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Abstract. In this paper we propose an adaptation of the GRASP metaheuris-
tic to solve multi-objective combinatorial optimization problems. In particular
we describe several alternatives to specialize the construction and improve-
ment components of GRASP when two or more objectives are considered.

GRASP has been successfully coupled with path-relinking for single-objective
optimization. In this paper, we propose different hybridizations of GRASP
and path-relinking for multi-objective optimization. We apply the proposed

GRASP with path-relinking variants to two combinatorial optimization prob-
lems, the bi-objective orienteering problem and the bi-objective path dissimi-
larity problem. We report on empirical tests with 70 instances that show that
the proposed heuristics are competitive with the state-of-the-art methods for

these problems.

1. Introduction

The GRASP metaheuristic was developed in the late 1980s (Feo and Resende,
1989; 1995). The acronym was coined in Feo et al. (1994).We refer the reader to
Resende and Ribeiro (2003; 2010) for recent surveys of this metaheuristic. In short,
each GRASP iteration consists in constructing a trial solution with some greedy
randomized procedure and then applying local search from the constructed solution.
This two-phase process is repeated until some stopping condition is satisfied. A
best local optimum found over all local searches is returned as the solution of the
heuristic.

The algorithm in Figure 1 shows pseudo-code for a generic GRASP for mini-
mization. The greedy randomized construction seeks to produce a diverse set of
good-quality starting solutions from which to start the local search phase. Let x
be the partial solution under construction in a given iteration and let C be the
candidate set with all the remaining elements that can be added to x. The GRASP
construction uses a greedy function g(c) to measure the contribution of each candi-
date element c ∈ C to the partial solution x. A restricted candidate list RCL(C) is
the subset of candidate elements from C with good evaluations according to g. At
each step, the method randomly selects an element c∗ from the restricted candidate
list and adds this element to the partial solution. The construction is repeated in
the inner while loop (steps 4 to 10) until there are no further candidates. If C = ∅
and x is infeasible, then a repair procedure needs to be applied to make x feasible
(steps 11 to 13). Once a feasible solution x is on hand, a local search improvement is
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begin GRASP
1 f ∗ ←∞;
2 while stopping criterion not satisfied do
3 x← ∅;
4 Compute C with the candidate elements that can be added to x;
5 while C ̸= ∅ do
6 For all c ∈ C compute greedy function value g(c);
7 Define RCL(C)← {c ∈ C | g(c) has a good value};
8 Select c∗ at random from RCL(C);
9 Add c∗ to partial solution: x← x ∪ {c∗};
10 Update C with the candidate elements that can be added to x;
11 end-while;
12 if x is infeasible then
13 Apply a repair procedure to make x feasible;
14 end
15 x← LocalSearch(x);
16 if f(x) < f(x∗) then
17 x∗ ← x; f∗ ← f(x);
18 end
19 end
20 return x∗;

Figure 1. GRASP algorithm for minimization of f(x).

applied. The resulting solution is a local minimum. The GRASP algorithm termi-
nates when a stopping criterion is met (typically a maximum number of iterations,
time limit, or a target solution quality). The best overall solution x∗ is returned as
the output of the heuristic.

In this paper, we deal with multi-objective optimization problems, in which,
without loss of generality, we want to minimize k objective functions: f1, f2, . . . , fk.
Specifically, we want to determine the set of efficient points (usually called the
efficient Pareto frontier). A point or solution x∗ is said to be efficient if there is no
other solution x such that fi(x) ≤ fi(x

∗) for all i = 1, . . . , k and fj(x) < fj(x
∗)

for at least one j ∈ {1, . . . , k}. Essentially, efficiency means that a solution to a
multiobjective function is such that no single objective can be improved without
deteriorating another objective. Since we propose a heuristic procedure, we obtain
an approximation to the set of efficient points.

In Vianna and Arroyo (2004) a GRASP is proposed for the multi-objective knap-
sack problem. In particular, at each iteration, the construction and the local search
are guided by a weighted combination of the objectives,

(1) f(x) =
k∑

j=1

λjfj(x),

where the preference coefficient λj is computed in a particular way in order to obtain
a variety of solutions uniformly distributed in the Pareto frontier. Specifically,
for a given value of s, they create all the possible vectors (w1, w2, . . . , wk) where



MULTI-OBJECTIVE GRASP WITH PATH-RELINKING 3∑k
j=1 wj = s. Then, each GRASP construction and local search is performed with

the preference vector set to λj = wj/s for j = 1, . . . , k.
The problem of environmental investment decision making is considered in Hig-

gins et al. (2008) to maximize multiple environmental benefits within a budget
constraint. In particular, the authors consider travel time of water maximization,
biodiversity and carbon sequestration. The environmental investment problem is
an extension of the bi-criteria knapsack problem and a GRASP algorithm is pro-
posed to approximate the efficient frontier. The construction phase is guided by
a weighed summation objective with random weights in each of the three objec-
tive functions. Producing solutions using different sets of weights allow them to
be distributed along the Pareto frontier. The method maintains a population of
solutions both dominated and non-dominated for the sake of diversity. This set
evolves by applying a local search to randomly selected solutions until the time
limit is reached.

The multicriteria minimum spanning tree is faced in Arroyo et al. (2008) and
a GRASP is proposed for its solution. The construction phase uses Kruskal’s al-
gorithm and the local search is based on a drop-and-add neighborhood. The con-
struction is guided by a weighted combination of the objectives where the preference
coefficient λj is computed as in Vianna and Arroyo (2004). Given a constructed
solution, the local search generates a new spanning tree by dropping and adding
edges. The method is compared with a multi-objective version of the Kruskal al-
gorithm.

