
Noname manuscript No.
(will be inserted by the editor)

Scatter Search for the Bi-criteria p-median
p-dispersion problem

J. Manuel Colmenar · Arild Hoff ·
Rafael Mart́ı · Abraham Duarte

Received: date / Accepted: date

Abstract The bi-criteria p-median p-dispersion is a challenging optimization
problem that belongs to the family of location problems. Up to our knowledge,
no metaheuristic has been proposed to this problem, where a multi-objective
approach has to be considered. In this paper we propose a multi-objective
Scatter Search implementation in which three different improvement methods
have been analyzed. Our results have been compared with the state of the
art obtaining better hypervolume values and promising results in terms of
dominance of solutions.
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1 Introduction

Facility location problems have gained much attention by the research commu-
nity the last few years, and many variants of the problem have been described.
The variants appear in different fields of real-life problems such as telecommu-
nication, healthcare, transportation planning, districting among others [10].
This paper focuses on a location problem considering two objectives simul-
taneously. The problem is defined on a network G = (V,E) where V is the
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set of locations with cardinality |V | = n, and E is the set of edges, defined
with a given distance dij between any pair of locations i, j ∈ V . The distances
are assumed to be symmetric, i.e., dij = dji. The problem is to select a given
number p out of the total n locations as hubs, and then the remaining (n− p)
locations, named as terminals, are each assigned to its closest hub. A hub
is considered to be assigned to itself. Thus, any subset of p locations (hubs)
defines a feasible solution to the problem.

The first objective is to minimize the sum of the distances between the
terminals and the hubs. This is the well-known p-median problem, extensively
studied in the scientific literature [2]. The second objective is described as the
p-dispersion problem, and it is also called the max-min diversity problem [6].
In this problem, the p hubs should be chosen in a way that maximizes the
minimum distance between the selected hubs.

This bi-objective problem is described as the bi-criteria p-median p-dispersion
(BpMD) problem. It is introduced in [15] with a practical problem of locating
traffic sensors in a highway network where both objectives need to be consid-
ered simultaneously. The authors describe the problem with the mathematical
model below, where xij is a variable with the value 1 if terminal i is assigned
to hub j, and 0 otherwise; and the variable yi takes the value 1 if terminal i
is chosen as a hub and 0 otherwise. The constant M is a large value, typically
larger than the longest distance between any pair of locations.

Minimize z =
∑
i∈V

∑
j∈V dijxij (p-median)

Maximizew (p-dispersion)

Subject to∑
j∈V xij = 1 ∀i ∈ V (1)

xij ≤ yj ∀i, j ∈ V (2)∑
j∈V yj = p (3)

w ≤ dij +M(2− yi − yj) ∀i, j ∈ V (4)
xij , yi ∈ {0, 1} ∀i, j ∈ V (5)

The p-median objective function models the minimization of the sum of
the distances between hubs and their assigned terminals. Similarly, the p-
dispersion objective function describes the maximization of the parameter w,
defined in Constraint (4) to be the minimum distance between hubs. Con-
straint (1) states that all locations must be assigned to exactly one hub. Con-
straint (2) makes sure that locations are only assigned to hubs (yj = 1), and
Constraint (3) specifies that exactly p locations play the role of hubs. In Con-
straint (4) the value of w in the p-dispersion problem is defined to be smaller
than or equal to any distance between two hub locations, while Constraint (5)
states that x and y are binary variables.

The two objective functions might be conflicting, and there will rarely be
one single solution classified as the best for both objectives. Thus, the solution
to the bi-objective problem will consist of a set of solutions defined as the
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Pareto front where none of the solutions is dominated by any of the others. In
a multi-objective problem, a solution dominates another one if it is better in
at least one objective and not worse in any of the others. An efficient solution
is a solution not dominated by any other solution, while a weakly efficient
solution will not have any other solution with a strictly better value for any
objective functions.

For the sake of clarity we will name f1 to the p-median objective function
and f2 to the p-dispersion objective function. With this mathematical nota-
tion, we can state the main contribution of this paper as proposing a method
to obtain a set S of non-dominated solutions where

si ∈ S iff 6 ∃sj / f1(sj) < f1(si) ∧ f2(sj) > f2(si)

The rest of the paper is organized as follows. First, Section 2 presents a
review of the literature about facility location problems. Section 3 describes
the state of the art algorithm for this specific problem. Section 4 details the
implementation of the Scatter Search algorithm that we propose to obtain an
approximation to the Pareto front. Section 5 presents our experimental expe-
rience to evaluate the quality of this front, and Section 6 draws the conclusions
and the future work.

