

Multilayer Neural Networks: An Experimental
Evaluation of On-Line Training Methods

Rafael Martí and Abdellah El-Fallahi

Departamento de Estadística e Investigación Operativa
Universitat de València, 46100 Burjassot (Valencia), Spain

Research partially supported by the Ministerio de Ciencia y

Tecnología of Spain: TIC2000-1750-C06-01.

Latest version: July 4, 2002

Abstract
Artificial neural networks (ANN) are inspired by the structure of biological neural
networks and their ability to integrate knowledge and learning. In ANN training, the
objective is to minimize the error over the training set. The most popular method for
training these networks is back propagation, a gradient descent technique. Other
non-linear optimization methods such as conjugate directions set or conjugate
gradient have also been used for this purpose. Recently, metaheuristics such as
simulated annealing, genetic algorithms or tabu search have been also adapted to
this context.

There are situations in which the necessary training data are being generated in real
time and an extensive training is not possible. This “on-line” training arises in the
context of optimizing a simulation. This paper presents extensive computational
experiments to compare 12 “on-line” training methods over a collection of 45
functions from the literature within a short term horizon. We propose a new method
based on the tabu search methodology, which can compete in quality with the best
previous approaches.

Scope and Purpose
Artificial neural networks present a new paradigm for decision support that
integrates knowledge and learning. They are inspired by biological neural systems
where the nodes of the network represent the neurons and the arcs the axons and
dendrites. In recent years there has been an increasing interest in ANN since they
had proven very effective in different contexts. In this paper we will focus on the
prediction/estimation problem for a given function, where the input of the net is
given by the values of the function variables and the output is the estimation of the
function image. Specifically we will consider the optimization problem that arises
when training the net in the context of optimizing simulations (i.e. when the training
time is limited). As far as we know, partial studies have been published, where a
few training methods are compared over a limited set of instances. In this paper we
present extensive computational experimentation of twelve different optimization
methods over a set of 45 well-known functions.

Martí and El-Fallahi / 2

1. Introduction

Neural networks have been widely used for both classification and prediction. This
paper is focused on the prediction problem in which an unknown function is
approximated. The input of the net is given by the values of the function variables
and the output is the estimation of the function image. In mathematical terms,
given a real function f: ℜ→ℜn and a neural net NN, the objective is to find
appropriate values for the arc weights w of the net, such as its output NN(x,w) from
an input vector x, approximates the value f(x).

When training the net, the problem is to find the weights that optimize its
performance (i.e. that allows the ANN to most accurately fit the data). The most
common error measure to report the quality of the network performance is the Root
Mean Squared Error (RMSE). Let E={x1, x2,..xT} be a random sample of points in the
domain of f, and suppose that the value of f(x) is known for all x in E. Given the
values w for the net weights, for each x in E the error is computed as error(x,w) =
[f(x)- NN(x,w)]2, and the RMSE across all the elements in the training set E is given
by the expression:

Error(E,w) =
T

wxerror
T

i

i∑
=1

),(
.

Therefore, for a fixed set E, training the neural network can be formulated as
minimizing this expression over the set of w-values.

Neural network training is typically considered an offline activity where the training
procedures may be run for hours of CPU time in order to achieve the best possible
results. There are, however, situations where an extensive training is not possible.
This situation is one in which the necessary training data are being generated in real
time. That is, the data do not reside in large databases from which training sets can
be constructed. Instead, the same process that will make use of the neural network
output generates the data. We refer to this situation as on-line training of the
neural network. One important application of on-line training arises in the context
of optimizing a simulation (Glover and Kelly, 1999).

The basic idea of simulation is to model a physical process on the computer,
incorporating the uncertainties that are inherent in all real systems. The model is
then executed to simulate the effects of the physical process and to determine their
consequences. Since simulations are generally computationally expensive, the
optimization process would be able to search the solution space more extensively if
it were able to quickly eliminate from consideration low-quality solutions, where
quality is based on the performance measure being optimized. This is where a
neural network becomes useful. Specifically, a neural network can be used to filter
out solutions that are likely to perform poorly when the simulation is executed.
Some optimization software packages are based on this filter strategy to perform the
optimization of time-consuming evaluation functions (Voss and Woodruff, 2002). In
these contexts, the training is limited to one or two minutes of CPU time.

This paper is focused on the neural network on-line training problem. Twelve
different methods for solving this unconstrained non-linear problem are
computationally compared. We also propose a new procedure based on the tabu
search methodology that is able to obtain high quality results and a filtered multi-
start framework. As far as we know, most of the previous methods have been only
partially compared using a few instances. For example, Denton and Hung (1996)
compared four non-linear methods over six classification problems. Sexton (1998)
proposed a tabu search based training method and studied its performance over six

Martí and El-Fallahi / 3

prediction problems, and Laguna and Martí (2000) proposed a Scatter Search
algorithm and compared it with Sexton’s method over the same six problems. We
have considered a collection of 45 well known functions from the literature and
compare the different methods, included our tabu search approach, when training a
neural network within a short term horizon. The following non-linear and
metaheuristic methods have been considered:

1. Back-propagation
2. Non-linear Simplex method (Nelder and Mead, 1965)
3. Direction set (Powell’s) method (Brent, 1973)
4. Conjugate gradient method (Polak, 1971)
5. Simple tabu search (Sexton, 1998)
6. Extended tabu search (Sexton, 1998)
7. Scatter Search (Laguna and Martí, 2000)

Additionally, we implement some of these methods within a Multi-Start procedure.
Particularly, we test the performance of:

8. Multi-start back-propagation
9. Multi-start non-linear Simplex
10. Multi-start direction set
11. Multi-start conjugate gradient
12. A new tabu search approach

Both tabu search methods by Sexton (5 and 6) are mainly based on random
selections and extensive sampling of the solution space. In this paper we propose a
new tabu search method (12) based on context and search information as it is
provided by the function’s gradient and memory structures.

In the remainder of the paper, we first introduce in Section 2 notation and the
network architecture and then describe in Section 3 the previous methods
mentioned above. Section 4 is devoted to the multi-start framework and our new
tabu search method. Our implementation, as described subsequently, proposes
innovative mechanisms for move selection. The computational experiments are
reported in Section 5 and the paper ends with the associated conclusions.

2. Neural Network Architecture

We have considered the most employed architecture for prediction and classification:
a multilayer feed-forward network with a single hidden layer. A schematic
representation of the network appears in Figure 1.

