]
max q

with
range(Sel) = max

s j∈S−Sel
d(s j,Sel)− min

s j∈S−Sel
d(s j,Sel)

where β and δ are parameters that quantify the contributions of the frequency
penalty and the reward for quality. Both are adjusted experimentally. The purpose
of the range(Sel) parameter is to smooth the changes in the penalty function.

The set Sel is initially empty, meaning that any element can be selected. The
algorithm starts by selecting an element from S at random and inserting it in the set
Sel. It then computes the distance d′(si,Sel) for each element si ∈ S−Sel, which in
the first construction would correspond with d(si,Sel), since f req[i] = quality[i] =
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0. The chosen element i∗ is the one such that:

d′(si∗ ,Sel) = max
si∈S
{d′(si,Sel)}

It is then inserted in Sel, after which the frequency vector is updated. This procedure
is repeated until m elements have been chosen. Once a solution is constructed, the
quality vector is updated. The tabu multi-start method executes this procedure niter
times, in such a way that with each construction the distances between an element
and the set of those already selected is updated depending on its past history.

The improvement method is a modification of the one described above with the
addition of a short-term memory based on the exchange of an element between
Sel and S− Sel. One iteration of this algorithm consists of randomly selecting an
element si ∈ Sel. The probability of selecting this element is inversely proportional
to its associated di value. That element of Sel is replaced by the first element s j ∈
S−Sel which improves the value of the objective function. If this element does not
exist, then the one which degrades the least the objective function is chosen (i.e.,
an exchange is always performed). When this exchange is carried out, both si, and
s j take on a tabu status for TabuTenure iterations. Consequently, it is forbidden to
remove element s j from set Sel (respectively, element si from set S− Sel) for that
number of iterations. The tabu search process continues until MaxIter consecutive
iterations are executed without improving the best value obtained thus far.

4.3 Experimental results

To illustrate the behavior of the two multi-start algorithms summarized in this paper
and proposed in [9], we present a comparison with two other previously reported
algorithms. Specifically, the MSWoM and MSWM algorithms are compared with
the D2 constructive algorithm [20], along with the improvement method described
in [14], and the KLDv2 algorithm with its improvement procedure [61]. They are
the best methods for this problem. All the algorithms were coded in C and compiled
with Borland Builder 5.0, optimized for maximum speed. The experiments were
carried out on a 3-GHz Pentium IV with 1 GB RAM.

The algorithms were executed on three sets of instances:

1. Silva: 20 n×n matrices with random integer values generated from a [0,9] uni-
form distribution with n ∈ [100,500] and m ∈ [0.1n,0.4n].

2. Glover: 20 n×n matrices in which the values are the distances between each pair
of points with Euclidean coordinates randomly generated in [0,10]. Each point
has r coordinates, with r ∈ [2,21].

3. Random: 20 n×n matrices with real weights generated from a (0,10) uniform
distribution with n = 2000 and m = 200. It should be noted that these were the
largest problem instances solved in the references consulted.
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Tables 1, 2 and 3 compare MSWoM, MSWM, D2 + LS and KLDv2+LS. These ta-
bles show the average percentage of deviation for each procedure with respect to the
best solution produced in each experiment (since the optimal values are unknown),
the number of best solutions and the number of constructions and improvements
made by the algorithm in 10 seconds (stopping criterion).

Table 1. Constructive methods - Silva instances
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. 1.722% 1.079% 0.0377% 0.0130%
] Best 2 5 12 13
] Const. 5140.5 5 12 13

Table 2. Constructive methods - Glover instances
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. 0.018% 0.006% 0.000% 0.000%
] Best 16 18 20 20
] Const. 2149.6 971.0 790.4 397.5

Table 3. Constructive methods - Random instances
D2 + LS KLDv2 + LS MSWoM MSWM

Dev. 1.270% 1.219% 0.204% 0.099%
] Best 0 0 7 15
] Const. 128.1 3.5 12 14.8

We can conclude from these tables that the proposed multi-start methods sub-
stantially improve on previous algorithms, with regard to both the deviation from
the best known values and the number of times that value is found. Moreover, the
experiments also show that the use of memory, at least for the instances tested, leads
to better results. Note that in the case of Glover instances, the algorithms studied
yield very similar values. This fact indicates that these are the simplest problem in-
stances, and consequently say little about the quality of each algorithm. At the other
extreme are the Random instances, where substantial improvements are obtained
with the multi-start methods.

A thorough computational study to compare 10 heuristics and 20 metaheuristics
for the maximum diversity problem (MDP) can be found in [42]. The authors present
the benchmark library MDPLIB which contains 315 instances of the problem, and
compare the 30 methods on MDPLIB making use of non-parametric statistical tests
to draw significant conclusions. They conclude that even the simplest heuristics
provide good solutions to this problem. However, to obtain high-quality solutions
they recommend to apply multi-start metaheuristics.
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5 Conclusion

The objective of this chapter is to extend and advance the knowledge on multi-start
methods. Unlike other well-known methods, these procedures have not yet become
widely implemented and tested as true metaheuristic for solving complex optimiza-
tion problems. We have presented new ideas that have recently emerged in the field
of multi-start methods. These ideas, which have yet to be fully explored, have great
potential. We have also shown the connections between these methodologies and
other metaheuristics.

Our findings indicate that memory appears to play an important role during both
the constructive and the improvement phase of a multi-start procedure. One possible
explanation may be that the repeated application of the constructive phase operates
primarily as a diversification process, while the introduction of memory structures
guides the diversification in an efficient way. On the other hand, the benefits as-
sociated with the inclusion of memory structures in the local search (improvement
phase) has been extensively documented in the Tabu Search literature. Our results
with the Maximum Diversity Problem confirm these previous findings. The com-
parison between memory-based and memory-less designs is an interesting area for
future research.
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programming for constrained global optimization. Computers & Operations Research 37, 8
(2010), 1500 – 1509. Operations Research and Data Mining in Biological Systems.

37. LASDON, L., AND PLUMMER, J. C. Multistart algorithms for seeking feasibility. Comput-
ers & Operations Research 35, 5 (2008), 1379 – 1393. Part Special Issue: Algorithms and
Computational Methods in Feasibility and Infeasibility.

38. LØKKETANGEN, A., AND GLOVER, F. Probabilistic move selection in tabu search for zero-
one mixed integer programming problems. In Meta-Heuristics. Springer, 1996, pp. 467–487.
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