2 Literature Review

Facility location problems are shortly described as the selection of a number
of locations from a set of different alternatives. These problems are NP -hard,
and only small instances are solvable to optimality within reasonable time.
These problems come in many different variants due to practical examples
from real life, typically aiming to choose the best locations according to some
diversity or equity measure. In [10] an extensive overview of location problems
is given, and in [4] mathematical models and heuristic algorithms for solving
a collection of such problems are shown.

The current paper considers a bi-objective problem where each of the objec-
tives are earlier studied individually in the research literature. The p-median
problem is one of the most common problems in discrete location theory. The
objective is to choose a given number of locations in a way that minimizes
the total distance between the remaining locations to the chosen ones. The
total distance can be weighted due to different demand at different locations,
or as in our problem, the weights can be considered equal and omitted in the
objective function. In [11], an extensive survey of metaheuristic approaches to
the problem up to that date is given, and it concludes that the introduction
of metaheuristics has led to substantial improvement in solution quality on
large-scale instances within reasonable computing time. In [2] the most re-
cent overview of the p-median problem is presented. The authors show both
constructive and improvement heuristics in addition to the metaheuristics,
and outline a Lagrangian relaxation, which can be embedded in a branch-and-
bound algorithm to obtain optimal solutions to the problem. They also present
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two bi-objective extensions to the problem. First, they examine the trade-off
between the p-median and the maximum covering objective, and then explore
the trade-off between the p-median and the p-center objective. For small in-
stances of these combinations, they state that extensions of the Lagrangian
algorithm could be used, while on larger instances they suggest to use genetic
algorithms. The combination of the p-median and the p-dispersion objectives
is not mentioned in their article.

The p-dispersion problem is also called the max-min diversity problem
and aims to maximize the minimum distance between two hubs. The prob-
lem is closely related to the maximum diversity problem where the objec-
tive is to maximize the sum of distances among the hubs. These problems
are also extensively studied earlier and solution methods vary between ex-
act and heuristic methods. In [3], it is developed an exact algorithm for the
p-dispersion problem based on branch-and-bound, while in [12] it is consid-
ered both the maximum diversity (named as the p-dispersion-sum) and the
p-dispersion problem in the paper. The authors presented a technique to de-
velop upper bounds through Lagrangian relaxation, semidefinite programming
and reformulation, and derived a branch-and-bound algorithm computing an
upper bound in each node. They also presented a solution algorithm based
on transforming the p-dispersion to the maximum diversity problem and used
the same technique for solving it. Several attempts have been tried to solve
the p-dispersion problem by metaheuristics. For example, in [8] it is shown
how to solve the problem with both Simulated Annealing and Tabu Search.
The GRASP and path relinking method of [14] is so far the one producing
best results for the problem. They used dynamic GRASP for creating a set
of elite solutions, and then tested four different variants of path relinking for
exploring the paths combining the solutions. The best results were obtained
when using a Tabu Search method [13]. In this variant, they propose strong
tabu rules of the drop strategy that ensure a high diversification among the
solution space, which allows them to find better solutions.

3 State of the Art

Up to our knowledge, the only paper dealing with the p-median and the p-
dispersion objective simultaneously is [15]. The authors first made use of the
ε-constraint model [1] and solved the problem to optimality for different values
of ε. In this method, they defined p-median as the primary objective function
and treated the p-dispersion objective as a constraint specified with a value
larger than the parameter ε. By running the algorithm iteratively with different
values of ε, optimal solutions for the single objective problem were found and
could be included in the set constituting the Pareto front of non-dominated
solutions.

A modification of the ε-constraint model turned out to be more effective
and required less computational resources. Similar to the original version, the
algorithm would run iteratively, solving the p-median objective and treating
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the p-dispersion objective as a constraint with different threshold values in
each iteration. In this model, the original constraints (4) were replaced by a
group of constraints (6) ensuring that no pair of nodes (i, j) are both selected
as nodes if the distance dij is smaller than the threshold value `.

yi + yj ≤ 1 ∀i, j ∈ V such that dij < ` (6)

When carefully selecting the alternative values of `, this algorithm would
give us the full set of non-dominated solutions to the BpMDproblem. Let,
`min be the initial threshold value found by measuring the p-dispersion value
after solving the p-median problem. Similarly, `max will be the objective value
when solving the problem solely with the p-dispersion objective. The value of
δmin defines the increase of ` between two successive iterations. It is found by
comparing the difference between all pair of distinct dij values and choosing
the smallest one. To execute the algorithm, the values of `min, `max and δmin
need to be determined. The Incremental Algorithm proceeds as follows to
determine them:

Initialization step: Find the values of `min, `max and δmin. Store the solu-
tion for `min in the Pareto optimal set of solutions to the combined problem.
Set the value β0 = `min.

