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In the last decade, image registration has proven to be a very active research area when facing

computer vision problems, specially in medical applications. In general, image registration

methods aim to find a transformation between two images taken under different conditions.

Point matching is an image registration approach based on searching for the right pairing

of points between the two images, thus involving a combinatorial optimization problem.

From this matching, the registration transformation can be inferred by means of numerical

methods. In this paper, we tackle the medical image registration problem by means of a

recent hybrid metaheuristic composed of two well-known optimization methods: GRASP and

path relinking. Several designs based on this new combinatorial optimization approach have

been tackled. Moreover, realistic and real-world cases of study of medical image registration

problems have been considered. In particular, the experiments conducted in this work have

shown the good performance of the combination between GRASP and evolutionary path

relinking when compared to similar approaches of the state of the art of image registration.
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1. Introduction

There are many applications in the digital image processing field (González and Woods,

2002) that require the proper alignment of different images (Goshtasby, 2005; Zitová and

Flusser, 2003). These problems arise from rather different domains (Dasgupta and Banerjee,

2005; Kim et al., 2001; Wang, 2005). For example, in remote sensing, it is important to

put into correspondence the images acquired from different viewpoints in order to achieve

a global cartography from partial views. In medical imaging, it is helpful to determine a

proper matching between the images provided by different kinds of sensors which are capable

to highlight different characteristics of the human anatomy as bones, organs, or lesions.

In the last decade, image registration (IR) has become a fundamental task in computer

vision commonly used to finding the correspondences (or transformations) among two or

more images in order to achieve their proper alignment (Brown, 1992; Zitová and Flusser,

2003). There exist two different IR approaches (Cordón et al., 2007), each one working in a

different solution space: i) to search for the optimal point matching between two images (Besl

and McKay, 1992; Feldmar and Ayache, 1996; Cordón and Damas, 2006; Cordón et al.,

2008; Liu, 2004); and ii) to directly search in the space of the registration transformation

parameters (He and Narayana, 2002; Cordón et al., 2006a; Silva et al., 2005; De Falco et al.,

2008; Yamany et al., 1999). While the former faces a combinatorial optimization approach,

the latter does the same from a numerical (binary, integer, or real coded) optimization point

of view (Cordón et al., 2007).

In particular, point matching searches for the right pairing of points between two im-

ages, from which the registration transformation can be inferred by using numerical meth-

ods (Horn, 1987). The main advantage of this IR approach is that it does not require the

estimation of the suitable interval ranges of every parameter defining the transformation1.

Thus, the proposal of outstanding point matching algorithms is of importance in the IR

community.

In this contribution, we extend our previous work (Cordón et al., 2008) and exploit the

benefits of applying the recent hybridization (Resende et al., 2010) of the greedy randomized

adaptive search procedure (GRASP) (Feo and Resende, 1995) and the path relinking (PR)

algorithm (Resende and Werneck, 2004) when tackling point matching-based IR problems

1In (Cordón et al., 2007), it is proven the poor performance obtained by some of the state of the art IR
methods based on the transformation parameters approach when they consider a large search space.
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of 3D medical images. Our contribution is two-fold. On the one hand, we aim to achieve

a good trade-off between the intensification and diversification components of this hybrid

approach in order to improve the problem solving. On the other hand, we aim to take

advantage of heuristic information extracted from the images to guide the process with the

same aim. Such information corresponds to the curvature values of the object under study

and it has proven to be useful to achieve high quality solutions (Cordón and Damas, 2006;

Cordón et al., 2007, 2008). Furthermore, curvature information facilitates a feature-based

IR approach characterized by a significant reduction of input data which are represented by

the most relevant points (according to this heuristic information) of the object, thus allowing

a better matching and speeding up the IR process (Cordón et al., 2006b; Santamaŕıa et al.,

2009). It must be noted that the use of problem information is in line with previous findings

in different metaheuristics (Glover, 1986; Glover and Kochenberger, 2003), such as tabu

search (TS) (Glover and Laguna, 1997) and contrasts with random designs typically applied

in other evolutionary methods.

The performance of several designs based on the hybridization of GRASP and PR algo-

rithms is compared to our previous Scatter Search-based IR method (Cordón et al., 2008).

To do so, we considered six 3D medical images from realistic and real-world image datasets

with different modalities: magnetic resonance images (MRIs) of human brains and computer

tomography images (CTs) of human wrists, respectively.

The structure of this paper is as follows. In Section 2 we describe the point matching-

based IR problem viewed from a combinatorial optimization point of view. Section 3 is

devoted to describe the recent hybridizations of GRASP and PR algorithms that we have

adapted for tackling the IR problem. Computational experiments are detailed in Section 4.

Finally, Section 5 presents concluding remarks and future works.

2. Point matching-based image registration

In this section the IR problem is formally described from a combinatorial optimization point

of view. Besides, we detail the heuristic information and the permutation-based representa-

tion scheme exploited to guide the search process towards the best solutions for the point

matching-based IR problem.
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2.1. Problem formulation

IR can be stated as an NP-hard combinatorial optimization problem which consists of finding

a mapping of points from two images: I1 and I2, named scene and model, respectively. The

objective is to determine the geometric transformation f that applied to I1 leads it to I2 (see

Figure 1).

Figure 1: The IR optimization procedure

Typically, an image is represented by a huge amount of pixels/voxels (González and

Woods, 2002). Therefore, many IR methods apply a preprocessing step to extract the most

relevant geometric primitives (point, lines, etc) in the two images to be registered (Zitová

and Flusser, 2003). This is called feature-based IR approach and takes the advantage of

speeding up the IR process and better guiding the objective function to scape from local

optima (Cordón et al., 2008). In particular, we consider points defining a crest line (Monga

et al., 1992) as a set of geometric primitives extracted from both images I1 and I2, noted P1

and P2 (P1 ⊆ I1, P2 ⊆ I2). Crest lines are the locus of points on a surface whose longest

curvature (in absolute value) is locally maximal in the associated principal direction. Thus,

a crest line can be viewed as a generalization of an edge for smooth surfaces in 3D (see

Section 2.2).