In (Ishida et al., 2009) a GRASP with Path Relinking for learning classification
rules is proposed, where the goal is to create rules that together have good per-
formance for classification. A frequent measure used to evaluate the performance
of a classifier is the AUC, the area under the ROC curve (the curve that relates
the false and the true positive proportions). The authors propose an alternative
approach based on two criteria: sensitivity and specificity. In this way, they face a
bi-objective problem. They show that their GRASP with Path Relinking algorithm
obtains an approximation of the Pareto front that gives a good AUC value.

Li and Landa-Silva (2009) proposed a GRASP for the multi-objective quadratic
assignment problem. In this version of the well-known QAP, multiple types of
flows are considered between any two facilities. The proposed algorithm, called
mGRASP, is characterized by three features: elite greedy randomized construction,
adaptation of search directions and cooperation between solutions. To find a diverse
set of Pareto optimal solutions, mGRASP uses multiple distinct weight vectors
evenly spread in the construction and local search phases. Unlike the classical
GRASP algorithm, their method constructs each solution by adding some elements
from the previous local optima found.

In Reynolds and de la Iglesia (2009) a GRASP is proposed for the partial classifi-
cation of a database. This problem basically consists of finding simple classification
rules that represent strong descriptions for a particular class of database. Associa-
tion rules can be evaluated according to a number of conflicting criteria, which has
lead to the application to multiobjective metaheuristics. In their GRASP imple-
mentation, the authors first apply construction phase, based on a random weighted
combination of the objectives, and create a set of non-dominated solutions. The
local search phase is then applied to the non-dominated solutions. A comparison
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with previous evolutionary methods for multiobjective optimization, favors the pro-
posed GRASP. A refinement of this method is proposed in Reynolds et al. (2009)
to select a small subset of the rules previously identified.

We have also found multi-objective GRASP applications in the context of flow
shop scheduling problems. In particular, Davoudpour and Ashrafi (2009) considered
the hybrid flow shop scheduling problem with sequence dependent setup times. The
measure of performance of a given solution is computed as a function of the assigned
due date of each job, in terms of the earliness, tardiness and completion time. They
are combined in a single objective and the proposed GRASP solves the associated
mono objective problem.

In this paper we propose different adaptations of the single-objective GRASP
outlined in Figure 1 to the multi-objective case. Specifically, we consider the exten-
sion of the construction and improvement phases. Moreover, we also include a post-
processing phase based on path-relinking for multi-objective optimization. Path
Relinking has been successfully hybridize with GRASP in many mono-objective
problems, as documented in Resende and Ribeiro (2010).

In Section 2, we propose an adaptation of the GRASP construction phase for
multi-objective optimization. Similarly, Sections 3 and 4, respectively, describe
the local search phase of GRASP and the path-relinking post-processing phase.
Computational experiments with the bi-objective orienteering problem and the bi-
objective path dissimilarity problem are described in Section 6. Concluding remarks
are made in Section 7.

2. Multi-Objective Construction

In single-objective GRASP, each construction is guided by a greedy function
g(c) which measures the contribution of each candidate element c ∈ C to the
partial solution x under construction. In multi-objective GRASP, we have k greedy
functions, g1, g2, . . . , gk, where gi(c) evaluates candidate element c with respect to
objective fi. We distinguish two types of constructions which we call pure and
combined.

In pure construction a single objective is considered during a single construc-
tion, while in combined construction different objectives guide a single construction.
Within the pure construction category we differentiate between two types of meth-
ods: Those in which the objective to be considered in a construction is randomly
selected (pure-random) and those in which the objective is selected in an ordered
fashion (pure-ordered).

In pure-random construction, we randomly select a greedy function gi for
each construction. In each step of a construction we evaluate gi(c) for each can-
didate element c ∈ C to compute the restricted candidate list RCL(C). It should
be noted that we only select a greedy function once in each construction and use
it in all the steps of the construction. In other words, each entire construction is
guided by a single objective function (the one associated with the greedy function
selected).

In pure-ordered construction, each construction is guided by a different ob-
jective, selected one at a time in an ordered fashion. Specifically, in the first con-
struction we evaluate the candidate elements with g1, in the second construction
with g2, and so on, until we reach the k+1-th construction, in which we resort again
to g1. In short, we follow the order of the objectives across different constructions.
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• Pure
– Random (between constructions)
– Ordered (between constructions)

• Combined
– Sequential

∗ Random (within a construction)
∗ Ordered (within a construction)

– Weighted

Figure 2. A classification.

In this way, it is expected that each construction will produce a solution of good
quality with respect to the objective that is evaluated.

The combined construction considers more than one objective in each con-
struction. We can distinguish between two types of methods. We call sequential
those in which each construction step is guided by a different objective, and weighted
those in which each step is guided by a weighted function of the evaluations.

In the sequential combined methods, a greedy function is selected at each
step of a given construction. Let x be the partial solution under construction in
iteration i, and let Ci be the candidate set with all the remaining elements that
can be added to x. We evaluate the elements in Ci with a function gj , for some
j = 1, . . . , ng, thus computing RCL(Ci) = {c ∈ Ci | gj(c) has a good value}. If the
function gj is randomly selected in each iteration we call the combined method
random-sequential. Alternatively, when the function gj is selected in order, where
we use g1 in iteration 1, g2 in iteration 2, and so on, we call the combined method
ordered-sequential.

Finally, in the weighted combined methods, we consider a weighted combina-
tion

(2) g(c) =
k∑

j=1

wjgj(c)

of the evaluation functions in step i of the construction, where wj is the weight
of the evaluation function gj . We then compute RCL(Ci) = {c ∈ Ci | g(c) has a
good value}. We can either keep the same weights across different constructions or
change them in each construction step. Note that the evaluations (objectives) can
have magnitudes that vary significantly and in this case the weights help us scale
them into similar (and comparable) magnitudes. Moreover, in multi-objective opti-
mization, some objectives can be minimized while others maximized and therefore
the weights can take positive and negative values to reflect this fact.