Iterative step: Start the iteration process with counter t = 1, 2, 3, ... .
Set the value of `t = βt−1 + δmin, where βt−1 is the value of the minimum
dispersion objective obtained in the previous iteration. Solve the problem with
`t and store the solution in the Pareto optimal set of solutions to the combined
problem.

Termination: Terminate the algorithm when the parameter `t reaches the
maximum value of `max. Store the solution for `max in the Pareto optimal set
of solutions to the combined problem.

In [15], it is proven that this algorithm is guaranteed to obtain all effi-
cient solutions for the BpMDproblem. The algorithm terminates after at most
n(n−1)/2 iterations since this number is the total number of node pairs in the
problem, and in the worst case, only one pair will be excluded in every itera-
tion. However, experiments show that the actual number of iterations usually
will be significantly smaller. Still, the execution time might be too large with
limited computing resources, and in [15] it is suggested a way to reduce the
computational time by using a δ-value larger than δmin. In this case, there is
no longer a guarantee for the algorithm to obtain all efficient solutions, but
it will only produce a subset of them. The strategy recommended to use with
a limited execution time, is to calculate the expected execution time υ for
one iteration using a fixed value for `. Then one can easily find the expected
number of iterations to perform within the given time frame, and the δ-value
can be set to δ′ = `max−`min

υ .
To achieve the value of `max, the single p-dispersion problem needs to

be solved for the instance data. In [15] it is suggested a strategy where the
maximum number of possible hubs are calculated for all alternative values of
`. Then the integer programming model would look like this:
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υ(`) = Maximize
∑
i∈V yi

Subject to
yi + yj ≤ 1 ∀i, j ∈ V such that dij < `
yi ∈ {0, 1} ∀i ∈ V

By solving this model for increasing values of `, the objective value will
gradually be reduced until it is smaller than the p locations that should be
chosen. Then `max could be identified by the value of `1 where υ(`1) ≥ p and
υ(`2) ≤ p where `1 < `2. In [15] it is suggested to divide the interval between
the smallest and the largest dij into 2q smaller intervals, and carry out a binary
search among those to identify the interval containing the value of `max.

Obviously, the method described above for solving the BpMD problem
depends on a problem instance small enough to be solvable to optimality for
the p-median and the p-dispersion problem separately within reasonable time.
Experiments reported in [15] show how an instance with n = 50 and p = 5 is
solved within 14 seconds and 18 efficient solutions are identified. By using an
adjusted δ′ value the CPU time was reduced to 5 seconds and the procedure
found 6 efficient solutions. Further experiments by larger instances defining a
maximum of 10 iterations showed that an instance with n = 350 and p = 35
used on average 4.5 hours and, in the worst case, almost 10 hours to complete.

In [15] it is also suggested a Lagrangian heuristic to deal with larger in-
stances. This heuristic relaxes constraint set (1) in the original model, defining
that all locations need to be assigned to exactly one hub. The objective func-
tion would then look like (7) with constraints (2), (3), (5) and (6) remaining.

Minimize L(λ) =
∑
i∈V

∑
j∈V

dijxij +
∑
i∈V

λi(1−
∑
j∈V

xij) (7)

The λs are initially given the value equal to the largest dij value for location
i and the upper and lower bounds are initially given values as infinity and
minus infinity. Then the iterative step consist of three operations:

1. Solve the integer programming problem defined in (7). The value of L(λ)
will constitute a lower bound for the solution of the problem with the value of
` given in constraints (6).

2. An upper bound is calculated by assigning each location to its closest
hub and calculating the objective value.

3. The λs for iteration (k+1) are updated according to the formula λ
(k+1)
i =

λ
(k)
i + tk + gki . Here gki = 1−

∑
j xij and tk = π(1.05UB − LB)/

∑
i∈N gi ∗ k

and π is a scaling parameter.
The algorithm is terminated when the relative difference between the upper

and the lower bounds is smaller than a predefined value, or if the number of
iterations reaches a pre-specified maximum value.

