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Abstract

The Max-Sum diversity and the Max-Min diversity are two well-known opti-
mization models to capture the notion of selecting a subset of diverse points
from a given set. The resolution of their associated optimization problems
provides solutions of different structures, in both cases with desirable character-
istics. They have been extensively studied and we can find many metaheuristic
methodologies, such as Greedy Randomized Adaptive Search Procedure, Tabu
Search, Iterated Greedy, Variable Neighborhood Search, and Genetic algorithms
applied to them to obtain high quality solutions. In this paper we solve the
bi-objective problem in which both models are simultaneously optimized. No
previous effort has been devoted to study the “combined problem” from a multi-
objective perspective. In particular, we adapt the mono-objective methodologies
applied to this problem to the resolution of the bi-objective problem, obtaining
approximations to its efficient front. An empirical comparison discloses the best
alternative to tackle this NP-hard problem.
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1. Introduction

The problem of maximizing diversity refers to the selection of a subset of
elements from a given set in such a way that the diversity among the selected
elements is maximized (Glover et al., 1995). We can find different applications
of maximizing diversity in real-world situations. For instance, many universities
in the United States, when determining admission policies, go beyond selecting
through the academic grades, and also consider other factors in the search for
a diverse set of students (Ramirez, 1979). In market planning, it is often desir-
able to maximize both, the number and the diversity of forces in a brand profile
(Keely, 1989). Other contexts in which maximizing the diversity can be ap-
plied include plant cultivation (Porter et al., 1975), social problems (Swierenga,
1977), immigration policies that promote ethnic diversity (McConnell, 1988),
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ecological preservation (Unkel, 1985), design of products (von Ghyezy, 1986),
task-fore management (Thomas, 1990), curriculum design (Jackson, 1991), and
management of genetic resources (Glover, 1992).

As other optimization problems, in spite of its simplicity, it is a challenge
even for modern solving techniques. As a matter of fact, the first obstacle that
we encounter when dealing with diversity is its modeling. Note that when we
talk about diversity, we are assuming the existence of a distance function in
the space where elements belong. Distance functions, such as the well-known
Euclidean distance, typically compute a value to measure the similarity or prox-
imity of two elements. When we consider a subset of more than two elements,
we have a distance value for each pair of elements in the subset, and we have to
compute a single diversity value from all of them. In this way, we can compare
two different subsets in our search for the best one. This is where the mathe-
matical model plays a key role capturing the notion of diversity by specifying
how to compute a single diversity value from many pairwise distances. A few
models, and many solving methods have been proposed in the last few years.

The most studied model is probably the Maximum Diversity Problem (MDP)
also known as the Max-Sum Diversity Model (Ghosh, 1996), in which the sum
of the distances between the selected elements is maximized. Considering that
n is the number of elements in the original set, and m the number of selected
elements (the subset cardinality), we can formulate it in mathematical terms
as:

(MDP) Maximize zMS(x) =
∑
i<j

dijxixj

s.t.
n∑
i=1

xi = m

xi ∈ {0, 1} i = 1, . . . , n.

(1)

This formulation is based on the binary variables xi indicating whether ob-
ject i is selected or not. Note that although this mathematical model only
contains one objective function and one constraint, it is indeed quite compli-
cated to solve, due to the combination of a non-linear objective function with
a discrete solution space (as a result of the binary variables). On the other
hand, the combinatorial nature of its solutions makes its complete enumera-
tion impracticable, thus being a challenge for both exact and heuristic solving
methods.

The second model in terms of its popularity is probably the Max-Min Diver-
sity Problem (MMDP) (Erkut, 1990), in which the minimum distance between
the selected elements is maximized. It can be formulated in a similar way as
follows:

(MMDP) Maximize zMM (x) = min
i<j

di jxixj

s.t.
n∑
i=1

xi = m

xi ∈ {0, 1} i = 1, . . . , n.

(2)

The Max-Sum and Max-Min literature includes extensive surveys (Ağca
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Table 1: Diversity measures according to (Sandoya et al., 2018).

Measure Mathematical function Description

Sum
∑

i<j,i,j∈M
dij This measure may address diversifica-

tion among selected elements to dis-
tance.

Min min
i<j,i,j∈M

dij Focus on the minimum distance among
the selected elements.

Mean

∑
i<j,i,j∈M dij

|M |
Related to the Sum measure, is an av-
erage equity measure.

MinSum min
i∈M

∑
j∈M,j 6=i

dij This measure considers the minimum
sum of distances, which corresponds
to the aggregate dispersion among el-
ements.

Diff max
i∈M

∑
j∈M,j 6=i

dij −min
i∈M

∑
j∈M,j 6=i

dij This measure can be understood as
the difference between the largest and
smallest values of the dispersion sum.

et al., 2000; Erkut and Neuman, 1989; Kuo et al., 1993), exact methods (Ağca
et al., 2000; Ghosh, 1996; Pisinger, 2006), and heuristics (Ghosh, 1996; Hassin
et al., 1997; Kincaid, 1992; Ravi et al., 1994; Resende et al., 2010). Although we
can find other mathematical models to map the notion of diversity into functions
and constraints, they did not receive much attention. Special mention deserves
the work in (Prokopyev et al., 2009) in which four different models in the con-
text of facility location and group selection are proposed. Table 1 summarizes
the diversity measures known for a subset M of elements (Sandoya et al., 2018).
Note that all of them have been proposed in the context of single-objective
optimization.

In this paper we study the diversity maximization from a multi-objective
point of view. In particular, we consider the Max-Sum and the Max-Min mea-
sures as objectives to be simultaneously maximized. We have called this problem
the Bi-Objective Diversity Problem (BODP). The aim of BODP is to provide
the user with different solutions (subsets of the given set) with different objective
values. To tackle the BODP we have explored six different methods from three
families of algorithms: the Non-dominated Sorting Genetic Algorithm-II, usu-
ally known as NSGA-II (Deb et al., 2002) and the second version of the Strength
Pareto Evolutionary Algorithm, also known as SPEA2 (Zitzler et al., 2001), from
the population-based algorithms; Greedy Randomized Adaptive Search Proce-
dure (Feo and Resende, 1989) and Iterated Greedy (Ruiz and Stützle, 2007)
from the construction-based algorithms; and Tabu Search (Glover and Laguna,
1997) and Variable Neighborhood Search (Hansen and Mladenovic, 2001) from
the trajectory-based algorithms. We have adapted these six algorithms to the
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BODP proposing some new elements, such us the codification of solutions, new
genetic operators, constructive methods and local search strategies. Given that
those algorithms require several parameters to be adjusted, we have used iRace
(López-Ibánez et al., 2016) to automatically tune their configuration taking into
account the hypervolume quality indicator. Finally, we have compared the six
approaches in a well-known set of instances using three quality indicators for
multi-objective optimization: hypervolume, set coverage, and epsilon indicator.
The results show that the Tabu Search method obtains better results and spends
shorter execution times.

The rest of the paper is organized as follows. In Section 2, we motivate the
multi-objective nature of the problem. In Section 3, we describe the algorithmic
proposals, while in Section 4, we detail the experimental experience. Finally, in
Section 5, we draw the conclusions and the future work.

