IIE Transactions (2002) 34, 273-282

Neural network prediction in a system for optimizing
simulations

MANUEL LAGUNA' and RAFAEL MARTI?

'Graduate School of Business Administration, University of Colorado, Boulder, CO 80309-0419, USA
E-mail: laguna@colorado.edu

2Departament D’ Estadistica i Investigacié Operativa, Universitat de Valéncia, Burjassot 46100, Spain
E-mail: rafael.marti@uv.es

Received June 2000 and accepted February 2001

Neural networks have been widely used for both prediction and classification. Back-propagation is commonly used for training
neural networks, although the limitations associated with this technique are well documented. Global search techniques such as
simulated annealing, genetic algorithms and tabu search have also been used for this purpose. The developers of these training
methods, however, have focused on accuracy rather than training speed in order to assess the merit of new proposals. While speed
is not important in settings where training can be done off-line, the situation changes when the neural network must be trained and
used on-line. This is the situation when a neural network is used in the context of optimizing a simulation. In this paper, we
describe a training procedure capable of achieving a sufficient accuracy level within a limited training time. The procedure is first
compared with results from the literature. We then use data from the simulation of a jobshop to compare the performance of the

proposed method with several training variants from a commercial package.

1. Introduction

Neural network training is typically considered an off-line
activity. For example, banks use neural network tech-
nology to predict the probability that a credit card ap-
plicant will become a delinquent cardholder. Since the
decision of granting a credit card is not made instantly
and is not based on data that is generated in real time, the
neural networks embedded in credit card application
software can be trained off-line with large datasets con-
taining historical records of past applicants. It is not
unusual for these training runs to be done overnight with
the purpose of achieving a desired level of prediction
accuracy. In such an environment, the training proce-
dures may be run from different starting points while
applying a myriad of search strategies in order to achieve
the best possible results.

There are, however, situations where an extensive
training that requires minutes or perhaps hours of CPU
time is not possible. This situation is one in which the
necessary training data are being generated in real time.
That is, the data do not reside in large databases from
which training sets can be constructed. Instead, the same
process that will make use of the neural network output
generates the data. We refer to this situation as on-line
training of the neural network. One important applica-

0740-817X © 2002 “IIE”

tion of on-line training arises in the context of optimizing
a simulation.

The rationale behind the optimization of simulations
is as follows (Glover and Kelly, 1998). Simulation, as a
computer-based tool, is widely used by many decision-
makers in business and industry to improve operating
and organizational efficiency. The basic idea of simu-
lation is to model a physical process on the computer,
incorporating the uncertainties that are inherent in all
real systems. The model is then executed to simulate
the effects of the physical process and to determine
their consequences. For example, a factory can be
modeled and simulated by incorporating the relation-
ships among production times, demands, tolerances,
and breakdowns, including provision for the uncertain
nature of each. The process variation produced by the
actual design of the product is also incorporated into
the model.

Such a simulation may model the flow of individual
products through the factory over a period of hours,
days, or even months. The analyst typically makes virtual
changes to the factory and/or products, to predict the
impacts without ever changing a piece of real equipment
or manufacturing a new product. Similarly, simulation
models are often applied to analyze the consequences of
alternative scenarios in financial planning and marketing

274

strategy. These uses of simulation have produced wide-
spread benefits in industry, reducing costs and increasing
profits through improved decisions.

In spite of its acknowledged benefits, simulation has
suffered a limitation that has prevented it from uncov-
ering the best decisions in critical practical settings. This
limitation arises out of an inability to evaluate more than
a fraction of the immense range of options available.
Practical problems in areas such as manufacturing, mar-
keting, logistics and finance typically pose vast numbers
of interconnected alternatives to consider. As a conse-
quence, the decision-making goal of identifying and
evaluating the best (or near best) options has been im-
possible to achieve in many applications.

Theoretically, the issue of identifying best options falls
within the realm of optimization. Until quite recently,
however, the methods available for finding optimal de-
cisions have been unable to cope with the complexities
and uncertainties posed by many real world problems,
particularly those approached by simulation. In fact,
these complexities and uncertainties are the primary
reason that simulation is chosen as a basis for handling
such problems. Consequently, decision makers have been
faced with the “Catch 22 that many important types of
real world optimization problems can only be treated by
the use of simulation models, but once these problems are
submitted to simulation there are no optimization meth-
ods that can adequately cope with the challenge of
searching for the best solutions. In short, there does not
exist any type of search process that is capable of effec-
tively integrating simulation and optimization. The same
shortcoming is also encountered outside the domain of
simulation, as situations increasingly arise where complex
(realistic) models cannot be analyzed using traditional
“closed-form”™ optimization tools.