Figure 1. Neural network diagram

inputs
x1

x2

xn n

2

1

n+2

n+m

n+1

s
output

wn+1,s

w1,n+1

Martí and El-Fallahi / 4

Let NN=(N, A) be an ANN where N is the set of nodes and A is the set of arcs. N is
partitioned into three subsets: NI, input nodes, NH, hidden nodes and NO, output
nodes. We assume that there are n variables in the function that we want to predict
or approximate, therefore |NI|= n. The neural network has m hidden neurons
(|NH|= m) with a bias term in each hidden neuron and an output neuron (we restrict
our attention to real functions f: ℜ→ℜn , then they only have one single value as the
function’s image). Figure 1 shows a net where NI = ⎨1, 2, ..., n⎬ and NH = ⎨n+1,
n+2,..., n+m⎬.

Given an input pattern x=(x1,...,xn), the neural network provides the user with an
associated output NN(x,w), which is a function of the weights w. Each node i in the
input layer receives an amount of signal xi that it sends through all its incident arcs
to the nodes in the hidden layer. Each node j in the hidden layer receives a signal
input(j) according to the expression:

Input(j)=wj + ∑
=

n

i
iji wx

1

where wj is the bias value for node j, and wij is the weight value on the arc from node
i in the input layer to node j in the hidden layer. Each hidden node transforms its
input by means of a nonlinear activation function: output(j)=sig(input(j)). The most
popular choice for the activation function is the sigmoid function sig(x)= 1/(1+e-x).
Laguna and Martí (2000) test two activation functions for the hidden neurons and
conclude that the sigmoid presents superior performance. Each hidden node j
sends the amount of signal output(j) thorough the arc (j,s). The node s in the output
layer receives the weighted sum of the values coming from the hidden nodes. This
sum, NN(x,w), is the net’s output according to the expression:

NN(x,w) = ws + ∑
=

++
m

j
sjnwjnoutput

1
,)(

In the process of training the net (supervised learning), the problem is to find the
values of the weights (including the bias factors) that minimizes the error (RMSE)
across the training set E. Once the optimization has been performed and the
weights have been set (w=w*), the net is ready to produce the output for any input
value. The testing error (TE) computes the Root Mean Squared Error across the
elements in the testing set TS= {y1, y2,..,yS} where no one belongs to the training set
E.

TE =
S

wyerror
S

i

i∑
=

∗

1

),(
.

3. Previous Approaches

3.1 Back Propagation
This was the first method for neural network training, and it is still the most widely
used algorithm in practical applications. It is a gradient descent method that
searches for the global optimum of the network weights. Each iteration t, consists of
two steps. First, partial derivatives ∂Error/∂w are computed for each weight in the
net. Given that the network is acyclic, this can be exactly done by starting the
computation at the output node s, and then successively computing the derivatives
for the arcs from NH to s, and finally for the arcs between NI and NH (i.e.: the gradient
information is successively moved from the output layer back towards the input
layer). In the second step, weights are modified according to the expression:

Martí and El-Fallahi / 5

ij
ijij w

twEErrortwtw
∂

∂−=+))(,()()1(α

where the step α is the learning rate. Then the error is computed for the new
weights, t is increased in one unit and a new iteration begins. The most significant
modification to the method is the addition of a momentum term β. Each new search
direction is computed as a weighted sum of the current gradient and the previous
search direction:

))1()(())(,()()1(−−+
∂

∂−=+ twtw
w

twEErrortwtw ijij
ij

ijij βα

The values of both parameters α and β are adjusted in each particular application.
For instance, Riedmiller (1994) states that sometimes better results can be achieved
using no momentum term. We will test some values for these parameters in our
computational experiments. For a detailed description of the method we refer the
reader to Masters (1993) or El-Fallahi (2002).

3.2 Non-Linear Methods
Since the neural network training problem can be expressed as a nonlinear
unconstrained optimization problem, we might use more sophisticated nonlinear
methods than the gradient descent to solve it. We consider three well-known
methods which, as it is stated in Press et al. (1997), constitute a selection of the best
established algorithms in unconstrained non-linear optimization. They are:

• Non-linear Simplex method (Nelder and Mead, 1965)
• Direction set (Powell’s) method (Brent, 1973)
• Conjugate gradient method (Polak, 1971)

We follow the implementation of the three methods given in Press et al. (1997).

3.3 Tabu Search
The simple Tabu Search method by Sexton et al. (1998) is mainly based on a
random search. Neighborhoods are randomly drawn points from uniform
distribution. The neighborhood is a region restricted to ±0.1% for each weight in the
current solution. 500 solutions are randomly generated in this region and the best
one is chosen.

An initial solution is randomly generated in the range [-10,10] and its neighborhood
is examined. The best solution in the neighborhood replaces the initial one and the
process is repeated. A tabu list is generated by adding the last solution to the
beginning of the list and discarding the oldest solution from it. To be rejected, all
the weights of a new solution would need to be within ±0.01% for any of the
solutions in the tabu list. The size of this list is evaluated at three levels (1,50, 100).
This algorithm is used as a baseline for comparison with the extended TS method.
In both methods, and in the Scatter Search described in 3.4, the search takes place
only over the weights from the input to the hidden layer and the bias factor of the
hidden neurons. Weights from the hidden layer to the output neuron, wn+j,s as well
as the bias factor of node s, ws, are obtained by linear regression.

The extended TS algorithm (Sexton et al., 1998) follows. An initial solution x0 is
randomly drawn from a uniform distribution in the range [-10,10] and the current
best solution xbest is initialised to x0. Solutions are randomly generated in this range
for a given number of iterations. When generating a new point xnew, aspiration level
and tabu conditions are checked. If f(xnew)<f(xbest) then the point is automatically
accepted and both xbest and f(xbest) are updated; otherwise the tabu conditions are

Martí and El-Fallahi / 6

tested. If there is one solution xi in the tabu list (TL) such as f(xnew) ∈ [f(xi)-0.01*f(xi),
f(xi)+0.01*f(xi)], then the complete test is applied to xnew and xi; otherwise the point is
accepted. The test checks if all the weights in xnew are within ±0.01 from xi, in this
case the point is rejected, otherwise the point is accepted and xnew and f(xnew) are
entered into TL. This process continues for 1000 iterations of accepted solutions.
Then, another cycle of 1000 iterations of random sampling begins. These cycles will
continuously repeat while f(xbest) improves.

When the random sampling ends, the process of intensification starts by performing
a search from the best solution found xbest. The new points are drawn by modifying
the xbest by a small step value, where:

step=((0.1*xbest)-(0.2*xbest)*random)/change.

Each cycle of the intensification phase generates 1000 new points. This phase
makes a maximum of 20 cycles as long as there is at least one reduction in the
f(xbest). Once this phase finishes, the diversification process begins in order to
expand the search area. The step value is now computed as:

step=((0.1*xbest)-(0.2*xbest)*random)*change

This diversification phase generates new points by modifying xbest with this step
value. As in the intensification phase, cycles of 1000 iterations are performed up to
a maximum of 20. Both phases, intensification and diversification, are alternated
for a maximum of 5 consecutive iterations. Then, the whole process is repeated for
10 global iterations. The random variable is a random number drawn from a
uniform distribution in the range [0, 1], the change variable is initialised to one, and
is increased in one after each intensification phase.