2. Problem motivation

Given that the main purpose of this paper is to maximize diversity, one may
ask, why is it important? We can find numerous applications in the scientific
literature to answer it. From a human resources perspective, promoting diver-
sity and equity is a goal in many companies and organizations. This includes
INFORMS, the American institute for operations research and management
science. This institute even promotes an award, the WSC Diversity Award,
to improve outreach and diversity among young researchers. It is nowadays a
well-established principle in many companies that increasing human diversity
in not only ethical but also beneficial for the company efficiency. This has been
very-well summarized in the book by Scott Page (Page, 2007), where he states
that “Diverse perspectives and tools enable collections of people to find more
and better solutions and contribute to overall productivity”.

If we turn our attention to logistics and consider for example the area of
vehicle routing, we can find specific models to create diverse routes. Mart́ı et al.
(2009) considers a multi-objective routing problem in which a set of paths from
an origin to a destination must be generated. Finding different paths in a graph
is a classical optimization problem, and in the context of hazardous materials
transportation, we want to obtain spatially dissimilar paths that minimize the
risk (distributing the risk over all regional zones to be crossed uniformly). The
Path Dissimilarity Problem involves obtaining a set of p paths with minimum
length and maximum diversity. This and related models have been extensively
studied in Operations Research where maximizing diversity is an important
point.

In this paper we focus on the two most studied models, Max-Sum and Max-
Min, and propose a bi-objective model for an improved approach to identify
diverse subsets in a given set. We target these two objectives for several reasons.
The first one is that they are pure diversity models, while the others mentioned
above are equity models according to Sandoya et al. (2018). These authors
reviewed all the existing models and classified them according to their scope. A
second reason to consider these two objectives is because of their relatively low
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Figure 1: Comparison of optimal solutions for Max-Sum (left) and Max-Min (right) on the
same instance.

correlation (Resende et al., 2010). Therefore, we should not expect a method
designed for one of these problems to obtain good solutions for the other one.
Finally, a third reason to select these objectives in our study is related to the
composition of the solutions obtained by search methods. In particular, as
described in Sandoya et al. (2018), the solutions obtained with one model are
usually very different to the solutions obtained with the other model.

To illustrate this point, we have run the following experiment. Figure 1 shows
the optimal solution of both models on a small example with n = 30 elements
from which we want to select m = 10. This is a toy example where the axes of
the figure indicate coordinate values, and the dots represent specific locations.
Squares correspond to the selected elements. This example was generated from
scratch as a proof of concept of our proposal. It is clear from the example in
Figure 1 that, depending on the model considered, we can obtain solutions with
a very different structure (in terms of the position of the selected elements).
Although in the last few years many algorithms have been proposed to solve
these two models, we are not aware of any analysis of the solutions obtained. It
has not been studied either which model suits better for each type of application.

We can consider that the Max-Sum model is somehow more complete than
the Max-Min model since it considers all the pairwise distances when computing
the objective function. On the other hand, the Max-Min model forces the closest
selected elements to be as far as possible, preventing similar (close) elements to
appear in the solution. A potential user may argue that she or he would like
to consider these two desirable characteristics in the solution. Therefore, an
approach such as the BODP proposed here, satisfies this kind of requirements.

To illustrate the advantages of a bi-objective approach, we have performed a

5



Figure 2: Exact Pareto front for a small instance with n = 25 and m = 7.

simple experiment. We consider a small instance (with n = 25) and generate all
its feasible solutions (subsets of m = 7 elements), and compute for each solution
the two objectives. Then, we only take non-dominated solutions (i.e., those for
which there are no other solution with a better value in both objectives). With
this enumeration we obtain the so-called exact Pareto front.

Figure 2, which displays the objective value of the solutions, shows that
the Pareto front contains five solutions, being the one in each extreme of the
optimal solution of each respective single optimization problem. The existence
of three efficient solutions between the two extreme solutions confirms that the
bi-objective model has an additional value with respect to the single objective
models. In practical terms, the resolution of the bi-objective model can provide
the user with several solutions potentially interesting to choose the one that
fits better in the domain considered. In addition to the enumeration, we have
conducted this experiment using the heuristic methods that we will present in
the following section, and all of them were able to reach the optimal solution
because this is a small instance.
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Table 2: Classification of the studied methods.

Population-based Construction-based Trajectory-based

NSGA-II GRASP Tabu Search
SPEA2 Iterated Greedy VNS

3. Algorithmic Proposals

Once we have presented the Bi-Objective Diversity problem and motivated
the optimization of the two objectives simultaneously, we next describe the algo-
rithmic proposals studied in this work. We have grouped our proposed methods
according to the standard classification of population-based, constructive-based,
and trajectory-based methods. Table 2 shows the methods under this classifi-
cation. The following three subsections are respectively devoted to them.

3.1. Population-based methods

In the field of metaheuristics, there are many approaches that are based
on maintaining a population of individuals, each one representing a solution
of the given problem. Among them, we can find Genetic Algorithms, Genetic
Programming, Scatter Search, Ant Colony Optimization, and algorithms related
to different swarms of elements. In order to tackle our bi-objective problem, we
have selected the classical NSGA-II and SPEA2 genetic algorithms to represent
this class of methods. Our adaptation of both methods to solve the BODP
follows.

Before going through the algorithmic details, we would like to briefly explain
two common terms in the field of genetic algorithms that we will next use:
chromosome and gene. A chromosome is the representation of a solution by
means of a list (or array) of integer values. Each one of the components of a
chromosome is a gene, and encodes a small number of features of the solution
(typically one feature for each gene).

3.1.1. NSGA-II and SPEA2

According to recent surveys (see for example Sayyad and Ammar (2013)),
the two most popular algorithms in multi-objective optimization are the second
version of the NSGA-II (Deb et al., 2002) and the improved version of the
Strength Pareto Evolutionary Algorithm, which is known as SPEA2 (Zitzler
et al., 2001).

NSGA-II is considered the de facto standard when the number of objectives
is small. According to Deb and Jain (2014), multi-objective optimization cor-
responds to a number of two or three objectives, which is a small number of
them. In the case of four or more objectives, this optimization is known as
many-objective optimization, and variations of the state-of-the-art algorithms
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are proposed to deal with this number of objectives. This is the case of NSGA-
III (Deb and Jain, 2014), for example. NSGA-II is used in more than 53% of
the papers reviewed in Sayyad and Ammar (2013).

The pseudo-code of NSGA-II is shown in Algorithm 1. The execution begins
with the generation of an initial random population P of Pop solutions formed
by chromosomes. In this case, a chromosome is an array of integer values,
called genes, that encode a solution. Each gene stores the identifier of a selected
node. Hence, the length of the chromosomes is p. Then, the evaluation of
the solutions is performed in step 2 and, after that, the main loop iterates
during Gen generations. The crossover operator is applied to the population P
using the probability CxPr in step 5. The mutation operator is applied to the
population generated after the crossover, PCx with probability MtPr in step 6.
The resulting population, PMt is joined with the previous populations in step
7, producing a new population PAll, which is evaluated in step 7. After the
evaluation, the crowding distance of the members of PAll is computed in step
9. The crowding distance measures the density of solutions around a selected
one. This metric is used in conjunction with the dominance in the ranking
of solutions in step 10 and, using this ranking, the population is reduced to
the original Pop size in step 11. The loop ends once the maximum number of
generations is reached.