Figure 2 summarizes this classification in which we have identified five different
schemes to design a constructive method: pure-random, pure-ordered, random-
sequential combined, ordered-sequential combined, and weighted combined.

3. Multi-Objective Local Search

Local search, also known as neighborhood search, proceeds iteratively from one
solution to another until no further improvement is possible. Each solution x has
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an associated neighborhood N(x), and each solution y ∈ N(x) is reached from x
by an operation called move.

In the local search we can define the same two main strategies as in the con-
struction methods, pure and combined, according to the way in which we select the
objective functions.

If we obtain a solution x with a pure constructive method guided by objective
function fi, we attempt to improve it with a local search also guided by the same
function. Since x was constructed only considering fi and ignoring the rest of the
objectives, we permit the deterioration of these other objectives in the pure local
search while improving fi. The method stops when objective fi cannot be further
improved.

If we obtain a solution x with a combined constructive method, we distinguish
whether it is a sequential or a weighted combined method. In the sequential con-
struction, different objectives are applied. We therefore do not allow the objec-
tive functions to deteriorate during the local search phase. At each step of the
sequential-combined local search, we consider a different objective function
when selecting the best solution in the neighborhood. The method stops when no
objective can be further improved (without deteriorating any of the others).

Finally, if we obtain a solution x with a weighted-combined construction method
using (2), we consider in the weighted-combined local search, the weighted
objective function

f(x) =
k∑

j=1

wjfj(x).

In this way, this local search is guided by the same objective function as its asso-
ciated construction method. We can either keep the same weights across different
moves or change them in each one. The local search stops when f(x) cannot be
further improved.

We apply a post-processing phase within the improvement method to certify the
local optimality with respect to all the objectives. In particular, before terminating
the local search we attempt to improve, one-by-one, each of the objectives without
deteriorating any of the others. We select them in order, from 1 to k, performing at
each iteration the best associated move with respect to the corresponding objective.
This post-processing finishes when no objective can be improved. Note that in the
sequential-combined local search this process is not necessary because it already
applies it by definition.

It is worth mention that an important difference between mono-objective local
search and multi-objective local search is that in the former we only need to check
if the final solution obtained (the local optima) improves upon the best known
solution. On the contrary, in multi-objective local search, every solution visited
have to be checked for its possible inclusion in the set of non-dominated solutions.

4. Multi-Objective Path-relinking

Path-relinking (PR) was suggested as an approach to integrate intensification and
diversification strategies in the context of tabu search (Glover and Laguna (1997)).
This approach generates new solutions by exploring trajectories that connect high-
quality solutions by starting from one of these solutions, called an initiating solu-
tion, and generating a path in the neighborhood space that leads toward the other
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solutions, called guiding solutions. This is accomplished by selecting moves that
introduce attributes contained in the guiding solutions, and incorporating them in
an intermediate solution initially originated in the initiating solution.

Laguna and Mart́ı (1999) adapted PR in the context of GRASP as a form of
intensification. The relinking in this context consists in finding a path between a
solution found with GRASP and a chosen elite solution. Therefore, the relinking
concept has a different interpretation within GRASP since the solutions found in
one GRASP iteration to the next are not linked by a sequence of moves (as in the
case of tabu search). Resende and Ribeiro (2003) present numerous examples of
GRASP with PR.

Let x and y be two solutions of the multi-objective problem. The path relinking
procedure PR(x, y) starts with the first solution x, and gradually transforms it into
the second one y, by swapping out elements in x with elements in y. The elements
in both solutions x and y, remain in the intermediate solutions generated in the
path between them. Note that an element can be a node in a graph, a value of a
variable, an edge or a path in a network, or any other attribute depending on the
particular problem that we are solving.

Let Elx−y be the set of elements in x and not present in y and symmetrically,
let Ely−x be the set of elements in y and not present in x. Let p0(x, y) = x be the
initiating solution in the path P(x, y) from x to y. To obtain the solution p1(x, y)
in this path, we can remove from x a single element i ∈ Elx−y, or add an element
j ∈ Ely−x, or both (add i and remove j) thus obtaining

Elp1(x,y) = Elp0(x,y) \ {i},
or

Elp1(x,y) = Elp0(x,y) ∪ {j},
or

Elp1(x,y) = Elp0(x,y) \ {i} ∪ {j}.
Following the classification proposed in the previous sections, we consider here

three implementations of multi-objective path relinking. In the pure path re-
linking algorithm, the selection of the elements i and j is made according to one
objective function. To obtain pk+1(x, y) from pk(x, y), we evaluate all the possibili-
ties for i ∈ Elpk(x,y)−y to be removed and j ∈ Ely−pk(x,y) to be added, and perform
the best swap in terms of one objective function. In each application of PR, we
consider one objective function, say fi and use it to select the intermediate solutions
in the entire path P(x, y). On the contrary, in the sequential path relinking we
alternate the objective function used to select the intermediate solutions. In this
way, if we use fi to select pk(x, y), we then use fi+1 to select pk+1(x, y). Finally in
the weighted path relinking the weighted objective function

f(x) =
k∑

j=1

wjfj(x).

is used to select all the intermediate solutions in every application of PR(x, y).
The PR algorithm operates on a set of solutions, called elite set (ES ), constructed

with the application of a previous method. In this paper, we apply GRASP to build
the elite set. In a multi-objective problem we can identify this set with the set of
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non-dominated solutions. Initially ES is empty, and we apply GRASP for a certain
number of iterations to populate it with the non-dominated solutions obtained.
Then, in the following iterations, we apply PR to all the pairs of solutions in ES.
Specifically, for each pair x and y we apply PR(x, y) and PR(y, x). The GRASP
with PR algorithm terminates when all the pairs in ES have been submitted to the
PR method. As previously documented (Laguna and Mart́ı (1999)) we can apply
a local search to some of the intermediate solutions in every PR path to obtain
improved outcomes.