Recent developments have changed this picture. Ad-
vances in the field of metaheuristics — the domain of
optimization that incorporates artificial intelligence and
analogs to physical, biological or evolutionary processes
— have led to the creation of new approaches that suc-
cessfully integrate simulation and optimization. Two of
these approaches, Evolver and OptQuest, are commercial
products that have been integrated with simulation soft-
ware. Evolver is an implementation of genetic algorithms
while OptQuest is an implementation of scatter search.
(See Laguna and Marti (2000) for a description of the
optimization engine of OptQuest.)

Since simulations are generally computationally ex-
pensive, the optimization process would be able to search
the solution space more extensively if it were able to
quickly eliminate from consideration low-quality solu-
tions, where quality is based on the performance measure
being optimized. This is where a neural network becomes
useful. Specifically, a neural network can be used to filter
out solutions that are likely to perform poorly when the
simulation is executed. In this way, the neural network

Laguna and Marti

becomes the prediction model for the simulation in the
same way that the simulation is the prediction model for
the real system.

In the remainder of the paper, we first formalize the use
of a neural network as a prediction model for the simu-
lation and then describe an on-line training procedure
capable of producing fairly accurate predictions within a
reasonable time. The paper ends with computational ex-
periments and associated conclusions. We do not provide
a literature review of neural networks and their applica-
tions in operations research, and instead refer the reader
to Sharda and Rampal (1995) for a comprehensive an-
notated bibliography. This introduction to neural net-
works and the associated bibliography is an extended and
updated version of Sharda (1994).

2. Neural networks and the optimization—simulation
problem

The optimization of simulations must be carried out
within a somewhat small search horizon. When search
procedures such as genetic algorithms, simulated an-
nealing and tabu search are applied to problems for
which the evaluation of the objective function is instan-
taneous, they tend to employ thousands and even millions
of objective function evaluations during a single optimi-
zation run. However, this is not practical when the ob-
jective function evaluation consists of executing a
computer simulation. Consider, for example, a situation
where a company desires to optimize the performance of
a system, whose simulation model requires 2 minutes to
run. Even if the search is carried out over a weekend, the
simulation could not be run for more than 1440 times
(i.e., 48 hours x 30 runs per hour) on a machine with one
processor. Therefore, the optimization procedure that
calls the simulator must be very selective in terms of the
number of times that a solution is evaluated.

If instead of directly evaluating a solution, a neural
network is used to estimate the outcome from the simu-
lation, some solutions could be disregarded thereby sav-
ing simulation time. In other words, the neural network
would act as a filter to eliminate solutions that can be
predicted with certain accuracy to be inferior to the best-
known solution. Let us introduce the following notation
that will help us formalize this process:

x = a solution to the optimization—simulation
problem;
f(x) = the output of the simulation when solution
x is used as the set of inputs;

p(x,w) = the output of the simulation as predicted by
the neural network with weights w when the
solution x is used as the inputs;

x" = the best-known solution to the opti-

mization—simulation problem (i.e., f(x*) <

f(x) ¥ x);

Neural network prediction in a system for optimizing simulations

[= the set of lower bounds for the decision
variables x;
u = the set of upper bounds for the decision

variables x.

We define the optimization—simulation problem as:

Min f'(x),

subject to
[<x<u,

and some variables x may be restricted to be discrete.
Note that some optimization systems, such as OptQuest,
are capable of handling linear constraints as well as
bounds on simulation outputs. For the purpose of this
paper, however, we assume without loss of generality that
the optimization—simulation problem consists of mini-
mizing a simulation output by selecting the values of in-
put variables within a given range.

Parallel to the optimization—simulation problem, there
is a training problem, which consists of finding the set
of weights w that minimize an aggregate error measure.
The most common error measure, which we also use in
this study, is MSE (i.e., the Mean Squared Errors).
Suppose that during the search for the optimal values
of x, the procedure applied to the optimization—simula-
tion problem generates a set ALL of solutions x. Note
that since ALL is the set of solutions generated during the
search, x* € ALL. Let TRAIN be a random sample of
solutions in ALL, such that TRAIN| < |ALL|. Then, we
define the training problem as:

1

Min g(w) = TRATN]

(f (x) = plx, w))’*

x€TRAIN

where w is the set of optimization variables of the training
problem. Since the training problem cannot be solved
until there are at least |TRAIN] solutions in ALL, the
search procedure for the optimization—simulation prob-
lem must initially operate without the help of the neural
network by evaluating trial solutions x with the simula-
tion. As the optimization—simulation search advances, the
set of ALL solutions becomes large enough so that a
suitable training set can be constructed. The training
problem is then periodically solved with new TRAIN sets
in order to improve the accuracy of the predictions gen-
erated by the associated neural network.