In mathematical terms, point matching can be described as a combinatorial optimization

problem as follows. Given two set of points P1 = {~x1, ~x2, ..., ~xn} and P2 = {~y1, ~y2, ..., ~ym}, the
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problem is to find a transformation f such that ~yi = f(~xπ(i)) for i = 1, ..., r (r = min(n,m)),

where π = (π1, π2, · · · , πl) is a permutation (see Section 2.3) of size l (l = max(n,m)).

Without loss of generality and to simplify the notation, we consider that P1 is the largest

point set, i.e., its dimension n is greater than that one of P2, m.

The problem solving is naturally divided into two phases. In the first one, a permutation

of l elements defines the matching between the points in P1 and P2 in such a way that the

first r elements (r = m in our case) of π are the P1 points associated to each of the m P2

points. In the second phase, from the latter matching of points and using a numerical method

(usually least squares estimation (Horn, 1987)), the parameters defining the transformation

f are computed. The goal is to find the transformation minimizing the distances between the

model points and the corresponding transformed scene points. Therefore, in optimization

terms, the value associated with permutation π is given by the expression:

g(π) =

∑r
i=1 ‖fπ(~xπ(i))− ~yi‖2

r
, (1)

i.e., g(π) corresponds to the Mean Square Error (MSE). Therefore, the point matching

problem can be simply stated as minimizing g(π) for any permutation π of l elements and

its corresponding transformation f (Figure 2 illustrates the evaluation process).

Search for

the best

matching

f  parameters estimation

(numerical methods)
Error estimation

Figure 2: Point matching-based IR approach

2.2. Using heuristic information derived from the 3D image

This section is devoted to describe the heuristic information that can be derived from the

curvature of the shapes included in the images in order to better address the optimization

procedure of the IR problem.

Let us first define the iso-intensity surface of a 3D image, which will be called simply

the iso-surface in the rest of this paper. For any continuous function C(x, y, z) of IR3, any

value I of IR (called the iso-value) defines a continuous, not self-intersecting surface, without

hole, which is called the iso-intensity surface of C (Monga et al., 1992). A non ambiguous

way to define the iso-surface is to consider it as being the surface which separates the space
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regions where the intensity of C is greater or equal to I from these regions whose intensity is

strictly lower than I. Whether such an iso-surface corresponds or not to the boundary of the

scanned object is another problem, that will not be considered in the current contribution.

Because of their good topological properties, iso-surface techniques are the most widely used

methods of segmentation for 3D medical images.

Let us see now some properties of the iso-surfaces (see Figure 3). At each point ~xi of those

surfaces, there is an infinite number of curvatures but, for each direction ~t in the tangent

plane at ~xi, there is only one associated curvature k~t. There are two privileged directions of

the surface, called the principal directions (~t1 and ~t2), which correspond to the two extremal

values of the curvature: k1 and k2. We limit our model to these two parameters since they

contain enough information to solve the IR problem.

n

t

t
1

2

1 k

Crest line

Principal
directionMaximal

curvature

Figure 3: Differential characteristics of surfaces

As we will see next, this information is used in this work in a twofold way. On the

one hand, the differences between the heuristic values of the matched points in the current

solution are incorporated into the solution evaluation better to guide the search from a global

perspective. On the other hand, they are taken into account in search strategies (e.g. the

neighborhood operator of the local search mechanism) to intensify the search properly, as

well as in the generation of high quality solutions with a large degree of diversity among them.

In this way, we implement candidate list strategies in which permutations assigning feature

points with similar heuristic values are ranked first, because they seem more promising than

those with relatively different values. The consideration of this additional information in

the point-matching process allows IR methods to obtain high quality solutions more quickly

than other approaches.
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2.3. Permutation-based point matching optimization

In our previous works (Cordón and Damas, 2006; Cordón et al., 2008), we developed point

matching-based IR methods following a permutation-based combinatorial optimization ap-

proach. We implemented our solution method in such a way that the first r elements of the

permutation (r = m in our case) are the P1 points associated to each of the m points in

P2. Figure 4 illustrates these implementation details in which we can see that the P1 points

located between positions r + 1 and n are not assigned to any point in P2. Meanwhile, the

first m points of the permutation define a matching between the small point set P2 (of size

m) and the large one P1 (of size n > m); i.e., π20 = 45, defines a matching between the 20th

point of P2 (~y20) and the 45th of P1 (~xπ20 = ~x45), with 20 ≤ m and 45 ≤ n.

Figure 4: Implementation details of the point matching permutation π with size n

Then, we are able to infer the parameters of the registration transformation f relating the

two 3D images, fπ, from the point matching π by means of computation of simple numerical

methods such as the closed-form solution based on unit quaternion (Horn, 1987) solving a

least-squares problem. In this contribution, we consider f to be a similarity transformation,

thus being composed of a rotation R = (λ, 〈φx, φy, φz〉), a translation ~t = (tx, ty, tz), and a

uniform scaling s. Such a transformation has been extensively used to register aerial and

satellite images, bony structures in medical images, and multimodal brain images (Gosh-

tasby, 2005).

Next, once we know the expression of fπ, i.e., the (R,~t, s) parameters defining the sim-

ilarity transformation, we can estimate the registration error existing between the scene

image points ~xi and the model image points ~yj, measured by the g() function as pro-

posed in (Arun et al., 1987). We estimate the registration error by simply computing the

7



Euclidean distance from each transformed point in P1 (using the aforementioned fπ pa-

rameters) to its corresponding matching point (considering π), as shown in Eq.(1), where

fπ(~xπi
) = ~y = s ·R(~xπi

) + ~t.

Note that Eq.(1) computes only the geometric information of both scene and model

feature points. Some authors ((Yamany et al., 1999; Luck et al., 2000; Robertson and Fisher,

2002)) have proposed several metaheuristic approaches that are aimed only at minimizing the

g() error function. However, by considering only this objective function, search algorithms

suffer from several problems such as their inability to handle large initial misalignments

between the two images, which usually makes the IR algorithm more likely to become trapped

in local optima (Luck et al., 2000).