All the intermediate solutions from x and y, found in the P(x, y) path (i.e.,
p1(x, y), p2(x, y), . . . , pr−1(x, y) where r = |Elx−y| = |Ely−x|) have to be checked
for their possible inclusion in the set of non-dominated solutions found by the
algorithm. To simplify the design, we store these intermediate solutions in a pool,
Intermediate Pool(IP), and do not check whether they are non-dominated or not
until the Path Relinking method finishes. At that point, we merge the elite set,
ES, which initially contained the non-dominated solutions, with IP and return the
non-dominated solutions, considering both sets, as the output of the method. In
Evolutionary Path Relinking, instead of stopping the search at this point, we would
apply Path Relinking again to the new non-dominated set of solutions (identifying
it as the new elite set, ES ). This entire process is applied as long as PR is able
to generate solutions dominating solutions in ES (i.e., while intermediate solutions
qualify to enter in the new ES ).

5. Optimization problems used for Testing

We have used two bi-objective combinatorial optimization problems to test the
different GRASP and Path Relinking variants proposed in the previous sections.

• The path dissimilarity problem
• The bi-orienteering problem

We target these problems because they are well-known, they are different in
nature and high quality solutions to several problem instances are available. We
now provide a brief description of each problem class.

The path dissimilarity problem (PDP) (Dell’Ollmo et al., 2005) is a bi-
objective routing problem in which a set of p paths from an origin to a destination
must be generated with minimum length and maximum dissimilarity. Finding
different paths in a graph is a classical optimization problem. The best known is
the s-shortest path problem in which the shortest, second shortest, s-th shortest
paths from an origin o to a destination d are obtained in a graph. However, many
of these alternative paths are likely to share a large number of edges. This is why
in some applications we need to consider an alternative approach. For example, in
the context of hazmat transportation we want to obtain spatially dissimilar paths
that minimize the risk (distributing the risk over all regional zones to be crossed
uniformly).

Given an undirected graph G = (V,E) with V the set of vertices and E the
set of edges with associated cost cij for (i, j) ∈ E, and a pair of origin-destination
vertices, o− d, we define P (o, d) as the set of all paths in G from o to d. Note that
in most applications the cost cij of edge (i, j) is its Euclidean distance. Given an
integer number p > 1, a feasible solution to the path dissimilarity problem, PDP,
is a set S ⊆ P (o, d) such that | S |= p. Given a solution S = {P1, P2, . . . , Pp}, we
define its value f1(S) as the average of the costs of the paths in S:
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f1(S) =
∑p

t=1 c(Pt)
p where c(Pt) =

∑
(i,j)∈Pt

cij

We also define its dissimilarity value f2(S) as the average of the dissimilarity
between the

(
p
2

)
distinct pairs of paths in S:

f2(S) =

∑p−1
i=1

∑p
j=i+1 dis(Pi, Pj)(

p
2

)
As applied in Mart́ı et al. (2009) the dissimilarity dis(Pi, Pj) between two paths

Pi and Pj is computed as the average of the distances between each vertex in Pi

to the path Pj plus the average of the distances between each vertex in Pj to the
path Pi.

With these elements, we can formulate the PDP as:

(PDP) min f1(S)

max f2(S)

subject to S ⊆ P (o, d)

| S |= p

The bi-orienteering problem (BOP) considered here is a bi-objective opti-
mization problem that is a generalization of the single-objective version also known
as the selective traveling salesman problem, introduced by Tsiligirides (1984). In
the OP, each vertex of a given directed graph G = (V,A) has two different profits.
The aim of this problem is to select a subset of vertices in order to maximize the
sum of both profits. Moreover, the tour visiting the selected vertices cannot exceed
a maximum length (or time). The motivation of this problem was the planning
of a set of tourist routes in a large city. Each point of interest has different prof-
its associated with different activities (say for instance culture and leisure). Since
the maximization of the profits associated with one activity does not imply the
maximization of the profits of another activity, this problem is multi-objective in
nature.

There are several problems related with the orienteering problem. For instance,
in the Prize-Collecting TSP, see Balas (1988), each vertex has a given prize and
penalty, and the goal is to minimize the length of the tour plus the total of the
penalties of the vertices not in the tour, while collecting a given quota of the prizes.
Feillet et al. (2005) classified these problem types as TSP with profits. Archetti et al.
(2007) extended the TSP with profits to several tours naming this version the Vehi-
cle Routing Problem (VRP) with profits. Note that all of them are mono-objective
approaches to similar problems. Recently however, Schilde et al. (2009) proposed
two metaheuristic procedures for solving the bi-objective orienteering problem. The
first is based on Ant Colony Optimization (ACO), introduced by Dorigo and Gam-
bardella (1997) and the second is based on Variable Neighborhood Search (VNS)
by Mladenović and Hansen (1997). Both algorithms were combined with a Path
Relinking procedure.