Suppose that the neural network has been trained and
that w* are the corresponding best set of weights. Also,
suppose that the search procedure for the optimization—
simulation problem generates the trial solution x. Before
evaluating f{(x), the following test is performed:

if p(x,w) > f(x*) 4+ « then discard x.
The value of o accounts for the variability of the objective

function values and it might also include error informa-
tion from the training process. The test indicates that if

275

the trial solution is not likely to improve the best-known
solution, then the trial solution should be discarded. A
convenient definition of « is:

o= 26y,

where () is the sample standard deviation of f(x) for
x € TRAIN. Note that this definition is moderate with
respect to the rejection criterion. While a conservative
definition would add a factor to consider the training
error, a more aggressive definition would reduce the
multiplier from two to one standard deviation(s). Note
that an aggressive definition may reject a new best solu-
tion to the optimization—simulation problem before its
evaluation. More elaborate definitions of a could be
based on the standard deviation of the errors.

3. On-line training procedure

Our on-line training procedure is based on the scatter
search methodology. Scatter Search (SS) is a novel in-
stance of evolutionary methods, because it violates the
premise that evolutionary approaches must be based
solely on randomization — though they likewise are
compatible with randomized implementations like the
one we describe here. SS is also novel, in comparison to
the well-known Genetic Algorithm (GA) class of evolu-
tionary methods, by being founded on strategies that only
piecemeal came to be proposed as augmentations to GAs
more than a decade after their debut in scatter search.
Scatter search embodies principles and strategies that are
still not emulated by other evolutionary methods, and
that prove advantageous for solving a variety of complex
optimization problems, including neural network train-
ing. More about the origin and multiple applications of
scatter search can be found in Glover (1998), Glover et al.
(1999) and Laguna (2000).

We now outline our adaptation of scatter search to the
training problem

Step 0. Normalize input and output data.

Step 1. Start with P = ¢. Use the diversification method

to construct a solution w between wlow and

whigh. If w ¢ P then add w to P (i.e., P = P Uw),

otherwise, discard w. Repeat this step until |P| =

PSize. Apply the improvement method to the best

b/2 solutions in P to generate w(l) ... w(/2),

Generate b/2 more solutions, where w(/2t) =

w(1 +U[-0.3,0.3]) for i=1,...,b/2. Build

RefSet = {w() ... w)

Order RefSet according to their objective func-

tion value such that w'" is the best solution and

w® the worst.

while (NumEval < TotalEval) do

Step 3. Generate NewPairs, which consists of all pairs of
solutions in RefSet that include at least one new
solution. Make NewSolutions = ¢.

Step 2.

276

for (all NewPairs) do
Step 4. Select the next pair (W), w)) in NewPairs.
Step 5. Obtain new solutions w as linear combinations
of W, w)) and add them to NewSolutions.
end for
Step 6. Select the best b solutions in NewSolutions and
apply the improvement method.

for (each improved w) do

if (w is not in RefSet and g(w) < g(w®)) then
make w®) = w and reorder RefSet.
end for
while (IntCount < IntLimit)
Step 7. Make IntCount = IntCount + 1 and w = w(V.
Step 8. Make w=w(l+ U[-0.05,0.05]) and apply
improvement method.
if (g(w) <g(w))) then Make w() =w and
IntCount = 0.
end while
Step 9. Apply the improvement method to w'” for
i=1,...,b/2 in RefSet.
Step 10. Make w(/>*) = (@) (1 4 U[-0.01,0.01])
i=1,...,b/2 in RefSet.
end while

for

We refer to w as a solution to the training problem. The
procedure starts with the input and output data nor-
malization. Let y = f(x) and also let Xmax, Ymax> Xmin and
Vmin D€ the maximum and the minimum values for x and y
in the TRAIN set, respectively. The normalization of the
data is done as follows, where x’ and y’ are the normalized
values:

Y- < high — low >x N
Xmax — Xmin
high = 1.0 and low = —1.0,
high — 1
max — Ymin

high = 0.8 and low = —0.8.

low X Xmax — high X Xmin

Xmax — Xmin

low X Ymax — high X Ymin

Ymax — Vmin

In this normalization, the multiplier is the scaling factor
and the added constant is the offset value. These nor-
malization functions and the specific values for low and
high are defined as recommended and used in Neural-
Ware (www.neuralware.com). The training procedure
operates on the normalized data set.

After the data normalization, an initial reference set
(RefSet) of b solutions is created. A set P of PSize solu-
tions w (bounded between wlow and whigh) is built with
the following diversification method, based on a con-
trolled randomization scheme (Glover et al., 1999). The
range (wlow, whigh) is subdivided into four sub-ranges of
equal size. Then, a solution w is constructed in two steps.

Laguna and Marti

First a sub-range is randomly selected. The probability of
selecting a sub-range is inversely proportional to its fre-
quency count. Then a value is randomly generated within
the selected sub-range. The number of times sub-range j
has been chosen to generate a value for w; is accumulated
in the frequency counter freq(i,j). The main goal of the
diversification generator is to create solutions that are
diverse with respect to those solutions that have already
been generated in the past. That is, the frequency counts
work as “‘seed solutions” from which the diversification
attempts to move away.