To overcome the latter pitfalls, problem-dependent (context) information can be used in

the search method (Cordón and Damas, 2006; Cordón et al., 2008). To do so, we take into

account the extracted curvature (heuristic) information (see Section 2.2). For each point ~xi,

we consider the two values of the first and second principal curvatures, k1(~xi) and k2(~xi),

associated with the two principal orthogonal directions (which locally characterize the iso-

surface). An interesting quality of this feature is that curvature values represent an invariant

source of information with respect to the similarity transformation fπ. Thus, a redefined

function merror(·) is additionally used in this paper in order to evaluate the quality of the

matching stored in a given solution, π, as follows:

merror(π) = ∆k1 + ∆k2 where ∆kj =
∑r

i=1(k
i
j − kπi

j )2, j = {1, 2}

where ∆k1 and ∆k2 measure the error associated to the matching of scene and model points

with different values for the first and second principal curvatures, respectively.

Hence, the proposed objective function (similarity metric) for point matching makes

use of a weighted combination of the g() function (MSE of the registration transformation

resulting from the point matching encoded in π) and the previous criterion based on heuristic

information as follows:

min F (π) = w1 · g(π) + w2 ·merror(π) (2)

where w1 and w2 are weighting coefficients defining the relative importance of each term.

With such a function, we defined a more suitable similarity measure to induce a better search

process in the space of solutions (Cordón and Damas, 2006; Cordón et al., 2008).
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3. Recent hybridizations of GRASP and path relinking

and their adaptation to the point matching image

registration problem

Our specific design of hybrids using GRASP and PR algorithms for the point matching-based

IR problem2 is based on the work carried out in (Resende et al., 2010), where the authors

successfully tested several combinations of both metaheuristics facing the max-min diversity

problem.

Several design aspects should be taken into account in order to achieve a suitable adap-

tation of these hybrid algorithms to the IR problem. In the next subsections, we first present

some basis and the specific adaptation of both GRASP and PR metaheuristics to tackle the

point matching-based IR problem. Then, several hybrid designs using both algorithms are

described in detail.

3.1. The greedy randomized adaptive search procedure

The GRASP methodology was developed in the late 1980s (Feo and Resende, 1989, 1995). We

refer the reader to (Resende and Ribeiro, 2003) for a recent survey of this metaheuristic. Each

GRASP iteration consists of constructing a trial solution and then applying an improvement

procedure to find a local optimum (i.e., the final solution for that iteration). The construction

phase is iterative, greedy, and adaptive. It is iterative because the initial solution is built

considering one element at a time. It is greedy because the addition of each element is

guided by a greedy function. It is adaptive because the element chosen at any iteration in

a construction is a function of those previously chosen. The improvement phase typically

consists of a local search procedure.

Our adaptation of the GRASP methodology for the point matching problem is as follows.

The information extracted from the shape of the object (see Section 2.2) can be used to

establish a preference order for the assignments between the scene image points and the

model image ones. Hence, a point ~xi from the scene image is more likely to be assigned to

those model points ~yj presenting the same or similar curvature values k1 and k2. In order to

achieve that suitable point assignment, one possible approach consists of considering a greedy

heuristic. Such approach is characterized by a strict selection order to assign the closest

2A very preliminar study facing the point matching problem by means of a particular hybridization of
GRASP and PR algorithms has been previously presented at IEEE CEC 2010 (Santamaŕıa et al., 2010).
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model point ~yj in terms of curvature to every scene point ~xi, where ~yj was not previously

assigned to some other scene point. However, we prefer to follow a different approach by

introducing randomness in both processes thus allowing each decision to be taken randomly

from the points still stored in the nonempty candidate list. Likewise, the latter procedure

behaves similarly to a GRASP construction phase Resende and Ribeiro (2003).

As described in Section 2.3, a solution of our problem is characterized by a permutation

π. The greedy randomized construction (GRC) phase of π starts by creating two candidate

lists, CL1 and CL2, related to the scene and model images, respectively. At the beginning,

every list consists of all the points in the image (i.e., initially CL1 = P1 and CL2 = P2).

For each element ~xi in CL1, its Euclidean distance to CL2 in terms of curvature values is

computed as:

di = min
√

(k1(~xi)− k1(~yj))2 + (k2(~xi)− k2(~yj))2
j=1,...,m (3)

Thus, di is the minimum value of the distances from ~xi to all the elements in CL2. Then,

the GRC phase constructs the restricted candidate list RCL1 with a percentage α of the

elements in CL1 with the lowest di (high quality) values. We randomly select one element

(say ~xk) from RCL1 for the matching assignment. In order to find an appropriate point in

the model to match ~xk, we construct RCL2 with a percentage α of the elements in CL2

whose curvature values are closer to those of ~xk, i.e., those elements presenting the lowest

distance values to ~xk. Next, we randomly select a point (say ~yt) in RCL2 and match it to ~xk.

The permutation π is accordingly updated with π(t) = k. Finally, we update CL1 and CL2

(CL1 = CL1 − {~xk}, CL2 = CL2 − {~yt}) and perform a new iteration. The GRC procedure

finishes when r = min(n,m) points have been matched, i.e., when either CL1 or CL2 is

empty, and the remaining l − r points in the permutation π are taken randomly from the

points still stored in the nonempty CL.

Different approaches for the GRC can be adopted (Resende et al., 2010). For instance,

the GRC2 variant swaps the greedy and the randomization rules in the construction of the

RCL (Resende and Werneck, 2004). This alternative design has been less studied in previous

algorithms than the traditional greedy plus random method. Specifically, in our problem

the restricted candidate list RCL1 is built considering a percentage β of randomly choosen

elements in CL1. Next, the element with the lowest di value is selected from RCL1. The

same approach is followed for the construction of RCL2. Finally, another interesting variant

is the parameter free version of GRC, called the reactive-GRC (RGRC), in which the value
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of the parameter (α or β) is randomly determined according to an empirical distribution

of probabilities (Prais and Ribeiro, 2000) identified in previous construction steps of the

method.

Regarding to the local search (LS) phase of GRASP, we have used the strategy designed

for the Improvement Method of the scatter search (SS)-based IR proposal designed in our

previous work (Cordón et al., 2008). Therein the “best-first” LS procedure with the swapping

neighbor operator is considered. In particular, swappings are used as the primary mechanism

to move from one solution to another. Moreover, two improvements were considered in

order to speed up the local search procedure. A primary strategy was applied first in the

neighborhood generation by only considering promising swapping moves taking as a base the

curvature (heuristic) information. Then, a selective application of the local optimizer was

also considered.