The bi-objective OP, called BOP, can be stated on a directed graph G = (V,A)
with V = {0, 1, 2, . . . , n+ 1} the set of vertices and A = {(i, j) : i, j ∈ V, i ̸= j, i ̸=
n + 1, j ̸= 0} the set of arcs. Without loss of generality we suppose that G is a
complete graph with associated cost cij for (i, j) ∈ A. We have two profits fi1, fi2
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associated with each vertex i ∈ V \ {0, n + 1}. Both vertices 0 and n + 1 have
no profits and represent the starting and ending vertices, respectively. Sometimes
vertices 0 and n+1 denote the same physical point. A tour in the original problem
is represented by a directed path in G from vertex 0 to vertex n + 1. Let L be
the maximum length allowed to tour τ and consider the set of all feasible tours
Θ = {τ | c(τ) ≤ L}.

With these elements the BOP can be formulated as:

(BOP) max f1(τ)

max f2(τ)

subject to τ ∈ Θ

A detailed formulation of the general form of BOP when considering multi-
objective functions can be found in Schilde et al. (2009). Since both problems, PDP
and BOP, have two objective functions, this provides the opportunity of visualizing
the pairs of objective values of non-dominated solutions in the objective space
and then comparing the quality of the procedures. It is possible to construct an
approximation to the Pareto-efficient frontier which is formed by the points with
the values of the objectives of all the non-dominated solutions.

Our goal is to apply multi-objective optimization GRASP techniques to the PDP
and the BOP in order to obtain as many Pareto-efficient solutions as possible. In
this way the decision maker will have a set of good options to choose from.

6. Computational experiments

This section describes the computational experiments that we performed to test
the efficiency of our GRASP with path relinking procedures as well as to compare
them with the previous methods identified to be the state-of-the-art for both the
path dissimilarity problem (PDP) and the bi-orienteering problem (BOP).

The 30 PDP test instances with approximately 500 vertices in our experimenta-
tion are taken from Mart́ı et al. (2009). These instances were generated removing
most of the edges in the following 10 original instances from the well known TSP
Library: ali535, att532, d493, d657, fl417, gr666, gr431, rat575, u574, and pcb442
(http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/). Specif-
ically, the authors only included those edges with a cost (distance value) lower than
10% of the maximum distance value in each instance, resulting in a sparse and
connected graph. The farthest points are taken as the origin and destination in the
PDP. For each of these 10 TSP instances, we consider the number of paths p =5,
10 and 15; thus obtaining 30 PDP instances.

The 30 BOP test instances with vertices ranging from 21 to 2143 in our experi-
mentation are taken from Schilde et al. (2009). These authors collected them from
different sources. Specifically, they are: 2-p21, 2-p32, 2-p33, 2-p64, 2-p66, 2-p97,
2-p292, 2-p559, 2-p562, and 2-p2143. For any of them, we consider three maximum
lengths, the smallest, medium and maximum of those considered by these authors,
obtaining 30 instances. Additionally, we have generated 10 medium sized instances
to calibrate the methods.

All the instances and results of our experiments are available at http://www.optsicom.es.
Experiments for the PDP have been performed on an Intel Core 2 Quad CPU and
6 GB RAM, while those for the BOP have have been run on an Intel I5 at 3.2
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GHz. The performance measures that we employ to compare the methods are the
standard in multi-objective optimization:

• Number of points: This refers to the ability of finding efficient points.
We assume that the decision maker prefers more rather than fewer efficient
points.
• SSC: This metric suggested by Zitzler and Thiele (1999) measures the size
of the space covered (SSC). In other words, SSC measures the volume of
the dominated points. Hence, the larger the SSC value the better.
• k-distance: This density estimation technique (Zitzler et al., 2003) is based
on the k-th nearest neighbor method of Silverman (1986). The metric is
simply the distance to the k-th nearest efficient point. We use k = 5 and
calculate both the mean and the max of k-distance values. The k-distance
value is such that the smaller the better in terms of frontier density.
• C(A,B): This is known as the coverage of two sets measure (Zitzler and
Thiele, 1999). C(A,B) represents the proportion of points in the estimated
efficient frontier B that are dominated by the efficient points in the esti-
mated frontier A.

In our first experiment we compare the different constructive methods for both
the PDP and BOP. We consider the following five methods described in Sec-
tion 2: pure-random (PR), pure-ordered (PO), random-sequential combined (RSC),
ordered-sequential combined (OSC), and weighted combined (WC). Table 1 shows
the number of points, k-distance (mean and maximum) and SSC for the 30 PDP
instances. Table 2 shows the coverage between all pairs of these five methods.
Similarly, Table 3 shows the number of points, k-distance (mean and maximum)
and SSC for the 10 medium sized biorienteering instances and Table 4 shows the
coverage between all pairs of these five methods on the BOP.

In the PDP a solution is a set with p paths from the origin to the destination.
The constructive methods start by creating a set S with a large number of paths (we
generate 2000 as recommended in Mart́ı et al. (2009), the first 1000 with the Yen’s
implementation of the k-shortest path method described in Carotenuto et al. (2007)
and the other 1000 with the Iterative Penalty Method described in Johnson et al.
(1992)). Then, in each iteration, they remove from S a path with low contribution
until it only contains p paths. The contribution is measured in terms of both
problem objectives, the distance from the origin to the destination, f1 and the
dissimilarity among paths, f2. Therefore, for each candidate path c ∈ S to be
removed, its evaluations are g1 and g2, which measure respectively its contribution
to f1 and f2.

In the BOP a solution is a directed tour τ visiting some of the vertices from an
origin to a destination in the graph. This tour cannot exceed a maximum length
L. Each vertex has two profits and the two objective values of the tour, f1(τ)
and f2(τ), are computed by adding their corresponding profits. In the constructive
methods, for each candidate vertex c to be included in the partial tour, g1(c) and
g2(c) are the profits of c. In the construction process, the selected vertex is inserted
in the best position in the partial tour.