The reference set RefSet is filled with the best b/2 so-
lutions in P to which an improvement method is applied
(see below). The RefSet is completed with /2 more so-
lutions generated as perturbations of the first 5/2. The
perturbation consists of multiplying each weight by
1 + Ula, b], where Ula, b] is the uniform distribution with
parameters @ and b. In Step 2, the solutions in RefSet are
ordered according to quality, where the best solution is
the first one in the list. In Step 3, the NewPairs set is
constructed. NewPairs consists of all the new pairs of
solutions that can be obtained from RefSet, where a “‘new
pair” contains at least one new solution. Since all the
solutions are new in the initial RefSet, the initial New-
Pairs consists of (b* — b)/2 pairs. The pairs in NewPairs
are selected one at a time in lexicographical order to
create linear combinations in Step 5. We consider the
following three types of linear combinations, where we
assume that the reference solutions are w!) and
w) d = r(w®) —wl)/2) and r is a random number in the
range (0, 1):

Cl: w=wl —d,
C2: w=w+d,
C3: w=wV +d.

The following rules are used to generate solutions with
these three types of linear combinations:

o If i <b/2 and j < b/2 then four solutions are gen-
erated by applying C1 and C3 once and C2 twice.

e If i <b/2 and j > b/2 then three solutions are gen-
erated by applying C1, C2 and C3 once.

o If i >5/2 and j > b/2 then two solutions are gen-
erated by applying C2 once and randomly choosing
between applying C1 or C3.

The solutions created as linear combinations of solutions
in the reference set are added to the NewSolutions set.
Once all combinations have been made, the best 4 solu-
tions in NewSolutions are subjected to the improvement
method in Step 6. Each improved solution w is then
tested for admission into RefSet. If a newly created so-
lution improves upon the worst solution currently in
RefSet, the new solution replaces the worst and RefSet is
reordered.

Neural network prediction in a system for optimizing simulations

The procedure now intensifies the search around the
best-known solution. In Step 7, the counter IntCount is
increased and the best solution is copied to a temporary
memory location w. The solution is perturbed and the
improvement method is applied in Step 8. The best so-
lution is updated if the perturbation plus improvement
generates a better solution. When the best solution is
improved, the intensification count IntCount is reset. If
IntLimit intensification iterations are performed without
improving the best solution, the procedure abandons the
intensification phase.

Finally, Steps 9 and 10 operate on the entire RefSet.
Step 9 applies the improvement method to the best 5/2
solutions in RefSet and Step 9 replaces the worst b/2
solutions with perturbations of the best /2. The training
procedure stops when the number of objective function
evaluations (NumEval) reaches the total allowed (Total-
Eval). Note that the evaluation of the objective function
g(w) consists of the calculation of the mean squared
error.

Our procedure employs the well known Nelder and
Mead (1965) optimizer as an improvement method.
Given a set of weights w, the Nelder and Mead method
starts by perturbing each weight to create an initial sim-
plex from which to begin the local search. We use the
implementation of the Nelder-Mead method in Press
et al. (1992) with the following parameters:

NMAX = 500, ALPHA = 1.0, BETA = 0.5, GAM-

MA = 2.0.
Note that the improvement method is used in four dif-
ferent situations during the search: (i) to improve upon
the best b/2 solution in the initial RefSet; (ii) to improve
upon the b best solutions that result from the linear
combinations; (iii) to improve upon the perturbed solu-
tions generated during the intensification; and (iv) to
improve upon the b/2 best solutions when rebuilding
RefSet in Steps 9 and 10.

4. Neural network architecture

The training procedure is applied to a feedforward net-
work with a single hidden layer. We assume that there
are n decision variables in the optimization—simulation
problem and that the neural network has m hidden neu-
rons with a bias term in each hidden neuron and an
output neuron. A schematic representation of the net-
work appears in Fig. 1.

Note that the weights in the network are numbered
sequentially starting with the first input to the first hid-
den neuron. Therefore, the weights for all the inputs
to the first hidden neuron are w; to w,. The bias term
for the first hidden neuron is w, . ;. We test two activa-
tion functions for the hidden neurons, where £ =1,

S, m:

277

w

n+l

Winn+1)+1

Win(n+2)+1

Wn(n+1y+m

Fig. 1. Neural network with one hidden layer and one output.

ap = tanh(l.S (Wk(n+l) + ZW(k—l)(n+1)+jxj>>u (1)

J=1

1

(2)

ay = :
1+ eXp(—Wk(n+1) - Z}Ll W(kfl)(nJrl)Jrjxj)

The activation function for the output layer is the
identity, which is defined as follows:

n

P(W,X) = Wy(ni2)41 + Z Win(n-1)+k
=1

Given this architecture and activation functions, we also
test two schemes for optimizing w. The first scheme is
simply the application of the training procedure listed in
Section 3. The second scheme consists of applying the
training method to the set of weights associated with
hidden neurons and then using linear regression to find
the weights associated with the output neuron. In other
words, use the training method to find the best set of
values for w; to wy,,11) and then apply linear regression
to minimize the sum of squares associated with p(w, x).
The advantage of the second scheme is that the number of
weights that the training procedure needs to adjust is
reduced by m + 1. The disadvantage, on the other hand,
is that the regression model needs to be solved every time
any of the first m(n + 1) weights is changed in order to
calculate the mean squared error.