3.2. Path relinking

PR (Glover, 1996; Glover and Laguna, 1997) was suggested as an approach to integrate in-

tensification and diversification strategies in the context of TS. This approach generates new

solutions by exploring trajectories that connect high quality solutions by starting from one

of these solutions, called an initiating solution, and generating a path in the neighborhood

space that leads toward the other solutions, called guiding solutions. This is accomplished

by selecting moves that introduce attributes contained in the guiding solutions, and incor-

porating them in an intermediate solution initially originated in the initiating solution.

Later, PR was adapted in the context of GRASP as a form of intensification (Laguna

and Mart́ı, 1999). The relinking in this context consists of finding a path between a solution

found with GRASP and a chosen elite solution. Therefore, the relinking concept has a

different interpretation within GRASP since the solutions found from one GRASP iteration

to the next are not linked by a sequence of moves (as in the case of TS). As can be seen in

different sources (see for instance http://twitter.com/graspheuristic), the hybridization

of GRASP with PR has revealed as a powerful metaheuristic that is able to provide high

quality solutions for different combinatorial optimization problems.

Let π1 and π2 be two solutions of the point matching IR problem, interpreted as the sets

of n selected elements Selπ1 and Selπ2 , respectively (|Selπ1 | = |Selπ2 | = n). PR(π1, π2) starts

with the first (initiating) solution π1, and gradually transforms it into the second (guiding)

one π2 by swapping out elements selected in π1 with elements selected in π2. The elements
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selected in both solutions π1 and π2, Selπ1π2 , remain selected in the intermediate solutions

generated in the path between them. Let Selπ1−π2 be the set of elements selected in π1 and

not selected in π2. Symmetrically, let Selπ2−π1 be the set of elements selected in π2 and not

selected in π1, i.e.

Selπ1π2 = Selπ1 ∩ Selπ2 ,

Selπ1−π2 = Selπ1 \ Selπ1π2 ,

Selπ2−π1 = Selπ2 \ Selπ1π2 .

Let πini(0) = π1 be the initiating solution. To obtain the solution πini(1), we unselect a

single element π
ini(0)
i ∈ Selπ1−π2 and select a single element π

ini(1)
j ∈ Selπ2−π1 both in πini(0),

thus obtaining:

Selπini(1) = Selπini(0) \ {πini(0)
i } ∪ {πini(0)

j }.

In the greedy PR (PRg) algorithm, the selection of the elements π
ini(0)
i and π

ini(0)
j is

made in a greedy fashion. To obtain πini(k+1) from πini(k), we evaluate all the possibilities for

π
ini(k)
i ∈ Selπini(k)−π2 to be de-selected and π

ini(k)
j ∈ Selπ1−πini(k) to be selected, and perform

the best swap. In this way, we reach π2 from π1 in h = |Selπ1−π2 | = |Selπ2−π1 | steps, i.e.

πini(h) = π2. The output of the PR algorithm is the best solution, different from π1 and π2,

found in the path connecting both solutions (among πini(1), πini(2), . . . , πini(h−1)).

Another variant of PR is based on a greedy randomized (PRgr) scheme (Faria et al.,

2005), in which the moves are done in a greedy randomized fashion. This procedure mimics

the selection method employed in a GRASP construction. Instead of exploring all the pos-

sibilities for π
ini(k)
i ∈ Selπini(k)−π2 to be de-selected and π

ini(k)
j ∈ Selπ2−πini(k) to be selected

to obtain πini(k+1) from πini(k), it can be performed a truncated exploration of a certain per-

centage of the whole neighborhood in order to speed up the run time. Thus, the candidate

set C contains all these swaps, i.e.

Ck
π1π2 = {(πini(k)

i , π
ini(k)
j ) | i ∈ Selπini(k)−π2 ,

j ∈ Selπ2−πini(k)}.

Let z(i, j) be the value of the move associated with de-select π
ini(k)
i and select π

ini(k)
j in the

current solution πini(k) to obtain πini(k+1). Then,

z(i, j) = F (πini(k+1))− F (πini(k)).
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In step k of the path from π1 to π2, the restricted candidate list RCLk
π1π2 of good candidates

for swapping is

RCLk
π1π2 = {(πini(k)

i , π
ini(k)
j ) ∈ Ck

π1π2 | z(i, j) ≥ δz∗},

where z∗ is the minimum of z(i, j) in Ck
π1π2 and δ (0 ≤ δ ≤ 1) is a search parameter. A pair

(π
ini(k)
i , π

ini(k)
j ) ∈ RCLk

π1π2 is randomly selected and the associated swap is performed.

On the other hand, PR can be performed in a bidirectional manner by exploring the two

possible paths connecting two given solutions. The best solution found is accordingly re-

turned. Moreover, an improved performance regarding the computation time can be achieved

by considering a pruning scheme for the neighborhood exploration of PR by using the heuris-

tic information extracted from the image. We refer the reader to (Cordón et al., 2008) for a

more detailed description of the latter intelligent strategy.

3.3. Static hybridization of GRASP and PR

In Stc-G&PR, we propose a static hybridization in which we first apply GRASP to construct

the elite set (ES) (see steps 1 to 14 in Figure 5) and then, as a second step, we apply PR to

generate solutions between all the pairs of solutions in ES (see steps 15 to 24 in Figure 5).

As shown in Figure 5, we always keep the best solution in ES (π1) during the realization of

the GRASP and the LS phases. We should remark the use of a distance that is considered

to measure how diverse one solution is with respect to a set of solutions, ES in this case.

Specifically, for the point matching we consider the distance between two permutations πa

and πb as the number of times πa
(i) differs from πb

(i) for i = 1, · · · , r (Cordón et al., 2008).

Then, in Stc-G&PR and subsequents, the candidate solution π′ is considered for inclusion

in ES following a similar criteria as used in (Resende et al., 2010). In this case, either it has

a better quality (according to F () value) than the current best in ES (π1), or it has a better

quality than the current worst in ES (πb) and it also increases the diversity of ES (Div(ES))

by means of replacing πk ∈ ES with π′ (ES ← {ES \ πk} ∪ π′). In the second step of the

algorithm, for each pair of solutions {πa, πb} ∈ ES, we apply PR in a bidirectional manner,

i.e. PR(πa, πb) and PR(πb, πa). Next, the best solution generated in both paths is subjected

to the LS method used in GRASP (see Section 3.1). Stc-G&PR stops once PR is applied to

all the pairs in ES and the best overall solution xbest is returned as the output.