Considering the PDP instances, Tables 1 and 2 show that pure methods provide
better approximations to the efficient frontier than the sequential combined ones;
although the best method seems to be the weighted combined. For example the
coverage of the PR with respect to the RSC method, C(PR,RSC), is 0.28 while the
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Table 1. Constructive methods on PDP instances

N. Points k-distance k-distance SSC

(mean) (max.)

PR 17.27 0.27 0.64 0.63

PO 17.67 0.28 0.59 0.62

RSC 13.17 0.20 0.42 0.65

OSC 13.40 0.21 0.43 0.64

WC 24.67 0.12 0.42 0.77

Table 2. Coverage of constructive methods on PDP

PR PO RSC OSC WC

PR 0.00 0.30 0.28 0.25 0.09

PO 0.24 0.00 0.28 0.23 0.09

RSC 0.17 0.21 0.00 0.38 0.06

OSC 0.17 0.20 0.31 0.00 0.05

WC 0.39 0.39 0.85 0.87 0.00

Table 3. Constructive methods on Biorienteering instances

N. Points k-distance k-distance SSC

(mean) (max.)

PR 6.18 0.08 0.11 0.94

PO 6.36 0.09 0.11 0.95

RSC 5.45 0.13 0.22 0.98

OSC 4.45 0.16 0.21 0.98

WC 4.55 0.12 0.15 0.98

Table 4. Coverage of constructive methods on BOP

PR PO RSC OSC WC

PR 0.00 0.30 0.33 0.32 0.38

PO 0.23 0.00 0.23 0.20 0.20

RSC 0.30 0.41 0.00 0.16 0.16

OSC 0.35 0.42 0.41 0.00 0.23

WC 0.40 0.31 0.36 0.24 0.00

C(RSC,PR)=0.17. Moreover, PR and PO obtain a larger number of non-dominated
points (N. Points) than RSC and OSC. On the other hand, we can see that WC
obtains more points than any other method and a better volume value (SSC).
WC exhibits a coverage value better than the rest of the methods. In particular,
C(WC,PR)=0.39, C(WC,PO)=0.39, C(WC,RSC)=0.85, and C(WC,OSC)=0.87,



MULTI-OBJECTIVE GRASP WITH PATH-RELINKING 13

10.0009.0008.0007.0006.0005.0004.0003.000

5,50E8

5,00E8

4,50E8

4,00E8

3,50E8

3,00E8

2,50E8

2,00E8

Pure Ordered

Combined Sequential 
Ordered

Figure 3. Non-dominated points with 2 constructive methods on
the PDP

which compare favorably with C(PR,WC)=0.09, C(PO,WC)=0.09, C(RSC,WC)=0.06,
and C(OSC,WC)=0.05. We will consider the best method in each category (pure,
sequential combined and weighted combined) for the next experiments. Specifically,
we select the PO, RSC and WC methods.

Tables 3 and 4 indicate that on the Biorienteering problem the combined meth-
ods are able to obtain better approximations to the efficient frontier than the pure
methods. This is very interesting since we observed a different behavior on the
PDP instances. Specifically, OSC and WC improve upon the rest of the competi-
tors (Table 4 shows, for example, that C(OSC,PO)=0.42 and C(PO,OSC)=0.20).
Table 3 shows that the five methods considered obtain a reduced number of non-
dominated points, close to 5, which is significantly lower than the number of points
obtained in the PDP as shown in Table 1. On the other hand, considering the
two pure methods, it seems that PR performs better than PO. To complement this
information we consider a representation of the non-dominated points generated
with some of the methods. Specifically, Figure 3 shows the non-dominated points
obtained with PO and OSC on a medium-sized PDP instance while Figure 4 shows
the non-dominated points obtained with PR and OSC on a medium-sized BOP
instance. We therefore will consider PR, OSC and WC in our next experiment to
be coupled with the respective local search method (pure, sequential-combined and
weighted-combined) in order to make a GRASP procedure.

In our second experiment we compare three different GRASP variants for both
PDP and BOP. In the first one, Pure-GRASP, the construction is a pure method
coupled with the pure local search (as described in Section 3); in the second one,
Seq-GRASP, the construction implements a sequential combined method and is
coupled with the sequential-combined local search, finally in the third one, Weight-
GRASP, the construction and the local search consist in the combined weighted
methods respectively. According to the first experiment we consider for the PDP
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the PO method as the pure construction and the RSC as the sequential combined.
Similarly, for the BOP we consider the PR and OSC constructions respectively.

In the PDP the neighborhood of the local search consists of exchanging a path
in the solution with another path not included on it taken from the set S defined
above with the 2000 initial paths. Therefore, the two associated move values are
respectively the change in each objective function. In particular, they are the
average of the costs of the paths from the origin to the destination, f1, and the
average of the dissimilarities among paths, f2. Note that to speed up the process
the paths in S are ordered according to their value (f1, f2 or a weighted sum). This
can be performed off-line as a pre-processing of the method.

In the BOP the neighborhood is based on a exchange between a vertex in the
tour and another vertex not in the tour (without exceeding the maximum length
L). The difference between the profits of both vertices provides the respective
move values. When a one-to-one exchange is performed, we try an insertion move
in which a vertex not present in the current tour is considered to be added to the
tour. Note that in this problem the insertion of a new point into the tour could
not necessarily increment its length (some points are in the same location). It
could even reduce the tour length because the matrix distance does not satisfy the
triangular inequality in the instances tested, and therefore after we add a vertex
to the tour we have to check the addition of more vertices. This is why after an
exchange we consider insertions as long as we can add vertices in the tour without
exceeding the maximum length L. The added vertices are inserted in the best
position.

Table 5 shows the number of points, k-distance (mean and maximum) and SSC
for the three GRASP methods on the 30 PDP instances. Table 6 shows the coverage
between all pairs of these three methods. Similarly, Tables 7 and 8 show these
statistics for the three GRASP methods on the 10 medium sized biorienteering
instances.
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Table 5. GRASP on PDP instances

N. Points k-distance k-distance SSC

(mean) (max.)