The Lagrangian heuristic in the Incremental Algorithm is shown to solve
instances up to n = 650 and p = 65 with an average execution time of 12
minutes and a maximum of 71 minutes on the largest instances.
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4 Scatter Search Proposal

Scatter Search (SS) is an evolutionary algorithm that explores the solution
space by evolving a population of solutions called reference set [9]. It was
introduced in [7] as a heuristic for integer programming. The basic design to
implement SS is based on the “five-method template”.

– A Diversification Generation Method to generate a collection of diverse
trial solutions within the search space.

– An Improvement Method to transform a trial solution into one or more
enhanced trial solutions.

– A Reference Set Update Method to build and maintain a reference set con-
sisting of the b “best” solutions found (where the value of b is typically
small, e.g. no more than 20). Solutions gain membership to the reference
set according to their quality or their diversity.

– A Subset Generation Method to operate on the reference set, to produce
several subsets of its solutions as a basis for creating combined solutions.

– A Solution Combination Method to transform a given subset of solutions
produced by the Subset Generation Method into one or more combined
solution vectors.

Several implementations have been proposed in the literature for these
methods, and some of them are considered straightforward or standard pro-
posals. The overall SS method operates over the reference set, RefSet, which
basically can be considered as a collection of both high quality solutions and
diverse solutions that are used to generate new solutions by applying the com-
bination method. Taking into account the literature and the features of the
problem under study, we have considered the implementations of those meth-
ods that we next describe. Of the five methods in SS methodology, only four are
strictly required. The improvement method is usually needed if high-quality
outcomes are desired, but an SS procedure can be implemented without it. On
the other hand, hybrid SS designs could incorporate a short-term Tabu Search
or another complex metaheuristic such as the improvement method (usually
demanding more running time).

After several attempts of using a greedy strategy to create solutions for
the initial population, we found in our preliminary experiments that a method
which randomly selects p nodes to construct one solution is as good as the
greedy alternatives that we were exploring. Moreover, the advantage of the
random method is the diversity of the generated solutions, which provides
very different starting points for the improvement method. Hence, although
it is unusual in the SS methodology, we decided to use a random method to
generate the initial population.

According to the literature, in the standard design, the RefSet is usually
updated taking into account only the quality of the solutions. Advanced de-
signs [5], however, update the RefSet taking into account both the quality and
the diversity of the solutions in the population. These strategies are very clear
in the case of one objective function, because it determines the quality of a
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solution. However, we deal with a bi-objective problem where the concept of
quality depends on two objectives. In this context, we defined the quality of a
solution as the distance to an ideal solution that is defined by the best known
values for the objectives. Notice that this ideal solution is not a real solution
because its values come from the two extremes of the Pareto front. Expression
(1) shows the calculation of the Euclidean distance between a given solution
s and the reference solution sref . In our approach, therefore, the lower the
distance, the better the quality. A solution enters into the RefSet when its
distance to the ideal solutions is lower than the distance of the worst solution
in the RefSet to this ideal solution. This is an adaptation of the standard
implementation of the RefSet Update Method to multi-objective optimization.
Note that the solutions in the RefSet are ordered with respect to their quality,
evaluated according to this distance value.

dist(s) =
√

(f1(s)− f1(sref ))2 + (f2(s)− f2(sref ))2 (1)

As described above, the SS methodology basically consists of five elements
(and their associated strategies). Three of them, the Diversification Genera-
tion, the Improvement and the Combination Methods, are problem dependent
and should be designed specifically for the problem at hand. We implemented
the standard Subset Generation Method where all the possible pairs of solu-
tions in the RefSet are considered. Then, the pairs of solutions are combined
in order to obtain new solutions to be improved. In our proposal, we have
defined a combination method based on the distance among the locations
of the solutions to be combined, trying to maximize the minimum distance
among the selected locations. This idea bias the resulting solution towards the
p-dispersion objective, which we have found to be more difficult to improve,
according to the results of our preliminary experiments. The different difficulty
in the objectives could be caused by a sparsely populated space of solutions in
the p-dispersion objective in relation to the space of solutions of the p-median
objective. However, we have not performed any experiment devoted to prove
this idea, and we will consider it for future work. Algorithm 1 describes the
combination method. Steps 1 to 3 initialize the combined solution sc and store
the locations of the solutions s1 and s2 into the set of locations L. Then, so-
lution sc is constructed iterating up to its size reaches p. On each iteration of
the loop, j? is selected as the location whose minimum distance to the rest of
locations in L is the maximum one, as shown in Step 5. Finally, Steps 6 and
7 update both the combined solution and the remaining locations.