3.4 Scatter Search
In this section we describe the adaptation of Laguna and Martí (2000) of the Scatter
Search methodology (Glover, Laguna and Martí, 1999) to the net training problem.

After the data normalization, an initial reference set (RefSet) of b solutions is
created. A set P of PSize solutions w (bounded between wlow and whigh) is built
with the diversification method, based on a controlled randomization scheme, given
in Glover, Laguna and Martí (1999). The RefSet is filled with the best b/2 solutions
in P to which the improvement method is applied. The RefSet is completed with b/2
more solutions generated as perturbations of the first b/2. The perturbation
consists of multiplying each weight by 1 + U[-0.05,0.05], where U is the uniform
distribution.

In step 2, the solutions in RefSet are ordered according to quality, where the best
solution is the first one in the list. Then, the NewPairs set is constructed. NewPairs
consists of all the new pairs of solutions that can be obtained from RefSet, where a
“new pair” contains at least one new solution. The pairs in NewPairs are selected
one at a time in lexicographical order to create linear combinations. The best b
solutions created as linear combinations are subjected to the improvement method.
Each improved solution is then tested for admission into RefSet. If a newly created
solution improves upon the worst solution currently in RefSet, the new solution
replaces the worst and RefSet is reordered.

In step 3 the procedure intensifies the search around the best-known solution. At
each intensification iteration, the best-known solution is perturbed and the
improvement method is applied. The best solution is updated if the perturbation
plus improvement generates a better solution. After IntLimit intensification
iterations without improving the best solution, the procedure abandons the
intensification phase and returns to step 2. Previously, the improvement method is

Martí and El-Fallahi / 7

applied to the best b/2 solutions in RefSet and the worst b/2 solutions are replaced
with perturbations of the best b/2. The training procedure stops when the number
of objective function evaluations reaches the total allowed. After experimentation,
the parameters wlow, whigh, b and IntLimit were set to –2, 2, 10 and 20 respectively.

4. New Approaches

4.1 Multi Start Methods
Multi-start methods have two phases: the first one in which the solution is
generated and the second one in which the solution is typically (but not necessarily)
improved. Then, each global iteration produces a solution (usually a local optimum)
and the best overall is the algorithm’s output.

Figure 1 shows a pseudo-code of the multi-start procedure. A solution xi is
constructed in Step 1 at iteration i. This is typically performed with a constructive
algorithm. Step 2 is devoted to improving this solution, obtaining solution xi’. A
simple improvement method can be applied. However, this second phase has
recently become more elaborate and, in some cases, is performed with a complex
method that may or may not improve the initial solution xi (in this latter case we set
xi’=xi).

Initialise i=1
while(Stopping condition is not satisfied)
{
 Step 1. (Generation)
 Construct solution xi

 Step 2. (Search)
 Apply a search method to improve xi
 Let xi’ be the solution obtained
 if(xi’ improves the best)
 Update the best
 i=i+1
}

Figure 1. Multi-start procedure

In recent years, many heuristic algorithms had been proposed to solve some
combinatorial optimization problems following the outline given in Figure 1. A basic
multi-start method generates uniformly distributed points in the solution space, and
starts the search procedure from each of these points. This is well known to
converge to a global solution with probability one as the number of points
approaches infinity. This algorithm is very inefficient because the same local
solution is reached many times, and some of these can be of a very low quality. We
consider a filter method based on the proposed in Ugray et al. (2001), to selectively
apply the Step 2. Solutions are randomly generated in Step 1, and then two filters
are considered, if the solution is accepted by both filters, then the search method is
applied; otherwise it is discarded and a new solution is generated.

The distance filter helps ensure that the starting points xi are diverse, in the sense
that they are not too close to any previously found local optimum. Its goal is to
prevent the step 2 search method from starting more than once within the basin of
attraction of any local optimum. When a local solution xi’ is found, it is stored with
the euclidean distance between it and the starting point xi that led to it. Let
maxdist, be the maximum of these distances. For each trial point xi, if the distance
between xi, and any local optimum already found is less than distfactor*maxdist, the
solution is rejected. Otherwise, the quality filter is applied.

The quality filter helps ensure that the starting points have a relative high quality,
by not starting from candidate points whose value is greater than a threshold QTH.

Martí and El-Fallahi / 8

This threshold is set initially to the value of the first solution generated. If trial
points are rejected by this test for more than maxiter consecutive iterations, the
threshold is increased by the updating rule QTH=QTH+δ(1+|QTH|). On the other
hand, when a trial point is accepted by this filter, QTH is decreased by setting it to
the value of that point. Both filters were proposed by Ugray et al. (2001) in the
context of multi start non-linear optimization. We have implemented them with the
parameter values suggested by the authors: δ=0.2, maxdist=0.75 and maxr=20.

4.2 Tabu Search
The solution approach that we have developed for training the neural network is
based on the tabu search methodology. Our method consists of three phases:
MultiRSimplex, TSProb and TSFreq. After the initialization with the MultiRSimplex
phase, the procedure performs iterations in a loop consisting in alternating both
phases, TSProb and TSFreq, to intensify and diversify the search respectively. After
each phase, the Simplex method is applied to the best solution found. The
procedure terminates when a pre-specified number of iterations (or function
evaluations) is met.

MultiRSimplex

The initialization phase, MultiRSimplex, generates pseudo-random trial points and
starts the Simplex optimizer (Nedler and Mead, 1965) with a subset of the points
determined by the two filters. Weights from the input to the hidden layer and the
bias factor of the hidden neurons are randomly generated from a uniform
distribution in the range of [-0.5, 0.5]. Weights from the hidden layer to the output
neuron, wn+j,s and the bias factor of node s, ws, are obtained with linear regression.
Therefore, although this solutions are partially randomly generated, they present a
relatively good value. The linear regression is only used in this phase; thus, in the
other two phases, the search takes place over the entire set of weights.

This phase generates solutions and applies the merit filter as well as the quality
filter to accept or reject them. Once 50 solutions have been accepted, the Simplex
method is applied to the best 5 of them. The best final solution is labeled as wbest.

TSProb

An iteration in the TSProb phase begins by randomly selecting a weight. The

probability of selecting weight t
iw at iteration t, is proportional to the absolute value

of the partial derivative

t
i

t

w
wEError

∂
∂),(.