Algorithm 1: Pseudo-code of the NSGA-II algorithm.

1: P ← randomPopulation(Pop)
2: evaluate(P )
3: i← 0
4: while i < Gen do
5: PCx ← executeCrossover(P,CxPr)
6: PMt ← executeMutation(PCx,MtPr)
7: PAll ← P ∪ PCx ∪ PMt

8: evaluate(PAll)
9: computeCrowdingDistance(PAll)

10: assignRank(PAll)
11: P ← reducePopulationThroughCrowding(PAll, Pop)
12: i← i+ 1
13: end while
14: ND ← obtainNonDominated(P )
15: return ND

The SPEA2 algorithm follows a similar general scheme, based on chromo-
somes and genetic operators. However, it differs from NSGA-II in the particular
features that are taken into account for the individuals.

As seen in Algorithm 2, the steps before the main loop are exactly the
same as in NSGA-II but step 4, where the archive of solutions A is initialized.
The termination condition of the main loop is also the number of generations,
but the internals of the loop are different. Inside the loop, step 6 joins the
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current population with the archive in PAll, and the strength of these solutions
is calculated in step 7. Then, a reduction of PAll is performed in step 8, where
the strength and the cost of each solutions is taken into account for the removal
of solutions. In this step, if the remaining number of solutions is lower than
Pop, the population is completed with solutions from A. After this process, the
crossover and mutation operators are applied, and the current population after
them is evaluated, looping till the final generation. After the last iteration, the
non-dominated solutions are returned.

Algorithm 2: Pseudo-code of the SPEA2 algorithm.

1: P ← randomPopulation(Pop)
2: evaluate(P )
3: i← 0
4: A← ∅
5: while i < Gen do
6: PAll ← P ∪A
7: calculateStrength(PAll)
8: P ← reducePopulationThroughStrength(PAll, A, Pop)
9: PCx ← executeCrossover(P,CxPr)

10: PMt ← executeMutation(PCx,MtPr)
11: PAll ← P ∪ PCx ∪ PMt

12: evaluate(PAll)
13: i← i+ 1
14: end while
15: ND ← obtainNonDominated(P )
16: return ND

3.1.2. Adaptation to BODP

As stated before, both NSGA-II and SPEA2 are based in a population where
each individual is represented by a chromosome. Therefore, in order to deal with
the BODP we have adapted the codification and the genetic operators in the
same way for both algorithms.

Regarding solution representation, we have codified them as integer chromo-
somes of length m. Hence, the chromosome contains the elements selected by
the solution which, in the initial population, are randomly generated.

Regarding the genetic operators, we have considered the classical tournament
selection, single-point crossover and the uniform mutation for both algorithms
(Eiben and Smith, 2003). However, the straightforward implementations of
crossover, and mutation could lead to unfeasible solutions due to repetitions of
elements in the offspring. Figure 3 shows an example of crossover where the
first offspring is unfeasible due to the repetition of element 5.

To overcome the limitation illustrated in Figure 3, we developed an imple-
mentation that we call combinatorial crossover, with the objective of avoiding
unfeasible solutions. Algorithm 3 shows the steps performed by the operator.
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Parent 1: 1  5     6  9

Parent 2: 1  2     5  7

Offspring 1: 1  5     5  7

Offspring 2: 1  2     6  9

(Unfeasible)

Figure 3: Usual single-point crossover. First offspring is not a feasible solution.

As seen, given two parent solutions, P1 and P2, the first step is to obtain the
common elements, called fixed genes, FixG. These elements will belong to the
two offspring O1 and O2, as seen in steps 2 and 3. Those elements that are not
fixed genes are called free genes, and are collected in set FreeG in step 4. The
free genes are then randomly distributed on the offspring, as shown in the loop
that begins in step 5 and ends in step 12. Notice that function selectRandom

in steps 6 and 9 randomly selects one element from the given set of genes. This
function will be used later in other algorithms with the same behavior.

Algorithm 3: Combinatorial crossover operator.

1: FixG← P1 ∩ P2

2: O1 ← FixG
3: O2 ← FixG
4: FreeG← P1 ∪ P2 \ P1 ∩ P2

5: while (FreeG 6= ∅) do
6: g1 ← selectRandom(FreeG)
7: O1 ← O1 ∪ {g1}
8: FreeG← FreeG \ {g1}
9: g2 ← selectRandom(FreeG)

10: O2 ← O2 ∪ {g2}
11: FreeG← FreeG \ {g2}
12: end while
13: return (O1, O2)

Figure 4 shows two examples of the combinatorial crossover. As seen, the
offspring keeps common genetic information, while and the uncommon one is
randomly distributed.

The mutation operator follows the same strategy of avoiding unfeasible so-
lution. This combinatorial mutation works as described in Algorithm 4. First,
the elements not belonging to the given solution S are obtained in set NS in
step 1. Then, an element to be removed r is randomly selected from the solu-
tion, and an element to be added is randomly selected from NS in steps 2 and
3. Finally, the mutated solution S′ is composed in step 4. Notice that, given
the nature of the crossover and mutation operators, the position of the genes in
the chromosome is not relevant. Therefore, step 4 represents the insertion as a
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Parent 1: 1  6  8  9

Parent 2: 1  3  6  7

Offspring 1: 1   3   6   9

Offspring 2: 1   6   7   8

Fixed: 1 6

Free: 3 7 8 9

Parent 1: 1  2  6  8

Parent 2: 2  4  7  9

Offspring 1: 1   2   4   7

Offspring 2: 2   6   8   9

Fixed: 2

Free: 1 4 6 7 8 9

Figure 4: Example of combinatorial crossover.

union between a set and one element.

Algorithm 4: Combinatorial mutation operator.

1: NS ← N \ S
2: r ← selectRandom(S)
3: a← selectRandom(NS)
4: S′ ← (S \ r) ∪ a
5: return S′

Therefore, these combinatorial operators maintain the algorithms in the
space of feasible solutions without the need of any repair operation.

3.2. Construction-based methods

Instead of having a population of individuals, other optimization methods
focus on the construction of solutions, which can be later modified in differ-
ent ways. Therefore, the exploration of the solution space is different than
in the case of population-based methods. In short, it is made by generation
instead of by combination. Hence, in order to assess the performance of the
construction-based methods, we have selected two methodologies that exhibit
a remarkable performance when targeting mono-objective diversity optimiza-
tion: Greedy Randomized Adaptive Search Procedure (GRASP) and Iterated
Greedy. Both approaches create solutions using a constructive method based
on a greedy function.

The proposed greedy function for this problem computes the objective value
for a solution S once the selected element j is added. The input parameter obj
determines which one of the cost functions (corresponding to both objectives)
has to be taken into account. More formally, the greedy function g(S, j, obj) is
defined as follows:
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g(S, j, obj) =


min

i<k,i,k∈{S∪{j}}
dik if obj = 0 (Max−Min)∑

i<k,i,k∈{S∪{j}}
dik if obj = 1 (Max− Sum) (3)

3.2.1. GRASP

The GRASP methodology, introduced in Feo and Resende (1989), performs
a given number of iterations in which a trial solution is constructed and then
improved, typically using a local search method. The GRASP method is greedy
because the elements that are added to a trial solution in the construction phase
are selected according to a greedy function, but the selection of the elements
is randomized through a list of candidates and a selection parameter typically
named α.