It is well-known in heuristic optimization that the local search method is
a key component of any method that seeks to find the global optimum of
a difficult problem. We therefore study the adaptation of three alternatives.
They correspond to three local search methods that follow the first improve-
ment strategy where a move randomly exchange a location from the current
solution with a non-selected location.

The difference among the three implementations is the way they determine
that a new solution improves the current one. Basically, we have followed
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Algorithm 1 Combination between solutions s1 and s2.
1: sc ← ∅
2: L← s1
3: L← L ∪ s2
4: while |sc| < p do
5: j? = arg max

j∈L
arg min

i∈L∧i 6=j
{dij}

6: sc ← sc ∪ {j?}
7: L← L \ {j?}
8: end while
9: return sc

three different ideas that perform the exploitation of the search space very
differently.

The first method is a local search based on dominance, LSDom. This
method considers that a new solution is better if it dominates the current
one. That is, when both objective values are better than those of the current
solution. It is important to notice that if the method finds a non-dominated
solution, which is a solution with one objective value that is worse than the
current one, but the other one being better or equal, the non-dominated solu-
tion is stored in an external archive.

Notice that a local search over one objective will return a single solution.
However, in this bi-objective problem, it is unlikely that one single solution
will dominate all the others. In fact, the local search travels along different
non-dominated solutions. Therefore, we use an external archive to store the
non-dominated solutions are visited by the local search and, at the end of
the execution, the algorithm will return the non-dominated solutions from the
archive.

The second method is a local search that alternates the objective that
is evaluated, LSAlt. In this case, the method compares the value of one of
the objectives in order to decide if the new solution is better. However, the
objective taken into account is changed each time a better solution is found.
As in the case of LSDom, if a new solution is worse but is non-dominated (the
value for the other objective is better), it is stored in an external archive.

The third method is a local search that tries to minimize the normalized
distance to an ideal point, LSDist. This approach follows the strategy of the
quality we have defined in Equation (1). A new solution is better if the distance
to the reference solution is smaller than the distance from the current solution.
As in the update of the reference set, this local search method calculates the
distance with Equation 1. Besides, as in the other local search methods, if a
new solution is considered worse but is a non-dominated solution, it is stored
in the external archive.

Finally, we have also included a loop in the algorithm that performs a
restart of the algorithm if the time limit is not reached, but keeping the same
archive. To this aim, we have included the condition of a time limit in all the
methods of the SS. Therefore, any method is interrupted if the time limit is
reached. The resulting SS implementation is described in Algorithm 2.
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Algorithm 2 Scatter Search algorithm.
1: archive ← ∅
2: while true do
3: Construction of the initial population P .
4: Application of the improvement method (local search) to all solutions in P .
5: Construction of the RefSet from the solutions in P considering the normalized dis-

tance to the reference solution.
6: while New solution enters the RefSet do
7: Generation of subsets from the RefSet creating all the possible pairs of solutions.
8: Application of the combination method to all the generated subsets considering the

maximization of the minimum distance among locations of the combined solutions.
9: Application of the improvement method (local search) to all solutions generated

by the combination method.
10: Update of the RefSet using improved solutions considering the normalized distance

to the reference solution.
11: end while
12: end while
13: return RefSet ∪ archive

In the next section we analyze the performance of our SS proposal under
the three different alternatives we have described for the improvement method.

5 Experimental experience

We have performed our experiments over a set of medium-sized instances
kindly provided by the authors of the best previous method [15]. More pre-
cisely, we worked with a set of 9 instances with n = 250 and p = 25, named
as D 250, and a set of 10 instances with n = 350 and p = 35, named D 350.
The authors of [15] also gave us their solution (approximation of the efficient
frontiers).

The aim of these experiments is to show the potential benefits of the SS
approach versus the Incremental Algorithm from [15], also described in Section
3. In addition, we determine which metric will provide a better comparison
between the different SS improvement methods proposed.