The neighborhood consists of solutions that are reached from wt by modifying the

value of the selected weight t
iw . Specifically, three solutions are considered with the

following expression:
wit+1 = wit + α β wit
wjt+1 = wjt , ∀ j≠i

The algorithm starts by evaluating two solutions; the first one with α=0,3 and the
second one with α=0,5. If the error associated with the first one is lower than that
one associated with α=0,5, then α=0,1 provides the last solution considered;
otherwise, the method computes the solution generated with α=0,8. The method
selects the best solution among the three considered, and labels it as wt+1. Note
that the move is executed even when the error of wt+1 is greater than the error of wt,
thus resulting in a deterioration of the current value of the objective function. The
moved weight becomes tabu-active for TabuTenure iterations, and therefore it cannot
be selected during this time.

Martí and El-Fallahi / 9

Factor β scales the change in the selected weight according to the status of the
search. The algorithm starts with β =1 and reduces the magnitude of this change as
long as the current solution is close to a local optimum. Specifically, we define
S∇(w) as the sum of absolute values of partial derivatives in solution w. In
mathematical terms, the expression is:

∑ ∂
∂=∇

k kw
wEErrorwS),()(.

Let S∇(w0) be the value for the initial solution w0 of this phase. At iteration t, the
value S∇(wt) is computed, and β is randomly selected in the range:

⎥
⎦

⎤
⎢
⎣

⎡
+

∇
∇−

∇
∇ 1.0

)(
)(,1.0

)(
)(

00 wS
wS

wS
wS tt

.

Starting from the wbest solution, the TSProb phase stops when NonImp moves are
performed without improving the best solution found.

TSFreq

The number of times that weight wi has been chosen to be moved is accumulated in
the value freq(i). This frequency information is used for diversification purposes. In
each iteration of the TSFreq phase, a weight is randomly selected, where the
probability of selecting weight wi is inversely proportional to the frequency count
freq(i). This phase carries out the same steps than TSProb to perform a move for a
selected weight. Starting from the last solution generated by TSProb, the TSFreq
phase stops when NonImp moves are performed without improving the best solution
found.

The calculations of the values of the partial derivatives in the current solution are
performed with the well known expressions used in the back-propagation method.
These values, however, are not updated after the execution of a move, because it is a
computationally expensive calculation. Note that we are only using them as a way
to discriminate among weights and we consider that it is not absolutely necessary to
update them after each move because most of these values either remain the same
or their relative merit remains almost unchanged. The notion of not updating key
values after every iteration is based on the elite candidate list suggested in Glover
and Laguna (1997). The application of this strategy is particularly useful when the
updating of the move values is computationally expensive, as in our context. The
partial derivatives are updated each DeriveUpdate iterations.

5. Computational Experiments

The procedures described in the previous sections were implemented in C, and all
the experiments were performed on a Pentium III-750 personal computer. Table 8 in
the Appendix shows summary information of the 45 test problems considered in our
computational testing that are based on a set of nonlinear objective functions, which
can be found in the following web pages:

http://www.maths.adelaide.edu.au/Applied/llazausk/alife/realfopt.htm
http://solon.cma.univie.ac.at/~neum/glopt/my_problems.html
http://www-math.cudenver.edu/~rvan/phd/node32.html

As it was done in previous works (Sexton et al., 1998; Laguna and Martí, 2000), the
training set consists of 50 randomly drawn observations and the testing set of 150,
the training is limited to 4*106 function evaluations, and the number of hidden
nodes is set to 6. Limiting the number of hidden nodes to a relative low value is
necessary in “on-line” training since it is performed within a short period of time. A

Martí and El-Fallahi / 10

model with more hidden nodes or even with two hidden layers could provide better
results, but would significantly increase the number of variables where the search
takes place, thus increasing the training time. Since we are focusing on the online
training, we need a suitable model to be trained in one or two minutes of computer
time. All the procedures considered for training, start with the input and output
data normalization as it is described in Laguna and Martí (2000) and in
www.neuralware.com. We have computationally found that the effectiveness of a
training method increases if the data are previously normalized.

In our first experiment we explore the effect of changes in the two search
parameters, α and β, of the back-propagation algorithm (BP(α ,β)). The instances had
been divided in four groups according to the number of input variables (2, 3-9, 10-
20 and 21-30). Table 1 reports for α=0.3 and β=0, the average RMSE in the training
set for the instances in each group (Avg. Train Error), the minimum and maximum of
those values (Min Train Error and Max Train Error), the average running time in
seconds (Avg. CPU) and the average RMSE in the testing (Avg. Test Error),
respectively.

 Train Error Test Error
N. Vars. Avg. Min. Max. Avg. CPU Avg.

2 1.96E+08 1.50E-01 3.33E+09 49.1 8.15*108
3-9 1.07E+09 1.05E-01 1.26E+10 70.2 1.84*109

10-20 5.07E+08 1.62E-01 5.50E+09 163.3 2.18*108
21-30 7.88E+05 3.23E-01 2.79E+06 283.1 7.48*105

summary 4.83E+08 1.05E-01 1.26E+10 109.02 8.53*108

Table 1. BP(α=0.3, β=0)

Table 1 shows that in some instances the training error is very high, while in others
it is relatively low. For example, in graphs with two variables (first row in the table)
the maximum train error obtained in one instance is 3.33*109 while the minimum is
0.15. Considering the 45 instances, 26 of them present a training error inferior to
50 units (they appear with a “*” symbol in the Appendix table), and the other 19
present high error values. We have trained the neural net to approximate these 19
instances with all the methods described in this paper, and none of them is able to
approximate them properly (i.e. to obtain a reduced train error). Even if we run the
methods longer, the error is not significantly reduced. Therefore, we can say that
these functions cannot be approximated with online training with this net
architecture. From now on, we will report the results of our experiments in the
reduced set of 26 mentioned instances, that we will refer as set F. Nevertheless, this
section ends with a summary table where the best solution found in each of the 45
instances is shown.

Table 2 shows the results of the back-propagation method with α=0.3 and β=0 over
the set F. These values show that the number of variables is not a main influential
factor in the “difficulty” of the prediction. On the other hand, it is shown that as the
number of variables increases, the running times also increases.

 Train Error Test Error
N. Vars. Avg. Min. Max. Avg. CPU Avg.

2 32.73 0.15 96.21 49.00 67.81
3-9 10.22 0.11 46.61 71.75 24.52

10-20 41.84 0.16 90.73 157.80 94.25
21-30 32.47 0.32 64.62 303.00 55.48

summary 27.54 0.11 142.51 96.46 58.63

Table 2. Back-Propagation (α=0.3, β=0) over F

Martí and El-Fallahi / 11

Table 3 shows different combinations of the search parameters. First, we compare
three values of α in the BP version with no momentum term (β=0). Specifically we
consider the values 0.3, 0.5 and 0.7. The best results are obtained with α =0.3,
which presents an average train error of 27.54. We then fix α =0.3 and compare
three versions of the BP method with momentum: β = 0.5, 0.7 and 1. As expected,
the addition of the momentum term significantly reduces the error. The best results
are obtained with α =0.3 and β =1, which presents an average train error of 9.92
obtained in 89.35 seconds. It should be mentioned that the testing errors are of a
greater magnitude than the training ones.