To tackle this problem, we propose a constructive method that alternatively
considers each one of the objectives when constructing subsequent solutions.
That is, once a solution is constructed according to an objective, this current
objective is changed. The pseudo-code of this constructive procedure is shown
in Algorithm 5. Firstly, the solution S is reset and the candidate list CL is filled
in with all the elements of the instance, which are initially stored in J , as seen
in steps 1 and 2, respectively. Then,the main loop begins by adding elements
to S. To this aim, the minimum and maximum values for the current objective
are obtained for all the candidate elements in steps 4 and 5. These values are
used in the creation of the restricted candidate list RCL in step 6, which is
guided by the parameter α. This parameter biases the selection of the elements
according to their quality. If α = 0, any element can be selected. If α = 1,
only the element with the highest objective value will be selected. In step 7 an
element from the RCL is randomly selected and both, the current solution and
CL, are updated in steps 8 and 9. The loop ends when the solution reaches the
required size, which is m. Finally, once the solution is built, the objective is
alternated with the modulus function, as shown in steps 11 to 15.

Given that this method is a greedy constructive that alternates objectives
between different solutions, we call it CAltBwS . In addition this method, and in
line with Mart́ı et al. (2015), we will use a different one that alternatively con-
siders each one of the objectives when including an element in the solution. We
call this method CAltInS . Finally, in order to get baseline for our empirical com-
parisons, we have also tested a method which randomly creates a solution. This
procedure is called CRnd. Therefore, we propose three different constructive
methods whose performance will be analyzed in the experimental experience.

After the execution of a constructive method, a local search process is per-
formed on the incumbent solution in the GRASP algorithm. The design of the
local search for a multi-objective problem has taken a lot of attention in the
literature, as highlighted in a recent PhD thesis (Dubois-Lacoste, 2014). In
that work, we may find two main approaches: the scalarization of the objec-
tives through a weighted-sum function, and the use of dominance in the search
process.
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Algorithm 5: Greedy constructive algorithm (CAltBwS).

1: S ← ∅
2: CL← J
3: while |S| < m do
4: gmin ← min

j∈CL
g(S, j, obj)

5: gmax ← max
j∈CL

g(S, j, obj)

6: RCL← {j ∈ CL | g(S, j) ≥ gmin + α · (gmax − gmin)}
7: j ← selectRandom(RCL)
8: S ← S ∪ {j}
9: CL← CL \ {j}

10: end while
11: if obj = 0 then
12: obj ← 1
13: else
14: obj ← 0
15: end if
16: return S

We have tried the scalarization approach in preliminary experiments on the
BODP problem, but our results were not very competitive. In fact, the local
search was focused on the convex part of the Pareto front, but the density of
solutions in that area was so low that the local search process was not able to
produce a significant number of non-dominated solutions.

Therefore, we implemented three local search algorithms with different strate-
gies, all of them following the first improvement scheme. In addition, the three
algorithms explore neighbor solutions with the same exchange operator which,
given a solution S, an element i1 ∈ S and an element i2 /∈ S, it produces a new
solution S′ such that S′ = S \ {i1}∪{i2}. Thus, the neighborhood is formed by
all the solutions which are different from the incumbent solution in one element.

The first local search algorithm, LSDom is based on dominance. The method
explores the neighborhood of a given solution as defined above. An improvement
in the incumbent solution is produced if and only if a dominant solution is found.
This strategy ends when none of the solutions in the neighborhood dominates
the current one. Notice that in the search process, non-dominated solutions
will be found. These solutions are stored in an archive and, at the end of the
process, will be examined to obtain the final set of non-dominated solutions.

The second local search follows a different approach. In particular, it alter-
nates the improvement by considering either Max-Min or Max-Sum objectives
in subsequent solutions. That is, if Max-Min was the objective to improve in a
given solution, the next solution will be improved on the Max-Sum objective,
and the other way around. We call this local search LSAlt. Given that this is a
bi-objective problem, the traversed solutions are stored in an archive and, as in
the previous local search, they are examined at the end of the search to obtain
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the non-dominated solutions.
The third local search takes a solution and improves it using both the Max-

Sum and the Max-Min objectives by applying a path relinking (PR) process.
We call this local search LSPR. PR was proposed as a way of including intensi-
fication and diversification in the context of tabu search (Glover, 1996; Glover
and Laguna, 1997), and later was included as an intensification method in the
GRASP methodology (Laguna and Mart́ı, 1999). In our local search proposal,
PR generates a path from the initial solution (S1 in our case) towards the guid-
ing solution (S2). Figure 5 shows an example considering four elements on each
solution. As seen in the figure, four solutions are generated from S1 at exchang-
ing each element with one of the guiding solution S2. In our proposal, the next
element in the path is selected by random. In the example, the selected solutions
are highlighted with different background. The path ends once the incumbent
solution is changed to produce the guiding solution.

S
1

( 2  7  10  14 )

( 1  7  10  14 )

( 2  3  10  14 )

( 2  7  5  14 )

( 2  7  10  9 )

S
2

( 1  3  5  9 )

( 2  3  5  14 )

( 1  3  10  14 )

( 2  3  10  9 )
( 2  3  5  9 )

( 1  3  10  9 )

Figure 5: Example of Path Relinking from S1 to S2.

The pseudo-code of LSPR is shown in Algorithm 6. As seen, two improved
solutions S1 and S2 are obtained as a result of maximizing Max-Sum and Max-
Min objectives respectively starting from the same incumbent solution. Then,
in step 3, we apply PR to traverse the space of solutions from S1 to S2. As
occurs in the case of the local search methods already described, the non-
dominated solutions that are traversed are stored in an archive called A in
the pseudo-code. This archive is also used by both localSearchMaximizeMin

and localSearchMaximizeSum in order to try to reach as many non-dominated
solutions as possible. Finally, the non-dominated solutions from A are obtained
in step 4.

Algorithm 6: Path relinking local search, LSPR.

1: S1 ← localSearchMaximizeMin(S)
2: S2 ← localSearchMaximizeSum(S)
3: A← A∪ pathRelinking(S1,S2)
4: ND ← obtainNonDominated(A)
5: return ND

As a result of combining these elements, the steps that form the GRASP
proposals are shown in Algorithm 7. It receives four input parameters: CrAlg,
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which is the identifier of the constructive algorithm to be run; α, which is used
by the constructive algorithm; and maxConstr, which states the maximum
number of constructions to be built; and LS, which is the identifier of the local
search method to be run. As seen in the code, the first steps are devoted to
initialize the archive of solutions and to reset the number of constructions (steps
1 and 2). Then, the main loop begins with the greedy constructive method
producing a solution S in step 4 using the corresponding constructive method.
This solution is given as the starting solution for the local search method which,
at it will be shown in the experimentation, can be any of the three procedures
presented above, and will be determined before running the algorithm. This
method returns the set of solutions that were traversed, updating the archive
A in step 5. The number of constructions is then incremented, and the loop
iterates until the number of constructions reaches the given maximum value.
Finally, the non-dominated solutions from A are obtained in step 8.