We have run our SS algorithm 10 times on each one of the instances using
the three improvement methods described in Section 4. Therefore, 30 runs
of the SS have been performed for each instance. After the preliminary ex-
periments, the initial population size and RefSet size parameters were set to
P = 10 and b = 4 respectively.

Given that we want to compare the performance of the Scatter Search
with the Incremental Algorithm, we limit the execution of the Scatter Search
to the lowest execution time given in [15] for the target instances. In the case of
D 250, this corresponds to 75 seconds, and for D 350 the limit is 165 seconds.
In addition, for each one of the instances, we took as ideal solution sref the
one with objective values equal to the best values of the objective functions
given by the frontiers provided in [15]. Notice that this is not a solution of the
instance, but a point in the objective values space.
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Once the runs were finished, we examined the hypervolume values of the
non-dominated solutions coming from each run, which form the approximation
to the Pareto front. The hypervolume [16] measures the area dominated by the
solutions in the given frontier taking into account a reference point. In our case,
given that the p-median is a minimizing objective and the p-dispersion is a
maximizing objective, the fronts are oriented as shown in Figure 1, pointing to
the top left of the plot. However, we decided to use the origin as the reference
point to calculate the hypervolume. Hence, we have transposed the median
objective to the difference between a high upper bound and the objective
value. Figure 2 shows the transposed front. We made it to consider the usual
case of maximization problems where the higher the hypervolume the better
the frontier. Notice that, in terms of dominance, there is no modification in
relation to the relative position of each solution and its dominated area. The
unique change is the orientation of those dominated areas.

Fig. 1 Front obtained with the Incremental Algorithm for D 250 1 instance.

Table 1 shows the values of the average hypervolume values for the in-
stances under study. We present the results for the Incremental Algorithm,
as well as the values for our three local search methods in the SS algorithm.
It is clear that the best hypervolume results are given by the LSDist method
in all the instances but two of the D 250 instance. Moreover, it can be seen
that all the SS approaches obtain better hypervolume values than the refer-
ence case. These results occur because, running the same execution time, the
SS approaches find more non-dominated solutions than the Incremental Algo-
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Fig. 2 Transposed front obtained with the Incremental Algorithm for D 250 1 instance.

rithm. Therefore, the fronts are both wider and more crowded, which results
in higher hypervolume values.

Instance Increm. Alg. LSDom LSAlt LSDist

D 250 1 789.71 5279.24 6511.86 6593.79
D 250 2 820.32 5368.33 6650.29 6473.96
D 250 3 822.88 5391.89 6463.97 6661.65
D 250 5 771.02 5222.3 6157.56 6414.26
D 250 6 827.17 5505.66 6573.13 6604.87
D 250 7 783.28 5174.31 6235.3 6349.73
D 250 8 813.23 5404.21 6241.61 6578.55
D 250 9 798.65 5373.02 6576.82 6565.28
D 250 10 791.04 5099.36 6175.9 6452.44
D 350 1 255.41 844.7 1723.72 2205.68
D 350 2 267.98 1064.89 1876.36 2249.04
D 350 3 225.6 637.21 1435.45 1943.7
D 350 4 232.61 816.57 1364.08 2017.48
D 350 5 234.63 605.37 1304.74 1995.29
D 350 6 279.64 914.61 1477.92 2289.94
D 350 7 337.45 1501.21 2167.32 2829.54
D 350 8 259.39 882.85 1610.3 2181.73
D 350 9 305.41 1251.2 2037.91 2525.41
D 350 10 272.53 1420.71 2039.94 2478.42

Table 1 Average hypervolume values of the instances under study. The higher the better.

However, despite that the Incremental Algorithm fronts have less number
of solutions and lower hypervolume values, the SS frontiers are not better than
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the Incremental Algorithm ones in terms of dominance. In fact, we found that
none of the SS frontiers completely dominates the Incremental Algorithm front
in any instance.

Besides, many of the SS fronts with higher hypervolume values are not
good in terms of dominance. To illustrate these issues, Figure 3 shows three
fronts for the D 250 1 instance: the reference one, given by the Incremental
Algorithm and labeled as “Ref.”; the front with the best hypervolume value,
labelled as “SS best Hv”; and a third front, labeled as “SS best Non-Dom.”
which is the front with the best ratio of non-dominated solutions in relation
to the reference. This ratio is the number of solutions non-dominated by the
reference divided by the total number of solutions in the front. As seen in this
figure, 6 out of the 11 solutions (54.54% of the solutions) are not under the lines
that determine the dominated area of the reference front. However, this best
frontier in terms of dominance ratio does not present a high hypervolume value
because the front is not wide enough compared to other frontiers. Therefore,
we need another metric to better evaluate the results of these experiments.