Preliminary computational testing showed that better
results could be obtained using activation function (2)
and linear regression than with any other of the three
possible combinations. Therefore, we conducted the rest
of our experimentation using activation function (2), i.e.,
the traditional sigmoid function, and linear regression for
the weights associated with the arcs connecting the hid-
den layer to the output layer.

278
5. Computational testing

The training procedure uses four parameters, but we have
identified two as the most sensitive: b and IntLimit. We
conducted initial experiments to test all combinations of
b =28, 10 and 12 and IntLimit = 10, 20, and 30. The best
results were obtained with b = 10 and IntLimit = 20. The
other two parameters were set to PSize = 100 and (-2, 2)
for (wlow, whigh). In Sexton et al. (1998, 1999), the fol-
lowing functions are used to compare the performance of
several training procedures for neural networks with one
hidden layer:

(P1): y =x; +x2,
(P2): Yy = X1Xx2,

X1
P3): y=——0
(P3): 1+ |x2
(P4): y =] +x3,
(PS): y=x] +x7,

0.2y,
#510_0_1%71 ,
1+ (i-s)

These functions are continuous and differentiable except
for (P3) that contains an absolute value. The training set
consists of 50 observations with data randomly drawn
from [-100, 100] for x; and [-10,10] for x,. An additional
set (the testing set) of 150 observations was drawn from
the same uniform distributions to test the ability of the
neural network to predict y for x values that were not in
the training set. The (P6) problem consists of a discrete
version of the Mackey—Glass equation that has been used
in neural network literature (Gallant and White, 1992;
Goffe et al., 1994). This function was included in Sexton
et al. (1998, 1999) because the function’s apparent ran-
domness and many local optima makes it challenging for
global training algorithms. Five lagged values of the de-
pendent variable are used as the inputs, although clearly
three of these are unnecessary. The training set was
generated from the starting point (1.6, 0, 0, 0, 0) and the
testing set was generating starting from (—0.218 357 539,
0.055 555 36, 1.075 291 525, —1.169 494 128, 0.263 368
033). We use six nodes in the hidden layer and the
training procedure 10 times on each function to be able to
compare our results with those in Sexton et al. (1998,

(P6): 3 =yt + 10.5(

Table 1. Mean squared error for training set

Laguna and Marti

1999). Table 1 shows the best training error associated
with each procedure, where all procedures used a neural
network architecture with one hidden layer consisting of
siX neurons.

In Table 1, BP refers to the backpropagation algorithm
in Neural Works Profession II/Plus by NeuralWare. This
was chosen among several commercial and freeware
packages as the best according to the test results in Sex-
ton et al. (1998). SA and GA refer to simulated annealing
and genetic algorithm implementations, both in Sexton
et al. (1999). Finally, TS refer to a tabu search imple-
mentation in Sexton et al. (1998) and SS refers to our
adaptation of scatter search. Since we are interested in a
method that can yield good results within a reasonable
time, we limit the execution of our procedure to 50 000
objective function evaluations (i.e., TotalEval = 50000).
In comparison, BP performed 4.18 million evaluations,
SA performed between 112 501 and 12.6 million evalua-
tions, GA performed 100 000 evaluations and TS per-
formed between 190021 and 928 061 evalutions.
According to Table 1 scatter search obtains the best re-
sults for the first three problems and problem (P6) across
all methods. Problems (P4) and (P5), however, pose dif-
ficulties to our method, which is only able to improve
upon the outcome of BP.

The mean squared error in Table 2, which corresponds
to the testing set, show results that are in line with those
obtained in the training set. Clearly, our scatter search
adaptation cannot effectively handle problems (P4) and
(P5) within 50 000 evaluations. We performed an addi-
tional experiment consisting of 10 runs of 500 000 eval-
uations for problems (P4) and (P5). The best training
errors were 6.05E—02 and 7.05E+01 for problems (P4)
and (P5), respectively. The best testing errors in the same
experiment were 1.07E4+00 and 1.81E+4-02, respectively,
for the same problems. Note that while the errors asso-
ciated with problem (P4) are now within the best, the
errors associated with problem (P5) continue to lag be-
hind the best outcomes from other procedures except BP.