Algorithm 7: Proposed multi-objective GRASP method scheme.

1: A← ∅
2: constr ← 0
3: while constr < maxConstr do
4: S ← constructiveMethod(CrAlg, α)
5: A← A∪ localSearch(S,LS)
6: constr ← constr + 1
7: end while
8: ND ← obtainNonDominated(A)
9: return ND

3.2.2. Iterated Greedy

The Iterated Greedy (IG) algorithm (Ruiz and Stützle, 2007) generates a
candidate solution using a constructive method. The incumbent solution is
partially destroyed and then is re-built using again a constructive method. This
process is repeated until a stopping condition is met. Due to the simplicity of
the method, it is usually fast and easy to implement it.

In Algorithm 8 we show the pseudo-code of the proposed IG algorithm. As
seen, the first statement generates a solution S with the constructive method
indicated by CrAlg. Then, this solution is stored in an archive, A, which will
keep all the solutions traversed by the algorithm. We account for the number
of partial destructions of solutions using the variable numDestr. This way, the
stopping condition requires numDestr to be lower than the maximum number
of destructions, indicated by the input parameter maxDestr, as seen in step
4. In step 5, solution S is partially destroyed, according to a percentage of
destruction given by the input parameter pct, obtaining the partial solution
S′. The selection of the elements to be removed from the solution is always at
random. Next, this solution is rebuilt using the same method as in step 1. The
resulting solution, S′′ is added to the archive and the number of destructions is
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incremented, as seen in steps 7 and 8. Once the stopping condition is met, the
non-dominated solutions are obtained in step 10.

Algorithm 8: IG method.

1: S ← constructiveMethod(CrAlg, α)
2: A← {S}
3: numDestr ← 0
4: while numDestr < maxDestr do
5: S′ ← partiallyDestroy(S,pct)
6: S′′ ← rebuild(S′)
7: A← A ∪ {S′′}
8: numDestr ← numDestr + 1
9: end while

10: ND ← obtainNonDominated(A)
11: return ND

3.3. Trajectory-based methods

In the trajectory-based optimization methods, the common feature is the
generation of a number of consecutive solutions that form a path which, ideally,
reaches an optimal solution. The selection criterion to reach the next solution
is not always guided by an improvement strategy. On the other hand, moves to
worse solutions (in terms of quality) are allowed to avoid local optima stagna-
tion. Among these methods, we have selected Tabu Search (TS) and Variable
Neighborhood Search (VNS) as representative ones to be applied to this prob-
lem.

For these two approaches we have followed a similar idea, which was pre-
sented in Duarte et al. (2015) for trajectory-based optimization methods. The
authors propose to consider the current set of non-dominated solutions, namely
approximation to the Pareto front, as the incumbent solution. Hence, if the front
changes after exploring a neighborhood, it means that new non-dominated so-
lutions have been added to the front and, therefore, an improvement has been
made. On the other hand, if the exploration has not found new non-dominated
solutions, the Pareto approximation set will not be modified, meaning that no
improvement has been obtained.

3.3.1. Tabu Search

Tabu search (Glover and Laguna, 1997) is a trajectory-based algorithm which
explores the neighborhood of the current solution taking the best solution in the
neighborhood as the next element in the trajectory. The best solution in the
neighborhood may not be better than the current one. However, paths that
decrease the quality of the current solution may lead to local optima, and over
the long term to global optimal solutions (in single-objective optimization). In
the classical implementation of TS, some of the characteristics, called attributes,
of the traversed solutions, are stored in the tabu list with the aim of avoiding
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them in subsequent explorations. However, in the BODP we have decided to
store the solution in tabu list. More precisely, we store the hash code that
corresponds to each traversed solution. Actually, instead of storing the whole
solution, we compute a hash value (with a standard function) and include that
value in a hash map. This strategy allows us to determine if a solution is tabu-
active in O(1).

In Algorithm 9 we show our TS proposal. The first three steps are devoted to
initialize the tabu list (TB), the set of non-dominated solutions (ND) and the
counter of the iterations where no improvement was made (itersNoImprove).
With this later element we establish the termination condition, which is defined
by the maximum number of iterations performed with no improvement, set by
the input parameter maxItNoImpr. In step 4, a solution S is built with the
corresponding constructive method, and then the main loop begins. In step
6, the current number of non-dominated solutions is stored into variable nND.
After that, the exploration of the neighborhood of S is performed. Notice that
the exploreNeighbohood method receives S as the current solution, LS as the
identifier of the local search method to be run, ND which can be updated, T as
the tenure parameter for the tabu structure, and TB which will be also updated
by the exploration. In step 8, the new size of ND is compared to the previous
stored nND. In the case they are equal, no improvement is made because we
consider that two fronts with the same number of non-dominated solutions are
equivalent. Then, a solution which is not tabu is randomly selected from ND,
its hash code is included in the tabu list and the number of iterations with no
improvements is increased (steps 9 to 11). Finally, the set of non-dominated
solutions is returned.

Algorithm 9: TS method.

1: TB ← ∅
2: ND ← ∅
3: itersNoImprove = 0
4: S ← constructiveMethod(CrAlg, α)
5: while itersNoImprove < maxItNoImpr do
6: nND ← |ND|
7: ND ← exploreNeighbohood(S,LS,ND, T, TB)
8: if |ND| = nND then
9: S ← randomSelection(ND \ TB)

10: TB ← TB ∪ { hash(S)}
11: itersNoImprove← itersNoImprove+ 1
12: end if
13: end while
14: return ND

The constructive method that is called in step 4 can be any of the ones
described in Section 3.2.1. In addition, the exploreNeighbohood method im-
plements the three local search procedures described in Section 3.2.1, but taking
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into account that the moves of the local search have to skip the elements in the
tabu list. This way, we will be able to measure the impact of the algorithms
using similar constructive and improvement strategies.

3.3.2. Variable Neighborhood Search

The Variable Neighborhood Search metaheuristic is a trajectory-based method
basically formed by two steps: a perturbation phase and a descendant phase.
In the first one, which is an exploration step, it takes into account changes of
neighborhood to get out of a basin of attraction. In the second one, it per-
forms an intensification of the search to find a local optimum by means of a
local search (Hansen and Mladenovic, 2001). As in the case of TS, it creates
a trajectory of solutions which not always increase the quality of the current
solution locally, but performs an intelligent exploration of the solution space,
finding very high-quality solutions, if not the global ones.

Algorithm 10: VNS method.

1: ND ← ∅
2: i← 0
3: S ← constructiveMethod(CrAlg, α)
4: while i < maxIters do
5: k ← 1
6: while k ≤ kmax do
7: S′ ← shake(S, k)
8: sizeND ← |ND|
9: ND ← improvementMethod(S′, LS,ND)

10: k ← k + 1
11: if |ND| 6= sizeND then
12: k ← 1
13: S′ ← randomSelection(ND)
14: end if
15: end while
16: i← i+ 1
17: end while
18: return ND

Several variations of VNS can be found in the literature. However, we con-
sider the Basic VNS scheme in this paper, as shown in Algorithm 10. Instead
of the classical termination condition guided by the execution time, we have
determined that the main loop will run a number of iterations, stated by the
input parameter maxIters. After the initialization, a solution is built in step
3 with the corresponding constructive algorithm. Then, the main loop begins,
where the perturbation parameter k is reset in step 5. Next, the secondary
loop begins, which is devoted to maintain k under the maximum perturbation
size given by the input parameter kmax. Then, the shaking mechanism is exe-
cuted in step 7, perturbing the incumbent solution by exchanging k elements,
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randomly selected from the solution, with other k elements, randomly selected
among those not included in S.