Fig. 3 Comparison of frontiers for D 250 1 instance.

Hence, we have also calculated the ratio of non-dominated solutions for
the runs of the instances under study considering the reference fronts. These
ratios are displayed in Table 2, showing the average value for the runs over
each instance. Again, we see that LSDom presents the worst performance, with
no solutions at all being non-dominated. In addition, LSNorm obtains better
average values in 12 out of the 19 instances.
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Instance LSDom LSAlt LSDist

D 250 1 0 0.011 0.073
D 250 2 0 0.066 0.052
D 250 3 0 0.094 0.088
D 250 5 0 0.068 0.088
D 250 6 0 0.015 0.042
D 250 7 0 0.058 0.069
D 250 8 0 0.015 0.056
D 250 9 0 0 0.009
D 250 10 0 0.104 0.1
D 350 1 0 0.033 0.181
D 350 2 0 0.109 0.054
D 350 3 0 0.042 0.09
D 350 4 0 0.009 0.076
D 350 5 0 0.124 0.107
D 350 6 0 0.007 0.105
D 350 7 0 0.096 0.222
D 350 8 0 0.062 0.053
D 350 9 0 0.071 0.032
D 350 10 0 0.219 0.609

Table 2 Average ratio of non-dominated solutions in relation to the Incremental Algorithm
frontier. The higher the better.

To finally illustrate the behavior of the SS approaches, we have analyzed
the plots of the solutions obtained by the different algorithms. For the sake of
space we will not show all the plots, but a couple of representative cases from
two of the instances under study.

Figure 4 shows the solutions obtained for the D 250 3 instance. Here we
can see that some solutions obtained with SS running LSAlt and LSDist are
not dominated by the reference front, mainly in the lower part of the front. It
is clear that all the solutions from LSDom are dominated. This is an interesting
behavior taking into account that LSDom looks for non-dominated solutions.
However, we believe that this improvement condition is too hard, and the
local search gets stuck in the search process, obtaining low quality solutions.
On the other hand, the progression of the other local search approaches is
longer because it is easier to fulfill their improvement conditions.

Figure 5 plots the solutions obtained for the D 350 10 instance. Despite the
fact that the behavior of the SS implementations is similar than in the previous
case, we would like to notice that both LSAlt and LSDist SS approaches obtain
solutions that dominate the reference case in the bottom-left region of the
plot. This result proves that the SS is a good alternative to the Incremental
Algorithm, and seems to have potential to beat the state of the art in larger
instances.

Therefore, we have confirmed that the SS approach obtains a higher num-
ber of non-dominated solutions than the Incremental Algorithm running the
same execution time. Besides, for some of the instances, the SS approaches
have obtained better solutions in terms of dominance than the state of the art
algorithm. Hence, this result motivates the research on more efficient methods
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Fig. 4 Solutions from Incremental Algorithm (Ref.) and SS algorithms for D 250 3 in-
stance.

Fig. 5 Solutions from Incremental Algorithm (Ref.) and SS algorithms for D 350 10 in-
stance.

with the aim of obtaining solutions that dominate the Incremental Algorithm
frontiers.

6 Conclusions and Future Work

In this paper we have presented a SS approach to tackle the BpMD problem.
An initial SS implementation has been described where we apply a random
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constructive method for the generation of the initial population and a com-
bination method that tries to maximize the minimum distance among the
locations of the solutions to combine. We have implemented three different
improvement methods based on a first improvement local search strategy.

Our SS proposal with the three improvement methods have been tested
against the state of the art algorithm for a set of medium-sized instances. We
have found that, running the same execution time, our SS implementations
obtain a higher number of solutions in wider Pareto fronts, which is translated
into higher hypervolume values. Besides, we have analyzed the behavior of the
local search alternatives, and we have concluded that, despite the solutions
obtained by the SS do not completely dominate the reference results, they
are able to improve a significant number of reference solutions in many of
the instances. Therefore, further study on more efficient methods for the SS
implementation can be the basis of more advanced search methods to obtain
improved outcomes. In addition, we will study different variants of the distance
measure, considering normalization of values, and different weights for each
objective function.
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