The results above were obtained using six nodes in the
hidden layer. We performed an additional experiment
with this set of problems to test the effects of changing the
number of nodes in the hidden layer on both the accuracy
of the prediction and the computational time. We ran our
training procedure (SS) twice for each problem using two

Problem BP SA GA TS SS
(P1) 5.23E-01 1.05E-05 4.16E-07 1.42E-06 8.93E-08
(P2) 1.I0E+01 3.17E-02 1.27E-02 8.38E-02 5.97E-03
(P3) 8.43E+00 1.76E + 00 1.82E-01 2.45E-01 2.96E-03
(P4) 1.88E+02 4.84E-01 4.09E-02 4.32E-01 2.31E+00
(P5) 8.57E+03 4.39E-01 3.06E-03 2.56E-02 2.76E+02
(Po6) 1.55E-01 1.02E-02 2.53E-02 5.35E-02 3.34E-03

Neural network prediction in a system for optimizing simulations

Table 2. Mean squared error for testing set

279

Problem BP 54 GA TS SS
(P1) 1.76E + 00 1.56E—05 3.68E-07 2.79E-06 9.37E-07
(P2) 9.11E+01 1.85E-01 1.72E-02 1.96E—01 2.13E-01
(P3) 2.34E+01 5.53E+00 1.38E + 00 1.69E + 00 1.55E + 00
(P4) 431E+02 2.73E+00 4.53E-02 1.15E+00 9.26E + 00
(P5) 5.28E+04 1.36E +00 2.02E-02 5.68E—-02 5.98E+03
(P6) 1.95E-01 2.69E-01 3.40E-02 6.75E—02 2.90E-01

Table 3. SS results when varying the number of hidden nodes

Nodes in Training (MSE) Testing CPU*
hidden layer set (MSE)

2 5.67E+06 7.73E+06 6.62
6 3.39E+02 1.09E+03 16.00
12 4.59E+4-02 8.16E+05 61.37

* CPU time measured in seconds on a Pentium IIT 700 MHz machine.

different random seeds. The average training error out of
12 runs is reported in Table 3, for number of nodes in the
hidden layer equal to two, six, and 12. The table reports
both the Mean Square Error (MSE) for the training set
and the testing set.

The results in Table 3 show that the best average ac-
curacy is obtained with six nodes in the hidden layer.
The table also shows that the CPU time increases by a
factor of almost four when the number of nodes in the
hidden layer is changed from six to 12. The MSE values
in Table 3 are deceptively large due to the error associ-
ated with problem (P5). The use of six nodes in the hid-
den layer seems the most appropriate for these problems
as suggested in Sexton et al. (1998).

In our next experiment, we use data from a discrete event
simulation. The simulation consists of a jobshop in which
three types of jobs randomly arrive and are processed
through a maximum of five machine groups (drills, grind-
ers, lathes, punches and saws). Each job is routed according
to its type and the queues in each machine group follow a
first-in-first-out discipline. The optimization—simulation
problem is to find the optimal number of machines to put
in each group in order to minimize the makespan. Clearly,
for each combination of machines, the simulation must be
executed in order to calculate the makespan. An additional
constraint to the problem is that the total number of
machines in all groups must not exceed 15. We use the
Micro Saint 3.0" simulation package to set-up and run
the optimization-simulation problem with the embed-
ded optimizer OptQuest.”> Figure 2 shows the Task

' Micro Saint is a trademark of Micro Analysis and Design
(www.maad.com).

2 OptQuest is a trademark of OptTek Systems, Inc. (www.opt-
tek. com).

Network associated with the simulation model of the job-
shop.

A total of 150 simulations were performed and a data
file was created in order to use 50 observations for
training and 100 observations for testing. (The training
set is given in the Appendix.) We use 15 neurons in the
hidden layer for this experiment. We run our scatter
search adaptation and compare the results with the seven
training procedures in Masters (1995). The results of this
comparison appears in Table 4, where the labels refer to
the following training procedures:

AN1 = simulated annealing 1;
AN2 = simulated annealing 2;
ANI1_CJ = simulated annealing 1 with a conjugate
gradient search;
AN2_CJ = simulated annealing 2 with a conjugate
gradient search;
ANI1_LM = simulated annealing 1 with Levenberg—
Marquardt search;
AN2_LM = simulated annealing 2 with Levenberg—
Marquardt search;
SM = stochastic smoothing.

The number of restarts for these methods was set to one
for all the combined methods, to 100 for the simulated
annealing versions 1 and 2 and to 200 for stochastic
smoothing.

The results in Table 4 show that AN1, AN2 and SM
are fast procedures that by an appropriate choice of the
number of restarts could be used for on-line training.
However, they consistently yield a mean squared error
that is larger than alternative approaches. The combined
methods (i.e., simulated annealing and a direct descent
approach) tend to find solutions of higher quality but
employ a training time that is not practical in the on-line
context. Note that the combined methods with Leven-
berg-Marquardt direct descent learning do not perform
many objective function evolutions, however, they con-
sume a significant amount of computer time applying a
singular value decomposition procedure with the corre-
sponding back-substitution for solving a linear system of
equations. Our scatter search implementation is capable
of finding a set of weights with a MSE value comparable

280

INetwork O Jobshop
FAN

part

Laguna and Marti

Fig. 2. Micro Saint simulation model of a jobshop.