Then, the shaking mechanism is executed in step 7, perturbing the incum-
bent solution by exchanging k elements randomly selected from the solution
with k elements randomly selected among those not included in S. Then, as in
the TS scheme, the size of the non-dominated set of solutions is obtained in step
8. After that, the improvement method LS is run on the current neighborhood
and k is incremented in steps 9 and 10. If the size of the non-dominated set
has changed, it means that an improvement has been reached. Therefore, k is
set to 1 in step 12, and the current solution is updated by randomly select a
solution from the non-dominated set in step 13. If the maximum perturbation
is reached, then the number of iterations is increased in step 16, and the main
loop iterates. Finally, the set of non-dominated solutions is returned. As in the
case of TS, we will configure VNS with the same constructive and improvement
methods than those described in Section 3.2.1.

4. Experimental results

We perform our empirical comparison of the methods described in the pre-
vious sections on a benchmark instances from the MDPLIB, publicly available
at http://www.optsicom.es/mdp/. In particular, we focus on the GKD data
set, which comprises a number of 145 instances. The set is divided into three
subsets:

• GKD-small: these 75 instances were introduced in (Glover et al., 1998).
Here, the number of coordinates for each point is generated randomly in
the 2 to 21 range, where 2 ≤ n ≤ 21 represents a n-dimensional space.
The instance sizes are such that for n = 10, m = 2, 3, 4, 6 and 8; for n =
15, m = 3, 4, 6, 9 and 12; and for n = 30, m = 6, 9, 12, 18 and 24.

• GKD-medium: these 50 matrices were introduced in (Mart́ı et al., 2010).
The number of coordinates for each point is generated randomly in the 2
to 21 range and the instance sizes are such that for n = 25, m = 2 and 7;
for n = 50, m = 5 and 15; for n = 100, m = 10 and 30; for n = 125, m =
12 and 37; and for n = 150, m = 15 and 45.

• GKD-large: these 20 matrices were introduced in (Duarte and Mart́ı,
2007). They were generated with 10 coordinates for each point and n =
500 and m = 50.

The algorithms were coded in Java, and the experiments where run on a
personal computer provided with an Intel i7 @ 2.9 GHz CPU and 8 Gb of RAM
using OSX 10.12.5 and JDK 7.

4.1. Iterated race tuning

The algorithms described in Section 3 require several input parameters.
Some of them have already been mentioned in the description of the meth-
ods, and the others are described and set in this section. The parameters of
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the algorithms determine both the computation effort and the execution time.
Therefore, we consider that a comparison among the best configuration of each
algorithm will allow us to fairly compare their performance on this problem.
Besides, we deal with a relatively large number of parameters and methods.

In order to find the most appropriate settings for the proposed method, we
have used iRace (López-Ibánez et al., 2016). This software implements an iter-
ated race procedure able to find the configuration that obtains the best results.
In other words, its goal is to automatically configure optimization algorithms by
finding the most appropriate settings given a set of instances of an optimization
problem. Considering that each configurable parameter has associated a sam-
pling distribution, iRace iteratively executes race procedures in three phases:

1. A race starts with a finite set of candidate configurations.
2. At each step of this phase, candidate configurations are evaluated on a

single instance. After a number of steps, those candidate configurations
that perform statistically worse than at least another one are discarded,
and the race continues with the remaining surviving configurations. This
procedure continues until reaching a minimum number of surviving con-
figurations, or a maximum number of instances that have been used, or a
number of executed experiments per race.

3. The update of the distributions consists in modifying the mean and the
standard deviation in the case of the normal distribution, or the discrete
probability values of the discrete distributions.

Once a race is finished, it starts the next race. Specifically, new configura-
tions are generated after sampling probability distributions from the previous
race. As well as a set with the union of the new configurations and the elite
configurations from the previous race is generated. The algorithm finally stops
when it reaches the total number of experiments or the number of candidate
configurations to be evaluated at the start of a race is not greater than the
number best configurations.

In our case, we have configured iRace to maximize the hypervolume of the
front obtained as a solution. This indicator measures the volume that is covered
by a given set of non-dominated solutions in the space of objectives (Zitzler et al.,
2003). In the particular case of a two-objective problem, this indicator evaluates
the area under an approximation of the Pareto front. Note that since we are
maximizing the value of the objectives in BODP, the higher the hypervolume,
the better the result. Besides, the hypervolume is a metric that does not require
a reference set. Therefore, it can be calculated for each independent execution
of the algorithm.

For the first set of experiments, we have selected 15 instances from GKD-
small, 10 from GKD-medium and 4 from GKD-large, which form a total
number of 29 instances, corresponding to the 20% of the complete set of in-
stances. The selected instances present different sizes and features, with the
aim of being representative of the GKD data set. They constitute our “train-
ing set” to configure the algorithms and to avoid the over-training when perform
the final comparison over the whole set of instances.
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In Table 3, we show the parameters and ranges of values for the population-
based algorithms. Both NSGA-II and SPEA2 share the same number and type
of parameters: number of generations, size of the population, probability of
mutation and probability of crossover. As seen in the table, we have selected
typical ranges of integer numbers for both, the generations and the population
parameters, according to Eiben and Smith (2003). In the case of probability
parameters, we let iRace to select a real value between 0.01 and 0.99, with a
precision of 2 decimal figures. Notice that for this table and the following ones,
we show in parentheses the abbreviation of each one of the parameters, which
will be used in Table 6, that shows the results of the iRace execution.

Table 3: Parameters and ranges tuned by iRace for the population-based algorithms.

Parameter Range Algorithm

Generations (Gen) [100, 50000] NSGA-II & SPEA2
Population (Pop) [50, 500] NSGA-II & SPEA2

Mutation Prob. (MtPr) [0.01, 0.99] NSGA-II & SPEA2
Crossover Prob. (CxPr) [0.01, 0.99] NSGA-II & SPEA2

The parameters of the construction-based algorithms are shown in Table
4. Specifically, GRASP and IG share the parameter α and the constructive
algorithm, whose values correspond to the methods described in Section 3.2.1:
alternate objective in the same solution (CAltInS), alternate objective between
different solutions (CAltBwS), and random constructive (CRnd). In the case of
GRASP, iRace has to determine the number of constructions to be made, as well
as the local search method to apply. The local search methods, also described in
Section 3.2.1, are based on: dominance (LSDom), alternate objectives (LSAlt),
and both objectives with path relinking (LSPR). In the case of the IG algorithm,
iRace has to set the number of destructions and the percentage of destruction
of the solutions.

Table 4: Parameters and ranges tuned by iRace for the construction-based algorithms.