Unlike in (Resende et al., 2010), in our specific implementation of point matching the dth

parameter (which is a distance threshold value that reflects the term “sufficiently different”
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Begin Stc-G&PR

1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations to populate

ES ← {π1, π2, . . . , πb};
3 NumIter ← b+1;
4 While NumIter ≤ GlobalIter Do
5 π ← GRASP construction phase;
6 π′ ← GRASP LS starting at π;
7 πk ← closest solution to π′ in ES with F (π′) < F (πk);
8 ES′ ← {ES \ πk} ∪ π′;
9 If F (π′) < F (π1) Or (F (π′) < F (πb) And Div(ES′) ≥ Div(ES)) Then
10 Add π′ to ES and remove πk;
11 Sort ES from best π1 to worst πb;
12 End-If;
13 NumIter ← NumIter + 1;
14 End-While;
15 πbest ← π1;
16 For i = 1, . . . , b − 1 Do
17 For j = i + 1, . . . , b Do
18 Apply PR(πi, πj) and PR(πj , πi) and let π′ be the best solution found;
19 π′′ ← GRASP LS starting at π′;
20 If (F (π′′) < F (πbest)) Then
21 πbest ← π′′;
22 End-If;
23 End-For;
24 End-For;
25 Return πbest;

End-Stc-G&PR

Figure 5: Pseudo-code of the Stc-G&PR algorithm
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and it should be empirically adjusted) has been properly removed from Stc-G&PR (see line

9 in Figure 5) as well as from the subsequent hybrids.

3.4. Dynamic hybridization of GRASP and PR

Another alternative of hybrid implementation using GRASP and PR algorithms consists of a

dynamic update of ES, we called here Dyn-G&PR. In this design, each solution π′ generated

with GRASP is directly subjected to the PR algorithm, which is applied between π′ and a

solution πj randomly selected from ES. As done in Stc-G&PR, the LS method is applied to

the output of PR. In this case, the resulting solution is directly tested for inclusion in ES. If

successful, it can be used as a guiding solution in later applications of PR. Figure 6 shows

pseudo-code for this dynamic variant.

Begin Dyn-G&PR

1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations to populate

ES ← {π1, π2, . . . , πb};
3 NumIter ← b+1;
4 While NumIter ≤ GlobalIter Do
5 π ← GRASP construction phase;
6 π′ ← GRASP LS starting at π;
7 Randomly select πj from ES ;
8 Apply PR(π′, πj) and PR(πj , π′) and let π′′ be the best solution found;
9 π′′′ ← GRASP LS starting at π′′;
10 πk ← closest solution to π′′′ in ES with F (π′′′) < F (πk);
11 ES′ ← {ES \ πk} ∪ π′′′;
12 If F (π′′′) < F (π1) Or (F (π′′′) < F (πb) And Div(ES′) ≥ Div(ES)) Then
13 Add π′′′ to ES and remove πk;
14 Sort ES from best π1 to worst πb;
15 End-If;
16 NumIter ← NumIter + 1;
17 End-While;
18 πbest ← π1;
19 Return πbest;

End-Dyn-G&PR

Figure 6: Pseudo-code of the Dyn-G&PR algorithm

3.5. Evolutionary GRASP and PR

In Evo-G&PR, the sinergy between GRASP and evolutionary PR (EvoPR) proven to be a

promising approach for combinatorial optimization problems (Resende and Werneck, 2004).
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EvoPR was introduced in Evo-G&PR as a post-processing phase for GRASP with PR (An-

drade and Resende, 2007). As in Dyn-G&PR, in each iteration of the algorithm (see Fig-

ure 7), the construction and the improvement phase of GRASP as well as the PR method

are applied (see steps 5 to 9 in Figure 7) to obtain ES. After a number of iterations previ-

ously established, the GRASP with PRg stops. In the post-processing phase (evoPR), PR

is applied to each pair of solutions in ES (in steps 17 to 30). The solutions obtained with

the latter application of PR are considered candidates to enter ES (following the updating

criteria used in SS for the Reference Set (Cordón et al., 2008)), and PR is again applied

to them as long as new solution is able to enter ES. Hence, solutions in ES evolve and the

method stops when no new solutions update ES.

4. Experiments

This section is devoted to perform an experimental study of the previously described hybrid

optimization approaches to tackle medical IR problems. The structure of this section is

as follows: first, we introduce the medical image datasets in Section 4.1; next, preliminary

experiments are conducted in Sections 4.2 and 4.3 in order to achieve the best tuning of the

GRASP and PR algorithms; Sections 4.4 and 4.5 are devoted to perform an empirical study

of the effectiveness and the robustness of the designed IR methods. In those sections, their

performance is also compared to the IR methods of the state-of-the-art, in particular to our

previous contribution based on SS (Cordón et al., 2008). We consider the MSE (Eq. 1) value

for evaluation of IR results.

All the IR methods have been developed using C/C++ programming and tested in

the same architecture using a 2.26GHz Intelr CoreTM2 Duo P8400 and a MSr Windows

operating system.

4.1. Medical image datasets

Our results correspond to a number of registration problems for six medical images from two

different image datasets. The first dataset is composed of four different magnetic resonance

images (MRIs). These images have been obtained from the BrainWeb database at McGill

University (Kwan et al., 1999). The purpose of this repository is to provide researchers with

ground truth data for image analysis techniques and algorithms. BrainWeb has been widely

used by the IR research community (see, for example, (Wachowiak et al., 2004)). One of
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Begin Evo-G&PR

1 GlobalIter ← number of global iterations;
2 Apply GRASP (construction and local search) for b = |ES | iterations to populate