Table 4. Comparison of training procedures using data from a
discrete event simulation

Method MSE Evaluations CPU*
ANI1 213.534 38,228 89.2
AN2 148.813 49,003 114.0
ANI1_CJ 4.479 855,159 510.9
AN2_CJ 40.396 360,746 201.8
AN1_LM 4.714 5,588 355.6
AN2_LM 4.827 2,383 234.7
SM 397.867 52,715 116.5
SS 4.849 62,802 51.4

* CPU time measured in seconds on a Pentium III 700 MHz machine.

to the best combined methods and within a computa-
tional time that is reasonable for on-line training.

We use the best set of weights found with our SS im-
plementation to predict the output of the simulation in the
100 observations in our testing set. We apply the criterion
defined at the end of Section 2 to determine whether or
not a solution should be sent to the simulator for evalu-
ation. The best-known solution was found in simulation
23 and has a makespan of f(x*) = 254.710 (see Appen-
dix). The sample standard deviation of the makespan
values in the training set is 6,y = 47.037, therefore any
solution with a makespan of 254.710 + 2 x 47.037 =
348.783 will be discarded. This criterion results in the

Neural network prediction in a system for optimizing simulations

300

L 4
250 | &
200 |
4
= *
« 150
= MSE = 9.5
100 { *
sof ¢
"‘\a
LX IR
0 : ‘ e ¢ 00 o epe
0 10 20 30 40 50 60
CPU seconds

Fig. 3. Performance graph of scatter search training.

elimination of 38 out of 100 solutions in the testing set.
The testing set includes a better solution than the current
best-known solution. The new best solution is the 10th
observation in the testing set, which corresponds to the
60th solution generated during the optimization—simula-
tion process. This solution has a makespan of 245.818
and the neural network predicts a value of 301.06. The
solution, however, is not discarded because the predicted
value falls within the allowable range for the solutions
that are sent to the simulator. This example shows that an
aggressive definition of o could cause the rejection of
good solutions before they are evaluated.

We have mentioned that a desirable feature for an on-
line training procedure is the ability to quickly find good
values for the set of weights w. In Fig. 3, we show the
performance graph for the training of the neural network
associated with the jobshop data. Note that within 5 CPU
seconds, the scatter search procedure is able to find so-
lutions to the training problem that yield a MSE of less
than 30. This is quite remarkable, considering that three
of the procedures in Table 4 do not achieve this level of
accuracy even when employing significantly more com-
putational time. An accuracy of 10, which given the rel-
ative magnitude of the makespan values in our simulation
may be sufficient, is reached after about 25 CPU seconds
(see Fig. 3).

We have also measured the convergence of AN_CJ,
ANI1 LM and AN2_LM and determined to be signifi-
cantly slower than our scatter search implementation.

6. Conclusions

In this paper we have described the implementation of
scatter search for training a single layer feed-forward
neural network. Our goal was to develop a training
procedure that could be used on-line. Specifically, we
were interested in a procedure that could train a neural
network with data generated by a simulator during an

281

optimization—simulation search. In such a context, the
training must be fast while assuring a reasonable accuracy
level. Our experiments show that the scatter search im-
plementation reaches a prediction accuracy that is suffi-
cient for the purpose of filtering out potentially bad
solutions generated during the optimization of a simula-
tion, and it does so within a computational time that is
practical for on-line training.

Acknowledgements

M.L. was partially supported by the Visiting Professor
Fellowship Program of the University of Valencia (Grant
Ref. No. 42743).

References

Gallant, R.A. and White, H. (1992) On learning the derivatives of
an unknown mapping with multilayer feedforward networks, in
Artificial Neural Networks, Blackwell, Cambridge, MA, 206—
223.

Gofte, W.L., Ferrier, G.D. and Rogers, J. (1994) Global optimization
of statistical functions with simulated annealing. Journal of
Econometrics, 60, 65-99.

Glover, F. (1998) A template for scatter search and path relinking, in
Artificial Evolution, Lecture Notes in Computer Science 1363, Hao,
J.-K., Lutton, E., Ronald, E., Schoenauer, M. and Snyers, D.
(eds.), Springer-Verlag, pp. 13-54.

Glover, F. and Kelly, J. (1998) Combining simulation and optimization
for improved business decisions. Colorado Business Review, LXIV,
4), 2-3.

Glover, F., Laguna, M. and Marti, R. (1999) Scatter search, in Theory
and Applications of Evolutionary Computation: Recent Trends,
Ghosh, A. and Tsutsui, S. (eds.), Springer-Verlag, (to appear).

Laguna, M. (2000) Scatter search, in Handbook of Applied Optimiza-
tion, Pardalos, P.M. and Resende, M.G.C. (eds.), Oxford Aca-
demic Press, (to appear).