 Train Error Test Error

α β Avg. Min. Max. Avg. CPU Avg.
0.3 0 27.54 0.11 142.51 96.46 58.63
0.5 0 32.59 0.11 153.72 96.69 59.58
0.7 0 35.55 0.15 182.09 96.69 63.07
0.3 0.5 14.23 0.01 118.99 89.77 56.81
0.3 0.7 14.72 0.02 118.99 89.77 56.43
0.3 1.0 9.92 0.02 35.72 89.35 47.09

Table 3. Back-Propagation over F

The box and whiskers plot in Figure 2 shows the RMSE of the training set for the 26
instances of the set F obtained with BP(0.3,1). It is shown in the diagram that a
50% of them present errors that are lower than 5 units.

Figure 2. Train Error with BP(0.3,1) over F

To finish our first experiment, we consider the multi-start procedure in which
solutions are randomly generated in step 1 and improved with the BP(0.3,1) method
in step 2. We have fixed the same number of evaluations for this Multi-BP method
as in the previous experiments. We do not produce tables for this experiment;
however, we report that the BP procedure outperforms this multi-start-BP method
within this limit of iterations. On the other hand, Figure 3 depicts the average
training error over F, and it shows that Multi-BP clearly dominates the simple BP
approach as the procedures are allowed to run longer. Anyway, since we are
interested in the training problem within a limited run time, we will focus on the
“stand-alone” BP method.

Martí and El-Fallahi / 12

Figure 3. BP and Multi-BP average best solution over time

In our second experiment, we have considered the three non-linear methods
previously introduced: the non-linear Simplex method by Nelder and Mead
(Simplex), the direction set method by Powell (Powell) and the Conjugate gradient
method by Polak and Ribiere (PR). We have also considered the Multi-Start
procedure where solutions are randomly generated in step 1 and improved with each
of these methods in the step 2. Table 4 reports the results for the six methods.

 Train Error Test Error
Methods Avg. Min. Max. Avg. CPU Avg.
Simplex 61.73 0.00 494.60 55.68 96.42
Powell 35.21 0.05 249.87 53.40 2.04*106

PR 122.62 0.29 494.60 66.52 142.16
Multi-Simplex 79.52 0.00 494.60 106.20 108.42
Multi-Powell 28.94 0.02 184.77 96.72 6.5*1011

Multi-PR 76.03 0.14 580.72 106.40 88.92

Table 4. Non-linear methods over F

Table 4 shows that the best quality solution with respect to the train error is
obtained by the Multi-Start procedure with the Powell improvement method (Multi-
Powell), considering its average value of 28.94. However, this algorithm presents the
worst quality solution with respect to the testing error, with an average value of
6.5*1011. The Back-Propagation outperforms this six methods on average, since it
obtains 9.92 and 47.09 for the training and testing errors respectively. The Simplex
method is probably the best non-linear method, considering its average train error of
61.73 and its average testing error of 96.42. Although the performance of the Multi-
Simplex method is inferior to the Simplex, Figure 4 shows that the former approach
dominates the latter as the procedures are allowed to run longer (out of the scope of
an online training).

0

5

10

15

20

25

30

0 1 4 10 20 30 40 50

Number of Evaluations (Millions)

Tr
ai

n
Er

ro
r o

f B
es

t S
ol

ut
io

n BP

Multi-BP

Martí and El-Fallahi / 13

20

30

40

50

60

70

80

90

1 4 10 20 30 40 50

Number of Evaluations (Millions)

Tr
ai

n
er

ro
r o

f b
es

t s
ol

ut
io

n

Simplex

Simplex-Multi

Figure 3. Simplex and Multi-Simplex average best solution over time

In our last experiment we compare the metaheuristic methods for the training
problem. Table 5 reports the results on the set F for the basic and extended TS
methods by Sexton et al. (B-TS and E-TS), the SS method by Laguna and Martí (SS)
and the proposed TS method (TS).

 Train Error Test Error
Methods Avg. Min. Max. Avg. CPU Avg.

B-TS 142.67 0.00 1528.38 19.64 180.03
E-TS 94.56 0.00 1173.16 287.96 124.27
SS 7.62 0.002 65.39 278.03 57.66
TS 8.65 0.00 47.71 254.00 55.30

Table 5. MetaHeuristics over F

The basic TS procedure is clearly inferior in terms of solution quality, although the
simplicity and low CPU time of the approach remains appealing. SS and TS
variants, on the other hand, present a similar performance since SS has an average
training error of 7.62 and an average testing error of 57.66, while TS has 8.65 and
55.30 respectively. The performance of the E-TS method is inferior compared with
these two methods, given its training average value of 94.56 and its testing average
error of 124.27.

Tables 6 and 7 report, respectively, the average training error and average testing
error of the best methods considered. He have considered two versions of our
proposed TS method; the first one (TS0) does not incorporate the TSFreq phase, thus
the iterations are performed with the TSProb phase alone. The second one (TS)
consists of the whole procedure as it is described in the previous section. All the
methods are run for two minutes of computer time. The last column in both tables
reports, for each instance, the name of the method which is able to obtain the best
result.

Table 6 shows that the SS method obtains the best results in terms of the training
error in 24 instances, while our both TS variants together are able to obtain the
minimum training error in 18 out of 45 instances. The other methods obtain the
best solution in none or 1 instance. If we restrict our attention to the 26 instances
in the set F (those with an “*” symbol in the identification number), the SS obtains
the best results in 12 of them, while TS and TS0 together obtain 13 best solutions.