Pure-GRASP 39.70 0.13 0.34 0.78

Seq-GRASP 18.30 0.18 0.42 0.67

Weight-GRASP 44.33 0.07 0.33 0.79

Table 6. Coverage of GRASP methods on PDP instances

Pure-GRASP Seq-GRASP Weight-GRASP

Pure-GRASP 0.00 0.67 0.07

Seq-GRASP 0.06 0.00 0.01

Weight-GRASP 0.27 0.86 0.00

Table 7. GRASP on BOP instances

N. Points k-distance k-distance SSC

(mean) (max.)

Pure-GRASP 9.45 0.58 0.82 0.73

Seq-GRASP 6.27 0.51 0.79 0.74

Weight-GRASP 6.64 0.47 0.64 0.51

Table 8. Coverage of GRASP methods on BOP instances

Pure-GRASP Seq-GRASP Weight-GRASP

Pure-GRASP 0.00 0.13 0.67

Seq-GRASP 0.22 0.00 0.64

Weight-GRASP 0.02 0.01 0.00

Tables 5 and 6 show that the best GRASP variant for the PDP is the Weight-
GRASP since it obtains a larger number of non-dominated points and a lower k-
distance values than the others. Moreover, the coverage values shown in Table 6 also
indicate its superiority. Specifically, C(Weight-GRASP,Pure-GRASP) = 0.27 >
0.07 = C(Pure-GRASP,Weight-GRASP) and C(Weight-GRASP,Seq-GRASP) =
0.86 > 0.01 = C(Seq-GRASP,Weight-GRASP). On the other hand, Table 7 in-
dicates that the differences between the GRASP variants is smaller in the BOP
instances. In particular, the number of non-dominated points obtained with these
methods ranges from 6.27 to 9.45 and the mean k-distance value from 0.47 to
0.58. According to the coverage values shown in Table 8 the Seq-GRASP seems to
perform better than its competitors. Finally, if we compare these values with the
results obtained in the previous experiment, we conclude that, as in mono-objective
GRASP, the addition of the local search phase significantly improves the results of
the constructive method. For example, in Table 1 we can see that the PO method
obtains 17.67 non-dominated points on average, while in Table 5 we observe that
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Table 9. GRASP with PR on PDP instances

N. Points k-distance k-distance SSC CPU

(mean) (max.)

Pure-PR 72.17 0.07 0.26 0.82 132.30

Seq-PR 29.00 0.12 0.29 0.73 120.43

Weight-PR 34.90 0.12 0.28 0.77 125.60

MSPA 4.90 0.34 0.48 0.49 122.83

GP 34.57 0.19 0.42 0.74 127.80

when this method is coupled with a local search, called Pure-GRASP, it is able
to obtain 39.70 non-dominated points on average. Similarly, for the BOP, Table 3
shows that PR obtains 6.18 non-dominated points on average and when this method
is coupled with a local search it obtains 9.45 non-dominated points on average (as
shown in Table 7).

In our final experiment we undertake to study the hybridization of the path
relinking (PR) methodology described in Section 4 with the three GRASP variants
tested above in both the PDP and the BOP. Moreover, we compare the resulting
hybrid methods with the best algorithms known for both problems.

Given two solutions x and y, we defined (see Section 4) Elx−y as the set of
elements in x not present in y and Ely−x as the set of elements in y not present in
x. In the PDP the solutions x and y are sets of p paths connecting the origin o with
the destination d and the elements, present or not in these two solutions, are the
paths. At each iteration of the PR from x to y, the paths in Ely−x are considered to
be added to the current intermediate solution (set of p paths), replacing one of the
paths in Elx−y (to keep the number of paths constant, and equal to p). The method
performs the best exchange in terms of the average of the costs of the paths from the
origin to the destination, f1, and the average of the dissimilarities among paths, f2,
depending on the PR variant that we are implementing (pure, sequential or weighted
as described in Section 4). Table 9 shows the number of points, k-distance (mean
and maximum), SSC and CPU time in seconds for the three PR variants (Pure-PR,
Seq-PR andWeight-PR) and the two previous methods identified to be the best (GP
(Mart́ı et al., 2009) and MSPA (Dell’Ollmo et al., 2005)) on the 30 PDP instances.
Note that each PR variant is applied to the elite set of solutions obtained with
the application of the corresponding GRASP method (pure, sequential or weighted
respectively). Table 10 shows the coverage between all pairs of these five methods.
These five methods have been run for a similar CPU time in the same computer
(close to 2 minutes).

Results in Table 9 clearly indicate that the Pure-PR is the best method overall
in the PDP. It obtains a larger number of efficient points (72.17 on average) than
the other PR variants (29 and 34.9 for the Seq-PR and Weight-PR respectively),
exhibits a lower k-distance mean value (0.07) than them (0.12 for both Seq-PR
and Weight-PR) and a larger SSC (0.82, 0,73 and 0.77 for the Pure-PR, Seq-PR
and Weight-PR respectively). Moreover, Pure-PR improves upon the two previous
methods identified to be the best for this problem: MSPA and GP. Specifically,
these two methods obtain 4.9 and 34.57 efficient points on average (while Pure-PR
obtains 72.17), a k-distance mean value of 0.34 and 0.19 (while Pure-PR obtains
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Table 10. Coverage of GRASP with PR methods on PDP instances

Pure-PR Seq-PR Weight-PR MSPA GP

Pure-PR 0.00 0.83 0.48 0.97 0.84

Seq-PR 0.04 0.00 0.21 0.76 0.33

Weight-PR 0.12 0.59 0.00 0.85 0.51

MSPA 0.00 0.03 0.04 0.00 0.04

GP 0.01 0.30 0.10 0.84 0.00
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Figure 5. Non-dominated points of best PDP methods on the
d657 instance.