ES ← {π1, π2, . . . , πb};
3 For iter = 1, . . . ,GlobalIter Do
4 For i = 1, . . . ,LocalIter Do
5 π ← GRASP construction phase;
6 π′ ← GRASP LS starting at π;
7 Randomly select πj from ES ;
8 Apply PR(π′, πj) and PR(πj , π′) and let π′′ be the best solution found;
9 π′′′ ← GRASP LS starting at π′′;
10 πk ← closest solution to π′′′ in ES with F (π′′′) < F (πk);
11 ES′ ← {ES \ πk} ∪ π′′′;
12 If F (π′′′) < F (π1) Or (F (π′′′) < F (πb) And Div(ES′) ≥ Div(ES)) Then
13 Add π′′′ to ES and remove πk;
14 Sort ES from best π1 to worst πb;
15 End-If;
16 End-For;
17 NewSol ← 1;
18 While NewSol Do
19 NewSol ← 0;
20 Apply PR(π, π′) and PR(π′, π) for every pair (π, π′) in ES not combined

before. Let π′′ be the best solution found;
21 π′′′ ← GRASP LS starting at π′′;
22 πk ← closest solution to π′′′ in ES with F (π′′′) < F (πk);
23 ES′ ← {ES \ πk} ∪ π′′′;
24 If F (π′′′) < F (π1) Or (F (π′′′) < F (πb) And Div(ES′) ≥ Div(ES)) Then
25 Add π′′′ to ES and remove πk;
26 Sort ES from best π1 to worst πb;
27 NewSol ← 1;
28 πbest ← π1;
29 End-If;
30 End-While;
31 End-For;
32 Return πbest;

End-Evo-G&PR

Figure 7: Pseudo-code of the Evo-G&PR algorithm
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the most important challenges associated to the current experimentation is that the goal

of the IR process is to register pairs of different images from the same object. Therefore,

we tackle a more realistic problem in medical IR, named intra-subject registration, than the

one considered in (Cordón and Damas, 2006). The other two images considered belong

to a second dataset of a real-world medical case of study kindly provided by the Rhode

Island Hospital (Marai et al., 2006). Both are computerized tomography (CT) images of two

different human wrists. In this case, we want to highlight the complexity of the problem to

be tackled due to its particular anatomical structure.

As said, we followed a feature-based IR approach. After preprocessing the six images (I1

to I6), 583, 393, 348, 284, 575, and 412 crest line points are obtained, respectively.

The first column of Figures 8 and 9 show the original MRIs and CTs, respectively. The

second column of those figures corresponds to the isosurfaces segmenting the original images

to extract the regions of interest of each image, i.e. the brain and the wrist. The third

column shows the crest line points extracted from each 3D medical image.

Figure 8: From left to right, and top to bottom: original MRI images, their respective
isosurfaces, and their crest lines points. Note that the second and third MRIs include 1%
of Gaussian noise while the fourth one has a 5%. I3 and I4 (last two rows) also considers a
multiple sclerosis lesion (see circle)

18



Figure 9: From left to right: original CT images, their respective isosurfaces, and their crest
lines points. The first and second rows refer to I5 and I6, respectively

In order to evaluate the performance of the IR methods tested, we considered four simi-

larity transformations (see Section 2.3) Ti (see Table 1), each one describing a different level

of misalignment between a pair of images (Cordón and Damas, 2006).

Table 1: Similarity transformations considered

T1 T2 T3 T4

λ 115.0 168.0 235.0 276.9
φx -0.863868 0.676716 -0.303046 0.872872
φy 0.259161 -0.290021 -0.808122 0.436436
φz 0.431934 0.676716 0.505076 -0.218218
tx -26.0 6.0 16.0 12.0
ty 15.5 5.5 -5.5 5.5
tz -4.6 -4.6 -4.6 -24.6
s 1.0 0.8 1.0 1.2

4.2. Fine tuning of GRASP

The first preliminar experiment is devoted to select the best setup for the GRASP approach

before it could be considered for inclusion in the previously described hybrids (see Sections 3.3

to 3.5). Sections 4.2.1 and 4.2.2 are devoted to perform the experimental design and the

subsequent analysis of results, respectively.

4.2.1. Experimental design

We compared the performance of GRC and GRC2 for α, β ∈ {0.75, 0.9, 0.95}, and their

reactive versions, i.e. reactive-GRC (RGRC) and reactive-GRC2 (RGRC2). To do so, sixteen
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IR problem instances (see Table 2) have been designed from the combination of the considered

image datasets of MRIs of human brains and the four similarity transformations (see Figure 8

and Table 1, respectively). Each of the latter four variants of GRASP has been run once

considering a maximum of one hundred iterations of the construction and the LS phases.

We keep the same parameter settings for the LS method as done in (Cordón et al., 2008).

Table 2: The sixteen IR problem instances designed considering the realistic case of study
of human brains, with Ti = T1, . . . , T4 (see Table 1)

Scene image Model image
IR problem Lesion Noise Lesion Noise
I1 vs Ti(I2) No No No 1%
I1 vs Ti(I3) No No Yes 1%
I1 vs Ti(I4) No No Yes 5%
I2 vs Ti(I4) No 1% Yes 5%

4.2.2. Analysis of results

Both the first (#better) and the second (Divergence) rows in Table 3 shows the averaged

value of: i) the percentage of times in which a given GRC variant achieved a solution as

better3 as the best found so far in each of the one hundred iterations; and ii) the divergence of

a given GRC variant to the best GRC variant according to MSE values. From the obtained

results, we remark that the GRC variant considering α = 0.9 is the best alternative for

the construction of solutions for GRASP. Thus, this will be our choice for the subsequent

experiments.

Table 3: Results obtained by each of the eight considered variants of GRC.

GRC0.75 GRC0.9 GRC0.95 RGRC GRC20.75 GRC20.9 GRC20.95 RGRC2

#better (%) 3 11 8 8 2 0 0 9
Divergence 7.63 1.81 4.93 6.48 33.88 50.05 67.87 4.90

3We considered that a given solution is as better as the best found when its MSE value is only a 5%
worse than the latter.
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4.3. Fine tuning of Path relinking

As done in the previous section, this second preliminary experiment is devoted to study

the best configuration of PR when it is hybridized with GRASP. To do so, Sections 4.3.1

and 4.3.2 are devoted to perform the experimental design and the subsequent analysis of

results, respectively.