Martí and El-Fallahi / 14

Num. BP(0.3,1) Simplex Powell E-TS SS TS0 TS Best

1* 0.528 0.019 2.592 0.004 0.000 0.000 0.000 TS0
2* 7.689 9.385 19.436 4.801 0.012 0.013 0.358 SS
3* 0.259 0.060 1.155 0.201 0.141 0.002 0.001 TS0
4* 31.260 142.534 114.478 42.538 0.378 6.951 9.520 SS
5* 14.310 172.771 154.903 22.654 3.245 0.010 0.045 TS
6* 14.693 156.042 57.265 33.099 237.016 1248.859 47.664 BP
7* 9.679 34.446 44.018 49.008 0.206 493.735 47.711 SS
8* 0.265 0.001 0.067 0.001 0.000 0.000 0.000 TS0
9 3.3E+09 3.0E+09 1.9E+09 3.9E+09 3.87E+15 2.2E+17 1.6E+17 Powell

10* 17.627 17.338 19.450 14.974 20.646 11.500 9.024 TS0
11 6.7E+06 6.3E+06 5.2E+06 4.2E+06 3.29E+08 1.9E+12 1.3E+12 E-TS
12 88.538 200.507 118.385 134.525 0.023 3140.629 85.836 SS
13* 7.919 12.980 16.409 9.639 0.001 239.415 1.759 SS
14 5.9E+04 5.7E+04 2.9E+04 2.4E+04 1.22E+07 0.0E+00 8.0E+05 TS
15* 1.953 1.576 1.538 77.918 16.936 0.000 0.000 TS0
16 2.6E+05 2.4E+05 1.0E+05 9.3E+04 19586.970 1.1E+05 2.1E+04 SS
17 3.2E+03 3.5E+03 2.3E+03 2.9E+03 737.096 3.2E+06 1.7E+05 SS
18* 14.435 32.545 41.935 42.928 0.603 0.000 1.111 TS
19* 0.032 0.000 0.183 0.000 0.000 0.000 0.000 TS0
20 3.7E+05 2.9E+05 2.2E+05 2.7E+05 3.57E+04 7.0E+04 5.3E+04 SS
21* 0.375 0.021 0.054 0.037 0.010 0.003 0.002 TS0
22* 0.377 0.023 0.084 0.044 0.007 0.006 0.003 TS0
23* 0.371 0.050 0.090 0.059 0.013 0.010 0.006 TS0
24 1.1E+08 7.9E+07 6.6E+07 8.1E+07 4.33E+07 3.3E+07 1.8E+07 TS0
25 1.3E+10 8.2E+09 6.5E+09 1.1E+10 6.28E+09 3.7E+09 3.0E+09 TS0
26 8.2E+07 5.3E+07 4.5E+07 6.9E+07 2.25E+07 2.1E+07 2.1E+07 TS0
27* 0.022 0.000 0.081 0.000 0.000 0.000 0.000 TS0
28* 3.109 494.600 3.535 1173.156 1.226 351.626 1.492 SS
29* 34.149 60.834 66.483 107.905 6.894 20.682 12.767 SS
30* 35.723 98.534 120.344 157.439 0.473 17.711 9.489 SS
31* 26.946 86.749 97.180 186.258 0.180 27.236 15.355 SS
32* 0.152 0.016 0.149 0.483 0.001 0.132 0.008 SS
33 318.467 628.155 407.891 956.793 1.231 146.864 36.699 SS
34 1.0E+06 6.3E+05 4.2E+05 5.8E+05 487.743 5.9E+04 4.8E+04 SS
35 7.6E+07 6.9E+07 5.7E+07 8.1E+07 9.29E+04 9.8E+05 2.4E+06 SS
36* 27.874 183.198 84.532 401.886 0.551 72.723 16.844 SS
37* 0.228 0.026 0.210 0.567 0.001 0.149 0.006 SS
38 435.836 1745.650 972.866 3708.566 8.429 435.388 350.416 SS
39 2.2E+06 6.5E+05 6.2E+05 1.0E+06 4.28E+03 1.4E+05 1.6E+05 SS
40 5.5E+09 4.7E+09 4.5E+09 1.8E+09 9.82E+07 2.1E+07 1.4E+08 TS
41 1.1E+06 8.6E+05 4.4E+05 6.7E+05 5.79E+03 1.1E+05 1.4E+05 SS
42 2.8E+06 1.8E+06 1.5E+06 1.3E+06 3.15E+03 2.2E+05 1.4E+05 SS
43* 7.499 100.762 93.065 188.510 0.742 30.691 19.760 SS
44 100.108 398.721 129.856 510.660 1.002 80.716 53.433 SS
45* 0.360 0.440 1.186 7.227 3.200 1.822 0.136 TS0

Table 6. Average Training Error with Bests methods

Martí and El-Fallahi / 15

Num. BP(0.3,1) Simplex Powell E-TS SS TS0 TS Best
1* 1.609 0.336 3.731 0.006 0.000 0.000 0.000 TS
2* 14.547 21.735 13.227 7.527 0.026 0.451 0.011 TS
3* 0.658 0.172 1.67E+05 0.912 1.465 1.128 1.227 Simplex
4* 63.936 252.485 247.323 53.905 0.862 34.752 9.435 SS
5* 25.754 201.740 275.055 29.286 8.405 2.169 0.060 TS
6* 91.133 246.418 209.300 44.453 557.301 222.784 1332.833 E-TS
7* 17.647 55.400 74.703 55.218 0.371 57.201 247.324 SS
8* 0.325 0.066 0.526 0.099 0.000 0.023 0.056 SS
9 1.10E+10 1.34E+10 1.21E+10 1.12E+10 1.71E+18 1.57E+17 5.31E+17 BP