Parameter Range Algorithm

Num. Constr. (maxConstr) [10, 500] GRASP
Local Search (LS) LSDom, LSAlt, LSPR GRASP

Num. Destr. (maxDestr) [10, 10000] IG
Pct. Destr. (pct) [0.00, 100] IG

α [0.00, 1.00] GRASP & IG
Constr. Alg. (CrAlg) CAltInS , CAltBwS , CRnd GRASP & IG

The parameter of trajectory-based algorithms are shown in Table 5. Specif-
ically, TS and VNS share the α parameter, the constructive algorithm and the
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local search method. The possible values for the last two parameters are the
same than in the case of the construction-based algorithms, as already explained
in Section 3.3. TS requires a decision on the number of iterations with no im-
provement, as well as on the tenure parameter. The tenure regulates the size
of the tabu list. Given that the instances present different number of elements,
we configured the tenure as a percentage. Hence, the range is an integer value
between 1 and 100. For the VNS algorithm, the maximum number of iterations
has to be also determined, in addition to the maximum value of the pertur-
bation parameter, kmax. Again, given the different size of the instances, we
have defined kmax as a percentage of the size of the solution. However, we have
narrowed the range of values from 10.00 to 75.00 to reduce the search space in
this case.

Table 5: Parameters and ranges tuned by iRace for the trajectory-based algorithms.

Parameter Range Algorithm

Iters. no Improve (maxItNoImpr) [1,100] TS
Tenure (T ) [1, 100] TS

Max. Iterations (maxIters) [1, 10] VNS
kmax [10.00, 75.00] VNS
α [0.00, 1.00] TS & VNS

Constr. Alg. (CrAlg) CAltInS , CAltBwS , CRnd TS & VNS
Local Search (LS) LSDom, LSAlt, LSPR TS & VNS

We have configured iRace to run a maximum of 500 experiments for each
algorithm using a precision of 2 decimal positions and the default confidence
level. We have selected 500 experiments because in a preliminary experimen-
tation, we configured iRace with higher number of experiments and the results
were similar. The resulting parameters are shown in Table 6. We then configure
each multi-objective procedure with the parameters found with iRace.

4.2. Comparison of the proposed algorithms

In the comparison among the proposed algorithms, we consider each one of
the 145 instances from the GKD data set by using the best configuration pro-
vided by iRace. It is worth mentioning that the comparison of multi-objective
optimization procedures is a really complicated task since we compare sets of
points instead of single solutions. In this paper, we follow the guidelines de-
scribed in Knowles et al. (2006). Specifically, these authors propose the follow-
ing evaluators as the most discriminant indicators to compare multi-objective
methods: the hypervolume (Hv), the set coverage (SC), and the epsilon indi-
cator (Iε).

22



Table 6: Results of the iRace optimization.

NSGA-II SPEA2 GRASP

Gen 28130 Gen 12805 maxConstr 421
Pop 340 Pop 340 α 0.79

MtPr 0.08 MtPr 0.14 CrAlg CAltBwS
CxPr 0.26 CxPr 0.15 LS LSAlt

IG TS VNS

maxDestr 5212 maxItNoImpr 70 maxIters 7
pct 55.39 T 64 kmax 29.49
α 0.95 α 0.94 α 0.19

CrAlg CAltBwS CrAlg CAltBwS CrAlg CAltInS
LS LSAlt LS LSPR

4.2.1. Hypervolume

As stated in Section 4.1, Hv is a measure of the area enclosed between the
set of non-dominated solutions and the origin in a Cartesian space formed the
objective functions. In this experiment, we run 10 times each algorithm on
each one of the 145 instances. We then take the set of non-dominated solutions
considering the 10 fronts for a given algorithm and instance, calculating the
associated Hv of the corresponding front.

In Table 7, we show the results of the average Hv over the entire testing set of
145 instances. As seen, the population-based algorithms obtain the best results
for the small instance set, GKD-small, with SPEA2 reaching the best Hv. On
the contrary, the trajectory-based algorithms get the worse values. In the case
of the medium-size instances, GKD-medium, there is no category leading the
results, being the GRASP algorithm the one with the best average. Regarding
the largest instances, GKD-large, the clear winner is TS, which obtains the
best average Hv. Considering the average over all the instances, shown in the
last row of the table, the best algorithm is GRASP, followed by TS. Both the
GRASP and the TS algorithms perform a more efficient intensification around
the non-dominated solutions, leading to better Hv results in the medium and
large instances.

Table 7: Average Hv values for each set of instances.

Instance Set NSGA-II SPEA2 GRASP IG TS VNS

GKD-small 775859.44 775864.61 775785.59 767180.38 774822.18 775177.37
GKD-medium 4595307.71 4548788.3 4622978.94 4423887.18 4603803.72 4584286.67
GKD-large 197542.72 182106.76 202046.05 180864.92 203050.29 199367.02

Average 1856236.62 1835586.56 1866936.86 1790644.16 1860558.73 1852943.69

To complement this experiment, we have also calculated the number of in-
stances where a specific algorithm obtained the best Hv value among the six
methods. We show in Table 8 these values. Numbers in brackets indicate the
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amount of instances in each subset. As seen in the table, these results are similar
to the averaged Hv. .

Table 8: Number of best Hv results for each set of instances.

Instance Set NSGA-II SPEA2 GRASP IG TS VNS

GKD-small (75) 69 71 53 38 65 62
GKD-medium (50) 26 14 31 5 27 18

GKD-large (20) 0 0 3 0 17 0

Total (145) 95 85 87 43 109 80

In order to take a reference for the results, we have obtained, for each one of
the instances, the set of non-dominated solutions across the executions of all the
algorithms as a reference for comparisons. This set is an approximation of the
actual Pareto front. We show in Figure 6, the distribution of the Hv values for
the three sets of instances and the six algorithms. These results are normalized
with respect to the Hv of the reference front obtained for each instance.

As seen in the figure, all algorithms perform similarly for GKD-small with
the exception of IG, which presents a worse distribution. In the case of GKD-
medium, IG is again the worst method. In addition, we also can appreciate
that GRASP performs better than the other procedures. For GKD-large the
best distribution is obtained with TS, followed by GRASP. These results are in
line with the previous experiments. Therefore, we can state that, on average, our
TS proposal is the best algorithm in terms of Hv for the instances considered.

4.2.2. Set coverage

The set coverage indicator is a metric that returns the relative coverage
comparison of two sets of solutions (Zitzler et al., 2000). Given a set of non-
dominated solutions ND and a reference set of solutions R, the SC(ND,R)
value is computed by using the following equation:

SC(ND,R) =
|{x′ ∈ R;∃x ∈ ND : x � x′}|

|R|
That is, if all the solutions in ND dominate (or are equal) to all solutions in

R, SC(ND,R) = 1. Notice that the weakly domination of x over x′, represented
as x � x′, means that x is better than or equal to x′ in all the objectives.
Symmetrically, SC(ND,R) = 0 means the opposite situation.

Hence, in order to compare the performance of each algorithm, we consider as
the reference set R, the one constructed with the set of non-dominated solutions
when considering 10 independent executions of each compared method (i.e., set
of non-dominated solutions obtained in the experiment). Notice that in this
metric, the higher the value, the better the algorithm.

In Table 9 we show the set coverage between the front obtained by executing
10 independent times each algorithm and the reference R. These results are
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Figure 6: Boxplots showing the Hv distribution normalized with respect to the Hv of the
Pareto front.
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Table 9: Average set coverage measure SC(ND,R), where ND is the set of non-dominated
solutions obtained with each one of the algorithms under study.