Laguna, M. and Marti, R. (2000) “The OptQuest Callable Library”, in
Optimization Software Class Libraries, Voss, S. and Woodruff,
D.L. (eds), Kluwer Academic Publishers, Boston, MA (to ap-
pear).

Masters, T. (1995) Neural, Novel and Hybrid Algorithms for Time Series
Prediction, John Wiley.

Nelder, J.A. and Mead, R. (1965) A simplex method for function
minimization. Computer Journal, 7, 308-313.

Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P.
(1992) Numerical Recipes: The Art of Scientific Computing,
Cambridge University Press.

Sharda, R. and Rampal, R. (1995) Neural networks and management
science/operations research. Oklahoma State University, http.//
catt.okstate.edu/itorms/guide/nnpaper.html.

Sharda, R. (1994) Neural networks for the MS/OR analyst: an appli-
cation bibliography. Interfaces, 24(2), 116-130.

Sexton, R.S., Alidaee, B., Dorsey, R.E., and Johnson, J.D. (1998)
Global optimization for artificial neural networks: a tabu search
application. European Journal of Operational Research, 106, 570—
584.

Sexton, R.S., Dorsey, R.E. and Johnson, J.D. (1999) Optimization of
neural networks: a comparative analysis of the genetic algorithm
and simulated annealing. European Journal of Operational Re-
search, 114, 589-601.

282
Appendix

The following table shows the training set for the experiment
with the discrete event simulation data.

Solution Drills Grinders Lathes Punches Saws Makespan

1 1 1 2 3 3 358.141

2 1 1 1 1 1 403.568

3 1 1 1 2 5 414.315

4 1 2 5 1 1 382.613

5 1 1 2 1 5 405.845

6 1 1 2 5 1 353.075

7 1 2 1 1 5 392.893

8 1 2 1 5 1 386.072

9 3 4 1 1 1 341.865
10 1 1 4 3 1 376.481
11 2 1 1 1 5 409.489
12 3 1 1 3 1 395.398
13 1 3 2 3 1 408.547
14 2 2 2 1 2 274.508
15 2 1 2 2 2 336.803
16 2 2 2 2 1 290.547
17 1 3 1 2 3 386.049
18 4 1 1 2 2 301.243
19 2 3 1 1 3 330.720
20 2 2 1 2 2 331.910
21 1 1 3 2 3 370.548
22 1 4 3 1 1 401.984
23 4 2 2 1 1 254.710
24 1 1 1 3 3 380.588
25 1 1 5 1 1 342.081
26 3 1 1 2 3 336.231
27 1 1 1 2 4 414.315
28 1 5 1 1 1 396.135
29 3 2 2 1 1 278.051
30 1 3 1 1 3 421.979
31 3 3 1 2 1 414.263
32 2 2 2 3 1 290.547
33 2 1 2 3 1 323.616
34 2 2 2 1 1 265.044
35 3 2 2 1 2 281.245
36 2 2 2 2 2 260.519
37 5 2 1 1 1 355913
38 1 1 4 1 1 342.081
39 1 1 4 2 1 374.974
40 1 1 3 2 1 374.974
41 1 1 1 5 1 428.242
42 2 1 1 2 3 347.726
43 3 1 1 3 2 349.564
44 5 1 1 1 2 411.760
45 1 2 4 1 1 382.613
46 1 2 3 1 1 382.613
47 1 2 2 1 1 390.765
48 1 1 2 4 2 361.593
49 1 1 2 2 4 358.141
50 1 1 1 2 3 380.588

Laguna and Marti
Biographies

Manuel Laguna is Associate Professor of Operations Management in
the College of Business and Administration and Graduate School of
Business Administration of the University of Colorado at Boulder. He
received Master’s and Doctoral degrees in Operation Research and
Industrial Engineering from the University of Texas at Austin. He has
done extensive research in the interface between computer science,
artificial intelligence and operations research to develop solution
methods for problems in areas such as production planning and
scheduling, routing and network design in telecommunications, com-
binatorial optimization on graphs, and optimization of simulations.
Dr. Laguna has more than 50 publications, including articles in sci-
entific journals such as Operations Research, Management Science,
European Journal of Operational Research, Computers and Operations
Research, IIE Transactions, and the International Journal of Production
Research. He is the co-author of Tabu Search; the first book devoted to
this innovative optimization technology. He is editor-in-chief of the
Journal of Heuristics, is in the editorial board of Combinatorial Opti-
mization: Theory and Practice and has been guest editor for the Annals
of Operations research. Dr. Laguna is a member of the Institute for
Operations Research and the Management Science, the Institute of
Industrial Engineering, and the International Honor Society Omega
Rho.

Rafael Marti is an Associate Professor in the Department of Statistics
and Operations Research at the University of Valencia in Spain. He
has a doctoral degree in Mathematics from the University of Valencia.
He has done extensive research in the field of metaheuristics and is
currently Associate Editor of the Journal of Heuristics.

Contributed by the Computer Technologies and Information Systems
Department