4.3.1. Experimental design

Here, we considered the Stc-G&PR approach (see Section 3.3). We included the best con-

figuration of GRASP obtained in Section 4.2 and compared different variants of Stc-G&PR

using the following designs of PR (see Section 3.2):

• PR1 : PRg & unidirectional4

• PR2 : PRg & bidirectional

• PR3 : PR1 & pruning the 30% of the path

• PR4 : PR1 & pruning the 50% of the path

• PR5 : PR2 & pruning the 30% of the path

• PR6 : PR2 & pruning the 50% of the path

• PR7 : PRgr & unidirectional

• PR8 : PRgr & bidirectional

• PR9 : PR7 & pruning the 30% of the path

• PR10 : PR7 & pruning the 50% of the path

• PR11 : PR8 & pruning the 30% of the path

• PR12 : PR8 & pruning the 50% of the path

4An unidirectional scheme considers the construction of one solution following the route that connects
the initial with the guiding solution. On the other hand, a bidirectional scheme performs the construction
of two solutions considering the two possible routes (i.e. from the initial to the guiding solution, and the
reverse route) and the best one is accordingly selected.
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We also tested the latter twelve versions of PR considering a pruning scheme which makes

use of the heuristic information for the exploration of the neighborhood (see Section 3.2).

To develop this experimenta study, four different IR problem instances (see Table 4) have

been designed from the combination of the MRIs of human brains and the four similarity

transformations (see Figure 8 and Table 1, respectively). The size of the ES set was set to 6

(b = |ES | = 6 solutions). Each of the latter twelve variants of Stc-G&PR has been run once

considering, in this case, a maximum CPU time of 600 seconds.

Table 4: The four IR problem instances designed considering the realistic case of study of
human brains, with Ti = T1, . . . , T4 (see Table 1)

Scene image Model image
IR problem Lesion Noise Lesion Noise
I1 vs T1(I2) No No No 1%
I1 vs T2(I3) No No Yes 1%
I1 vs T3(I4) No No Yes 5%
I2 vs T4(I4) No 1% Yes 5%

4.3.2. Analysis of results

Table 5 depicts the statistical results achieved by each of the variants of PR when tackling

every of the four IR problem instances (e.g., I1 vs. T1(I2), I1 vs. T2(I2), I1 vs. T3(I2), and

I1 vs. T4(I2)) of their corresponding scenario (I1 vs. Ti(I2)). According to mean values,

despite PR10 (which makes use of a greedy randomized scheme for movement selection of

PR and follows a pruning scheme of the 50% of the unidirectional path), we can see how

the remaining of the PR variants offer a better performance when the pruning scheme is

not considered. The latter behavior is corroborated by the higher values of the standard

deviation obtained when such a scheme is used. Regarding the minimum and the mean

MSE values, it is proven that PR10 is the best choice among all the variants. Thus, we will

consider this variant for the subsequent experiments.

4.4. Comparison with previous methods

The third experiment aims to analyze the effectiveness of each of the three hybrids based on

GRASP and PR. Sections 4.4.1 and 4.4.2 are devoted to perform the experimental design

and the subsequent analysis of results, respectively.
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Table 5: MSE results obtained by each of the twelve variants of PR when using or not a
pruning scheme

without pruning with pruning
min max µ σ min max µ σ

PR1 51.00 140.55 84.43 34.04 53.18 170.58 95.03 46.04
PR2 52.13 129.89 82.32 32.59 47.51 149.08 87.69 40.35
PR3 51.44 172.71 89.79 49.37 47.44 188.07 96.58 54.82
PR4 48.10 140.84 92.08 43.24 45.72 249.35 117.29 81.99
PR5 46.04 133.51 80.46 36.14 43.11 153.79 96.18 45.58
PR6 53.82 164.15 89.88 44.52 55.58 151.83 85.21 39.30
PR7 52.74 160.49 89.82 43.18 43.74 150.94 87.68 42.87
PR8 52.93 154.38 89.42 38.80 52.71 127.10 82.39 27.35
PR9 44.31 168.62 89.27 49.29 54.60 139.12 91.08 35.86
PR10 45.49 141.22 78.14 38.56 45.08 148.52 93.92 43.40
PR11 47.34 153.65 86.05 43.02 57.52 170.12 96.81 45.36
PR12 47.29 136.64 82.12 35.54 45.55 150.30 83.15 41.19

4.4.1. Experimental design

Specifically, we included the best setup for GRASP and PR (see Sections 4.2 and 4.3, respec-

tively) for Stc-G&PR, Dyn-G&PR, and Evo-G&PR in order to provide a fair comparison

between the hybrids. Moreover, we also included a pure GRASP (using GRC and α = 0.9)

and our previous contribution based on SS as point matching-based IR method of the state-

of-the-art (Cordón et al., 2008) as baselines for the latter methods’ performance. To do so,

we used the previously considered (see Section 4.2) IR problem instances (see Table 2). Each

of the five IR methods has been run once considering a maximum CPU time of 600 seconds.

We maintained the same parameter settings for the SS-based IR method used in (Cordón

et al., 2008).

4.4.2. Analysis of results

Table 6 is split into four subtables considering every IR problem scenario (I1 vs. Ti(I2),

I1 vs. Ti(I3), I1 vs. Ti(I4), and I2 vs. Ti(I4)). The best MSE value is shown in underlined bold

font for each of the sixteen IR problem instances. We remark the poor performance obtained

by the pure GRASP which only achieves the best MSE value in one of the sixteen instances.

On the contrary, the hybrid GRASP with PR variants proposed for point matching-based

IR achieved competitive results when compared to the state-of-the-art algorithm based on
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SS, which obtained the best MSE value in six of the sixteen instances. The remaining best

MSE values (nine) were shared out amongst the three proposed hybrids. Specifically, Table 7

shows how both the SS and the Evo-G&PR methods achieve the best averaged effectiveness

when facing the point matching IR problem. Hence, we can see how Evo-G&PR obtains

high quality solutions for the IR problem as it has previously done in other challenging

problems (Resende and Werneck, 2004; Resende et al., 2010).
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Table 7: Overall effectiveness of each of the IR methods averaging their corresponding sixteen
MSE values from Table 6

Stc-G&PR Dyn-G&PR Evo-G&PR GRASP SS
µ 76.37 69.06 68.48 100.11 66.33

4.5. Evaluation of the robustness of proposed hybrid designs

Similarly as done in the previous section, this last experiment analyzes the robustness of the

three designed and tuned hybrids. To do so, Sections 4.5.1 and 4.5.2 are devoted to perform

the experimental design and the subsequent analysis of results, respectively.