10* 31.487 35.778 33.609 23.929 39.528 29.470 30.924 E-TS
11 8.50E+06 1.09E+07 1.01E+07 3.88E+07 1.03E+09 1.09E+12 1.35E+12 BP
12 155.416 334.625 255.698 153.811 1.401 86.021 8218.651 SS
13* 11.489 22.445 13.406 9.709 0.001 173.412 278.955 SS
14 7.36E+04 6.50E+04 6.00E+04 5.72E+04 4.02E+07 1.17E+06 1.33E+06 E-TS
15* 2.580 86.724 164.898 2.437 35.424 1.32E+15 5.20E+06 E-TS
16 2.87E+05 2.54E+05 1.92E+05 1.34E+05 6.03E+04 4.66E+04 1.44E+05 TS0
17 6.77E+03 7.92E+03 5.86E+03 4.50E+03 1.62E+03 5.06E+06 5.22E+06 SS
18* 37.826 59.467 51.426 57.458 1.334 1.656 59.441 SS
19* 0.093 0.000 5.07E+07 0.000 0.000 0.000 0.024 TS0
20 4.76E+05 3.46E+05 3.30E+05 4.07E+05 3.41E+05 2.54E+05 1.52E+06 TS0
21* 0.521 0.082 1820.838 0.071 0.031 0.025 0.029 TS0
22* 0.523 0.116 1100.655 0.090 0.044 0.064 6.758 SS
23* 0.539 0.100 2.488 0.081 0.055 0.130 0.794 SS
24 1.73E+08 1.39E+08 1.11E+08 1.52E+08 1.42E+08 1.93E+08 1.47E+08 Powell
25 2.16E+10 1.74E+10 1.96E+10 1.59E+10 1.67E+10 2.06E+10 2.30E+10 E-TS
26 1.37E+08 1.13E+08 9.92E+07 1.14E+08 1.13E+08 1.37E+08 1.46E+08 Powell
27* 0.049 0.000 0.250 0.000 0.000 0.000 0.000 TS
28* 25.105 662.425 760.161 1538.863 11.631 5.823 815.709 TS1
29* 144.208 138.474 124.541 115.172 108.273 122.305 171.038 SS
30* 230.148 181.694 11081.671 222.450 416.352 287.447 285.407 Simplex
31* 178.991 118.810 114.017 295.231 184.445 187.791 209.434 Powell
32* 0.426 0.060 119.474 0.725 0.091 0.371 6705.030 Simplex
33 859.632 816.584 659.899 1331.280 3.30E+05 752.662 892.877 Powell
34 1.08E+06 7.98E+05 1.27E+07 7.57E+05 1.20E+06 8.39E+05 1.84E+06 E-TS
35 8.08E+07 3.48E+07 4.69E+09 1.20E+08 1.51E+08 1.13E+08 9.57E+07 Simplex
36* 165.164 287.022 175.563 592.486 244.177 393.154 241.095 BP
37* 0.333 0.399 0.609 0.799 0.066 0.051 0.046 TS
38 1.90E+03 2.28E+03 2.02E+03 5.89E+03 3.01E+03 2.47E+03 2.93E+03 BP
39 1.99E+06 9.52E+05 1.06E+06 1.28E+06 2.05E+06 1.38E+06 1.29E+06 Simplex
40 6.52E+09 2.89E+09 6.01E+09 4.19E+09 3.49E+09 3.05E+09 5.07E+09 Simplex
41 1.10E+06 1.39E+06 8.33E+05 6.70E+05 1.26E+06 8.22E+05 7.76E+05 E-TS
42 2.68E+06 2.14E+06 1.20E+06 1.73E+06 1.48E+06 1.59E+06 1.32E+06 Powell
43* 178.099 133.168 127.358 267.273 177.907 148.182 150.243 Powell
44 304.797 668.804 226.190 614.845 335.063 572.758 356.889 Powell
45* 1.120 1.997 4.369 11.420 72.400 1.082 4.109 TS0

Table 7. Average Interpolation Error with Bests Methods

Table 7 shows that, with the respect to the interpolation error, the BP method
obtains the best results in 4 instances, the Simplex in 5, Powell and E_TS in 7, SS
in 10 and our both variants together in 12 out of the 45 instances under
consideration. With respect to the 26 instances in the set F, the number of best

Martí and El-Fallahi / 16

solutions found is 1 for BP, 2 for Simplex and Powell’s methods, 3 for E-TS, 8 for SS
and 9 for our both tabu search variants (TS0 and TS).

6. Conclusions

A computational study of 12 methods for neural network training has been
presented. Specifically, the on-line problem where only a limited training time is
allowed has been considered. We have also proposed a new training method based
on the tabu search methodology as well as a filtered multi-start framework that can
be superimposed to other methods. Overall experiments with 45 functions from the
literature were performed to compare the procedures.

Our experiments show that some functions cannot be approximated with a
reasonable accuracy level when training the net for a limited number of iterations.
The experimentation also shows that the Scatter Search approach by Laguna and
Martí(2000) as well as the proposed TS method provide the best performance in
terms of solution quality. The proposed filtered multi-start method is able to
improve the methods in a long term horizon, but in the context of on-line training
seems not to be adequate.

Acknowledgement

The authors want to thank Eric Hartman (Pavilion Technologies) for his useful
comments to improve the paper.

References

El-Fallahi A. (2002), Entrenamiento de Redes Neuronales, Trabajo de Investigación,
Dpto Estadística e I.O. Universidad de Valencia.

Glover, F. (1998) “A Template for Scatter Search and Path Relinking,” in Artificial
Evolution, Lecture Notes in Computer Science 1363, J.-K. Hao, E. Lutton, E. Ronald,
M. Schoenauer and D. Snyers (Eds.), Springer-Verlag, pp. 13-54.

Glover, F. and J. Kelly (1999) “Combining Simulation and Optimization for Improved
Business Decisions,” Colorado Business Review.

Glover, F., M. Laguna and R. Martí (1999) “Scatter Search,” to appear in Theory and
Applications of Evolutionary Computation: Recent Trends, A. Ghosh and S. Tsutsui
(Eds.), Springer-Verlag.

Laguna, M. (2000) “Scatter Search,” to appear in Handbook of Applied Optimization,
P. M. Pardalos and M. G. C. Resende (Eds.), Oxford Academic Press.

Masters, T. (1995) Neural, Novel & Hybrid Algorithms for Time Series Prediction, John
Wiley.

Nelder, J. A. and R. Mead (1965) “A Simplex Method for Function Minimization,”
Computer Journal, vol. 7., pp. 308-313.

Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (1992) Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press (www.nr.com).

Sexton, R. S., B. Alidaee, R. E. Dorsey and J. D. Johnson (1998) “Global
Optimization for Artificial Neural Networks: A Tabu search Application,” European
Journal of Operational Research, vol. 106, pp. 570-584.

Sexton, R. S., R. E. Dorsey and J. D. Johnson (1999) “Optimization of Neural
Networks: A Comparative Analysis of the Genetic Algorithm and Simulated
Annealing,” European Journal of Operational Research, vol. 114, pp. 589-601.

Martí and El-Fallahi / 17

Voss, S. and Woodruff D. (2002), Optimization Software Class Libraries, Kluwer
Academic Publishers.

Appendix

Table 8 reports the number of variables, the identification number, the name (and
parameters) and the lower and upper limit of each function variable. The number in
parentheses associated with some of the problems are the parameter values for the
corresponding objective function. The set F contains the 26 instances with the
symbol “*” in the identification number.