Instance Set NSGA-II SPEA2 GRASP IG TS VNS

GKD-small 0.9729 0.707 0.4122 0.2704 0.2467 0.2532
GKD-medium 0.9093 0.334 0.205 0.1 0.1366 0.1412

GKD-large 0.5135 0 0.0379 0 0.4491 0.0043

Average 0.7985 0.347 0.2184 0.1235 0.2775 0.1329

presented for each subset of instances and also averaged over the whole set of
145 instances. As it can be seen in the table, the best results are obtained by the
NSGA-II algorithm. Besides, we can see that the population-based algorithms
perform really well in GKD-small and GKD-medium data sets. In the case
of GKD-large, the second best result is obtained by TS.

Analyzing these results, we can observe that the best performer in terms of
Hv, TS, is ranked in the third position when considering set coverage. This
result is due to the shape of the fronts. Specifically, TS obtains very good
solutions in the extreme parts of the front, returning high hypervolume values.
On the other hand, the results of NSGA-II are more concentrated in the convex
part of the front (mainly due to the crowding distance operator). This way, it
obtains a higher number of non-dominated solutions in relation to the reference
front, while the values of Hv are not the best in several cases.

To illustrate this fact, we show in Figure 7 a comparison between the ref-
erence set (approximate Pareto front) and the non-dominated solutions obtained
with NSGA-II and TS for the medium-size instance denoted as GKD-medium 48 n150 m45.
In this case, the set coverage value of NSGA-II is 0.9285, while the TS method
obtains 0.0714. Regarding theHv, the value obtained with NSGA-II is 11200182.90,
which is lower than the value obtained with TS, which is 11240882.56. As seen
in the figure, TS obtains solutions in the lower-right part of the plot, which pro-
vide higher hypervolume. However, several of this points are dominated by the
reference front. On the other hand, almost all the solutions found by NSGA-II
match those solutions belonging to the reference front and, given that they do
not reach the extreme part of the Max-Min objective, the hypervolume value is
lower. Notice that this behavior have been observed in a considerable number
of instances.

4.2.3. Epsilon indicator

Given two sets of non-dominated solutions, ND1 and ND2, the epsilon in-
dicator, Iε(ND1, ND2), corresponds to the smallest ε value which will move the
front ND1 in such a way that any solution belonging to ND2 will be dominated
by ND1. We refer the reader to Zitzler et al. (2003) for a more detailed descrip-
tion. Hence, following the same idea as in the previous section, if we compute
Iε(ND,R), where ND is the set of non-dominated solutions obtained with a
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Figure 7: NSGA-II and TS fronts compared with the Pareto front (Pareto F.) in a medium-size
instance.

Table 10: Average Iε(ND,R) where ND is the set of non-dominated solutions obtained with
each one of the algorithms under study.

Instance Set NSGA-II SPEA2 GRASP IG TS VNS

GKD-small 1.2126E-13 0.0222 0.8757 28.6359 2.7728 12.9369
GKD-medium 18.5898 10.0240 43.2839 346.7773 7.4116 217.1936

GKD-large 12.4373 235.0064 121.8625 555.9344 0.34946 251.9661

Average 10.3424 81.6842 55.3407 310.4492 3.5113 160.6989

particular procedure when it is executed 10 times over each instance, and R is
the approximation of the Pareto front obtained by merging all non-dominated
solutions found by all algorithms. Then, the higher the value, the worse the
front generated by the specific algorithm. We show the corresponding results in
Table 10 where, again, the TS algorithm obtains the best overall results, despite
it is not the best performer for the GKD-small set. Besides, the results of the
NSGA-II are also good, obtaining the second best result in the overall average
value.

4.2.4. Computing time

The execution time in this experimentation mainly depends on the configu-
ration parameters of the algorithms. In our proposal, the configuration of each
procedure was automatically obtained with iRace by taking into account the
quality of the results given by the hypervolume metric. In other words, the
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Table 11: Average execution time (in seconds) for each algorithm.

Instance Set NSGA-II SPEA2 GRASP IG TS VNS

GKD-small 86.8121 969.8038 0.0233 0.0558 0.0028 0.0176
GKD-medium 178.805 800.5428 381.3414 1.8498 0.365 9.7940

GKD-large 626.7021 777.9501 149.6959 60.6636 19.0266 523.2950

Average 297.4397 849.4322 50.9546 20.8564 6.4648 177.7022

execution time is not considered when we tune each procedure. Nonetheless,
we think that it is illustrative to give the information about the time spent by
each algorithm run on each one of the instances. Those results are presented in
Table 11 in seconds.

As seen in the table, TS is the fastest algorithm, followed by IG. Therefore,
taking into account the methods and strategies proposed in this paper to deal
with this BODP through different algorithms, TS appears to be the best choice.
Not only because of the quality of the solutions, which has been analyzed with
the three metrics described before, but also because it is the faster method
among the six proposed algorithms. The NSGA-II algorithm also obtains good
quality results, as explained in previous sections. However, it spends more
execution time than TS.

5. Conclusions and Future Work

We propose in this paper a novel approach to the diversity problem. This
approach considers the simultaneous maximization of two non-related objec-
tives, which are the sum of the distances between the selected elements (Max-
Sum) and the minimum distance between the selected elements (Max-Min).
This approach results in the Bi-Objective Diversity Problem (BODP). We have
shown that a multi-objective optimization in this context provides a set of non-
dominated solutions whose diversity could be very useful to a decision maker.

Our main contribution is to propose and to study the performance of six algo-
rithms belonging to three different classes of heuristic methodologies: NSGA-II
and SPEA2 from the class of population-based algorithms, GRASP and Iter-
ated Greedy from the class of construction-based algorithms, and Tabu Search
and VNS from the class of trajectory-based algorithms. We have adapted all
the algorithms to the BODP proposing a particular codification and genetic
operators in the case of NSGA-II and SPEA2, and three constructive methods
and three local search strategies that are applied in the rest of the algorithms.

In order to determine the value of the parameters of the algorithms, we have
run iRace for a selection of the instances under study. Then, we have executed
the algorithm with the given configuration for the complete set of the GKD
instances. The assessment of the results has been made by means of three
quality measures that are typically considered in multi-objective evaluation:
hypervolume, set coverage and epsilon indicator. These metrics have shown
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that the best performer algorithm is the Tabu Search. Regarding the efficiency
of the methods, the lower execution times are obtained also by the Tabu Search.
This method takes advantage of the local search performance in terms of quality
and, at the same time, reduces its execution time due to the tabu list. This
controlled intensification is not part of the rest of the proposed methods which,
as in the case of Tabu Search, follow the standard implementation.

At this point we are confident that many other algorithmic proposals could
be applied to the bi-objective diversity problem, which could be more efficient
in the generation of equivalent (or better) results. Therefore, we will extend this
study applying different multi-objective optimization techniques over a larger
set of instances. In addition, we will conduct new preliminary experiments to
explore other combinations of the objective functions. Considering that the
maximization of diversity has received much attention in the last years, we can
anticipate that this paper, as the first multi-objective approach, will trigger the
proposal of new solving methods.
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