0.07) and a SSC of 0.49 and 0.74 respectively (and Pure-PR obtains 0.82). To
sum it up, Pure-PR obtains better values in all these statistics than the other four
methods under comparison.

The coverage values shown in Table 10 confirm the analysis above. In particular,
for any method M considered, C(Pure-PR,M)>C(M,Pure-PR). Moreover, accord-
ing to these coverage values, the other two PR variants, Seq-PR and Weight-PR,
also improve the two previous methods given that C(Seq-PR,MSPA)>C(MSPA,Seq-
PR), C(Seq-PR,GP)>C(GP,Seq-PR), C(Weight-PR,MSPA)>C(MSPA,Weight-PR),
and C(Weight-PR,GP)>C(GP,Weight-PR). To complement this information, we
depict in Figure 5 the approximation of the efficient frontier obtained with Pure-
PR and the two previous methods, MSPA and GP on one of the largest instances
(d657 with p=10). This figure illustrates the superiority of the Pure-PR w.r.t the
previous methods in terms of obtaining a good approximation of the efficient fron-
tier.

In the BOP the solutions x and y are two tours in the graph and the elements
in Elx−y are the vertices present in tour x and not present in tour y (conversely
Ely−x). At each iteration of the PR from x to y we add a vertex in Ely−x to the
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Table 11. GRASP with PR on BOP instances

N. Points k-distance k-distance SSC CPU

(mean) (max.)

Pure-PR 9.66 0.38 0.57 0.60 177.22

Seq-PR 6.41 0.27 0.44 0.68 109.01

Weight-PR 14.75 0.23 0.44 0.77 175.92

ACO 7.13 0.28 0.45 0.74 367.58

VNS 7.06 0.28 0.42 0.74 367.59

Table 12. Coverage of GRASP with PR methods on BOP instances

Pure-PR Seq-PR Weight-PR ACO VNS

Pure-PR 0.00 0.07 0.01 0.07 0.03

Seq-PR 0.22 0.00 0.01 0.09 0.08

Weight-PR 0.35 0.37 0.00 0.32 0.30

ACO 0.30 0.26 0.02 0.00 0.14

VNS 0.31 0.27 0.02 0.13 0.00

current intermediate solution according to its profit values (f1, f2 or a weighted sum
depending on the PR variant). If the resulting solution is feasible, we consider it as
the next intermediate solution in the path; otherwise, we remove from the current
intermediate solution the worst vertex in Elx−y in terms of the profit values. We
keep removing vertices until the current solution becomes feasible. At this point
we consider it as the current intermediate solution and resort to the next PR step.
Table 11 shows the number of points, k-distance (mean and maximum), SSC and
CPU time in seconds for the three PR variants (Pure-PR, Seq-PR and Weight-PR)
and the two previous methods identified to be the best (ACO and VNS (Schilde
et al., 2009)) on the 30 BOP instances previously reported. Table 12 shows the
coverage between all pairs of these five methods.

Results in Table 11 show that the Weight-PR is the best method in the BOP.
Specifically, it obtains a larger number of efficient points (14.75 on average) than
the other methods (9.66, 6.41, 7.13 and 7.06 for the Pure-PR, Seq-PR, ACO and
VNS respectively). Moreover, it is able to achieve a lower k-distance mean value
(0.23) than the others (0.38, 0.27, 0.28 and 0.28 for the Pure-PR, Seq-PR, ACO
and VNS respectively). Finally, it exhibits the largest SSC value (0.77) among the
five methods tested. The running times of the previous methods, ACO and VNS,
correspond to an Intel Pentium 4D at 3.2 GHz (Schilde et al., 2009)) while the
PR variants have been run on an Intel I5 at 3.2 GHz, which is considered 1.21
times faster than the previous one. We therefore run our PR variants for shorter
running times on average as shown in this table. The coverage values shown in
Table 12 confirm the superiority of the Weight-PR. In particular, for any method
M considered in this table, C(Weight-PR,M)>C(M,Weight-PR). As in the PDP
described above, we complement this information with a scatter-plot of an instance
(2-p559 with L = 150) shown in Figure 6. This figure clearly shows the superiority
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of the Weight-PR w.r.t VNS and ACO in terms of obtaining a better approximation
of the efficient frontier in this instance.

7. Conclusions

The objective of this study has been to advance the current state of knowledge
about implementations of GRASP and path relinking procedures in the context of
multi-objective optimization. First we have revised previous applications of both
methodologies to then establish a classification of the different ways in which they
can be applied. Specifically, we have considered three basic ways to implement
them: pure, when each objective is optimized in isolation, sequential, when each
objective alternates to guide the search, and weighted, when all the objectives are
combined in a single master objective.

We have considered two hard bi-objective combinatorial problems to test the
different GRASP and PR variants proposed in the paper: the path dissimilarity
(PDP) and the bi-orienteering problems (BOP). We compare these variants with
the best methods previously reported on 70 instances and the comparison favors
some of our GRASP with PR implementations. An interesting conclusion of our
study is that in each problem the best results are obtained with a different GRASP
with PR variant. Specifically, in the PDP the pure variant achieves the best results,
while in the BOP the weighted variant is the winner.
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R. Mart́ı, J.L. González-Velarde, and A. Duarte. Heuristics for the bi-objective
path dissimilarity problem. Computers and Operations Research, 36:2905–2912,
2009.



MULTI-OBJECTIVE GRASP WITH PATH-RELINKING 21
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