 Num.
Variables

Id.
Number

Name and
 parameter values

Low limit Upper
limit

 2 1* Sexton 1 -100 100

 2* Sexton 2 -100 100

 3* Sexton 3 -100 100

 4* Sexton 4 -100 100

 5* Sexton 5 -100 100

 6* Branin -5 15

 7* B2 -50 100

 8* Easom -100 100

 9 Goldstein and Price -2 2

 10* Shubert -10 10
 11 Beale -4.5 4.5
 12 Booth -10 10
 13* Matyas -5 10
 14 SixHumpCamelback -5 5
 15* Schwefel(2) -500 500
 16 Rosenb rock (2) -10 10
 17 Zakharov(2) -5 100
 3 18* De Joung -2.56 5.12
 19* Hartmann(3,4) 0 1
 4 20 Colville -10 100
 21* Shekel(5) 0 10
 22* Shekel(7) 0 10
 23* Shekel(10) 0 10
 24 Perm(4,0.5) -4 04
 25 Perm0(4,10) -4 4
 26 Powersum(8,18,44,114) 0 4
 6 27* Hartmann(6,4) 0 1
 28* Schwefel(6) -500 500
 29* Trid(6) -36 36
 10 30* Trid(10) -100 100
 31* Rastrigin(10) -2.56 5.120
 32* Griewank(10) -300 600
 33 Sum Squares(10) -5 10
 34 Rosenbrock(10) -10 10
 35 Zakharov(10) -5 10
 20 36* Rastrigin(20) -2.56 5.120
 37* Griewank(20) -300 600
 38 Sum Squares(20) -5 10
 39 Rosenbrock(20) -10 10
 40 Zakharov(20) -5 10
 > 20 41 Powell(24) -4 5
 42 Dixon and Price(25) -10 10

 43* Levy(30) -10 10
 44 Sphere(30) -2.56 5.12
 45* Ackley(30) -15 30

Table 8. Test Functions

Martí and El-Fallahi / 18

Functions’ Description:

1.Sexton 1:
 21)(xxxf +=

2. Sexton 2:
 21*)(xxxf =

3. Sexton 3:

1

)(
2

1

+
=

x
x

xf

4. Sexton 4:
3

2
2

1)(xxxf −=
5. Sexton 5:

2
1

3
1)(xxxf −=

6. Branin:

 () 10cos
8
111065

4
5)(

2

1
2
122 +⎟

⎠
⎞⎜

⎝
⎛

π
−+⎟⎟⎠

⎞
⎜⎜⎝

⎛
−⎟

⎠
⎞⎜

⎝
⎛

π
+⎟

⎠
⎞⎜

⎝
⎛

π
−= ixxxxxf

7. B2:
 () () 7.04cos4.03cos3.02)(21

2
2

2
1 +π−π−+= xxxxxf

8. Easom:

 () () () ()()()2
2

2
121 expcoscos)(π−+π−−−= xxxxxf

9. Goldstein and Price:

() ()()

() ()()2
2212

2
11

2
21

2
2212

2
11

2
21

2736481232183230

36143141911)(

xxxxxxxx

xxxxxxxxxf

+−++−−+

++−+−+++=

10. Shubert

()() ()()⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
++⎟

⎟

⎠

⎞
⎜
⎜

⎝

⎛
++= ∑∑

==

5

1
2

5

1
1 1cos1cos)(

jj

jxjjjxjjxf

11. Beal
 23

211
22

211
2

211)625.2()25.2()5.1()(xxxxxxxxxxf +−++−++−=
12. Booth

 2
21

2
21)52()72()(−++−+= xxxxxf

13. Matyas:

21
2
2

2
1 48.0)(26.0)(xxxxxf −+=

14. SixHumpCamelBack :

4
2

2
221

6
1

4
1

2
1 44

3
11.24)(xxxxxxxxf +−++−=

15, 23. Schwefel(n):

 ()∑
=

−+=
n

i
ii xxnxf

1

sin9829.418)(

Martí and El-Fallahi / 19

16, 29, 34. Rosenbrock(n):

 2
12

2
2

1

2
122)1()(100)(−

=
− −+−= ∑ i

n

i
ii xxxxf

17, 30, 35. Zakharov(n)

 ∑ ∑∑
= ==

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
+⎟

⎟

⎠

⎞
⎜
⎜

⎝

⎛
+=

n

j

n

j
j

n

j
jj jxjxxxf

1

4

1

2

1

2 5.05.0)(

18. De Joung :
 2

3
2
2

2
1)(xxxxf ++=

19. Hartmann(3,4):

 ()∑ ∑
= =

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−−−=

4

1

3

1

2exp)(
i j

ijjiji pxacxf

i aij ci pij
1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.0381 0.5743 0.8828

20. Colville:

 ())1)(1(8.19)1()1(1.10

)1()(90)1()(100)(

42
2

4
2

2

2
3

22
34

2
1

22
12

−−+−+−

+−+−+−+−=

xxxx

xxxxxxxf

21-23. Shekel(n):

 () ()()∑
=

−
+−−−=

n

i
ii

T
i cxf

1

1
)(axax () ()Tiiiii

T aaaaxxxx 4321
4321 ,,,;,,, == ax

i T

ia ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

24. Perm(n):

 ()
2

1 1

1)(∑ ∑
= =

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−⎟⎟⎠

⎞
⎜⎜⎝
⎛β+=

n

k

n

i

k
ik

i
x

ixf

25. Perm0(n):

 ()
2

1 1

1)(∑ ∑
= =

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛−β+=

n

k

n

i

k
k
i i

xixf

26. PowerSum(b1,...,bn):

2

1 1

)(∑ ∑
= =

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

k
k

n

i

k
i bxxf

Martí and El-Fallahi / 20

27. Hartmann(6,4):

 ()∑ ∑
= =

⎟
⎟

⎠

⎞
⎜
⎜

⎝

⎛
−−−=

4

1

6

1

2exp)(
i j

ijjiji pxacxf

i aij ci
1 10.0 3.0 17.0 3.5 1.7 8.0 1.0
2 0.05 10.0 17.0 0.10 8.0 14.0 1.2
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2

pij

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

29-30. Trid(n):

 () ∑∑
==

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

n

i
ji

n

i
i xxxxf

21

21)(

31, 36. Rastrigin(n):

 ()()∑
=

π−+=
n

i
ii xxnxf

1

2 2cos1010)(

32, 37. Griewank(n):

 ∑ ∏
= =

+⎟⎟⎠

⎞
⎜⎜⎝

⎛
−=

n

i

n

i

ii

i

xx
xf

1 1

2
1cos

4000
)(

33, 38. Sum Squares (n):

 ∑
=

=
n

i
iixxf

1

2)(

41. Powell(n):

 4
434

4
1424

2
414

2
4

1
2434)(10)2()(5)10()(jjjjjj

n

j
jj xxxxxxxxxf −+−+−++= −−−−

=
−−∑

42. Dixon and Price(n):

 2
1

2

1
1

2)1()2()(−+−= ∑
=

− xxxixf
n

i
ii

43. Levy(n):

 ()∑
−

=

π+−++π+−+π=
1

1

2222
1

2))2(sin1()1())1(sin101(1)(sin)(
k

i
kkii xyyyyxf

where
4

1
1

−
+= i

i
x

y for i=1,..., n

44. Sphere(n):

 ∑
=

=
n

i
ixxf

1

2)(

45. Ackley(n):

∑

−
∑

−+= ==
π−

n

i
i

n

i
i x

n
x

n eeexf 11

2)2cos(112.0
2020)(