4.5.1. Experimental design

We again considered our three GRASP and PR hybridization-based IR proposals as well as

the pure GRASP and our previous contribution based on SS (Cordón et al., 2008). In this

case, we enriched the IR problem instances by including the real-world case of study based

on the image dataset of human wrists of CTs. Specifically, we considered the five IR problem

instances shown in Table 8. Each of the five IR methods has been run5 ten times considering

a maximum CPU time of 600 seconds.

Table 8: The five IR problem instances designed considering realistic and real-world cases
of study of human brains and human wrists, respectively

Scene image Model image
IR problem Lesion Noise Lesion Noise
I1 vs T1(I2) No No No 1%
I1 vs T2(I3) No No Yes 1%
I1 vs T3(I4) No No Yes 5%
I2 vs T4(I4) No 1% Yes 5%
I6 vs T1(I5) − − − −

5Each run uses a different seed for the pseudo-random number generator in order to avoid the bias of
randomness.
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4.5.2. Analysis of results

From Table 9, we can notice how the Evo-G&PR-based IR method achieves a competitive

performance compared to the state-of-the-art IR algorithm based on SS. Specifically, the

former algorithm achieves the best mean results for three of the five IR problem instances.

Moreover, it obtains the lowest standard deviation values in all the cases. Therefore, Evo-

G&PR-based provides a good trade-off between search space diversification and intensifica-

tion, thus showing a more robust behavior than the SS-based IR method, the pure GRASP,

and its counterpart hybrids: Stc-G&PR and Dyn-G&PR. Regarding to the accuracy of the

approaches (i.e. minimum value of MSE), both SS and Evo-G&PR IR methods behave in

a very similar way obtaining accurate results when tackling IR problem instances involv-

ing MRIs. The last row in Table 9 shows the averaged/overall performance (regarding the

mean value of MSE) of each of the compared IR methods facing both the realistic and the

real-world cases of study. From the latter results, both Evo-G&PR and SS are the methods

that achieved the best performance according to the overall robustness of the methods tack-

ling the point matching-based IR problem. This behavior is similar to that shown by both

methods in terms of effectiveness (see Section 4.4).

Figure 10 represents the obtained results in a graphical way. For the sake of visual inter-

pretation, different gray-scale colors are used to represent the scene and model images. The

first column in Figure 10 corresponds to the initial configurations of the four different IR

problem instances of MRIs. The next columns show the best IR results obtained by the com-

pared methods: pure GRASP, Stc-G&PR, Dyn-G&PR, Evo-G&PR, and SS, respectively.

Notice that the initial configurations considered correspond to important misalignment of

the images. Hence, the IR problem instances tackled are really complex. Even dealing with

such complex scenarios, both Evo-G&PR and SS methods achieve outstanding best solu-

tions. That is visually shown by the almost perfect overlapping of the colors of the objects

in the fifth and sixth columns of Figure 10. The visual results corresponding to the IR of

CT images, i.e. I6 vs. T1(I5) (see Figure 11) show the high complexity of this real-world case

of study, mainly originated by the nature of the anatomical structure of the human wrist.

Again, it can be observed how the two said methods provide the best results.
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Table 9: Statistical results computed from ten runs performed on each of the five IR problems
considered. The minimum (m), maximum (M), mean (µ), and standard deviation (σ) values
of MSE. The best results according to mean and standard deviation values are highlighted.
The last row refers to the averaged performance considering the five IR problems at once

Stc-G&PR Dyn-G&PR Evo-G&PR GRASP SS
I1 vs T1(I2) min 46.59 40.82 41.79 44.09 39.70

max 59.14 49.38 47.26 58.27 45.53
µ 50.48 44.22 44.43 50.39 42.85
σ 4.23 2.42 1.86 4.84 1.88

I1 vs T2(I3) min 42.37 39.93 39.17 44.16 40.77
max 64.85 49.58 45.05 91.74 49.71

µ 50.20 43.34 43.22 60.44 44.62
σ 6.45 2.77 1.76 13.59 2.23

I1 vs T3(I4) min 81.37 58.66 57.41 83.25 57.37
max 100.57 64.51 62.73 141.04 64.90

µ 88.94 61.04 60.88 108.60 61.18
σ 6.15 1.76 1.57 18.62 1.88

I2 vs T4(I4) min 120.22 85.32 81.00 136.10 78.70
max 168.34 105.52 91.89 228.06 95.02

µ 143.76 94.14 88.51 156.38 87.80
σ 14.74 6.12 3.59 26.49 5.19

I6 vs T1(I5) min 1.87 1.74 1.68 2.26 1.63
max 3.47 1.89 1.95 3.57 3.99

µ 2.70 1.81 1.80 2.88 2.19
σ 0.52 0.04 0.10 0.44 0.83

µ 67.22 48.91 47.77 75.74 47.73
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Figure 11: The first column graphically represent the IR problem instance using CT images
(I6 vs T1(I5)). From left to right, the next columns show the best IR results achieved by
GRASP, Stc-G&PR, Dyn-G&PR, Evo-G&PR, and SS IR methods, respectively

5. Conclusions and future works

We presented a contribution facing a challenging real-world computer vision problem by

means of recent hybridizations of GRASP and PR algorithms. Specifically, in this work we

proposed several designs of advanced hybridizations to tackle the point matching-based IR

problem based on a static, a dynamic, and an evolutionary approach.

Next, we studied the performance of these new IR methods in both realistic and real-

world medical applications, using different image modalities as MRIs and CT images of

human brains and human wrists, respectively. We proved how the sinergy between the single

and multiple trajectory approaches and the evolutionary scheme of PR provided effective

and robust results which were competitive with the state-of-the-art point matching-base IR

methods based on SS algorithm. A good trade-off between search space diversification and

intensification have originated the high performance achieved by the new hybrid designs.

As future works, we consider the use of new hybrid designs based on GRASP and PR

and similar approaches (Lozano and Garćıa-Mart́ınez, 2010) for tackling the point matching-

based IR problem in order to obtain more accurate and robust methods.
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